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Abstract

Incremental learning is a challenging task in the field of
machine learning, and it is a key step towards autonomous
learning and adaptation. With the increasing attention on
neuromorphic computing, there is an urgent need to investi-
gate incremental learning techniques that can work in this
paradigm to maintain energy efficiency while benefiting
from flexibility and adaptability. In this paper, we present
SEMINAR (sensitivity modulated importance networking
and rehearsal), an incremental learning algorithm designed
specifically for EMSTDP (Error Modulated Synaptic-Timing-
Dependent Plasticity), which performs supervised learning
for multi-layer spiking neural networks (SNN) implemented
on neuromorphic hardware, such as Loihi. SEMINAR uses
critical synapse selection, differential learning rate and a
replay buffer to enable the model to retain past knowledge
while maintaining flexibility to learn new tasks. Our experi-
mental results show that, when combined with the EMSTDP,
SEMINAR outperforms different baseline incremental learn-
ing algorithms and gives more than 4% improvement on sev-
eral widely used datasets such as Split-MNIST, Split-Fashion
MNIST, Split-NMNIST and MSTAR.

Keywords: Spiking Neural Network, Neuromorphic comput-
ing, continual learning

1 Introduction

The proliferation of "big data" applications presents signif-
icant challenges in terms of speed and scalability for tradi-
tional computer systems. The increasing performance gap
between CPUs and memory, commonly referred to as the
"memory wall," greatly impedes the performance of tradi-
tional Von Neumann machines. As a result, neuromorphic
computing systems have garnered considerable attention.
These systems operate by emulating the charging and dis-
charging processes of neurons and synapse potential in a
biologically plausible computing paradigm. Electrical im-
pulses or spikes facilitate inter-neuron communication. The
unique encoding of information in the spike domain enables
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asynchronous event-driven computation and communica-
tion, potentially resulting in high energy efficiency. This new
computing paradigm has been applied to various different
machine learning applications from pattern classification to
robotic controls [4]. Recent works [22, 23] have successfully
realized supervised learning of multi-layer spiking neural
networks (SNN) on Intel Loihi processor, a neuromorphic
computing platform with bio-inspired neuron and synapse
models. The proposed EMSTDP ((Error Modulated Synaptic-
Timing-Dependent Plasticity) algorithm enables backprop-
agation to be performed on SNNs, where the same type of
integrate-and-fire neurons are used to implement feed for-
ward and feedback networks for data and error propagation.

Traditional supervised learning assumes that the training
set provides an adequate representation of all potential ap-
plication scenarios [26]. However, this paradigm may not
be compatible with real-world applications. In real-world
scenarios, there may be a need to continue augmenting a
trained model to learn additional knowledge, such as new
classes or tasks, as the model encounters novel input data
distributions after its deployment. This life-long learning
problem, which aims to bring machine learning more in-line
with behaviors exhibited by the human brain, is known as
incremental learning [14]. Like the brain, models must em-
ploy learning algorithms to incorporate new data into their
existing knowledge. There is an urgent need to develop in-
cremental learning for neuromorphic computing, which can
provide flexibility and adaptability at a lower energy cost
[25].

As discussed in paper [18], most recent works on contin-
ual learning focus on task incremental learning and class
incremental learning. The difference between these two
paradigms is that task incremental learning provides a learn-
ing id for each task, while class incremental does not. Specif-
ically, in task incremental learning, the model learns the
training sample in a tuple format (x,y, &), where « is the
learning ID. And the models are normally equipped with
multi-head[31] [11] classifier, where each head is trained to
accommodate the designated task. During the testing phase,
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the test samples are also provided with task ID (xes¢, Yyest» @),
and the model can then choose which classifier to use. In this
setting, the model is more likely to differentiate the intra-
task samples rather than the whole training categories. On
the other hand, class incremental learning does not provide
task IDs and the model classifies all the classes with a sin-
gle output layer during the entire learning period. In this
work, we focus on class incremental learning and test our
framework under such paradigm.

A significant challenge of incremental learning is cata-
strophic forgetting, in which previously learned knowledge
is lost while acquiring new information [8, 14, 15]. To ad-
dress this issue, the deep learning community has proposed
multiple techniques. One such approach involves control-
ling the forgetting through regularization [6, 11, 16, 30, 31].
Another common method uses a buffer to store examples
for later replay [3, 5, 13, 19, 24]. The buffer that stores these
examples of previously trained data is referred to as the ex-
emplar memory. Additionally, dynamic architecture has been
explored as another potential solution [1, 2, 7, 9, 21, 29].

While the effectiveness of incremental learning algorithms
for traditional artificial neural networks (ANNs) has been
demonstrated in previous studies, their applicability to neu-
romorphic computing hardware is limited by coarse-grained
neuron activation and error gradients. These limitations hin-
der the performance of incremental learning technique when
applied to SNNs. In this paper, we present SEMINAR (SEn-
sitivity Modulated Importance Networking and Rehearsal),
an algorithm for class incremental learning on neuromor-
phic hardware that aims to mitigate catastrophic forgetting
by selecting importance nodes via sensitivity analysis, ex-
emplar balancing, and differential learning rate. SEMINAR
is a hybrid of exemplar method and dynamic architecture
and comprises three major components. First, SEMINAR
employs a dynamic network structure during incremental
learning by "freezing" some important synapses and releas-
ing frozen synapses. This allows the algorithm to retain
important knowledge previously learned and allocates new
resources for potential new knowledge. Unlike existing dy-
namic architecture based techniques [9, 10], the architecture
morphing in SEMINAR is specifically designed for SNN train-
ing and is more volatile. Secondly, SEMINAR interleaves the
exemplar memory of previously learned classes with the
current training stream to obtain stable learning. Thirdly,
SEMINAR adopts a differential learning rate for new and old
training data.

To further leverage the advantages of SNNs on neuro-
morphic hardware, we implemented SEMINAR on top of
EMSTDP and evaluated the combined incremental learning
framework using several standard datasets. Our experimen-
tal results demonstrate that SEMINAR outperforms the best
comparison methods on all the datasets by more than 4%.

The rest of this paper is structured as the following. Sec-
tion 2 reviews previous methods used to address catastrophic
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forgetting. Section 3 formally describes the class incremental
learning problem and introduces the EMSTDP learning rule.
The SEMINAR method is presented in Section 4. In Section
5, we provide experimental results and ablation studies to
demonstrate the effectiveness of the SEMINAR method. Fi-
nally, we conclude with a summary of our work in Section
6.

2 Related Work

The primary obstacle in incremental learning is catastrophic
forgetting, which occurs when a model experiences a signifi-
cant decline in performance on previously learned tasks after
learning new ones. In this section, we will provide a brief
overview of incremental learning, which fall into three cat-
egories: regularization-based, memory-based and dynamic
architecture-based methods.

2.1 Regularization-based Methods

Regularization based approaches add constraints to the model
parameters or hyper-parameters during the training, aiming
to consolidate the important weights for previously learned
tasks. The constraint (i.e., regularization form), which mini-
mizes changes to the consolidated weights, can be achieved
in several ways. Elastic Weight Consolidation(EWC) [11] and
Synaptic Intelligence (SI) [31] incorporate a penalty term
into the loss function to constrain the changes made to the
weights based on their importance to previously learned
tasks. [11] measures the importance of the weights using the
diagonal of the Fisher information matrix. And [31] estimates
weights’ importance with the help of three-dimensional
synapses. Other than regularizing the loss function, [30]
modifies the gradient during back-propagation to preserve
the consolidated knowledge from previous tasks. [16] and
[6] propose to regularize hyper-parameters such as learning
rate and batch size to mitigate catastrophic forgetting.

2.2 Memory Based Methods

Memory based methods store data examples or other infor-
mation from previous tasks in a memory buffer, then replay
these memories along with the current task examples during
training. These methods help the model retain knowledge
learned from previous tasks while training on new tasks,
effectively mitigating catastrophic forgetting. [19] proposes
incremental Classifier and Representation Learning (iCARL),
a classical method that separates representation learning and
classification. For representation learning, iCARL preserves
data from old tasks in a memory buffer and mixes them
with current task examples during training. For classifica-
tion, iCARL applies a nearest-mean-of-exemplars strategy to
predict labels of test images. Another branch of works - [13],
[5] and [24] - focus on optimizing the memory buffer to avoid
overfitting. [13] proposes Gradient Episodic Memory(GEM)
that develops an inequality that prevents the loss of previous
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tasks from increasing. [5] trains a non-parametric classifier
based on kernel ridge regression using data from the mem-
ory buffer. While [24] preserves the topology of the feature
manifold of previous tasks in the memory buffer.

2.3 Architecture Based Methods

The methods above focus on solving the incremental learn-
ing tasks with a single model and a shared set of parameters.
In contrast, architecture based methods adopt a dynamic
architecture that allows for modifying neural networks and
assigning different parameters for different learning tasks
to prevent forgetting. The intuition behind this branch of
works is that if we store the existing models and train a
new model for the upcoming tasks, we are able to preserve
the knowledge for previous tasks. Based on whether the
model structure is fixed or not, architecture based methods
can be roughly divided into two categories. [7] proposes
PathNet, which freezes certain connections selected for pre-
vious tasks and assign other paths along the network for an
upcoming new task. PathNet ensures that different subsets
of the model parameters correspond to different tasks. [1]
implements task-specific gating modules for each convolu-
tional layer, selecting a limited set of kernels for each task.
[21], [2] and [29] adopt dynamic model architectures where
new modules are implanted so that the model can accom-
modate new tasks. In these works, distinct subnetworks are
distributed to different tasks. And lateral connection enables
the information exchange among these subnetworks.

3 Notations and Backgrounds

In this section, we will describe notations used through-
out the paper and briefly explain the EMSTDP algorithm.
This algorithm will serve as the foundation of the SEMI-
NAR framework to update the synaptic weight of SNNs. The
details of the proposed SEMINAR framework and its applica-
tion in class incremental learning will be introduced in the
following sections.

3.1 Problem Statement

In supervised learning, a model f parameterized by 0 learns a
task ¢ from a corresponding training set with n; samples. We
denote the training set as D; = {(x;, yl-):’:’1 |x; € X;,y; € Y3},
where n; stands for the size of the training set, and X; and
Y; stand for the data and label space of the training set. D;
follows a fixed distribution. In real-world settings, a single
model may be required to learn multiple tasks with different
distributions. After being exposed to N sets of training data,
Dy, where t € [1, N| corresponding to N tasks with different
distributions in sequential order; the goal is to have fj to
remember all of them at the end. Without loss of generality,
we assume that each task is a classification problem and we
measure the performance using the average accuracy of all
learned tasks as defined in Equation 1, where ay,; denotes
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the test accuracy of task j after learning task N.
1
AN = N 2 an,j (1)

3.2 SNN Model and EMSTDP Learning

We consider the incremental learning of multi-layer feed-
forward SNNs in this work. The neurons adopt the integrate
and fire model, which is defined by the following equations:

W) = 0, ifsl(t-1) =1

! 2 Wi - sé‘l(t) + uf(t -1)+ bf otherwise

@)

1, iful(t) >V,
1 u,( ) ' th 3)

0, otherwise

sh(t) = Uui(t) = Vi) = {

Here, uf( t) represents the membrane potential of the ith
neuron in layer [ at time ¢, while sj._l (t) denotes the output
of jth neuron in layer [ — 1 at time ¢, which also serves as
the input of the neurons in the Ith layer. The function U() is
the Heaviside activation function as defined in Equation 3.
When the membrane potential uf (t) exceeds the threshold
Vin, a spike is generated. The synaptic weight between the
pre-synaptic neuron j in layer I — 1 and the post-synaptic
neuron i in layer [ is denoted as wj;, and bg represents the
bias. Once an output spike is generated in time ¢ — 1, the
membrane potential uf (t) will be set to 0 in the next time
step.

To facilitate the implementation on neuromorphic com-
puting hardware, we adopt EMSTDP [23] as the learning rule
of SEMINAR. An SNN with EMSTDP learning needs two
networks: a feedforward network for inference and learning,
and a feedback network for error (i.e., gradients) propaga-
tion. We use feedback alignment so that the two networks
do not need to maintain the same set of weights A set of ran-
dom weights, B, is used in the feedback network. The error
propagated in the feedback network is calculated as follows:
ef =2 eﬁ.”Bl-,jh;(uf), where ej.” is the error of neuron j in
layer I + 1, and hl(uf ) is the derivative of the output activa-
tion function of neuron i in layer [. Since the Heaviside step
activation is not differentiable, gradient surrogation must be
adopted. Because the relationship between the number of
output spikes and the neuron’s accumulated sub-membrane
potential can be approximated as a shifted ReLU function,
EMSTDP replaces h;. with the following equation:

)
hi(ul) = {1’ t) > Vi @)

0, otherwise

EMSTDP operates in two phases: the free running phase and
the error correction phase. In the free-running phase, the
feedforward network predicts an output, hi., based on the
input received. In the error correction phase, errors propa-
gated in the feedback network are fed into the feedforward

network and "correcting” the prediction to a new value, hﬁ..
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The weight update of a synapse is calculated as follows:

Awji=nx* (hi. - hﬁ) * hl=1, where 7 is the learning rate.

4 SEnsitivity Modulated Importance
Networking and Rehearsal
4.1 Motivations

Taking inspiration from [9, 10], we have adopted a strategy
of selecting and preserving important nodes in the hidden
layers by freezing their synapses. This allows us to retain
crucial knowledge of learned tasks. Specifically, we identify
the neurons with the highest activation and designate them
as important nodes if their collective activation accounts for
a significant proportion of the total activation of all neurons
in the same layer, based on a given threshold. We denote the
set of important nodes as V;. During training, the synapses
between important nodes are frozen, while all other synapses
remain plastic. The synapses between important nodes and
all other neurons are referred to as important synapses, while
the rest are referred to as plastic synapses.

Because the activation value of spiking neurons is bounded
by the spiking rate, which ranges from 0 to 1, we have ob-
served that neurons in SNN typically have a more balanced
and symmetrical activation distribution than those in ANN.
An example of the two distributions is shown in Figure 2.
However, this creates a potential issue for SNN incremental
learning. To maintain the same activation level, more im-
portant nodes must be selected for SNN than for ANN. As
the number of tasks increases, new important nodes will be
selected with their connections frozen. The size of important
nodes and synapses will grow rapidly, and soon there will
not be enough plastic synapses to learn new tasks. Another
problem with frozen important nodes and synapses comes
from potential knowledge transfer between tasks. After the
training of a new task, some knowledge shared by both new
and old tasks may be learned by plastic synapses, making
the previously selected important nodes and synapses no
longer critical. In this work, we propose a downgrade mech-
anism. After a new task is trained, the important neurons
and synapses will be re-evaluated. Figure 1 illustrates the
process of selecting and re-evaluating important nodes and
synapses.

4.2 Overall Process

In this section, we introduce how SEMINAR handles incre-
mental learning when a model fy is presented with a new
task D; with N; training samples given an exemplar memory
M;. The SEMINAR uses a differential learning rate. The learn-
ing rates for the new task and the exemplars are denoted as 1
and 7 ( respectively, with 5 > 5. The differential learning
rate is adopted to calibrate the gradient directions between
new and previously learned tasks. Intuitively, the model fj
will be exposed to more training data from the new task
than from the exemplars. Therefore, the learning process of
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Algorithm 1 Training one task with exemplar memory

Require: M;: exemplar memory, D;:current task data D,=
{(x5,y) [0 < i < Ni,0 < j < Ni}, (Vip-1,01,0-1): set of
important neurons and synapses after training task ¢ — 1.

Require: 75: learning rate for exemplar M;, n: learning
rate for D; , {: interleave hyperparameter.

i—0
while i # N; do
if i mod { == 0 then
& « Balanced_Sample(M;).
for each (x,y) € & do
0 « Masked_Training (0, X, ¥, O1.t—¢, D pm)-
end for
end if
0 < Masked_Training (6,x;, y;, Or:-1, ).
i—i+1
end while
(V14,01+) < Select_Important_Nodes(D;).
(Vit, 014) < Re-evaluate_Important_Nodes(M,).
Update M, and partial reset fp.

the new task needs to be guided with a lower learning rate.
When training on the old exemplars, the model is expected
to "drag" itself to the parameter subspace suitable for old
tasks with fewer training data. Thus, a higher learning rate
should be used.

The overall flow of the training is given in algorithm 1.
For every { training sample learned in current task ¢, we use
function Balanced_Sample to select a subset { from exem-
plar memory M; and apply EMSTDP to train fp on { with
learning rate n (. How balanced sample is performed and
how the learning rate is scheduled will be discussed later
in section 4. For both { and D, We update the weight pa-
rameters 0 using the function masked_training() to prevent
changing the frozen synapses in 0y ,_;. After that, we select
the important nodes V;; and regenerate the mask 0,45 Fi-
nally, we update our exemplar memory M, and reset the
unimportant synapses whose weight is below the threshold.

4.3 Select Important Nodes

To select important nodes in every layer, we sort the acti-
vation values of validation samples as [10]. The validation
samples are random samples drawn from the current train-
ing data. The total activation of a neuron i with N; samples
in a time window T is described in Equation 5, where s is the
spiking function, u; (x) represents the membrane potential
of a sample x of neuron i at timestamp t. Similarly, the total
activation value A; is defined in 6.

S = > s(ul(x) 5)

teT xeNs

Ar="s() ©)

i€l
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Important Nodes and
synapses after D,

Important Nodes and
synapses before new task D,

. . Important Nodes for past tasks.

. . Important Nodes for D,

Final important nodes and
synapse for D;.

Re-evaluate and downgrade
important nodes and synapses.

= : Plastic synapses

=== :Synapses reset to unmasked

f:_:‘: . Downgraded important nodes. —— : Frozen Synapses

Figure 1. Selection and re-evaluation of important nodes and synapses
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Figure 2. One Layer Activation Distribution of ANN and
EMSTDP

In each layer, the important neurons are those neurons
with the highest activities. Their activities can be used to
represent the behavior of the entire layer. Therefore, we sort
neurons based on the ascending order of their activation val-
ues and select the top k neurons such that ;o S(i) > 7A;,
where 7 is a constant representing the portion of the impor-
tant neurons’ activation in the total activation. We denote
those selected neurons as V;. The set of overall important
nodes Vi, for task 1 to t is the union of the V; and V;_4,
Vit = V; U Vi 4_1. The synapses between two important neu-
rons are import synapses, whose weight will be crystallized,
ie., 9“ = {Hl-j}, 05,05 € VI,t-

4.4 Re-evaluate Important Nodes

The importance of neurons is not fixed. SEMINAR keeps
the set of important nodes dynamic during each learning
episode to make sure that there is always a sufficient number
of plastic synapses as tasks increase. Following the concept of
synaptic intelligence [31], we define the plasticity of neuron
importance as the trajectory of weight changes by compar-
ing the current model 8, with a hypothetical model 6j,. The
hypothetical model is trained with samples from exemplar
memory M, without freezing the important synapses. It
represents a model that fine tuned for the past tasks. Given
the current model fy, and the hypothetical model fp,, for

each synapse 0;;, the weight change Af;; is calculated as the
following, A8;; = |0;;; — 0;;x|. For a neuron i in Ith layer,
the accumulated weight difference is calculated as Equation

7:
Aw; = Z AG;; + Z Aby; (7)

j€Vl+1 kevi-1

A significant accumulated weight difference indicates that
adding task t affected its performance in previous tasks,
and its (input or output) synapses need to be re-trained. Us-
ing Aw;, the top € percent of important neurons with the
most drastically changed total weights will be downgraded
to unimportant neurons. In our experiments, we gradually
increase € from 30% to 50% to guarantee the maximum per-
centage of important nodes is 25% for each hidden layer.

4.5 Masked Training

We apply EMSTDP to train the model fy on the given training
data. It is believed that the important synapses in the set
01+-1 carry the knowledge that is critical for learned tasks
(i.e., from task 1 to task t — 1), we would like to keep them
unmodified to avoid catastrophic forgetting. A binary mask is
applied to the plasticity of the important synapses such that
their value will not be updated by the EMSTDP algorithm.

4.6 Balanced Sample and Memory Interleave

The Balanced_Sample function ensures that the sampled
exemplars & has a balanced distribution over all trained
tasks, i.e., tasks 1 to t — 1. Following an approach similar
to that in [18], we sample an equal number of examples for
each previous task from the exemplar memory.

The sampling (and training) of exemplar memory is in-
terleaved with the training of the new task. Previous works
that apply experience replay in incremental learning will
attach memory exemplars to each batch. However, online
learning on neuromorphic hardware does use batch training.
In real-world continual learning scenarios, the data arrives
one-by-one sequentially. Training all exemplars before the
new task or training all of them after the new task is not a
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good solution, as both of them will introduce inductive bias
toward either the current or past tasks. Neither should we
iteratively train the limited number of exemplars too many
times, as it will lead to over fitting [28]. The interleaving
of the training between the exemplars and the new tasks is
introduced to address this challenge. Specifically, we sample
N,, memory exemplars every time after training { samples
of the new task, { = 2N,,.

4.7 Partial Reset Weights

To increase the sparsity of the network, which helps contin-
ual learning [9]. We randomly prune the model by resetting
any synapse with weights less than 0.01 to zero, if it is not
an important synapse.

5 Experiments

Table 1. Comparison of Testing Accuracy

Dataset S-MNIST S-NMNIST S-FMNIST MSTAR

SEMNIAR 0.861 0.825 0.735  0.747
SI 0.197 0.195 0.182 0.325
EWC 0.196 0.196 0.185 0.321
ER 0.757 0.725 0.624 0.692
NISPA-R  0.757 0.725 0.624 0.692
AGS-CL  0.514 0.466 0.431 0.536
Oracle  0.971 0.954 0.879 0.795

Table 2. Memory Interleaving

SEMINAR MI SE+ER ER

Split-MNIST 0.861 0.791 0.795 0.755
Split-NMNIST 0.825 0.773 0.789 0.725
Split-Fashion MNIST 0.735 0.678 0.668 0.624
Mstar 0.747 0.710 0.721 0.692

Dataset

In this section, we implement SEMINAR with other state-
of-the-art continual learning methods. For a fair compari-
son, all of them use the EMSTDP learning rule to facilitate
their implementation on neuromorphic hardware. We tested
four vision datasets: split-MNIST [12], split-NMNIST [17],
MSTAR [20], and split-Fashion MNIST [27]. The split-MNIST
dataset divides the hand-written digits dataset MNIST into
five tasks, each task classifies two classes of digits. The
Fashion-MNIST is a more complex dataset that comprises 28
x 28 grayscale images of 70, 000 fashion products from 10
categories, we also split it into five classification tasks similar
to split-MNIST. In addition, we conducted experiments on
the neuromorphic dataset N-MNIST, which is produced by
the DVS camera. We also split the N-MNIST dataset into five
classification tasks, each with two digits. The last dataset is
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the MSTAR dataset, MSTAR dataset is a variant of synthetic
aperture radar (SAR) imagery, we chose 6 classes of different
tanks and split them into 3 tasks. For all datasets, we use a
feedforward SNN with 2 hidden layers, each hidden layer
has 300 neurons. We set 14, to 0.00025 and 7 to 0.00015,
respectively.

5.1 Comparing with Baseline Algorithms

Five baseline incremental learning algorithms were imple-
mented: SI [31], AGS-CL [10], EWC [11], ER [3], and NISPA-
Replay [9]. SI and EWC are regularization-based methods
as introduced in Section 2. ER is a memory-based method.
It appends exemplars to every batch of training data and
uses the reservoir sampling technique to construct episodic
memory. NISPA is an architecture-based method, that also
leverages the idea of important nodes and synapses and the
important synapses are masked during the training. How-
ever, the important nodes and synapses in NISPA will never
be downgraded. AGS-CL is similar to NISPA except that it
allows the important synapses to be trained while using a
regularization to limit the change of the important synapses
to the minimum.

The comparison results of SEMINAR and baseline algo-
rithms are shown in Table 1, term "Oracle" means no incre-
mental learning. Figure 3 shows how the testing accuracy
changes after training each task. We can see that SEMINAR
outperforms the compared methods on all the datasets. Com-
pared to the second-best algorithm, it improves the testing ac-
curacy by 4.0% to 5.9%. Specifically, our method yields 86.1%,
82.5%, and 73.5% for the MNIST variant datasets, which is
better than all other methods by more than 5% percent. For
the MSTAR dataset, our method improves by 4.2% over the
best baseline method.

5.2 Ablation Studies

We further conducted ablation studies to evaluate the effec-
tiveness of unique techniques adopted by SEMINAR, and
analyze our design choices.

5.2.1 Exemplar memory Size. To evaluate the perfor-
mance of SEMINAR with varying exemplar memory budgets,
we conducted experiments using different sizes of exemplar
memory ranging from 50 to 150 samples per class. We com-
pared our methods with two memory-based techniques: ER
[3] and NISPA-Replay [9]. From Table 3. The results show
that SEMINAR continuously performs the best under differ-
ent memory sizes.

5.2.2 Memory Interleave. Table 2 showcases the effec-
tiveness of our memory interleave technique. Two simplified
versions of SEMINAR were created. In the first one, we strip
out the Masked_Training(-) function from SEMINAR and
leave only the experience replay with interleaved memory.
The simplified version is called MI. In the second version,
we remove the memory interleave, and append the entire
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Figure 3. Average Test Accuracies after training each task.
Table 3. Different Exemplar Size
50 Samples 100 Samples 150 Samples
MNSIT N-MNIST F-MNIST MSTAR MNSIT N-MNIST F-MNIST MSTAR MNSIT N-MNIST F-MNIST MSTAR
Oracle 0.971 0.954 0.879 0.795 0.971 0.954 0.879 0.795 0.971 0.954 0.879 0.795
SEMINAR 0.705 0.657 0.603 0.554 0.794 0.743 0.703 0.651 0.861 0.825 0.735 0.747
ER-EMSTDP 0.615 0.632 0.507 0.543 0.733 0.694 0.627 0.618 0.757 0.725 0.623 0.692
NISPA-EMSTDP  0.676 0.639 0.583 0.571 0.758 0.724 0.631 0.648 0.802 0.786 0.678 0.705
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Figure 4. Impact of Differential Learning Rate

PortionMNIST N-MNIST F-MNIST MSTAR
5% | 0.793 0.775 0.681 0.683
10% | 0.801 0.792 0.715 | 0.697
25% | 0.861 0.801 0.718 | 0.717
40% | 0.811 0.773 0.653 | 0.673

Table 4. Portion Of Important Nodes

exemplar memory to every batch of { new training data.
This version is called SE+ER because this is how ER [3] per-
forms experience replay. The results show that SEMINAR
outperforms the SE+ER by 2.6% to 6.6% for all four datasets.
Even without important nodes and masked training, the MI
outperforms ER by 1.8% to 5.4%. Note that the MI performs
experience replay with fewer examples. For each batch of

the { new data, only N,,, exemplars are sampled from the
M, by ML, while ER attaches the entire M, to the new data.

5.2.3 Portions of Important Neurons. Experiments were
conducted with varying numbers of important nodes. Specif-
ically, we vary the percentage of important nodes (i.e., 7)
from 40% to 10%. The comparison results are given in Table
4. The results demonstrate that the size of the important
neurons affects the performance of SEMINAR. With too few
important neurons, the model has difficulty to remember
old tasks. On the other hand, too many important neurons
will prevent the model to learn new tasks. We found that
the peak performance is achieved when 25% of neurons are
identified as important.

5.2.4 Differential Learning Rate. Figure 4 compares dif-
ferent configurations of the relative learning rate for exem-
plars and new tasks. We can see that using a higher learning
rate for exemplar memory (17, = 0.00015) and a lower learn-
ing rate on the new task (1 = 0.0001) consistently results in
better performance than setting them equally or reversely.

6 Conclusion

This paper presents SEMINAR, an incremental learning al-
gorithm that could work with the EMSTDP learning rule
for neuromorphic implementation. Its performance is com-
pared with existing incremental learning algorithms using
regularization-based, memory-based, and dynamic architecture-
based techniques. Our experimental results show that SEMI-
NAR works the best in the spike domain learning scenario.
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