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Abstract— A soft continuum manipulator with tunable stiff-
ness can not only take advantage of high compliance for
safe adaptation in unknown environments, but also circumvent
the drawbacks of instability and low loading capability. The
high nonlinearity of soft manipulators and the strong coupling
between actuation and stiffness-tuning make their simultaneous
control challenging. In this work, a novel approach to simul-
taneous control of actuation and stiffness-tuning is proposed
for soft pneumatic manipulators. With a piecewise-constant
curvature assumption, a Lagrangian-based dynamic model with
realistic approximation is used for control design, where the
dynamics of the stiffness-tunable mechanism is incorporated.
An extended Kalman filter (EKF) is proposed to estimate
unmeasurable states including the stiffness and the velocity.
A nonlinear model predictive control (NMPC) framework is
developed first in the configuration space, and then extended
to the task space, for simultaneous motion and stiffness control
under inflation and vacuum pressure constraints. Simulation
results are presented to support the efficacy of the proposed
approach.

I. INTRODUCTION

Compared to conventional rigid robots, soft robots offer

greater flexibility and safety, making them more suitable for

interactions with delicate objects and humans, for example,

in grasping fruits, providing assistance in rehabilitation,

and performing minimally invasive surgeries [1]–[3]. The

intrinsic compliance of soft robots, on the other hand, poses

a formidable challenge when exerting force and maintaining

shapes. It is critical to design soft continuum manipulators

and associated control schemes that leverage the dexterity

and adaptiveness of soft robots as well as inherit the strength

and stability of rigid robots.

There have been a variety of methodologies proposed

for motion control of soft continuum manipulators, includ-

ing model-free and model-based methods [4]. Model-free

methods circumvent the uncertainties and complexities of

soft robot dynamics and provide motion control directly,

but they require extensive learning and training on existing

prototypes [5], [6]. Model-based methods attract significant

attention since they are typically more easily adaptable to

different scenarios, examples of which include the principle

of virtual power [7] and the Cosserat theory [8]. However,
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control strategies based on these theories are typically limited

to handling only quasi-static problems and require inten-

sive computation. A Piecewise Constant Curvature (PCC)

assumption is commonly adopted to approximate the config-

uration of continuum manipulators and ease their modeling

and control design. There is an emerging trend towards

control-oriented dynamic models with the PCC assumption.

An Augmented Rigid Body Model was recently proposed in

[9], which utilizes multiple rigid links to approximate the

real kinematics and dynamics of the soft continuum robots.

Based on this model, a number of control schemes including

adaptive control and model predictive control (MPC) [10],

[11], have been designed. However, this approach tends to

suffer from requiring high computation of abundant rigid

states. To address this issue, a Lagrangian-based dynamic

model with realistic approximation has gained significant

attention [12]. It inherits the approximation idea and friendly

extensibility of the Augmented Rigid Body Model and is

much faster to implement. Nevertheless, all aforementioned

works have not taken stiffness control into consideration,

which is critical in practical applications of soft robots.

In the last few years, researchers have been developing

various soft robots with tunable stiffness [3], [13], [14].

However, the majority of them model the stiffness as discrete

states based on experimental calibration and do not con-

trol the stiffness continuously. Continuous stiffness control

provides advantages such as precise motion control with

different contact forces, eliminating unwanted dynamics, and

achieving movements from releasing stored energy. There

are a few works modeling continuously tunable stiffness

based on energy methods [15], [16], but they are focused

on the planar case and do not address accurate dynamic

motion control. Interestingly, fully exploiting the potential

of motion dynamics and tunable stiffness in rigid manipu-

lators, as in variable stiffness actuators (VSA), is a topic of

significant interest in the scientific community [17]. To our

best knowledge, this contribution to simultaneous motion and

stiffness control has not yet been made for soft continuum

manipulators. The most closely related work may be a sliding

model controller and a model predictive control for simul-

taneous position and stiffness control of an inflatable soft

robot [18]. However, the movement of the robot is restricted

to the 2D plane as it is generated by two antagonistic air

bladders. Additionally, the work is limited by the fact that it

uses a linear dynamic model of a single degree of freedom

(DoF). Since soft manipulators with multiple segments in

three dimensions have high nonlinearity, this work cannot

be readily extended to soft manipulators in general.
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dampers are assumed to be distributed continuously along

the arm’s cross-section. The dynamic model is defined as

follows by adding the stiffness and damping items into the

previous general dynamic equation:

M(q)q̈ + V (q, q̇) +D(q)q̇ +G(q) +Kq = A(q)τA, (5)

where D(q) ∈ R
2n×2n is the damping matrix, K(q) ∈

R
2n×2n is the stiffness matrix, and A(q) ∈ R

2n×2n is the

mapping matrix converting τA ∈ R
2n, the equivalent torque

around x and y axes, to generalized torque τ . These matrices

are all defined in [9].

B. Pneumatic Drive and Actuation Dynamics

For the sake of conciseness, the i-th segment is utilized

for analysis. In Eq. (5), for control purposes, it is easier

to use an orthogonal and bi-directional “pseudo-torque”

τA,i = [τx,i, τy,i]
T

for actuation of each segment. For an

actual omnidirectional bending manipulator, three uniformly

distributed air inflation chambers controlled independently

by positive pressures are typically used, as shown in Fig. 2.

Therefore, it is necessary to translate the actual actuation

pressure into their pseudo-torque, and the pseudo-torque of

the i-th segment can be formulated in the following form:

τA,i = Ti ·Wi · Pi, (6)

where Pi is the vector indicating the actual pressure of

the three chambers, Wi is the mapping matrix converting

actual pressure to its equivalent moment applied on the

manipulator, and Ti is the mapping matrix combining the

three individual moments to pseudo-torque around the x-y

axis. These matrices are defined by:

Pi =
[

Pi,1 Pi,2 Pi,3

]T
,

Wi =





w 0 0
0 w 0
0 0 w



 ,

Ti =

[

1 −
1

2
−

1

2

0
√
3

2
−

√
3

2

]

, (7)

where Pi,1, Pi,2, Pi,3 are the actual pressures of the three

chambers and w is the actuation parameter.

The pressures cannot be directly controlled due to pneu-

matic actuation dynamics, and instead they result from the

closed-loop tracking of some desired references (by, for

example, a PID controller). The dynamics of the underlying

pressure can be captured in a first-order model [22]:

Ṗi,j = a0Pi,j + a1Pi,j,des,

i = 1, 2, . . . , n, j = 1, 2, 3, (8)

where Pi,j is the pressure of the j-th air chamber in the i-th

segment, Pi,j,des is the desired pressure of the corresponding

chamber, and a0 and a1 are constant parameters, which could

be obtained by fitting a step response.

C. Dynamic Model for Tunable Stiffness

In order to realize the stiffness-tunable function, a vari-

ety of approaches have been developed, such as jamming

actuation [23] and material-based methods [24]. Although

our control approach is not limited to specific stiffness-

tunable mechanisms, a particle jamming mechanism is taken

as an example here to derive the dynamic model of stiffness

tuning due to the fact that it is simple, fast, and can be

controlled continuously [25]. The particles in an enclosed

space can move freely without external force but jam against

each other firmly under vacuum pressure [26]. As shown in

Fig. 2, suppose that the core section of a soft manipulator is

replaced by a stiffness-tunable core with a particle jamming

mechanism. Consequently, the stiffness matrix Ki could be

divided into two parts:

Ki = Ki,outer +
( r

R

)2

Ki,core

=

[

1−
( r

R

)2
]

K0

i +
( r

R

)2

Ki,core, (9)

where Ki is the stiffness matrix of the i-th segment, which

composes the full stiffness matrix K(q) from Eq. (5) by

block diagonal concatenations. Ki,outer is the stiffness matrix

of the outer manipulator body, Ki,core is the tunable stiffness

matrix of the inner core, K0

i =

[

0 0
0 k0i

]

is the constant

stiffness matrix of soft manipulator before removing the core,

and R and r are the radii of the outer manipulator body and

inner core respectively. The full derivation is not presented,

but it can be derived easily based on the derivation that the

stiffness is directly proportional to the material’s Young’s

modulus [27].

Stiffness-controllable  Chamber  with  

Particle  Jamming  Mechanism

Soft  Manipulator  Body

Air  Inflation  Chamber

Fig. 2. Illustration of a soft manipulator with stiffness-tunable core.

The stiffness of the particle jamming mechanism is deter-

mined by the differential pressure between the pressures in

the air chambers and the particle chamber. An actuator based

on differential-drive particle jamming has the advantage of

achieving simultaneous deformation and stiffness variation

[15]. As reported by [26], the stiffness of passive particle

jamming is proportional to the actuator’s air pressure, so

a reasonable assumption is made that the stiffness of the

inner core varies linearly with differential pressure. Under
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this assumption, the stiffness matrix of the inner core Ki,core

is defined as:

Ki,core =

[

0 0
0 ki,core

]

,

where ki,core = α

[

1

3
(Pi,1 + Pi,2 + Pi,3) + Pi,core

]

, (10)

where α is the constant coefficient mapping the differential

pressure to the stiffness of the core and Pi,core is the absolute

value of the vacuum pressure in the core chamber. An

important note is that Pi,core is computed by subtracting

vacuum pressure from the atmosphere pressure (0 kPa),

which means Pi,core is always positive. Similarly to Eq. (8),

the pneumatic actuation dynamics in the particle chamber

can be written as:

Ṗi,core = b0Pi,core + b1Pi,core,des, (11)

where Pi,core,des is desired pressure of particle chamber in the

i-th segment’s core, and b0 and b1 are constant parameters.

D. Full Model

The models of the subsystems in Section II A-C can be

combined to obtain the full dynamics of the soft continuum

manipulator. The stiffness of the inner core in Eq. (10)

depends on the pressures of all four chambers, while the

pressure in the central particle chamber does not actuate the

bending motion of the manipulator, as expressed in Eq. (6).

In order to make the following formulation more uniform and

brief, the pressure of the particle chamber Pi,core is merged

into the pressure vector Pi from Eq. (7) and the mapping

matrix Wi is augmented as follows:

Pi =
[

Pi,1 Pi,2 Pi,3 Pi,core

]T
,

Wi =





w 0 0 0
0 w 0 0
0 0 w 0



 . (12)

With the substitution of (6) and (9) into (5), the full

dynamic equation of the manipulator could be rewritten as:

M(q)q̈ + V (q, q̇) +D(q)q̇ +G(q) +

[

1−
( r

R

)2
]

K0q

= A(q) · T ·W · P −

( r

R

)2

Kcore(P )q, (13)

where T ∈ R
2n×3n and W ∈ R

3n×4n are the direct matrix

sum of Ti in (7) and Wi in (12), respectively, P ∈ R
4n is the

one-dimensional column vector concatenated of Pi in (12),

K0
∈ R

2n×2n is the block diagonal concatenation of K0

i ,

and Kcore(P ) is the block diagonal concatenation of Ki,core

in (10).

Based on Eq. (9) and (10), the stiffness of the i-th segment

ki can be written as:

ki = α
(

r
R

)2 [

1

3
(Pi,1 + Pi,2 + Pi,3) + Pi,core

]

+
[

1−
(

r
R

)2
]

k0i .

(14)

III. CONTROL DESIGN

As discussed in the previous section, it is evident that

bending motion and stiffness variation have mutual interac-

tions. Thus, it is a challenging task to control the position

and stiffness simultaneously in this highly nonlinear Multi-

Input Multi-Output (MIMO) system. The control objective

of this work is to track the desired position trajectory

and desired stiffness trajectory. In this section, an NMPC

framework is proposed for the soft continuum manipulator

in the configuration space, and is subsequently extended to

the task space.

A. State Dynamics

In order to realize stiffness control, the stiffness will be

included as a state variable [18]. By taking the derivative of

Eq. (14) with respect to time and then plugging Eq. (8) and

(11) into it, the differential equation for stiffness is obtained:

k̇i = α
( r

R

)2

[
1

3
a0(Pi,1 + Pi,2 + Pi,3) + b0Pi,core

+
1

3
a1(Pi,1,des + P1,2,des + Pi,3,des) + b1Pi,core,des]. (15)

In this work, the PCC coordinates, the velocity of said coor-

dinates, the joint stiffness, and pressures in every chamber are

defined as system states x ∈ R
9n, and the desired pressures

or pressure set points sent to the underlying controller are

defined as the system input u ∈ R
4n:

x =
[

q q̇ KJ P
]T

,

u = Pdes

= [ P1,des · · · Pi,des · · · Pn,des ]T , (16)

where KJ ∈ R
n is the joint stiffness vector, which collects

ki in order, and Pi,des is the desired pressure vector of i-th

segment:

KJ = [ k1 · · · ki · · · kn ]T ,

Pi,des =
[

Pi,1,des Pi,2,des Pi,3,des Pi,core,des

]T
, (17)

The dynamics of the soft manipulator system

with air pressure dynamics can be formu-

lated in the following state space form:

ẋ =









q̇

q̈

K̇J

Ṗ









=













q̇

M(q)
−1

(

A(q) · T ·W · P −

(

r
R

)2
Kcore(P )q − V (q, q̇)−D(q)q̇ −G(q)−

[

1−
(

r
R

)2
]

K0q
)

[

k̇1 . . . k̇i . . . k̇n
]T

[

Ṗ1,1 Ṗ1,2 Ṗ1,3 Ṗ1,core . . . Ṗi,j Ṗi,core . . . Ṗn,1 Ṗn,2 Ṗn,3 Ṗn,core

]T













, (18)
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Fig. 6. Simulation results in the task space. Panel (a) shows the desired
trajectory and actual trajectory in 3D space with two different periods of
2s and 10s respectively. Panel (b) shows the performance of tracking the
desired stiffness trajectory in the faster and slower cases respectively.

defined as:

edes(t) =
[

0.0716 cos(ϖt) 0.0716 sin(ϖt) −0.124
]T

,

(23)

where ϖ is a constant used to tune the velocity of the

reference trajectory. The desired stiffness trajectory is the

same as the one in Eq. (22). In order to test the versatility of

the proposed controller under different desired speeds, the

system is tested with ϖ = π and ϖ = 0.2π, making the

periods of the references 2s and 10s. The weight parameters

used in the NMPC cost function from Eq. (21) are listed in

Table I. To validate the robustness of the controller, white

noises with magnitudes of 0.01 m and 1 KPa are added

to the measurements of [q, P ]T . In order to compare the

performance with different velocities clearly, the simulation

durations are set to 20s and 100s for ϖ = π and ϖ = 0.2π
respectively, guaranteeing tracking the circle ten times. The

tracking performance of these two trajectories is shown in

Fig. 6. The end position of the manipulator is approach-

ing the desired circular trajectory in the task space and

the desired stiffness trajectory simultaneously with minimal

overshooting and oscillations. Based on the position data

outside of the first unstable period, the average and maximum

Euclidean distance error for tracking the quick and slow
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Fig. 7. The performance of the tracking error and the desired pressure
control input when tracking the quick reference (ϖ = π).

TABLE II

AVERAGE AND MAXIMUM EUCLIDEAN DISTANCE ERROR OF TRACKING

THE SLOW AND QUICK REFERENCES IN THE TASK SPACE

Avg. Euclidean
distance error(m)

Max. Euclidean
distance error(m)

Slow reference(ϖ = 0.2π) 0.001 0.0052
Quick reference(ϖ = π) 0.0039 0.0090

references are computed as shown in Table II. As expected,

the tracking error of the faster reference is greater than that

of the slower one. However, it can be seen that the NMPC

framework still works with a high velocity, considering that

the error is negligible compared to the length of manipulator

and the size of workspace. Only the results from tracking

the faster reference are shown in Fig. 7 since those from

the slower reference show a similar, but less siginificant

error. Indeed, the faster position reference, as well as the

stiffness reference, are tracked accurately by the manipulator.

The performance of the slower trajectory is predicted to be

better than that of the faster trajectory according to the results

shown in Table II.

V. CONCLUSION

In this work, we constructed a dynamic model with tunable

stiffness for soft continuum manipulators and proposed an

NMPC in the configuration space as well as in the task

space. The NMPC architecture was firstly aimed at tracking a

desired configuration trajectory as well as a desired stiffness

trajectory. The stiffness and velocity of the manipulator are

estimated using an extended Kalman filter. The controller

enables the manipulator to track a desired task-space trajec-

tory as well as a desired stiffness trajectory. Furthermore,

the feasibility and robustness of the controller have been

validated through simulation.

Future research will focus on advancing the modeling

and computation techniques. For example, the length of the
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manipulator could be integrated into the model since the

inflation pressure leads to elongations. Recent research has

considered this phenomenon by adjusting the selection of

configuration parameters [32], [33]. Additionally, the rela-

tionship between the segment stiffness and Cartesian stiffness

is also worthwhile to explore. The control strategy based

on NMPC requires high computation, and faster approaches

such as adaptive linear MPC can be investigated in the future.

Finally, experiments will be conducted on soft pneumatic

manipulators with tunable stiffness to validate the proposed

control approaches.
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