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a b s t r a c t 

Additive Manufacturing (AM) can apply unique customized printing patterns for each layer, which govern the 

microstructural features in a fiber-reinforced composite part. Non-destructive evaluation methods are used exten- 

sively to understand the defects and the microstructure of 3D printed composite parts. Considerable intellectual 

property is involved in designing and manufacturing composite parts, which needs to be protected using innova- 

tive methods. One of the concerns in this area is counterfeit parts made on high quality 3D printers, which need 

to be identified. This study aims to investigate and provide a part-authentication methodology for 3D printed 

composite parts by using the micro-computed tomography ( 𝜇CT) scans of discontinuous fiber-reinforced poly- 

mer composite (FRPC) parts. The microstructure of FRPC contains fibers, matrix and porosity that are unique to 

the specimen and is a result of the printing parameters. Specimen A is printed with an infill direction of 90 ◦ and 

wall count of 3 and specimen B has the same infill direction but does not contain a wall boundary. A comparison 

between the different 𝜇CT datasets of the specimens can identify the distinguishing features of the 3D printed 

composite part. The correlation developed across different 𝜇CT datasets from extracted features and the met- 

rics formulated can be used to quantitatively differentiate the composite specimens. Frequency domain analysis 

shows the most promising results by correctly identifying 3 out of the 6 datasets belonging to the same AM. A part 

identification and authentication method for AM composites will be useful for identifying genuine or counterfeit 

parts and protect intellectual property. 
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. Introduction 

Additive Manufacturing (AM), also known as 3D printing, is a

romising technology that offers unparalleled benefits over the tradi-

ional manufacturing methods such as casting or machining [ 1 ]. The

nherent advantages of AM in developing complex geometrical struc-

ures with limited tooling and ensuring faster lead times [ 2 ] has led to

ts adoption in several industries such as automotive, aerospace, defense

nd biotechnology. AM involves developing the design in a digital for-

at and transferred to a 3D printer that deposits the structural material

ayer-by-layer to form the volumetric parts. The transition from digi-

al design to the manufactured part often results in discrepancies in the

rinted features of AM parts [ 3 ]. AM is described as a cyber-physical

ystem [ 4 ], which offers a high degree of flexibility in customizing the

verall supply chain [ 5 ]. A cyber-physical system has its own unique

otential vulnerabilities that can compromise the quality of AM compo-
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ents [ 6 ]. Research that studies material characteristics at a microstruc-

ural level of an AM part helps with defect identification and authenti-

ation of the part [ 7 ]. 

A number of studies have focused in the area of novel materials for

he use in AM processes. Fiber-reinforced polymer composite (FRPC)

arts are also manufactured by 3D printing [ 8 ]. FRPCs are develop

o form lightweight and high performance parts by tailoring the fila-

ent size, placement, and patterns. Their mechanical properties and

conomic viability, along with the low production cycle time allow them

o substitute metals like iron and aluminum in selective applications [ 8 ].

RPCs are extensively used in the mass production of beams, rails, and

ront-end support systems in the automobile, aircraft, and construction

ndustries, due to their high strength-to-weight ratio [ 9 ]. 

Development of composite feed materials has allowed several AM

ethods to be used for the manufacturing of FRPC parts. Today, the

ajor AM techniques involving composite materials used commercially
andal), ee190002007@iiti.ac.in (A. Rastogi), ggailani@citytech.cuny.edu (G. 

vember 2022 

ticle under the CC BY-NC-ND license 

https://doi.org/10.1016/j.addlet.2022.100104
http://www.ScienceDirect.com
http://www.elsevier.com/locate/addlet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.addlet.2022.100104&domain=pdf
mailto:gm1247@nyu.edu
mailto:meenakshim21@iitk.ac.in
mailto:ee190002007@iiti.ac.in
mailto:ggailani@citytech.cuny.edu
mailto:hammond.pearce@nyu.edu
mailto:ngupta@nyu.edu
https://doi.org/10.1016/j.addlet.2022.100104
http://creativecommons.org/licenses/by-nc-nd/4.0/


G. Mac, M. Mandal, A. Rastogi et al. Additive Manufacturing Letters 3 (2022) 100104 

i  

a  

s  

fi  

e  

s  

h  

i  

r  

s  

b  

c

 

e  

r  

fi  

c  

s  

F  

i  

s  

l  

W  

c  

A  

m  

i  

 

3  

𝜇  

i  

f  

c  

A  

c  

t  

v  

t  

b  

c  

i

 

v  

f  

m  

S

2

 

c  

c  

𝜇  

T  

s  

t  

p  

p  

i  

i  

c  

t  

v

 

i  

t  

t  

f  

d  

i  

a  

o  

n  

s  

i  

h  

f  

s  

o  

n  

𝜇

 

i  

e  

h  

c  

e  

o  

f

 

s  

𝜇  

a  

f  

t  

d  

m  

v  

l

3

 

t  

c  

W  

S  

i  

a  

2  

C  

a  

o  

r  

d  

i  

o  

p

 

 

 

 

 

 

 

s  

t  

u  
nclude vat photopolymerization and material extrusion. Continuous

nd short fiber reinforced filaments are widely for the material extru-

ion type printers. The fracture mechanics of 3D printed continuous

ber composites of varying fiber content can be optimized in different

ngineering applications [ 10 ]. 3D printed composites show a optimal

trength to weight ratio and the applications of 3D printed composites

ave increased. Further mechanical property optimization of compos-

te can be achieved by customizing the polymer matrix material and

aster angle of fibers [ 11 ]. AM excels in the fabrication of sandwich-

tructured composites [ 12 ] and experimental study has shown the dura-

ility of these composites under different loading and environmental

onditions [ 13 ]. 

Micro-computed tomography ( 𝜇CT) scans offer an nondestructive

valuation (NDE) method of imaging manufactured parts with a high

esolution, which allows for detection of microstructural features on a

ber-level scale [ 14 ]. This 3D imaging technique scans a series of 2D

ross-sectional images using X rays, and then reconstructs the images

lice-by-slice to form a 3D model detailing the internal structure of the

RPC specimen. Several factors including directions of fibers, porosity,

nfill directions and others remain unique to the reconstructed model. In-

itu defect detection methods for AM parts provide a continuous closed-

oop feedback to ensure printing process stability and repeatability [ 15 ].

hile 𝜇CT scans are now widely used to determine defects in materials,

apabilities for uniquely identifying similar specimens are still limited.

M methods are capable of printing highly repeatable quality speci-

ens, and so further development of image processing, machine learn-

ng and analysis techniques for interpreting the 𝜇CT scan is desired [ 16 ].

This study thus presents several methods for uniquely identifying a

D printed part in a group of identical parts based on differences in their

CT scans. The inherent structural properties of FRPCs allow for distinct

dentification of the composite parts based on fiber arrangement and de-

ects such as porosity that are captured by the 𝜇CT scans [ 17 ]. Defects

an also be intentionally added to a design to reduce the strength of the

M part [ 18 ] and detection systems may be used to determine these

ompromises [ 19 ]. Based on the analysis of these distinctive proper-

ies, conclusive metrics are proposed which are derived from computer-

ision algorithms. These metrics can be utilized to effectively demarcate

he parts which differ from the reference part, and hence provide a ro-

ust part verification method that can be integrated in the AM supply

hain. To the best of the authors’ knowledge, this is the first work which

nvestigates the use of 𝜇CT scans for part identity verification. 

The remainder of the paper is structured as follows: Section 2 pro-

ides a background and related work. Section 3 lists the process followed

or construction of the datasets used for testing the different analytical

ethods, which are describe in Section 4 . The results are discussed in

ection 5 , followed by the concluding remarks in Section 6 . 

. Background 

X-ray 𝜇CT is often used in the evaluation of the quality of 3D printed

omposites and there are many technical challenges involved in the pro-

ess [ 20 ]. It is very difficult to develop correlations between different

CT image datasets even when the 𝜇CT scans show the same specimen.

he specimen needs to be placed onto a stand with putty for the 𝜇CT

canning bed. The placement of the specimen on the scanning bed dic-

ates the reconstruction axis for the 𝜇CT images and for a 3D printed

art, this reconstruction axis is often not perfectly aligned with the

rinted layers of the specimen. This results in some 𝜇CT images show-

ng multiple printed layers of the specimen in the same reconstructed

mage. For multiple 𝜇CT scans of the same specimen, it is difficult to

reate a comparison between the different 𝜇CT image datasets because

he features from different layers bleeds into one image and introduces

ariation in 𝜇CT images. 

Methodologies and computed algorithms to analyze multiple 𝜇CT

mage datasets for very similar printed specimens have limitations in

heir capability to identify similarities. Many defects identified within
2 
he 𝜇CT scans are attributed to non-optimal build conditions, manu-

acturing issues, and post-processing procedures [ 21 ]. A comparison of

efects from different 𝜇CT datasets would require a precise method to

solate the defects from the images. Image binarization method requires

 single threshold input which is not enough to capture every defect

f different shape and size in a 𝜇CT image. Image characteristics like

oise, shadows, masking, gamma, etc. also need to be accounted for to

uccessfully formulate a viable method of distinguishing various defects

n FRPC parts [ 22 ]. Reconstruction artifacts such as noise, scatter, beam

ardening, and ring artifacts can be additions in the 𝜇CT images that

urther add to the differentiation between the 𝜇CT datasets of similar

pecimens. Three unconventional approaches are tested on a collection

f 𝜇CT datasets of similar FRPC parts to determine the optimal tech-

ique for identifying the unique characteristics of the features in the

CT scans. 

Frequency domain analysis techniques can be used to analyze dig-

tal signals such as images [ 23,24 ], speech [ 25 ], etc. The information

ncoded in each image is expressed in terms of basis functions. This

elps in applying several transformations and filters to the image effi-

iently. For this method, the concept of power spectral density (PSD) is

mployed [ 26 ] to demarcate the datasets. PSD is defined as the measure

f a signal’s power content for a given frequency and it forms a strong

eature which can represent the properties of the 𝜇CT scan images. 

Other methods for analyzing 𝜇CT scans include histogram analy-

is [ 27 ] and audio spectrum analysis [ 28 ]. In the former method, the

CT scans are preprocessed via image enhancement techniques, which

re then used to plot a histogram based on their tone distribution and

requency intensity. Next, standard analysis can be done on the plots

o determine conclusive metrics to differentiate the scans belonging to

ifferent specimens. Similarly, audio spectrum analysis is an indirect

ethod of analyzing the scans. In this method, the scan images are con-

erted to audio domain and their corresponding spectrograms are ana-

yzed via several properties inherent to them. 

. Dataset construction 

The specimens used in this study are rectangular specimens of length,

hickness, and width of 4 in., 0.25 in., and 0.5 in., respectively. The

omputer-aided design (CAD) model of the specimen is created in Solid-

orks 2020 and exported to a stereolithography (STL) file format. The

TL file is imported into Ultimaker Cura software to define the print-

ng parameters of the specimens. The common printing parameters of

ll specimens include 100 percent infill density, printing temperature of

40 ◦C, build plate temperature of 90 ◦C, and a layer height of 0.25 mm.

ura outputs a g-code file, which contains all the processing parameters

nd the set of instructions for the 3D printer. The specimens are printed

n a FlashForge fused filament fabrication 3D printer using glass fiber-

einforced acrylonitrile butadiene styrene (ABS) filament of 1.75 mm

iameter manufactured by 3DXTECH. There are a total of 4 printed spec-

mens created from the original CAD model. The structure of the layers

f the specimens is depicted in Fig. 2 , and the details of the printing

arameters of the specimens are as follows: 

1. Specimen A and B are identical, with a exterior shell wall of count

3 and an infill direction of 90 degrees with respect to the hori-

zontal length-wise axis of the model. 

2. Specimen C is printed with no exterior shell wall boundary and

an infill direction of 90 degrees with respect to the length-wise

axis of the model. 

3. Specimen D is printed with an exterior shell wall of count 3 and

an infill direction of 0 degrees with respect to the length-wise

axis of the model. 

The 4 printed specimens had to be cut for the computed tomography

can. A diamond saw blade is used to cut a small piece of 0.5 inch from

he center of each printed specimens. A SkyScan 1172 𝜇CT scanner is

sed to process each of the specimens and generate an image dataset
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Fig. 1. Micro-computed tomography scans of four FRP specimens bifurcated 

under six datasets. 

Fig. 2. Printing parameters used for (a) specimen A and B, (b) specimen C, and 

(c) specimen D. 
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or the microstructure of the printed specimens. The scan is conducted

sing camera pixel size of 9 source voltage of 40 kV, source current of

50 rotation step of 0.2 ◦ per scan, and 180 ◦ rotation. SkyScans NRecon

econstruction software is used to produce cross-section slices of the

canned specimen using a smoothing value of 2, ring artifact correction

alue of 18, and beam hardening correction value of 25 percent. There

re 6 image datasets generated from the 4 printed specimens, which are

hown in Fig. 1 . Description of these datasets is mentioned below: 

1. Dataset 1 is the result of the first 𝜇CT of specimen A. The recon-

struction software created 359 image slices. 

2. Dataset 2 is also a 𝜇CT of specimen A. After specimen A was

scanned and reconstructed, without removing the specimen from

the scan bed, specimen A is scanned again to create a new image

dataset of the specimen in the same position. Dataset 1 and 2 will

capture identical features (such as fibres and porosity) from the

specimen, but as reconstruction occurred separately, the dataset

images will differ due to noise and manual selection results in a

different total number of images. The reconstruction created 351

image slices of the specimen. 

3. Dataset 3 is a third reconstruction of specimen A. After generat-

ing dataset 2, specimen A was removed from the scanning bed

and flipped up-side down 180 ◦ before it is placed back into the

𝜇CT machine. This dataset contains 372 images of the specimen.

Dataset 3 contains very similar features as both dataset 1 and 2

but with the order of the images reversed. 

4. Dataset 4 is a result of scanning specimen B. There are 376 im-

ages in this dataset. Specimen B has the same infill direction and

wall boundary count as specimen A, but the microstructural fea-
3 
tures such as fiber and porosity contents from the 𝜇CT scans are

different. 

5. Dataset 5 is the image reconstruction of specimen C. There are

356 images in this 𝜇CT scan dataset. Specimen C is different from

specimen A and B because it does not have the exterior shell wall

boundary. Specimen C is expected to have a fair amount of similar

attributes when compared with specimen A and B. 

6. Dataset 6 is the image reconstruction of specimen D and there

are 395 images. Specimen D is different from specimen A and B

because it does not have the same infill printing direction. Speci-

men D is expected to have the most deviation in similarity when

compared to the other 3 specimens. 

A red-team blue-team approach was followed to avoid user bias in

nterpreting the similarity between each of the 𝜇CT datasets, where the

lue team, consisting of the first author and latter three authors of the

aper, are involved with printing of the specimens and generation of the

CT datasets. The red team, consisting of the second and third authors

f the paper, are tasked with comparing the six 𝜇CT datasets and de-

eloping a metric to evaluate the similarity between each dataset with

ataset 1. The red-team had no prior knowledge about the details of

he datasets construction process and based their analysis solely on the

eatures discovered in the images of the 𝜇CT datasets. 

. Methodology 

The goal of this work is to identify efficient methods for distinctly

dentifying 𝜇CT scans for the purposes of part authentication. The pri-

ary challenge is that differentiating features can only be observed at

 very small scale, necessitating methods which can utilize the fine-

rained details within the 𝜇CT scans to make decisive judgements on

hether or not a scan belongs to a given specimen. Several potential

ethods which may be used to differentiate between the scans are pre-

ented and discussed in this section along with metrics for identification.

.1. Preprocessing 

Before the application of any of the following methods, the images

rom the original 6 datasets are preprocessed. This involves a cropping

unction to remove irrelevant objects and regions from the 𝜇CT scan

mages. Also, overexposed and underexposed images are deleted in or-

er to prevent detection of outliers which may lead to incorrect infer-

nces. Both cropping and outlier removal are performed by importing

he images in batch to ImageJ. Cropping is done manually by applying

 square crop window to all the images to capture only the necessary

etails. Removal of images having the issue of abnormal color exposure

s done by thresholding the images on the basis of the pixel values and

xcluding those images for which the area under the thresholded region

eviated by a large margin from the rest of the images. The pixel thresh-

ld value in the above step is automatically determined by ImageJ, and

oes not required any manual intervention from the user. The number

f 𝜇CT scan images under each dataset after this preprocessing step are:

ataset 1 - 294, Dataset 2 - 298, Dataset 3 - 277, Dataset 4 - 276, Dataset

 - 294, Dataset 6 - 266. 

.2. Fiber orientation detection 

This method aims to find the ratio of the number of vertically aligned

bers to the number of horizontally aligned fibers in a 𝜇CT scan, then

se that fiber ratio ( 𝜙𝑓 ) for part differentiation. For each dataset, the

reprocessed images files are imported in MATLAB, and gaussian fil-

ering with a standard deviation of 2 is applied to denoise images and

mprove edge detection. Edge enhancement is applied via horizontal and

ertical Sobel filters [ 29 ] to demarcate the regions of vertical and hori-

ontal fibers within the image. Inbuilt functions imgaussfilt and edge are

sed for gaussian filtering and sobel edge detection respectively. As an
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Table 1 

Quantitative metrics of different methods on the six 𝜇CT datasets. 

Dataset 𝜙𝑓 Mean Frequency 

(Hz) ( ×10 −3 ) 
𝜆𝜇 (m) ( ×10 −6 ) MPSPSD 

(dB) ( ×10 −4 ) 

1 1.95 7468 -0.76 1.13 

2 1.91 7428 -0.77 1.11 

3 1.88 7475 -0.97 1.15 

4 1.92 5987 -0.91 1.35 

5 6.05 6110 -0.94 1.41 

6 0.57 6587 -0.84 1.25 

u  

i  

c  
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a  
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dditional post-processing step, small artifacts identified by the filters

aving fewer than 100 pixels are removed by employing morphological

perations (using bwareopen function of MATLAB). Thresholding is ap-

lied to the image to separately isolate the vertical and the horizontal

dentified fibers by setting the pixel values of the regions detected by

obel filters to 1, and of the rest of the regions to 0. Lastly, the 𝜙𝑓 is

alculated as: 

𝑓 = 

𝐴 𝑓 90 

𝐴 𝑓 0 

(1) 

here 𝐴 𝑓 0 
is the area under the processed image belonging to the hori-

ontal fibers and 𝐴 𝑓 90 
is the area for vertical fibers [ 30 ]. 

.3. Histogram analysis 

In histogram analysis, the preprocessed 𝜇CT scans are loaded in

ATLAB for image processing. Adaptive weiner filters are applied on

atasets using inbuilt weiner2 function to remove Gaussian noise and

educe image variance for further morphological transformations. Salt

nd Pepper noises, present in negligible quantities (less than 1 percent),

re ignored as a due matter of convenience. Thresholding of images by

tsu’s method (using inbuilt graythresh function) is performed to seg-

ent image into object and background [ 31 ]. Prewitt filters are applied

n images in both vertical and horizontal directions to detect and en-

ance edges (using edge function). Finally Principal Component Anal-

sis (PCA) is applied on 𝜇CT scans (using pca() function from Statis-

ics Toolbox in MATLAB) to demarcate the regions of discontinuous

requency [ 32 ]. The average frequency of possible pixel values (8-bit

ntegers) from 0 to 255 are tabulated by observing the intensity pro-

le of datasets made using improfile function in MATLAB. The tabulated

ata is used to create histograms of respective datasets using inbuilt plot

unction in MATLAB. 

 𝑒𝑎𝑛 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑎 𝑖 = 

𝑎 1 + 𝑎 2 + ⋯ + 𝑎 𝑛 

𝑛 
(2) 

The mean frequency for all pixel values are calculated for six datasets

o find similarities and dissimilarities between them. 

.4. Audio spectrum analysis 

The audio spectrum analysis on the 𝜇CT datasets is analyzed in MAT-

AB. Linear filtering is applied on 𝜇CT scans (using imfilter function)

o remove both Gaussian noise and Impulse noise. Thresholding of im-

ges by Otsu’s method (using inbuilt graythresh function) [ 31 ] is done

o achieve image segmentation. Robert-Cross filters are applied in both

ertical and horizontal directions to detect and enhance edges in images

using edge function). The images are then converted into binary matri-

es using in-built imbinarize function. Dark regions are labelled 1 while

ight regions are labelled 0. Lastly, these images are converted into 6-

econd long audio files in .wav format using the vOICe algorithm [ 33 ].

egions denoted with 0 are assigned silence during the image-to audio

onversion in the logarithmic scale. The amplitude of a specific region

epends on the frequency of the pixels in that region. The mean ampli-

ude ( 𝜆𝜇) of waveforms across various datasets are calculated using the

ollowing equation: 

𝜇 = 

𝐴 𝑤 

T 
(3) 

here 𝐴 𝑤 represents the area under the waveform and T represents the

otal time taken in seconds. The 𝜆𝜇 of the waveform averaged over all

CT images of a dataset serves as a primitive metric to find similarities

nd dissimilarities across datasets. 

.5. Frequency domain analysis 

The frequency domain analysis of the 𝜇CT scans is done using MAT-

AB as follows: First, the 𝜇CT scans are converted to frequency domain
4 
sing the fast fourier transform (FFT) algorithm [ 34 ] by employing the

nbuilt fft2 function and shifting the zero frequency component to the

enter of the frequency spectrum using fftshift function. Then, the mag-

itude of PSD is plotted against each frequency component of the image

nd the peak value of the PSD is found from the plot. Rescaling of the

SD magnitude by the total frequency points is done to ensure that the

eak value calculated for images of different sizes was comparable. The

et formulation of the above process can be expressed as: 

SD = 10 log 10 ( | ( 𝐼) |2 ) (4) 

PSPSD = 𝑚𝑎𝑥 ( PSD )∕( 𝑛 comp ) (5) 

here  ( . ) denotes the FFT function, 𝐼 denotes the image and 𝑛 comp 
enotes the total frequency components of the image [ 35 ]. ‘PSD’ is a

 × 𝑛 comp dimensional array storing the PSD values of each frequency

omponent in the array  ( 𝐼) and ‘MPSPSD’ is the M aximum P eak of

he S caled PSD values calculated from ‘PSD’. It is found that “MPSPSD ”

erves an effective metric for differentiating the 𝜇CT images belong-

ng to different datasets. The results are discussed comprehensively in

ection 5 . 

. Results and discussions 

.1. Results 

The methodologies discussed in Section 4 are implemented on the

atasets containing 𝜇CT scans of four different specimens. At no given

oint during the analysis are the details about the dataset construction

rocess ( Section 3 ) made known to the red team, i.e., the team per-

orming the analysis. Unless specified, the metrics proposed under the

ifferent methodologies are aggregated for all images corresponding to

he same dataset. This aggregation is performed by simple averaging. 

Table 1 presents the aggregated results obtained for each of the

atasets using different methods. For the fiber orientation detection

cheme ( Section 4.2 ), in the “𝜙𝑓 ” column it can be seen that the speci-

ens in datasets 5 and 6 differ significantly from the specimens in other

atasets. This can be attributed to the high amounts of vertically aligned

bers and horizontally aligned fibers in dataset 5 and 6, respectively. It

an be observed from the 𝜇CT scans in Fig. 1 that most of the fibers in

ataset 1–4 have a higher 𝐴 𝑓 90 
than 𝐴 𝑓 0 

. Hence, the 𝜙𝑓 of dataset 5 is

ubstantially higher than datasets 1–4 because it mostly contains verti-

ally aligned fibers and does not have a outer wall boundary. The 𝜙𝑓 

or dataset 6 is substantially lower because it contains a high amount

f horizontally aligned fibers with a small amount of vertically aligned

bers at the edge due to the outer wall. However, this method is quite

nconclusive to differentiate between specimens in datasets 1–4, since

hey possess a similar structure, and the difference in the number of

ertical and horizontal fibers between each of them is not substantially

igh to warrant an observable difference in the 𝜙𝑓 . While the use of

his method is limited to identifying major changes within the test spec-

men with respect to the reference specimen, however, it can be used in

onjunction with other methods to provide an early-stage heuristic to

dentify potential mismatches between the test and the reference speci-

en. 
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Fig. 3. Plot of histograms for all six datasets. The x and y axis of plot represent 

frequency intensity and pixel grayscale intensity value, respectively. 
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Fig. 4. Plot of scaled PSD values against different frequency components of a 

𝜇CT scan image for dataset 1. The Y value in the box denotes the MPSPSD value 

for the corresponding 𝜇CT scan image. 
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Histogram analysis is also performed on the scans, using the method-

logy discussed in Section 4.3 . From Fig. 3 , a frequency plot is shown for

ll the 6 datasets. It can be observed that datasets 4–6 show variation in

he frequency at pixel values between 100 and 130. The histogram plot

hows that there is a difference between datasets 4, 5, and 6 with the

est of the datasets. Furthermore, it can be inferred from Table 1 that

atasets 1–3 are 𝜇CT scans of the same FRPC specimen as their mean

requency show a low relative standard deviation of 0.34 percent. The

ean frequency for dataset 4–6 shows that there is a clear distinction in

he frequency of pixel values from dataset 1–3. Hence, it could be con-

luded that datasets 1–3 are 𝜇CT scans of the same AM specimen while

atasets 4–6 are identified as outliers. 

An audio spectrum analysis is also performed to differentiate datasets

ased on 𝜇CT scans in Fig. 1 . Using Table 1 , it can be inferred from the

𝜆𝜇” column that the 𝜆𝜇 of datasets 1 and 2 are significantly close, with

 standard error of 5 . 0 × 10 −7 . Furthermore, the nature of the waveforms
n the logarithmic scale for datasets 1 and 2 are similar with a standard

eviation of 7 . 07 × 10 −7 . Hence, it could be concluded that datasets 1
nd 2 are 𝜇CT scans of the same AM specimen. However, the results

btained for datasets 3–6 remain inconclusive. Audio spectrum analysis

ffectively compares two specimens with similar tone distribution and

aveform. Therefore, this method fails to differentiate between speci-

ens in datasets 3–6. Audio spectrum analysis can be used as a metric

hat allows early-stage detection of possible matches of the test speci-

en with the reference specimen. 

The frequency domain analysis was also performed on the datasets

sing the methodology as discussed in Section 4.5 . From the “MPSPSD ”

esults in Table 1 , it can be seen that the values corresponding to the

CT scans in datasets 4–6 show a large deviation from those belong-

ng to datasets 1–3. The MPSPSD values for the latter group of datasets

re quite close to each other, with a standard deviation of 0.016. This

bservation points to the inference that the 𝜇CT scans in datasets 1–

 correspond to the same specimen. At the same time, the deviations

n MPSPSD values for datasets 5 and 6 substantiates the inference ob-

ained from the fiber ratios that specimens representative of datasets 5

nd 6 indeed are different from the rest of the specimens, as well as from

ach other. In addition, this method is also able to similarly recognize

ataset 4 as belonging to a distinct specimen. Thus, this method is able

o accurately identify the correct distribution of the specimens in the six

atasets used in the study. For a visualization of the MPSPSD values for

ach of the frequency points of a given 𝜇CT scan, see Fig. 4 . 

.2. Discussion 

Almost all the methods discussed in this study show that they are able

o accurately distinguish between the six datasets, i.e., identify datasets

–3 belonging to the same FRPC specimen, and datasets 4–6 each be-
5 
onging to distinct specimens. Since dataset 3 essentially comprises of

80 ◦ flipped 𝜇CT scans of the same specimen as of datasets 1 and 2, the

ethods are largely invariant to the orientation of the specimen during

he scanning process. The fiber orientation method can be regarded as

 preliminary method for distinctly authenticating the FRPC specimen,

ince it is only able to detect large scale changes in the structure of the

pecimen. However, given the relatively simple computation involved

n the calculation of 𝜙𝑓 entailed by this method, it may be used in con-

unction with the other methods to provide early stage warnings in case

f a major mismatch between the test specimen and the target specimen.

The fiber orientation detection method provides conclusive data for

rinted specimens that have infill patterns for which the microstructure

hows distinct fiber directions. For specimens printed using the same

arameters like A and B, the fiber detection method cannot distinguish

etween the similar parts. This can be accounted for with the histogram

nalysis. From the mean frequency of all 6 datasets, histogram anal-

sis is able to show that dataset 4 is different from dataset 1–3. The

istogram analysis method is able to differentiate two specimens that

ere 3D printed with the same parameters. The analysis concluded that

pecimen C and D are also different from the rest of the dataset. The fre-

uency domain analysis provided the same conclusion as the histogram

nalysis. The standard deviation from both methods for dataset 1–3 is

 result of the inevitable imaging artifacts from the scanning process.

hese methods work because the number of fibers and porosity remains

xed for each individual 3D printed specimen. The 𝜇CT help to cap-

ure the minute differences in fiber and void content that differs even

or specimens with the same printing parameters. The calculated mean

requency and MPSPSD values are sensitive to these differences and it

hows that the datasets can be categorized based on their unique mi-

rostructural features. 

The methods used in this study for analysis have (to the Authors’

nowledge) been used for the first time in the context of evaluation of

CT scan images in providing a metric to differentiate between different

RPC specimens. The results of all the methods are consistent with each

ther, which demonstrate their effectiveness towards authenticating the

D printed composite parts. Another benefit of these methods is that

hey are highly scalable, not requiring high computational resources,

hus enabling their deployment in practical scenarios to get near-real

ime monitoring of the AM supply chain. 

. Conclusions 

This work focuses on determining the validity of different methods to

xtract features from a 𝜇CT dataset of a AM produced composite spec-

men and develop a part authentication methodology. Although it is

ifficult to compare 𝜇CT datasets of the same specimen due to recon-

truction artifacts from the scanning process, the results from this work

how that it is possible to identify 𝜇CT datasets taken from the same

pecimen and thus differentiate it from other specimens. A method that

an accurately label the 𝜇CT dataset with its corresponding printed is
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mportant for part authentication purposes in the AM supply chain. NDE

tudies have mostly focus on part quality assurance and gathering data

o understand fracture mechanics of parts. This study has shown that the

ame data for quality assurance can be extended for part authentication

n the manufacturing supply chain. 
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