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ABSTRACT

While deep learning has revolutionized image steganalysis in terms

of performance, little is known about howmuchmodern data driven

detectors can still be improved. In this paper, we approach this

difficult and currently wide open question by working with artificial

but realistic looking images with a known statistical model that

allows us to compute the detectability of modern content-adaptive

algorithms with respect to the most powerful detectors. Multiple

artificial image datasets are crafted with different levels of content

complexity and noise power to assess their influence on the gap

between both types of detectors. Experiments with SRNet as the

heuristic detector indicate that independent noise contributes less to

the performance gap than content of the same MSE. While this loss

is rather small for smooth images, it can be quite large for textured

images. A network trained on many realizations of a fixed textured

scene will, however, recuperate most of the loss, suggesting that

networks have the capacity to approximately learn the parameters

of a cover source narrowed to a fixed scene.
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1 INTRODUCTION

Modern machine learning paradigms, deep learning in particular,

have predominantly been used in steganography to improve per-

formance ś to build more accurate steganography detectors [5, 7, 8,

10, 11, 22, 26, 46ś48, 50, 51, 53, 54] and more secure steganographic
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methods [3, 21, 27, 34, 38, 39, 43ś45, 55]. However, comparatively

little is known about the performance limits of such tools and what

keeps data driven detectors from reaching their best possible per-

formance.

This lack of prior work is undoubtedly due to the formidable com-

plexity of the task. The main difficulty is establishing the theoretical

bounds of the most powerful detectors for natural images due to

the lack of sufficiently accurate statistical models. In fact, establish-

ing the exact limits may be unachievable due to the fundamental

incognizability of real digital media as argued by Böhme [4].

The latest generation of detectors built as deep convolutional

neural networks (CNNs) [5, 7, 22, 26, 30, 42, 46ś48, 50ś52] has

a significant advantage with respect to the previous generation

built around rich media models [14, 15, 18, 20, 32, 33, 40] and low

complexity classifiers [9, 12, 24]. While rich models are essentially

histograms computed from entire images and are thus macroscopic

descriptors, CNNs have the ability to detect locally. In extreme cases,

such detectors can reach their decision from a single, influential

embedding change [49]. Given the rather sizable improvement

in detection accuracy of such detectors, many researchers began

asking the question of whether their theoretical limits have been

achieved.

The first work that attempted to shed some light on this problem

appeared in [31], where the authors used the spatial rich model

(SRM) [18] as a heuristic detector, statistically independent cover

pixels with the heteroscedastic ISO noise model [1, 13, 17, 19, 23, 28,

35, 36, 41], and the likelihood ratio test (LRT) as the most powerful

detector. The authors concluded that in a highly homogeneous cover

source consisting of multiple acquisitions of the same scene (cover

source formed by a fixed scene noisified with different instances

of the heteroscedastic noise), rich models performed quite close

to the LRT when embedding with steganography optimal1 to the

heteroscedastic noise (MiPOD [31]). However, in a heterogeneous

source consisting of different scenes, the gap between rich models

and the LRT was quite large.2 In an extension of this work [6], the

authors worked with several content-adaptive embedding schemes,

a range of payloads, and two types of data-driven detectors ś the

SRM as well as the CNN SRNet [5]. The way the data driven detec-

tors were compared to the LRT, though, was incorrect and made

the data driven detectors look better than they really were (see [16]

for more detail).

The current paper builds upon the techniques developed in [6]

in terms of dataset preparation but uses correct comparison of both

types of detectors. Most importantly, we parametrize the formation

1Optimal in terms of the smallest deflection within the class of embedding methods
that modify pixels by ±1 with equal probability.
2This experiment was executed with MiPOD for a detectability-limited sender.



of artificial datasets so that we can control the complexity of the con-

tent and the power of the noise present in images. On two different

setups corresponding to different artificial cover sources, embed-

ding schemes, and the type of noise, we compute the performance

gap in terms of the area under the ROC curve (AUC).

In the next section, we describe our experimental setup, dataset

preparation, and the embedding method investigated. This section

also describes the details of the LRTs and data driven detectors and

the comparison metric. In Section 3, we report the results of all our

experiments and their interpretation. In Section 4, we summarize

the findings, discuss the limitations of our approach, and outline

future directions.

2 EXPERIMENTAL SETUP

In this paper, we consider two experimental setups schematically

shown in Figure 1. Both start with a dataset of natural images that

are denoised (to obtain control over content complexity) and sub-

sequently noisified to impose a known statistical model on covers

within which a closed form of the most powerful steganography

detector can be derived. The setups differ in terms of the type of

noise added to the denoised images and the embedding scheme

studied. The first setup adds heteroscedastic noise with HILL [25] as

the embedding algorithm, while the second setup adds independent

Gaussian noise with variance obtained with MiPOD’s [31] variance

estimator with the embedding optimized to the added noise (MI-

POD). These setups were selected for diversity to substantiate our

conclusions.

2.1 Cover sources

All cover sources used in this study were derived from BOSSbase

1.01 [2] containing 10,000 grayscale images that were resized from

their original 512 × 512 size to 256 × 256 using Matlab’s imresize

function with default parameters. This dataset is denoted as B. The

images were randomly split into training, validation, and testing

sets with 4000, 1000, and 5000 images, respectively. The same split

was used for all experiments in this paper. We also wish to point

out that, with small changes, the generation of the artificial cover

sources in this paper essentially mimics the procedure used in [6].

Since our main research objective is to determine how content

complexity and noise affect the performance gap between data

driven and the most powerful detectors, we created from B a fam-

ily of 25 artificial sources with different levels of content complexity

controlled by the variance of the Gaussian noise suppressed by a

denoising filter and with different power of the added noise. The

cover source generation is described in five steps as also illustrated

in Figure 1. In a nut shell, each image in the artificial dataset was

obtained by sampling from an array of independent Gaussian vari-

ables3 N(µi ,σ
2
i
) with µi obtained by denoising an image from B

and the variance either computed from a heteroscedastic ISO noise

model (Setup I) or estimated from the original image using MiPOD

variance estimator (Setup II).

Step 1: Denoising. To suppress the original noise component

and also to simplify (smooth) the content, all images from B were

first denoisedwith thewavelet-based denoising filter withDaubechies

8-tap wavelets [29], which removes additive white Gaussian noise

3For simplicity, we index pixels with a single index i ∈ {1, . . . , 2562 }.

with standard deviation σDen∈ {0.1, 0.5, 1, 3, 5}. This part is de-

picted as the ’denoise’ dial in Figure 1. Depending on σDen, the

resulting mean squared error (MSE) between the denoised and orig-

inal images from B was in the range [0, 6]. The denoised pixels

were clipped to the dynamic range [0, 255], which was then fur-

ther narrowed down to [15, 240] by applying the following linear

transform [0, 255] → [15, 240]:

y(x) = 15 +
225

255
x (1)

while rounding the pixels to integers µi . This was adopted in order

to prevent the subsequent noisification to łspillž out of the required

dynamic range [0, 255].

Step 2: Computing pixel variance. In Setup I, the variances

σ 2
i
were computed using a heteroscedastic model for the photonic

(shot) noise for ISO 200 [31], which we parametrized with a scaling

factor CISO ∈ {0.1, 0.25, 0.5, 1, 2}

σ 2
i
= CISOaµi + b, (2)

where a = 6/255 and b = 2. This choice of CISO maintains an

average noise power (MSE) across images in the range [0, 6].

For Setup II, the pixel variances σ 2
i
were computed from the

original images from B using MiPOD’s variance estimator [31].

This estimator was originally crafted to capture both the content

and noise complexity for the purpose of steganography. By using

MiPOD noise model for noisification in Setup II, we are essentially

reintroducing the same level of complexity (in terms of MSE) into

the denoised image but in a purely stochastic form. The estimated

variance σ 2
i
was multiplied by CMi ∈ {0.1, 0.15, 0.25, 0.5, 0.8}

σ 2
i
→ max{0.01,CMiσ

2
i
}, (3)

to force the mean power of the added noise again to the range [0, 6].

To ensure that all pixels N(µi ,σ
2
i
) fall inside the 8-bit dynamic

range [0, 255] with high probability, the standard deviations σi
(Eqs. (2) and (3)) were adjusted so that the probability of each pixel

falling outside of the required dynamic range was equivalent to a

one-sided 5σ Gaussian outlier (2.87 × 10−7):

σi → min
{ 1
5
min{µi , 255 − µi },σi

}
≜ σ

i
. (4)

Notice that the noise models in Setup I and II are fundamentally

very different. While the ISO noise is only adaptive to luminance,

and thus only very weakly adaptive to content, the MiPOD noise

strongly depends on the content of the original image and also

has a much larger dynamic range. This is why the multiplicative

coefficient CMi is generally smaller than CISO.

Step 3: Noisifying.To obtain the cover pixel ci , a sample ξi from

the normal distribution N(0,σ 2
i
) was added to µi , then rounded to

the nearest integer and clipped to the range [1, 254]. This ensures

that the embedding process can modify all pixels by ±1 with the

same dynamic range [0, 255] for the stego image. Using the square

brackets for integer rounding,
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Figure 1: Dataset generation flowchart explaining both setups investigated in this paper. In Setup I (upper branch), het-

eroscedastic noise is added to denoised images with HILL as the embedding algorithm. In Setup II (lower branch), MiPOD

noise is added with embedding optimal to the added noise (MiPOD). The denoising as well as the added noise are parametrized

in order to control the content complexity and noise level in each artificial dataset.

ci = [µi + ξi ]

ci =




ci if 1 ≤ ci ≤ 254

1 if ci ≤ 0

254 if ci ≥ 255.

(5)

The i-th cover image pixel thus follows a probability mass func-

tion (p.m.f.) p(i) on {0, . . . , 255}, ci ∼ p(i) :

p
(i)
m =




0 m = 0

Qi

(
m − 1

2

)
m = 254

Qi

(
m − 1

2

)
−Qi

(
m + 1

2

)
1 < m < 254

1 −Qi

(
m + 1

2

)
m = 1

0 m = 255

(6)

with Qi (x) defined as the tail probability of N(µi ,σ
2
i
) :

Qi (x) ≜ P{N(µi ,σ
2
i
) > x}. (7)

Since we have 5 variances σ 2
Den

for the denoising filter and five

settings for the multiplicative factors (CISO and CMi) controlling

the power of the imposed noise, there will be 5 × 5 = 25 datasets of

artificial images with varying degrees of content complexity and

added noise.

Figure 2 shows the image ’1013.pgm’ from BOSSbase from three

datasets with the ISO noise in the left column and MiPOD noise

in the right column to give the reader a sense of how the artificial

images look. The settings for the three datasets correspond (top to

bottom) to images with the lowest denoising and lowest noisifica-

tion, which most closely match the images from B, the strongest

denoising and the lowest noisification dataset, which corresponds

to the easiest case for steganalysis, and the strongest denoising and

strongest noisification dataset formed by images whose content

complexity was łreplacedž with stochastic complexity (in terms of

the MSE).

2.2 Embedding algorithms

Both stego algorithms used in this work were implemented with

an embedding simulator operating on the rateśdistortion bound.

The stego signal, s = (si )
2562

i=1 , is a sequence of independent samples

from ternary random variables attaining values in {−1, 0,+1} with

probabilities βi , 1 − 2βi , βi determined by an embedding simulator

for each image and payload, which was fixed to 0.4 bits per pixel

for both stego methods. Due to curbing the cover pixels to [1, 254],

all pixels can be changed by ±1 with the same probability of both

changes. The stego pixel probability mass function (p.m.f.) is a

mixture of quantized Gaussians q(i) for all pixels i , si ∼ q(i),

q
(i)
m =




βip
(i)
254 m = 255

(1 − 2βi )p
(i)
m

+βip
(i)
m−1

+βip
(i)
m+1 1 ≤ m ≤ 254

βip
(i)
1 m = 0.

(8)

In Setup I, we use the cost-based heuristic algorithm HILL. To

avoid dependent stego pixels, we do not compute βi from the cover

image, as would be normally done, but from from another inde-

pendent noisification (see the upper right section in Figure 1). As

will be seen in Section 2.3, this simplification guarantees that stego

pixels will be independent, which will simplify the asymptotic form

of the most powerful detector.

In Setup II, the embedding is carried out with model-based Mi-

POD (lower right part of the flowchart) with variances (Fisher

information) computed from the original image. Thus, this embed-

ding is optimal in terms of inducing the smallest deflection within

the class of all ternary steganographic methods. We note that se-

lecting optimal MiPOD rather than its heuristic version (which

estimates the variances from another noisification as in the case

of the ISO noise) is crucial for Setup II. This is because the scaled

MiPOD variances (3) could be very small, and when estimated only

approximately, the embedding would be very detectable at some



σDen = 0.1, CISO = 0.1 σDen = 0.1, CMi = 0.1

σDen = 5, CISO = 0.1 σDen = 5, CMi = 0.1

σDen = 5, CISO = 2 σDen = 5, CMi = 0.8

Figure 2: Image ’1013.pgm’ from BOSSbase from three artificial datasets corresponding (by rows, top to bottom) to the lowest

denoising + lowest noisification, strongest denoising + lowest noisification, and strongest denoising + strongest noisification

for the ISO noise (left column) and MiPOD noise (right column). See text for more details.



pixels. Note that this is not as serious of an issue for the ISO noise

(Setup I), since the variances (2) are always larger than 2.

2.3 Optimal detectors

Given one specific image s with pixels si , the steganalyst is facing

the following statistical hypothesis test for all i :

H0 :si ∼ p(i)

H1 :si ∼ q(i). (9)

For this test, we will assume that the parameters of the added

MVG noise, the mean µi , and the variance σ
2
i
, as well as the change

rates βi are known. Under these assumptions, the test is simple,

and, by the statistical independence of pixels in both cover and

stego images, the most powerful detector is the log-likelihood ratio

Λ(s) =
∑

i

Λ
(i)
si
=

∑

i

log

(
q
(i)
si

p
(i)
si

)

, (10)

where Λ
(i)
m = q

(i)
m /p

(i)
m ,m ∈ {0, . . . , 255}. For convenience, we will

use the following normalized form of the log-LRT :

Λ
⋆(s) =

∑
i Λ

(i)
si

− EH0
[Λ(i)]

√∑
i VarH0

[Λ(i)]

, (11)

where

EH0
[Λ(i)] =

∑

m

p
(i)
m Λ

(i)
m (12)

VarH0
[Λ(i)] =

∑

m

p
(i)
m (Λ

(i)
m )2 −

(
EH0

[Λ(i)]
)2
. (13)

Under the fine quantization limit, 1 ≤ σi for all i , and as the

number of pixels approaches infinity, the Lindeberg’s version of

the Central Limit Theorem implies

Λ
⋆(s)⇝

{
N(0, 1) underH0

N(ϱ, 1) underH1
, (14)

where⇝means convergence in distribution and ϱ2 = 2
∑
i σ

−4
i
β2
i
>

0 is the deflection coefficient. We have verified experimentally for

both noise sources and all five parameters by numerically comput-

ing the LRT (10) that the fine quantization approximation is tight

in terms of the resulting ROCs of the detectors.

The ROC of the most powerful detector for one specific scene is

thus

PD(PFA) = Q(Q
−1(PFA) − ϱ). (15)

To obtain the ROC for an entire source of scene (dataset), the

ROCs for individual scenes (15) should simply be averaged. This

kind of ROC is typically highly non-symmetrical and it informs us

about the expected PD across the source for a fixed value of PFA.

To obtain an equivalent ROC for the ad hoc detector, we would

need to train a network for each scene,4 which would however be

computationally infeasible. In practice, ad hoc detectors are trained

on just one realization of each scene for many scenes and the ROC

is drawn from soft outputs of the trained detector on cover and

stego images from the test set. This, however, corresponds to a

4Since we work with an artificial dataset, we could generate many examples of cover
images.

very different hypothesis testing setup. In particular, the resulting

ROC shows the expected PD for an expected value of PFA, both

expectations taken over the cover source. To properly compare

such an ROC with the most powerful detector above, we need to

draw the ROC of the unnormalized LRT (10) as shown in [16]. Since

the non-normalized LRT (10) approximately follows a Gaussian

distribution, Λ(s)
.
∼ N(−ϱ/2, ϱ) under H0 and Λ(s)

.
∼ N(ϱ/2, ϱ)

under H1 (as also shown in [16], Section 4), given N cover and

N stego images from the test set, the ROC of the most powerful

detector is

PD(γ ) =
1

N

N∑

k=1

P (N(ϱk/2, ϱk ) > γ ) (16)

PFA(γ ) =
1

N

N∑

k=1

P (N(−ϱk/2, ϱk ) > γ ) , (17)

where ϱk is the deflection coefficient for the k-th scene.

2.4 Heuristic detectors

Since we plan to execute experiments on 25 artificial datasets, the

same number of CNN detectors need to be trained. To speed up the

training and for the best performance, we used pretrained models

as well as seeding. We selected the SRNet [5] and initially trained it

for five sources with the smallest noise energy (the lowestCISO and

CMi) and all five denoising variances σ 2
Den

. For these five cases, the

SRNet was seededwith SRNet pretrained on J-UNIWARD embedded

ImageNet (the so-called JIN-SRNet [7]). The network batch size was

set to 64 and the training continued till no further improvement

was observed on the validation set. For the remaining datasets with

stronger noise, we seed the networks with weights corresponding

to the same denoising variance and the lowest noise energy while

keeping the remaining parameters unmodified. This seeding policy

was adopted since the weights from JIN-SRNet were not trained on

a dataset statistically close to our artificial datasets.

The network performance was always evaluated on the test

set. The performance loss of the networks w.r.t. to the LRT was

quantified by the difference between the area under the ROC curve

(AUC) of the LRT and the CNN:

∆ = AUCLRT − AUCCNN. (18)

We remind that the AUCs are computed from the ROC for the

non-normalized LRT (Eqs. 16 and 17) and from the ROC obtained

from the soft output of the CNN detector.

3 EXPERIMENTS

In this section, we compare the performance of the CNNs from

Setup I and II to LRT in terms of a loss in AUC (18) evaluated on

the test set. The results are interpreted in several different ways to

obtain additional insight. In particular, we split the test set into the

set of smooth and textured images to see how the performance gap

is affected by content complexity. Finally, we study whether the

performance gap between the data driven detectors and the optimal

LRT could be recuperated by training a CNN for a specific scene,

essentially thus allowing the network to learn the scene statistical

model.



3.1 Data-driven detectors limits

Figure 3 shows the performance loss ∆ (18) for both setups as a

function of the denoising strength and the power of the added noise.

The axes for both of these quantities are expressed in terms of the

MSE averaged across the training set for easier interpretability. A

larger MSE for denoising means stronger denoising (larger σDen)

and less complex content. The MSE for noisification is the average

noise power per pixel per test set image. We wish to point out that

for both setups and all 25 datasets, the LRT’s performance is nearly

perfect, hence ∆mainly accounts for the network loss. Hence, when

the network is a random guesser, ∆ ≈ 0.5, the largest performance

loss possible.

For easier interpretation, we mark the four corners shown in

the figure with letters: O stands for the dataset of images closest to

the original images from B (they only have been slightly denoised

with the smallest amount of noise added), S marks a dataset with

the smoothest content and the smallest amount of added noise

(the easiest case for steganalysis). The remaining two corners, SN

and ON (the hardest case for steganalysis) correspond to the same

denoising as S and O but with the strongest added noise.

In Setup I with ISO noise and HILL for embedding (Figure 3 left),

by comparing the performance loss in datasets corresponding to the

above four corners we observe that adding independent noise does

not affect performance as drastically as changing content complex-

ity via denoising. The denoising affects the network performance to

a much larger degree especially in the range 0.1 ≤ σDen ≤ 1, which

we call the łlip.ž The lip informs us that high-frequency textures

and noise in images from B significantly contribute to the subopti-

mality of the CNNs. Once suppressed by denoising (σDen > 1), ∆

changes much less w.r.t. denoising and the added noise. Moreover,

content complexity negatively affects the CNN more than noise of

the same energy (MSE) (∆(O) ≥ ∆(SN)).

In Setup II, the data driven detectors experience a more notice-

able loss w.r.t. the added noise (compare the increase in ∆ between

S and SN and O and ON). This is because the embedding (MiPOD)

is optimal w.r.t. the added noise. Hence, in this setup content com-

plexity affects the CNN performance less negatively than noise of

the same energy (MSE) (∆(O) < ∆(SN)). The graph also exhibits

the łlipž observed for Setup I.

3.2 Source dissection

In the previous subsection, we analyzed the loss of performance for

both setups and commented on the results. The common pattern

observed for both setups is the łlip.ž In order to better understand

its onset, we split each dataset into two subsets depending on a

heuristicmeasure of content complexity (asmeasured in the original

images from B) defined as follows. First, we apply the discrete

cosine transform (DCT) to disjoint 8×8 blocks in the image and then

compute the L2 norm of DCT coefficients in the 16 highest spatial

frequencies (DCT modes k, l ∈ {0, 1, . . . , 7} with 4 ≤ k, l ≤ 7).

Using this content complexity metric, we split each test dataset

in two subsets of equal size: smooth and textured images. Using

the same CNNs as in the above experiment, we evaluate the perfor-

mance loss on each subset separately in Figure 4. For both setups,

the lip is very pronounced on smooth images but is comparatively

much smaller on textured images. This is because the denoising

filter acts differently on smooth and textured images. To understand

why, we point out that the denoising filter [29] is a Wiener filter

in the wavelet domain. To remove additive white Gaussian noise

with zero mean and variance σ 2
Den

, the denoised image is a convex

combination of a local average of wavelet coefficients ν̂i and the

original coefficientwi :

ŵi = ν̂i +
σ̂i

2 − σ 2
Den

σ̂i
2

(wi − ν̂i ), (19)

where σ̂i
2 is a local variance of wavelet coefficients. In textured

areas, σ̂i
2 ≫ σ 2

Den
and thus ŵi ≈ wi , which means that the denois-

ing filter is rather conservative, not affecting the image much. In

smooth areas, both variances are more likely to become comparable,

leading to ŵi = ν̂i , which means the denoising will suppress the

noise. Hence, in images that are predominantly smooth, the effect

of denoising will be felt sooner than in images with a lot of textured

content. This is what creates the lip in the dataset of smooth images

and suppresses the lip in textured images.

Comparing the left and right columns in Figure 4, it is also clear

that the loss of the network detectors w.r.t. the LRT is overall much

smaller for smooth images than for textured images.

3.3 Single scene detector

The previous sections revealed the limitations of data driven detec-

tors w.r.t. the content complexity and added independent noise. The

loss of performance in terms of the difference between the AUCs

of the network detector and the LRT ranges from being quite small

(for smooth images) up to 0.3ś0.4 for very textured images. Not

surprisingly, the LRT has a substantial advantage w.r.t. the network

as the parameters of the statistical process generating the cover

images are completely known. On the other hand, the network

needs to find a rule that estimates them by learning this rule from

examples of cover and stego images from the training set. This is

no easy task especially when the content is complex.

Thus, we next look at a simpler situation for the network by

restricting (narrowing) the cover source to a single scene (also

called acquisition oracle). In simple words, we allow the network to

learn detecting steganographic changes in different realizations of

a fixed cover image. Mathematically, we generate multiple arrays

of 256 × 256 Gaussian variables N(µi ,σ
2
i
) (here, µi is the noise

free-scene). To this end, we experimented with two scenes from the

dataset, one with smooth (BOSSbase image ’9388.pgm’) and one

with textured content (image ’680.pgm’) w.r.t. the content complex-

ity metric explained above. We generate the training, validation,

and testing sets of the same sizes as for the datasets above. This

time, all images are, however, different realizations of a fixed scene.

We train the same network (SRNet) pretrained with JIN-SRNet un-

til the validation loss starts increasing to prevent overfitting. For

this experiment, we selected only three versions of these datasets

corresponding to the O, S, and SN corners.

Figure 5 shows that for the smooth scene, both setups, and all

three types of the datasets O, S, and SN, the SRNet trained on the

acquisition oracle of that scene achieves almost the same perfor-

mance (AUC) as the LRT. While there is still some performance loss

for the textured scene, for the dataset closest to the original image

(O), this loss is very small.
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Figure 3: Performance loss ∆ (18) between AUCs of ROCs drawn for the most powerful detector (non-normalized LRT) and a

data driven CNN as a function of denoising strength and noise power (in terms of MSE). The four labeled corners correspond

to smooth (S), closest to original (O), smooth and fully noisified (SN), and original and fully noisified (ON).

4 CONCLUSIONS

How much can they still improve? This question is as old as the

first machines trained to detect steganography yet it is still left

largely unanswered. In this paper, we attempt to shed some light on

this difficult but relevant problem. Due to the complexity of digital

images, there is little hope that tractable optimal detectors will

ever be built for real images. Hence, we form a family of sources

with a known statistical model so that it is possible to detect ste-

ganography optimally with a likelihood ratio test. The creation

of these sources was parametrized in order to obtain control over

the content complexity (via a denoising filter) and the amount of

independent but not white additive Gaussian noise. The goal was to

learn how both contribute to the limits of modern machine learning

detectors (SRNets). To substantiate our conclusions, we investigated

two different setups ś noisification with a heteroscedastic sensor

noise and with noise determined by MiPOD’s variance estimator.

Measuring the accuracy loss in terms of the difference between

AUCs of the CNN detector and the corresponding LRT, we learned

that

• SRNet’s loss depends both on content complexity left behind

after denoising as well as the power of the added noise.

• This loss is generally much smaller for smooth images than

for textured images.

• For suboptimal (heuristic) steganography, the noise is less

damaging than content (when both are measured with MSE).

• For steganography optimal to the added noise, this conclu-

sion is the opposite.

• A network trained on many acquisitions of a fixed scene

will recuperate most of the loss, suggesting that networks

have the capacity to approximately learn the parameters of

a cover source narrowed to a fixed scene.

Our study has many limitations. For starters, we do not work with

realistic models of digital images. A better and much more complex

approach would be to work with models in the RAW, undeveloped

domain, and approximate the developed domain with a stochastic

lattice (MVG) suitably simplified (such as in [37]) to permit eval-

uating security with a most powerful detector. The experiments

were carried out on variants of BOSSbase, which is a very complex

cover source due to the rather aggressive downsampling from the

original RAW size images. Perhaps, for cover sources with higher

resolution, the local content will be significantly smoother, giving a

better chance to data driven detectors to operate closer to optimal.

Finally, we limited our study to the spatial domain leaving the JPEG

domain as part of our future effort.
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