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Additive Manufacturing (AM) can apply unique customized printing patterns for each layer, which govern the
microstructural features in a fiber-reinforced composite part. Non-destructive evaluation methods are used exten-
sively to understand the defects and the microstructure of 3D printed composite parts. Considerable intellectual
property is involved in designing and manufacturing composite parts, which needs to be protected using innova-
tive methods. One of the concerns in this area is counterfeit parts made on high quality 3D printers, which need
to be identified. This study aims to investigate and provide a part-authentication methodology for 3D printed
composite parts by using the micro-computed tomography (uCT) scans of discontinuous fiber-reinforced poly-
mer composite (FRPC) parts. The microstructure of FRPC contains fibers, matrix and porosity that are unique to
the specimen and is a result of the printing parameters. Specimen A is printed with an infill direction of 90° and
wall count of 3 and specimen B has the same infill direction but does not contain a wall boundary. A comparison
between the different ;CT datasets of the specimens can identify the distinguishing features of the 3D printed
composite part. The correlation developed across different 4CT datasets from extracted features and the met-
rics formulated can be used to quantitatively differentiate the composite specimens. Frequency domain analysis
shows the most promising results by correctly identifying 3 out of the 6 datasets belonging to the same AM. A part
identification and authentication method for AM composites will be useful for identifying genuine or counterfeit
parts and protect intellectual property.

nents [6]. Research that studies material characteristics at a microstruc-
tural level of an AM part helps with defect identification and authenti-

1. Introduction

Additive Manufacturing (AM), also known as 3D printing, is a
promising technology that offers unparalleled benefits over the tradi-
tional manufacturing methods such as casting or machining [1]. The
inherent advantages of AM in developing complex geometrical struc-
tures with limited tooling and ensuring faster lead times [2] has led to
its adoption in several industries such as automotive, aerospace, defense
and biotechnology. AM involves developing the design in a digital for-
mat and transferred to a 3D printer that deposits the structural material
layer-by-layer to form the volumetric parts. The transition from digi-
tal design to the manufactured part often results in discrepancies in the
printed features of AM parts [3]. AM is described as a cyber-physical
system [4], which offers a high degree of flexibility in customizing the
overall supply chain [5]. A cyber-physical system has its own unique
potential vulnerabilities that can compromise the quality of AM compo-

* Corresponding author.:.

cation of the part [7].

A number of studies have focused in the area of novel materials for
the use in AM processes. Fiber-reinforced polymer composite (FRPC)
parts are also manufactured by 3D printing [8]. FRPCs are develop
to form lightweight and high performance parts by tailoring the fila-
ment size, placement, and patterns. Their mechanical properties and
economic viability, along with the low production cycle time allow them
to substitute metals like iron and aluminum in selective applications [8].
FRPCs are extensively used in the mass production of beams, rails, and
front-end support systems in the automobile, aircraft, and construction
industries, due to their high strength-to-weight ratio [9].

Development of composite feed materials has allowed several AM
methods to be used for the manufacturing of FRPC parts. Today, the
major AM techniques involving composite materials used commercially
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include vat photopolymerization and material extrusion. Continuous
and short fiber reinforced filaments are widely for the material extru-
sion type printers. The fracture mechanics of 3D printed continuous
fiber composites of varying fiber content can be optimized in different
engineering applications [10]. 3D printed composites show a optimal
strength to weight ratio and the applications of 3D printed composites
have increased. Further mechanical property optimization of compos-
ite can be achieved by customizing the polymer matrix material and
raster angle of fibers [11]. AM excels in the fabrication of sandwich-
structured composites [12] and experimental study has shown the dura-
bility of these composites under different loading and environmental
conditions [13].

Micro-computed tomography (uCT) scans offer an nondestructive
evaluation (NDE) method of imaging manufactured parts with a high
resolution, which allows for detection of microstructural features on a
fiber-level scale [14]. This 3D imaging technique scans a series of 2D
cross-sectional images using X rays, and then reconstructs the images
slice-by-slice to form a 3D model detailing the internal structure of the
FRPC specimen. Several factors including directions of fibers, porosity,
infill directions and others remain unique to the reconstructed model. In-
situ defect detection methods for AM parts provide a continuous closed-
loop feedback to ensure printing process stability and repeatability [15].
While uCT scans are now widely used to determine defects in materials,
capabilities for uniquely identifying similar specimens are still limited.
AM methods are capable of printing highly repeatable quality speci-
mens, and so further development of image processing, machine learn-
ing and analysis techniques for interpreting the xCT scan is desired [16].

This study thus presents several methods for uniquely identifying a
3D printed part in a group of identical parts based on differences in their
uCT scans. The inherent structural properties of FRPCs allow for distinct
identification of the composite parts based on fiber arrangement and de-
fects such as porosity that are captured by the uCT scans [17]. Defects
can also be intentionally added to a design to reduce the strength of the
AM part [18] and detection systems may be used to determine these
compromises [19]. Based on the analysis of these distinctive proper-
ties, conclusive metrics are proposed which are derived from computer-
vision algorithms. These metrics can be utilized to effectively demarcate
the parts which differ from the reference part, and hence provide a ro-
bust part verification method that can be integrated in the AM supply
chain. To the best of the authors’ knowledge, this is the first work which
investigates the use of uCT scans for part identity verification.

The remainder of the paper is structured as follows: Section 2 pro-
vides a background and related work. Section 3 lists the process followed
for construction of the datasets used for testing the different analytical
methods, which are describe in Section 4. The results are discussed in
Section 5, followed by the concluding remarks in Section 6.

2. Background

X-ray uCT is often used in the evaluation of the quality of 3D printed
composites and there are many technical challenges involved in the pro-
cess [20]. It is very difficult to develop correlations between different
uCT image datasets even when the yCT scans show the same specimen.
The specimen needs to be placed onto a stand with putty for the uCT
scanning bed. The placement of the specimen on the scanning bed dic-
tates the reconstruction axis for the yCT images and for a 3D printed
part, this reconstruction axis is often not perfectly aligned with the
printed layers of the specimen. This results in some yCT images show-
ing multiple printed layers of the specimen in the same reconstructed
image. For multiple xCT scans of the same specimen, it is difficult to
create a comparison between the different 4CT image datasets because
the features from different layers bleeds into one image and introduces
variation in pCT images.

Methodologies and computed algorithms to analyze multiple xCT
image datasets for very similar printed specimens have limitations in
their capability to identify similarities. Many defects identified within
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the uCT scans are attributed to non-optimal build conditions, manu-
facturing issues, and post-processing procedures [21]. A comparison of
defects from different yCT datasets would require a precise method to
isolate the defects from the images. Image binarization method requires
a single threshold input which is not enough to capture every defect
of different shape and size in a 4CT image. Image characteristics like
noise, shadows, masking, gamma, etc. also need to be accounted for to
successfully formulate a viable method of distinguishing various defects
in FRPC parts [22]. Reconstruction artifacts such as noise, scatter, beam
hardening, and ring artifacts can be additions in the yCT images that
further add to the differentiation between the yCT datasets of similar
specimens. Three unconventional approaches are tested on a collection
of uCT datasets of similar FRPC parts to determine the optimal tech-
nique for identifying the unique characteristics of the features in the
uCT scans.

Frequency domain analysis techniques can be used to analyze dig-
ital signals such as images [23,24], speech [25], etc. The information
encoded in each image is expressed in terms of basis functions. This
helps in applying several transformations and filters to the image effi-
ciently. For this method, the concept of power spectral density (PSD) is
employed [26] to demarcate the datasets. PSD is defined as the measure
of a signal’s power content for a given frequency and it forms a strong
feature which can represent the properties of the xCT scan images.

Other methods for analyzing uCT scans include histogram analy-
sis [27] and audio spectrum analysis [28]. In the former method, the
uCT scans are preprocessed via image enhancement techniques, which
are then used to plot a histogram based on their tone distribution and
frequency intensity. Next, standard analysis can be done on the plots
to determine conclusive metrics to differentiate the scans belonging to
different specimens. Similarly, audio spectrum analysis is an indirect
method of analyzing the scans. In this method, the scan images are con-
verted to audio domain and their corresponding spectrograms are ana-
lyzed via several properties inherent to them.

3. Dataset construction

The specimens used in this study are rectangular specimens of length,
thickness, and width of 4 in., 0.25 in., and 0.5 in., respectively. The
computer-aided design (CAD) model of the specimen is created in Solid-
Works 2020 and exported to a stereolithography (STL) file format. The
STL file is imported into Ultimaker Cura software to define the print-
ing parameters of the specimens. The common printing parameters of
all specimens include 100 percent infill density, printing temperature of
240 °C, build plate temperature of 90 °C, and a layer height of 0.25 mm.
Cura outputs a g-code file, which contains all the processing parameters
and the set of instructions for the 3D printer. The specimens are printed
on a FlashForge fused filament fabrication 3D printer using glass fiber-
reinforced acrylonitrile butadiene styrene (ABS) filament of 1.75 mm
diameter manufactured by 3DXTECH. There are a total of 4 printed spec-
imens created from the original CAD model. The structure of the layers
of the specimens is depicted in Fig. 2, and the details of the printing
parameters of the specimens are as follows:

1. Specimen A and B are identical, with a exterior shell wall of count
3 and an infill direction of 90 degrees with respect to the hori-
zontal length-wise axis of the model.

2. Specimen C is printed with no exterior shell wall boundary and
an infill direction of 90 degrees with respect to the length-wise
axis of the model.

3. Specimen D is printed with an exterior shell wall of count 3 and
an infill direction of 0 degrees with respect to the length-wise
axis of the model.

The 4 printed specimens had to be cut for the computed tomography
scan. A diamond saw blade is used to cut a small piece of 0.5 inch from
the center of each printed specimens. A SkyScan 1172 uCT scanner is
used to process each of the specimens and generate an image dataset
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Fig. 1. Micro-computed tomography scans of four FRP specimens bifurcated
under six datasets.

(a) All layers printed with infill direction of 90° and wall count of 3

MUY TTTIT]

(b) All layers printed with infill direction of 90° and wall count of 0

(c) All layers printed with infill direction of 0° and wall count of 3

Fig. 2. Printing parameters used for (a) specimen A and B, (b) specimen C, and
(c) specimen D.

for the microstructure of the printed specimens. The scan is conducted
using camera pixel size of 9 source voltage of 40 kV, source current of
250 rotation step of 0.2° per scan, and 180° rotation. SkyScans NRecon
reconstruction software is used to produce cross-section slices of the
scanned specimen using a smoothing value of 2, ring artifact correction
value of 18, and beam hardening correction value of 25 percent. There
are 6 image datasets generated from the 4 printed specimens, which are
shown in Fig. 1. Description of these datasets is mentioned below:

1. Dataset 1 is the result of the first 4CT of specimen A. The recon-
struction software created 359 image slices.

2. Dataset 2 is also a uCT of specimen A. After specimen A was
scanned and reconstructed, without removing the specimen from
the scan bed, specimen A is scanned again to create a new image
dataset of the specimen in the same position. Dataset 1 and 2 will
capture identical features (such as fibres and porosity) from the
specimen, but as reconstruction occurred separately, the dataset
images will differ due to noise and manual selection results in a
different total number of images. The reconstruction created 351
image slices of the specimen.

3. Dataset 3 is a third reconstruction of specimen A. After generat-
ing dataset 2, specimen A was removed from the scanning bed
and flipped up-side down 180° before it is placed back into the
uCT machine. This dataset contains 372 images of the specimen.
Dataset 3 contains very similar features as both dataset 1 and 2
but with the order of the images reversed.

4. Dataset 4 is a result of scanning specimen B. There are 376 im-
ages in this dataset. Specimen B has the same infill direction and
wall boundary count as specimen A, but the microstructural fea-
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tures such as fiber and porosity contents from the xCT scans are
different.

5. Dataset 5 is the image reconstruction of specimen C. There are
356 images in this 4CT scan dataset. Specimen C is different from
specimen A and B because it does not have the exterior shell wall
boundary. Specimen C is expected to have a fair amount of similar
attributes when compared with specimen A and B.

6. Dataset 6 is the image reconstruction of specimen D and there
are 395 images. Specimen D is different from specimen A and B
because it does not have the same infill printing direction. Speci-
men D is expected to have the most deviation in similarity when
compared to the other 3 specimens.

A red-team blue-team approach was followed to avoid user bias in
interpreting the similarity between each of the xCT datasets, where the
blue team, consisting of the first author and latter three authors of the
paper, are involved with printing of the specimens and generation of the
uCT datasets. The red team, consisting of the second and third authors
of the paper, are tasked with comparing the six yCT datasets and de-
veloping a metric to evaluate the similarity between each dataset with
dataset 1. The red-team had no prior knowledge about the details of
the datasets construction process and based their analysis solely on the
features discovered in the images of the ;CT datasets.

4. Methodology

The goal of this work is to identify efficient methods for distinctly
identifying uCT scans for the purposes of part authentication. The pri-
mary challenge is that differentiating features can only be observed at
a very small scale, necessitating methods which can utilize the fine-
grained details within the xCT scans to make decisive judgements on
whether or not a scan belongs to a given specimen. Several potential
methods which may be used to differentiate between the scans are pre-
sented and discussed in this section along with metrics for identification.

4.1. Preprocessing

Before the application of any of the following methods, the images
from the original 6 datasets are preprocessed. This involves a cropping
function to remove irrelevant objects and regions from the uCT scan
images. Also, overexposed and underexposed images are deleted in or-
der to prevent detection of outliers which may lead to incorrect infer-
ences. Both cropping and outlier removal are performed by importing
the images in batch to ImageJ. Cropping is done manually by applying
a square crop window to all the images to capture only the necessary
details. Removal of images having the issue of abnormal color exposure
is done by thresholding the images on the basis of the pixel values and
excluding those images for which the area under the thresholded region
deviated by a large margin from the rest of the images. The pixel thresh-
old value in the above step is automatically determined by ImageJ, and
does not required any manual intervention from the user. The number
of uCT scan images under each dataset after this preprocessing step are:
Dataset 1 - 294, Dataset 2 - 298, Dataset 3 - 277, Dataset 4 - 276, Dataset
5 - 294, Dataset 6 - 266.

4.2. Fiber orientation detection

This method aims to find the ratio of the number of vertically aligned
fibers to the number of horizontally aligned fibers in a uCT scan, then
use that fiber ratio (¢,) for part differentiation. For each dataset, the
preprocessed images files are imported in MATLAB, and gaussian fil-
tering with a standard deviation of 2 is applied to denoise images and
improve edge detection. Edge enhancement is applied via horizontal and
vertical Sobel filters [29] to demarcate the regions of vertical and hori-
zontal fibers within the image. Inbuilt functions imgaussfilt and edge are
used for gaussian filtering and sobel edge detection respectively. As an



G. Mac, M. Mandal, A. Rastogi et al.

additional post-processing step, small artifacts identified by the filters
having fewer than 100 pixels are removed by employing morphological
operations (using bwareopen function of MATLAB). Thresholding is ap-
plied to the image to separately isolate the vertical and the horizontal
identified fibers by setting the pixel values of the regions detected by
Sobel filters to 1, and of the rest of the regions to 0. Lastly, the ¢, is
calculated as:

Afo

by M
where A is the area under the processed image belonging to the hori-
zontal fibers and A oo is the area for vertical fibers [30].

4.3. Histogram analysis

In histogram analysis, the preprocessed uCT scans are loaded in
MATLAB for image processing. Adaptive weiner filters are applied on
datasets using inbuilt weiner2 function to remove Gaussian noise and
reduce image variance for further morphological transformations. Salt
and Pepper noises, present in negligible quantities (less than 1 percent),
are ignored as a due matter of convenience. Thresholding of images by
Otsu’s method (using inbuilt graythresh function) is performed to seg-
ment image into object and background [31]. Prewitt filters are applied
in images in both vertical and horizontal directions to detect and en-
hance edges (using edge function). Finally Principal Component Anal-
ysis (PCA) is applied on uCT scans (using pca() function from Statis-
tics Toolbox in MATLAB) to demarcate the regions of discontinuous
frequency [32]. The average frequency of possible pixel values (8-bit
integers) from O to 255 are tabulated by observing the intensity pro-
file of datasets made using improfile function in MATLAB. The tabulated
data is used to create histograms of respective datasets using inbuilt plot
function in MATLAB.

n
1 at+ay+---+a

Mean = — E ai=# 2)
n &~ n

The mean frequency for all pixel values are calculated for six datasets
to find similarities and dissimilarities between them.

4.4. Audio spectrum analysis

The audio spectrum analysis on the yCT datasets is analyzed in MAT-
LAB. Linear filtering is applied on uCT scans (using imfilter function)
to remove both Gaussian noise and Impulse noise. Thresholding of im-
ages by Otsu’s method (using inbuilt graythresh function) [31] is done
to achieve image segmentation. Robert-Cross filters are applied in both
vertical and horizontal directions to detect and enhance edges in images
(using edge function). The images are then converted into binary matri-
ces using in-built imbinarize function. Dark regions are labelled 1 while
light regions are labelled 0. Lastly, these images are converted into 6-
second long audio files in . wav format using the vOICe algorithm [33].
Regions denoted with O are assigned silence during the image-to audio
conversion in the logarithmic scale. The amplitude of a specific region
depends on the frequency of the pixels in that region. The mean ampli-
tude (4,) of waveforms across various datasets are calculated using the
following equation:

AIA/'
A, = = 3)
where A, represents the area under the waveform and T represents the
total time taken in seconds. The 4, of the waveform averaged over all
uCT images of a dataset serves as a primitive metric to find similarities
and dissimilarities across datasets.

4.5. Frequency domain analysis

The frequency domain analysis of the uCT scans is done using MAT-
LAB as follows: First, the uCT scans are converted to frequency domain
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Table 1
Quantitative metrics of different methods on the six xCT datasets.
Dataset &, Mean Frequency 4, (m) (x107) MPSPSD
(Hz) (x1073) (dB) (x10™%)
1 1.95 7468 -0.76 1.13
2 1.91 7428 -0.77 1.11
3 1.88 7475 -0.97 1.15
4 1.92 5987 -0.91 1.35
5 6.05 6110 -0.94 1.41
6 0.57 6587 -0.84 1.25

using the fast fourier transform (FFT) algorithm [34] by employing the
inbuilt fft2 function and shifting the zero frequency component to the
center of the frequency spectrum using fftshift function. Then, the mag-
nitude of PSD is plotted against each frequency component of the image
and the peak value of the PSD is found from the plot. Rescaling of the
PSD magnitude by the total frequency points is done to ensure that the
peak value calculated for images of different sizes was comparable. The
net formulation of the above process can be expressed as:

PSD = 10log,,(|F(1)[%) @

MPSPSD = max(PSD)/(1comp) )

where 7(.) denotes the FFT function, I denotes the image and n¢oy,
denotes the total frequency components of the image [35]. ‘PSD’ is a
1 X neomp dimensional array storing the PSD values of each frequency
component in the array F(/) and ‘MPSPSD’ is the Maximum Peak of
the Scaled PSD values calculated from ‘PSD’. It is found that “MPSPSD”
serves an effective metric for differentiating the yCT images belong-
ing to different datasets. The results are discussed comprehensively in
Section 5.

5. Results and discussions
5.1. Results

The methodologies discussed in Section 4 are implemented on the
datasets containing uCT scans of four different specimens. At no given
point during the analysis are the details about the dataset construction
process (Section 3) made known to the red team, i.e., the team per-
forming the analysis. Unless specified, the metrics proposed under the
different methodologies are aggregated for all images corresponding to
the same dataset. This aggregation is performed by simple averaging.

Table 1 presents the aggregated results obtained for each of the
datasets using different methods. For the fiber orientation detection
scheme (Section 4.2), in the “¢ 7 column it can be seen that the speci-
mens in datasets 5 and 6 differ significantly from the specimens in other
datasets. This can be attributed to the high amounts of vertically aligned
fibers and horizontally aligned fibers in dataset 5 and 6, respectively. It
can be observed from the xCT scans in Fig. 1 that most of the fibers in
dataset 1-4 have a higher A oo than A f,- Hence, the ¢, of dataset 5 is
substantially higher than datasets 1-4 because it mostly contains verti-
cally aligned fibers and does not have a outer wall boundary. The ¢,
for dataset 6 is substantially lower because it contains a high amount
of horizontally aligned fibers with a small amount of vertically aligned
fibers at the edge due to the outer wall. However, this method is quite
inconclusive to differentiate between specimens in datasets 1-4, since
they possess a similar structure, and the difference in the number of
vertical and horizontal fibers between each of them is not substantially
high to warrant an observable difference in the ¢,. While the use of
this method is limited to identifying major changes within the test spec-
imen with respect to the reference specimen, however, it can be used in
conjunction with other methods to provide an early-stage heuristic to
identify potential mismatches between the test and the reference speci-
men.
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Fig. 3. Plot of histograms for all six datasets. The x and y axis of plot represent
frequency intensity and pixel grayscale intensity value, respectively.

Histogram analysis is also performed on the scans, using the method-
ology discussed in Section 4.3. From Fig. 3, a frequency plot is shown for
all the 6 datasets. It can be observed that datasets 4-6 show variation in
the frequency at pixel values between 100 and 130. The histogram plot
shows that there is a difference between datasets 4, 5, and 6 with the
rest of the datasets. Furthermore, it can be inferred from Table 1 that
datasets 1-3 are uCT scans of the same FRPC specimen as their mean
frequency show a low relative standard deviation of 0.34 percent. The
mean frequency for dataset 4-6 shows that there is a clear distinction in
the frequency of pixel values from dataset 1-3. Hence, it could be con-
cluded that datasets 1-3 are uCT scans of the same AM specimen while
datasets 4-6 are identified as outliers.

An audio spectrum analysis is also performed to differentiate datasets
based on uCT scans in Fig. 1. Using Table 1, it can be inferred from the
“A,” column that the 4, of datasets 1 and 2 are significantly close, with
a standard error of 5.0 x 10~7. Furthermore, the nature of the waveforms
in the logarithmic scale for datasets 1 and 2 are similar with a standard
deviation of 7.07 x 10~7. Hence, it could be concluded that datasets 1
and 2 are uCT scans of the same AM specimen. However, the results
obtained for datasets 3—-6 remain inconclusive. Audio spectrum analysis
effectively compares two specimens with similar tone distribution and
waveform. Therefore, this method fails to differentiate between speci-
mens in datasets 3-6. Audio spectrum analysis can be used as a metric
that allows early-stage detection of possible matches of the test speci-
men with the reference specimen.

The frequency domain analysis was also performed on the datasets
using the methodology as discussed in Section 4.5. From the “MPSPSD”
results in Table 1, it can be seen that the values corresponding to the
uCT scans in datasets 4-6 show a large deviation from those belong-
ing to datasets 1-3. The MPSPSD values for the latter group of datasets
are quite close to each other, with a standard deviation of 0.016. This
observation points to the inference that the uCT scans in datasets 1-
3 correspond to the same specimen. At the same time, the deviations
in MPSPSD values for datasets 5 and 6 substantiates the inference ob-
tained from the fiber ratios that specimens representative of datasets 5
and 6 indeed are different from the rest of the specimens, as well as from
each other. In addition, this method is also able to similarly recognize
dataset 4 as belonging to a distinct specimen. Thus, this method is able
to accurately identify the correct distribution of the specimens in the six
datasets used in the study. For a visualization of the MPSPSD values for
each of the frequency points of a given uCT scan, see Fig. 4.

5.2. Discussion

Almost all the methods discussed in this study show that they are able
to accurately distinguish between the six datasets, i.e., identify datasets
1-3 belonging to the same FRPC specimen, and datasets 4-6 each be-
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Fig. 4. Plot of scaled PSD values against different frequency components of a
uCT scan image for dataset 1. The Y value in the box denotes the MPSPSD value
for the corresponding yCT scan image.

longing to distinct specimens. Since dataset 3 essentially comprises of
180° flipped uCT scans of the same specimen as of datasets 1 and 2, the
methods are largely invariant to the orientation of the specimen during
the scanning process. The fiber orientation method can be regarded as
a preliminary method for distinctly authenticating the FRPC specimen,
since it is only able to detect large scale changes in the structure of the
specimen. However, given the relatively simple computation involved
in the calculation of ¢, entailed by this method, it may be used in con-
junction with the other methods to provide early stage warnings in case
of a major mismatch between the test specimen and the target specimen.

The fiber orientation detection method provides conclusive data for
printed specimens that have infill patterns for which the microstructure
shows distinct fiber directions. For specimens printed using the same
parameters like A and B, the fiber detection method cannot distinguish
between the similar parts. This can be accounted for with the histogram
analysis. From the mean frequency of all 6 datasets, histogram anal-
ysis is able to show that dataset 4 is different from dataset 1-3. The
histogram analysis method is able to differentiate two specimens that
were 3D printed with the same parameters. The analysis concluded that
specimen C and D are also different from the rest of the dataset. The fre-
quency domain analysis provided the same conclusion as the histogram
analysis. The standard deviation from both methods for dataset 1-3 is
a result of the inevitable imaging artifacts from the scanning process.
These methods work because the number of fibers and porosity remains
fixed for each individual 3D printed specimen. The uCT help to cap-
ture the minute differences in fiber and void content that differs even
for specimens with the same printing parameters. The calculated mean
frequency and MPSPSD values are sensitive to these differences and it
shows that the datasets can be categorized based on their unique mi-
crostructural features.

The methods used in this study for analysis have (to the Authors’
knowledge) been used for the first time in the context of evaluation of
uCT scan images in providing a metric to differentiate between different
FRPC specimens. The results of all the methods are consistent with each
other, which demonstrate their effectiveness towards authenticating the
3D printed composite parts. Another benefit of these methods is that
they are highly scalable, not requiring high computational resources,
thus enabling their deployment in practical scenarios to get near-real
time monitoring of the AM supply chain.

6. Conclusions

This work focuses on determining the validity of different methods to
extract features from a uCT dataset of a AM produced composite spec-
imen and develop a part authentication methodology. Although it is
difficult to compare uCT datasets of the same specimen due to recon-
struction artifacts from the scanning process, the results from this work
show that it is possible to identify uCT datasets taken from the same
specimen and thus differentiate it from other specimens. A method that
can accurately label the xCT dataset with its corresponding printed is



G. Mac, M. Mandal, A. Rastogi et al.

important for part authentication purposes in the AM supply chain. NDE
studies have mostly focus on part quality assurance and gathering data
to understand fracture mechanics of parts. This study has shown that the
same data for quality assurance can be extended for part authentication
in the manufacturing supply chain.
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