Electrochimica Acta 466 (2023) 143034

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.journals.elsevier.com/electrochimica-acta

ELSEVIER

The role of nonmetallic ion substitution in perovskite LaCoO3 for improved
oxygen evolution reaction activity

Maoyu Wang *"!, Kingsley Chukwuma Chukwu ™', Brian A. Muhich?,

Widitha S. Samarakoon ™, Zizhou He ¢, Marcos Lucero®, Chun-Wai Chang?, Alvin Chang?,
Donggi Yang®, Sumandeep Kaur“, Alpha T. N'Diaye °, George E. Sterbinsky > Yingge Du°,
Ling Fei Y, Liney Arnadéttir™", Zhenxing Feng

@ Department of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States

> Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, United States

¢ Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, United States

d Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
€ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States

ARTICLE INFO ABSTRACT

Keywords:

Oxygen evolution reaction
Electronic structure

Property descriptor

In-situ

X-ray absorption spectroscopy

Transition metal perovskite (ABO3) is an emerging type of oxygen evolution reaction (OER) electrocatalyst that
shows reasonably good activity and moderate stability. Although efforts have been made to improve perovskite’
OER performance by various element substitution at A/B-site, the influence of ion, particularly non-metallic ion,
substitutions on the OER mechanism are rarely studied. More and more evidence has shown that the metal-center
theory has failed to explain lots of OER-related phenomena. Therefore, it is urgent to understand how the cation
and anion sites in perovskite determine OER performance. Here, we used a Fe and P co-doped LaCoOj3 as a model
system to explore the influence of substitution in perovskite by combinng operando/ex-situ X-ray characterization
and density functional theroy (DFT). We observed enhanced OER catalytic activities in co-doped materials,
which are attributed to the stronger transition-metal-oxygen-bonding-covalency (TMOBC). The detailed analyses
by O K-edge XAS, electrochemical performance, and DFT suggest that the hybridization between O 2p and
transition metal 3d eg orbitals could be a more credible descriptor of perovskite for OER, which is the combi-
nation of ey orbital theory and TMOBC theory. The finding in our work provides insights into the OER catalysis
mechanism on metal oxides, which could guide new design of cost-effective oxide electrocatalysts.

1. Introduction Therefore, significant emphasis has been directed towards conducting

research to identify cost-effective, active, and stable electrocatalysts for

Developing sustainable energy conversion and storage techniques is
key to combatting climate change and responding to its harmful effects
[1-3]. A promising solution is the use of electrochemical energy con-
version devices such as electrolyzes to split water and produce
hydrogen, which can be stored and used as a green energy resource,
thereby promoting the so-called “hydrogen economy” [4,5]. Water
splitting consists of two main electrochemical reactions, namely
hydrogen evolution reaction (HER) and oxygen evolution reaction
(OER), occurring at the cathode and the anode, respectively., The OER is
a four-electron process that is more challenging, compared to HER, due
to its relatively sluggish kinetics and high overpotential [6,7].

* Corresponding authors.

promoting OER.

Over the past decades, efficient OER catalysts have been mainly
based on precious metals and their oxides such as IrO3 and RuO». Due to
their high costs, alternative materials such as transition metal oxides
have been explored as electrocatalysts for OER. For example, Shao-
Horn’s group has shown that Bag 5Srg 5C0og.gFep 203.5 has much better
catalytic activity than the state-of-the-art IrO; [8]. They also pointed out
that the highest OER activity could be achieved when the electron oc-
cupancy of the metal e, orbital is close to unity [8]. Based on the eg orbit
theory, Xu’s group tailored the Co-O bonding covalency via substituting
Fe with Co in LaCoOs [7]. They found that LaCog gFe( 103 exhibits the

E-mail addresses: Liney.Arnadottir@oregonstate.edu (L. Arnadéttir), zhenxing.feng@oregonstate.edu (Z. Feng).

1 These authors contributed equally to this work.

https://doi.org/10.1016/j.electacta.2023.143034

Received 24 April 2023; Received in revised form 7 July 2023; Accepted 16 August 2023

Available online 17 August 2023
0013-4686/© 2023 Elsevier Ltd. All rights reserved.


mailto:Liney.Arnadottir@oregonstate.edu
mailto:zhenxing.feng@oregonstate.edu
www.sciencedirect.com/science/journal/00134686
https://www.journals.elsevier.com/electrochimica-acta
https://doi.org/10.1016/j.electacta.2023.143034
https://doi.org/10.1016/j.electacta.2023.143034
https://doi.org/10.1016/j.electacta.2023.143034

M. Wang et al.

—_—
Q
N

Electrochimica Acta 466 (2023) 143034

b 1.60 .
(b)o7 ——LaCo; 4Py 105 (c) LaCoy P10,
LaCosFep Os | 0.64——LaCo,¢Feq05P00505 1 591 L2C0%sFen0sPoosOs
; NE 0,5-_LaC°o.9Feo103 LIIJ ) —— LaCo, oFe, 104
g 2 T, LaCo0,
2 LaCogFeysPos0s [ E 041 2 581 1o,
5[] 5% 157
E £0.21 12
. LaCoPy 105 | O 011 W 1.56
N ETET N TETIT TR s
5 10 15 20 25 30 12 13_14 18 16 17 Go oor oos s
(d) 20 (deg.) (e) AR (Vvs ) ) Log(j) (mAem?)

Fig. 1. (a) XRD diffraction with LaCoO3 standard at bottom (b) OER performance of LaCog 9P 103, LaCog oFeg 05P0.0503, and LaCog oFe 103 (c) Tafel plot of different
peroxides compared with unsubstituted LaCoO3 extracted from Ref 7 and benchmarked IrO, extracted from Ref 11; SEM of (d) LaCogoP 103, (e) LaCog.o.

Feo.05P0.0503, and (f) LaCog gFeg 103.

best OER performance among different percentages of Fe substitution
due to the highest transition-metal-oxygen-bonding covalency (TMOBC)
[6]. Recently, the P substitution has been explored as an alternative
approach to enhance the OER performance of perovskites [9,10]. For
example, Chen’s group found that the high-valence-state P substitution
in SrCog gFep 203 enhances the OER performance, which is attributed to
the introduction of more oxygen vacancies. Different from metal sub-
stitution, P substitution in perovskite oxides provides a non-metallic site.
This challenges the metal-centered theory (e.g., €4 orbital theory) and
requires more fundamental understanding of the influence of anion
substitution, or more generally the role of cation and anion substitution

in perovskite oxides electrocatalysts.

In this work, we substituted Fe and P into LaCoOs3 to understand the
role of cation and anion doping such as whether P could adjust TMOBC
similar to Fe. This is the extension of the previous work on Fe doping in
LaCoOs [7]. The electrochemical performance indicates the P doping
could improve the OER catalytic performance, and Tafel slope suggested
that P doping does not change the reaction mechanism. With the help of
multimodal characterization tools including operando X-ray diffraction
(XRD) and operando hard X-ray absorption spectroscopy (XAS) together
with electrochemical performance, we revealed that those materials,
particularly the metal sites, did not undergo any obvious crystal and
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Fig. 2. Co K-edge (a) XANES (c) Fourier Transform R-space (e) R-space fitting (the dot are the raw data and solid line are the fitting data); Fe K-edge (b) XANES (d)

Fourier Transform R-space (f) R-space fitting (the dot are the raw data and solid

line are the fitting data) of LaCog oPg.103, LaCog oFeg 05Po.0503, and LaCog gFeg 103.
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Fig. 3. Operando Co K-edge (a) XANES (b) Fourier Transfer EXAFS in R-space (c) and EXAFS in k-space for LaCog gP¢ 103, LaCog oFeg 0sPo.0503, and LaCog gFep 103.

local structure changes under OER conditions, which suggests that the
cation may not be the only reaction center. Furthermore, ex-situ soft XAS
illustrated that P substitution did not change neither Co nor Fe electronic
structure or crystal structure but did change TMOBC. Therefore, by
combining O K-edge XAS with the density functional theory (DFT)
analysis, we provided a new way to explain the enhanced OER perfor-
mance: the hybridization between e, orbitals and O 2p orbitals is more
critical to determine the OER performance in oxide electrocatalysts.

2. Results and discussion

XRD was carried out to reveal the crystal structure of LaCog ¢gP¢ 103,
LaCog.gFeg 05P0.0503, and LaCog gFep 103 (Fig. 1a). All three materials
show the rhombohedral structure, which is the same as pure LaCoO3 and
there is no phase transition change caused by Fe and P substitution.
Rietveld refinement was carried out to further confirm the lattice
parameter change (Fig. S1 & Table S1). There are some small lattice
changes of the three materials which may be caused by the Fe and P
doping. In addition, some low-angle peaks were missing in
LaCog 9Po.103 and LaCoggsFeg gsPo.osO3 from the refinement when
using the LaCoOg crystal structure. This indicates the P doping of B-site
as suggested in the previous study [9-11]. To quantify the surface area
of LaCoggFexPy 1403, the Brunauer-Emmett-Teller (BET) tests were
carried out and the specific surface areas of these LaCoggFexP 1.x0O3
were measured to be around 3.6 mz/g (Table S2). Scanning electron
microscopy (Fig. 1d-f) confirms that all those materials have similar
morphology. Energy dispersive spectroscopy (EDS) was also carried out
to ensure that we successfully substituted Fe and P into the LaCoO3
(Fig. S2). The element distribution ratio estimated from EDS (Table S3)
confirms the expected composition of the synthesized materials. By
carefully estimating the atomic ratio of Fe, Co, and P with La, it suggests
that LaCog gFeg 05P0.0503 has around half amount of P compared with
LaCog.9Pp.103 and half the amount of Fe compared with LaCog gFe( 103.
This also confirms the P and Fe doping in B-site [11]. The OER perfor-
mance of LaCog gFexPg 1.O3 was tested in 0.1 M KOH solutions using the
three-electrode rotating disk method. The OER current normalized with
the BET surface area indicates that LaCog gFeg osPg.0s03 has the best
OER performance (Fig. 1b) with the lowest onset potential (i.e., 1.60 V
at 0.2 mA/cm?), and the LaCog oFeg 105 shows the worst OER perfor-
mance (i.e., 1.63 V at 0.2 mA/cm?). Note that our LaCog.9Fe(.103

exhibits the same OER performance as described in previous literature
(i.e., 1.63 V at 0.2 mA/ em?) [71, which confirms that our P-substitution
further enhances the OER catalytic activity, but still little worse than
standard RuO; (Fig. S3). The better OER activity of Fe and P doped
oxides in our study is also reflected by the comparison of Tafel slopes of
our samples with those reported in literature, including IrO- (Fig. 1¢c) [7,
12]. However, the slope of Tafel plots are very close around four ma-
terials, which indicates the similar reaction mechanism or reaction
pathway. Hence, the difference between catalytic performance is more
likely related to materials’ intrinsic characteristic parameters.

Ex-situ XAS was carried out to obtain the valence state, electronic
structure, and local structure of both Co and Fe (Fig. 2a&b) [13-16].
Although the shapes of X-ray absorption near edge structure (XANES)
spectra of our electrocatalysts are different from Co(NO3)3 and FeyO3
due to different local structures of perovskites and standards
(Fig. 2a&b), all three LaCoggFexPg1.xO3 show the same Co and Fe
valence states with Co valence state close to Co(III) and Fe with slightly
higher valence state than Fe(III) [7,13], which suggests that the sub-
stitution does not change the oxidization state to influence the OER
performance. Note that a minor spectra difference (highlighted by cir-
clesin Fig. 2e&f) on extended X-ray absorption fine structure (EXAFS) of
Fe and Co may be caused by the Fourier transformation of the noise in
the k-space (Fig. S4) or the actual oxygen vacancy. Since the oxygen
vacancy would also plays a critical role in the OER catalytic perfor-
mance, we carried the model based (LaCoOj3 as the study model) EXAFS
fitting to estimate the oxygen coordination with both Co and Fe (Fig. 2e,
f &S5). Based on the EXAFS fitting results (Table S4&5), there is only
tiny Co-O/Fe-O coordination number difference three samples.
Considering the error bar, those slight differences may be caused by the
noise point in the k-space or some small amount of oxygen vacancies
formation on the surface due to P doping. However, the amount of ox-
ygen vacancies are not significant, which do not play a crital role in the
OER performance. Hence, the P substitution does not induce different
OER performance through alteration of the metal oxidization state or
local structure.

To further understand the OER reaction mechanism and how P-
substitution is achieved, the operando characterizations under catalytic
reaction were carried out. Operando XRD (Fig. S6) showed no change in
the bulk crystal structure for all three materials, which confirms that the
OER only takes place on the surface of the materials. Operando XAS
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Fig. 4. (a) O K-edge XAS, (b) estimated TMOBC based on the total area of peaks a and b, (c) estimated transition metal t5; and O 2p hybridization based on the area
of peak a, (d) estimated transition metal e; and O 2p hybridization based on the area of peak b for LaCog 9P 103, LaCog oFeq 0sPo.0503, and LaCog oFeg 103 (The

current density for comparing is the current at overpotential equaling to 0.3 V).

measurements were also carried out to probe any electronic structure or
local structure change during the OER (Fig. 3&S7) [17,18]. Based on the
Co K-edge XANES, there is no Co electronic structure change in the
LaCog gFexPo 1xO3 materials during the catalytic reaction (Fig. 3a). In
addition, no change in Co local structure of the LaCog gFeyP¢ 1.xO3 ma-
terials was observed (Fig. 3b&c). The operando Fe K-edge XAS mea-
surements (Fig. S7) provide similar results. These results showed no
electronic or local structure changes in the materials during the catalytic
reaction. Note that XAS is a bulk-sensitive technique. Since most of the
bulk Co and Fe are not involved in the reaction, changes in the surface
Co and Fe could be below the XAS detection limit [19]. In addition, a
previous study used a surface-sensitive hard XAS to indicate only a small
amount of LaCoO3 on the surface undergoes catalytic reaction [20]. It is
also possible that the bulk oxygen is involved in the catalytic reaction,
which may not cause any structure change of Co and Fe [21]. Therefore,
the surface sensitive ex-situ soft XAS at Fe L-edge and Co L-edge were
also carried out to probe the surface Fe oxidization state and the elec-
tronic structure using electron yield mode [16]. Although there is
slightly difference in L3 peak of both Co and Fe for all electrocatalysts,
but the peak location and distribution are the same around three ma-
terials, (Fig. S8), which indicates the almost same surface oxidization
state (Co(III) and Fe(II)) and electronic structure [22-27].

As no electronic structure and local structure changes were identified
at the cation site, the eg orbital theory based on 3d transition metal does
not work well to explain the increased OER performance of the
LaCog.gFexPo 1xO3 materials. Therefore, the TMOBC theory, another
important descriptor for perovskite OER performance [7,8], was
considered to explain the electrocatalytic  performance.
Surface-sensitive O K-edge XAS measurements were carried out to esti-
mate the TMOBC (Fig. 4a) [27-30]. The P substitution has a significant
influence on the O K-edge spectrum. Fig. 4a shows peak a and peak b can
be used to estimate the TMOBC. Their changes emphasize the difference
in metal-oxygen covalency of the three LaCoggFexPg 1.xO3 materials,
which could explain the different OER catalytic activities. The areas of
peak a and peak b were further analyzed to quantify the strength of
TMOBC. Based on the method mentioned in previous literature[22,30]
and our soft XAS study [27], Co and Fe were treated as Co(III) with

intermediate spin and Fe(III) with high spin, respectively, based on the
Co and Fe 1-edge soft XAS data (Fig. S8) and their similarities in spectra
shapes reported in literature [7,8,22,24,26,27]. The results (Fig. 4b)
illustrate that LaCog gFeq 05P.0503 has the strongest TMOBC, which can
be correlated to the best OER performance among the three materials
and is consistent with previous reported trend [7,22]. However, the
LaCogoFep103 that exhibited worse OER performance than
LaCog.9Po.103 showed stronger TMOBC strength. This opposite trend
suggests that more detailed analysis or alternative theory is needed.
When transition metal cations are involved in adsorption, desorption
and formation of a surface chemical bonds of the reaction intermediates,
the materials’ chemical properties are mainly determined by the
outermost antibonding orbital 3d ey while 3d tag is less involved. Thus,
the hybridization of the transition metal 3d e; and the oxygen 2p is more
influential in electrocatalysts’ activity than that of the transition metal
3d tag and the oxygen 2p. For O K-edge XAS spectrum, peak a reflects the
transition metal tag and O 2p hybridization and peak b can be treated as
the transition metal e; and O 2p hybridization [28]. Their estimated
hybridizations are shown in Fig. 4c and d, respectively. Clearly, the
trend of TMOBC strength shown in Fig. 4d matches that of the OER
activity of the three electrocatalysts, suggesting that the hybridization
between metal eg and oxygen 2p is the dominate factor. Comparatively,
the TMOBC strength in Fig. 4c, which reflects the metal tog and O 2p
hybridization, fails to explain the three electrocatalysts’ OER activity.
Hence, we propose a new descriptor for perovskite OER catalytic per-
formance: the greater transition metal eg orbital hybridization with O 2p
orbital leads to higher OER performance.

In alkaline media, the widely accepted OER mechanism on metal
oxides consists of the following four-electron/proton transfer steps
[31-34]:

Step 1: OH™ + * - OH* + e~

Step 2: OH* + OH — O* + Hy0 + e~

Step 3: O* + OH  — OOH* + e~

Step 4: OOH* + OH™ — * + Oy + Hy0 + e~

The first step describes a hydroxyl radical adsorbed on the active site
(*) to give OH* by 1 e oxidation of hydroxide anion (OH"). Then the
coupled proton and electron removal from OH* leads to O* in the second
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Table 1
ICOHP and ICOBI of Co-O atom pair close to the dopant atom.
ICOHP ICOBI
Surface dopant Pristine Fe/P Fe P Pristine Fe/P Fe P
Atom pair Co-O Co-O Co-O Co-O Co-O Co-0 Co-0 Co-0
Spin-up —-0.927 —0.915 —1.012 —0.388 0.146 0.143 0.168 0.036
Spin-down —1.040 —1.042 —1.026 —0.589 0.149 0.150 0.156 0.060

step. Furthermore, coupled with 1 e7, O* is attacked by hydroxyl anion
to form the hydroperoxide intermediate OOH* in the third step and a
further proton-coupled electron transfer in the fourth step releases Oy
and regenerates the free active site. Clearly, the adsorption and inter-
action of OH group is critical to facilitate the oxygen evolution. Re-
searchers have suggested that the OER activity of oxides is correlated
with the metal-OH bond strength [35,36], which supports our
conclusion that metal-oxide covalency, particularly, transition metal eg
orbital hybridization with O 2p orbitals, can be the property descriptor
for oxides’ OER activity. To further confirm this correlation, DFT cal-
culations were carried out to estimate the surface interactions of OH
groups on different surfaces (Fig. 5& Table S6). Previous studies have
shown a linear relationship between the adsorption energy of OH and
OER performance of Perovskites [36-38]. Similarly, we observed that
the experimental OER performance increases with decrease in the
calculated adsorption energy of OH on the perovskite and OH stretching
frequency (see Fig. 5a). The lowest adsorption energy of OH is on the
LaCog.g92Feq.04P0.0403 perovskite. The lower adsorption energy enhances
the first elementary reaction step (OH™ + * — OH* + e") of OER. Fig. 5b
shows how the OER activity increases with lower OH stretching fre-
quency (longer adsorbed OH bond length) and weaker OH bond making
the second elementary reaction step (OH* + OH — O* + H,0 + €7) of
the OER easier to occur. This second elementary step involves shuttling
of a hydrogen from the surface species to OH", forming H»O in the so-
lution and the weaker OH bond enhances that shuttling of H into the
solution. The DFT results confirm the experimental trend that LaCog g.
Feo.05P0.0503 has the best OER performance with the lowest over-
potential, and the LaCog ¢Fey 103 shows the worst OER performance.
This supports our claim that metal-oxygen hybridization between tran-
sition metal eg orbitals and O 2p orbitals could be a good activity
descriptor for OER.

The projected Crystal orbital Hamilton population (COHP) for the
Co-O atom pair close to the dopant atom in the different surfaces is
shown in the SL. (Fig. S13) [39,40] The integrated COHP (ICOHP) and
Integrated crystal orbital bond index (ICOBI) are shown in Table 1. The
ICOHP and ICOBI calculations indicate an increase in Co and O coupling
with Fe doping while it remains similar with Fe and P co-dopants.
However, the coupling strength decreased when doped with P only.
This is in quantitative agreement with the TMOBC in Fig. 4b and c where
Fe doped perovskite has the strongest metal-O bond strength, followed
by Fe/P and P doped. (Table 1) ICOHP for La, Co, Fe, and P -O (H) atom

pair on the different surfaces are shown in the SI. (Table S7)
3. Conclusions

In summary, we have studied the role of metallic (Fe, Co) and
nonmetallic (P) substitution to tune the OER catalytic performance of
perovskites. We observed an increased OER catalytic activity with co-
substitution of P and Fe due to the change in TMOBC. Although no
changes in catalyst structure and cation redox were observed, differ-
ences in metal-oxygen covalency were identified for these catalysts,
which is the critical factor resulting in the different OER activities. Based
on detailed surface-sensitive O K-edge XAS analysis, we propose that the
greater transition metal eg orbital hybridization with O 2p orbitals leads
to higher OER performance, which combines the eg orbital theory and
TMOBC theory in one new descriptor. Such correlation was confirmed
by DFT calculation on the adsorption energy of OH on the perovskite and
OH stretching frequency. This study provides deep insights into the ef-
fect of electronic structures on the OER kinetics and mechanisms, as well
as guidance for the development of more active oxide catalysts for OER
in the future.
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