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Abstract 

Memristors, a two-terminal device, have a resistance that can be changed and retained in two or more 
different states when subjected to electrical stresses. This unique function makes memristors now an 
attractive area of research for next-generation electronic devices such as memory and advanced 
computation. However, credible characterization methods for memristors are not fully established yet 
to understand fundamental working mechanisms and objectively evaluate figures of merit performance. 
This review encompasses various characterization methods from materials to electrical characteristics to 
identify the fundamentals of memristor operations. Meanwhile, large performance variation is the main 
bottleneck hindering the adoption of this class of devices in practical applications. Thus, the second part 
of this article focuses on the types of variation and other reliability issues of memristors. Possible 
strategies to enhance reliability are suggested as well. Topics covered in this review on memristors’ 
characterization techniques and reliability are of significant relevance to many studies that seek to 
advance the state of the art in electronic devices and systems towards neuromorphic computing. 

  



3 

1. Introduction 

A memristor was proposed as a two-terminal electronic device by Leon Chua in 1971.1 It is a non-linear 
passive circuit element that can exhibit different resistance states, depending on the history of the 
voltage applied across its terminals. The first experimental demonstration of a memristor device was 
reported in 2008 by a research group led by R. Stanley Williams at Hewlett-Packard (HP) Laboratories.2-5 
They used a thin film of titanium dioxide to create a memristor that exhibited the expected non-linear 
current-voltage characteristics and hysteresis behavior. After HP’s experimental demonstration, several 
other teams around the world made significant efforts to independently reproduce the memristor 
behavior using different materials such as TaOx, HfOx, and InGaZnO.6-21 Then, research in memristors 
has gained significant attention due to the potential applications in various fields such as memory with a 
particular focus on higher-performance solid-state device technologies leveraging its binary switching 
behavior.22, 23 

More recently, the synaptic switching behavior of memristors has been attracting increasing attention 
due to its potential applications in a variety of neural networks.24-26Besides binary switching, the 
memristor’s resistance can change continuously over a wide range of values, depending on the history 
of the pulse voltage applied across their terminals. This tunable multiple resistance level ability is crucial 
for neuromorphic computing because it can be used to adjust the weight of the connection between 
artificial neurons in a more precise and continuous way, to mimic the behavior of real synapses.27, 28 
Thus, memristors have been proposed as a key building block on the roadmap of neuromorphic 
computing and engineering.29 

It is essential to understand the switching mechanisms of the memristor and measure the performance 
of the memristor by employing suitable characterization methods, which may require the exquisite 
design of testbeds and the non-trivial handling of materials and devices. From a material science of view, 
state-of-the-art, such as, transmission electron microscopy (TEM), x-ray photoelectron spectroscopy 
(XPS), and atomic force microscopy (AFM) are useful techniques to map and visualize the switching 
mechanisms and characterize the materials from each layer which in turn can provide experimental 
evidence of the switching behavior and insight for material selection and structure design. The 
mechanism for a memristor, in short, involves the movement of ions through a switching layer, causing 
a formation of conductive filament(s) (CFs). And TEM is a great technique to visualize this filament 
evolution, in the either planar or vertical structure of memristors. Also, the composition of the filament 
can be identified by further analysis with assistance from x-ray energy dispersive spectroscopy and 
electron diffraction. The chemical composition of the switching layer is a governing factor of the 
memristor performance. Especially, the switching behaviors of the valence change mechanism (VCM)- 
based memristors are driven by the change of the oxygen vacancy. With XPS characterization, one can 
examine the oxygen vacancy concentration of the fabricated switching layer, and then fine-tune and 
optimize the composition for better performance. The morphology of the memristor during the 
electrical stress is crucial information as well since it can degrade its performance. The surface 
distortions following electroforming and subsequent cycling between resistance states have been 
observed by XPS.  

The electrical measurements are covered in this review, from DC sweeping to pulse measurements. DC 
sweeping is served as a starting point of the electrical characterization of a memristor. The memristive 
switching can be identified and endurance performance can be extracted. For fast testing and 
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neuromorphic applications, pulse measurements are required essentially, thus, two pulse train profiles 
are selected and compared in this review for endurance and linearity characteristics. Advanced 
characterization of image processing which is to identify analog tuning accuracy is included as well. From 
an electro-chemistry perspective, cyclic voltammetry (CV) and electrochemical impedance spectroscopy 
(EIS) are also discussed for investigation on redox processes occurring prior to and during the switching 
events, respectively. This can provide valuable information for material selection and switching 
mechanisms. Detailed strategies and key achievements of each characterization method will be 
comprehensively discussed. Extensive studies have been reported on both single memristor devices and 
circuited devices with required structures such as crossbar arrays for practical applications such as 
neuromorphic computing hardware and random number generator.30, 31 However, reliability, for 
example, the retention and endurance behavior of the memristors, has remained one of the fatal 
weaknesses which hinder their industrial adoptions in such applications. It is urgent to identify and 
categorize the metrics, symptoms, and solutions of memristors’ reliability issues. Thus, the second major 
part of this review is focused on typical reliability issues: cycling endurance, variation, retention, and 
nonlinearity. Less cycling endurance and retention directly shorten the lifetime of the functional 
memristors since the conductance levels are not distinguished anymore due to device degradation or 
failure. And larger order of variation, nonlinearity, and asymmetry cause accuracy loss during the 
processing of memristors’ operations. To identify and address these critical issues, possible mitigating 
strategies are covered and discussed. Density functional theory (DFT) and molecular dynamics (MD) 
calculations provide atomic- or molecular-level information that is not typically available from 
macroscale characterizations for examining the formation energy of defects, the energy barriers 
associated with ion migration, and the atomic-level dynamics of resistive switching. These calculations 
serve as valuable complements to instrumental characterizations. 

To date, numerous review articles have been available, however, most of them are mainly review 
memristors by different materials selection (e.g., HfOx, TaOx etc.) or fascinating demonstrations of novel 
neuromorphic applications. It is rare to find reviews that focus both on characterization methods for a 
fundamental understanding of memristors’ behavior and directly intend to tackle one of the most major 
issues – reliability. Thus, we provide this review and further aim to fill the gap in this field. Since the 
memristors keep attracting attention, this review can pave the way and clean the blurry area for 
researchers and also be beneficial to the whole community to accelerate the development of 
memristors towards practical applications such as neuromorphic computing. 

 

Part I. Characterizations for Memristors 

2. Transmission electron microscopy (TEM) 
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Fig 1. A demonstration of a typical two-terminal memristor: (a) Schematic of typical vertical-
configuration memristors with top and bottom electrodes where the top electrodes define the 
memristor sizes and (b) its associated cross-sectional TEM image, presenting the device structure of ITO 
bottom electrode, IGZO switching layer, and ITO top electrode. Reproduced with permission from ref. 21; 
An example of a memristive crossbar: (c) Schematic of crossbar arrays of memristors and (d) its cross-
sectional TEM image, showing the vertical structure of a single memristor (Ti/PdSe/Au) from the arrays. 
Reproduced with permission from ref. 44; Observation of conductive filaments in a planar memristor by 
TEM:  A TEM image of a pristine SiO2-based planar memristor. (f) After the first-time turn-on process, a 
TEM image was captured to visualize the complete and incomplete filaments. (g) after RESET process, 
the TEM image shows that all filaments were dissolved. (h) FFT results of the HRTEM image of an Ag 
nanoparticle in the filament of the switching layer, which indicates Ag (111) was identified. Reproduced 
with permission from ref. 46; TEM examination on conductive filaments evolution in a vertical 
memristor: (i) Bright-field TEM image of nanopillar shape samples for TEM imaging by ion-beam milling. 
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(j) Setup to apply bias through a probe tip on the Pt(top)/Ta2O5/Ru(bottom) memristor for in-situ TEM 
investigation. Cross-sectional in-situ TEM images of (k) the pristine state (HRS), (l) after SET state (LRS) 
where two conductive filaments are observed, and (m) after RESET, back to HRS. Reproduced with 
permission from ref. 50. 

Transmission electron microscopy (TEM) is widely employed to obtain plan-view or cross-sectional 
images, featuring high-resolution microstructures, crystallographic information, and chemical elemental 
mapping often together with EDX.32-39 In addition, a wide range of in-situ investigation capabilities are 
available in vacuum or environmental conditions, from which time-resolved evolution of materials 
structure and response to the stimuli such as temperature and bias can be recorded.40-42 Therefore, as a 
characterization approach to identifying materials and device behaviors for memristors, TEM is highly 
beneficial in not only ex-situ structure analysis but also in visualizing the dynamic evolution of filaments 
in-situ.43  

Fig. 1a and c show schematic illustrations of memristors with top electrodes (TE) and crossbar arrays, 
and Fig. 1b and d demonstrate corresponding cross sectional TEM images of these devices. 21, 44 Each 
layer of these memristors were clearly inspected and the uniform switching layers were identified. High-
resolution (HR) TEM images associated with fast-Fourier-transform (FFT) diffraction patterns and EDX 
elemental analysis are instrumental to visualize the dynamic evolution process of conduction filament, 
through which the morphology, defect generation/annihilation, and composition are mapped in-situ as 
well as ex-situ. These capabilities of TEM have been leveraged to fundamentally understand and 
establish the switching mechanisms of memristors with vertical and planar configurations.32-37, 45, 46 Yang 
et al. contrived a SiO2-based planar memristor for TEM investigations where a novel TEM specimen 
(inset schematic of Fig. 1e) was devised with a ~15nm (lateral length) SiO2 switching layer sputtered on a 
15 nm-thick SiNx low-stress membrane with an active electrode of Ag and an inert electrode of Pt.46 The 
thin SiNx membrane was employed to achieve a lower (brighter) background so that a higher contrast 
can be produced during TEM measurements. It should be noted that the planar design (memristor/TEM 
specimen) is unique in that the lateral structure can image the entire filaments, which is not available in 
vertical configurations and, hence, enables direct investigation of the evolution of filaments. In this ex-
situ measurements, the memristor was switched on and off in a separate controlled environment (i.e., 
before loading into the TEM chamber) and only exposed to high energy electrons during the imaging 
process, minimizing possible damages to the materials and device. Fig. 1e shows a plan-view TEM image 
of a pristine device, exhibiting the initial high resistance state (i.e., no filament formed) of the memristor. 
After applying a positive bias on the Ag electrode, filaments that completely and incompletely connect 
the two electrodes are recognized in Fig. 1f. With associated FFT analysis (Fig. 1h), the composition of 
the filaments was confirmed as Ag. Then, after a RESET process, both complete and incomplete 
filaments were dissolved from the switching layer/inert electrode (i.e., SiO2/Pt) interface, which is 
shown in Fig. 1g. The TEM images obtained from the main memristor states (initial, SET, RESET) 
convincingly suggest operation fundamentals of particularly ECM memristors, such as a self-limiting 
formation of filaments47, which describes once a dominate filament is established, it reduces the electric 
field across the switching layer, in turn, restrains further formation of filaments, and the redox process 
of the EMC ions (i.e., Ag cations) at the inert electrode48, 49.  

TEM examinations from vertically stacked memristors were also demonstrated, by which the 
formation/rupture of the conduction filament was imaged from more typical device structures. Fig. 1i 
shows a cross-sectional TEM image of Ta2O5-based memristors individualized by applying focused ion 
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beam (FIB) to vertically deposited Pt/Ta2O5/Ru layers.50 The thickness of sputtered switching layer Ta2O5 
was only 5 nm to make it electron transparent which is beneficial for TEM observation. The bottom Ru 
layer is continuous (not divided by FIB), thus, bottom electrodes of all nanopillar memristors by FIB are 
connected to each other and also connected to the bottom contact for grounding, which is highlighted 
with an empty red square in Fig. 1j. And the examination sample was loaded to a nano-biasing holder. 
To make a good contact between the probe and carbon-coated Pt top electrode, a sharpen and flexible 
gold tip was employed. A clear sandwich structure with a uniform 5 nm Ta2O5 switching layer was 
identified in the Fig. 1k for the initial state of the device. After a SET process, i.e., a negative bias was 
applied on the Pt through the Au tip, two distinguishable Ru filaments were able to be observed in Fig. 1l. 
The Ru filaments yielded by the migration and accumulation of Ru were identified with ex-situ EDX 
analysis, indicating a low resistance state established. Afterwards, with a RESET process by applying a 
positive through the Au tip, the Ru filaments were dissolved and generated a high resistance state which 
is presented in Fig. 1m.  

From these studies of in-situ and ex-situ TEM investigations, the fundamental memristor switching 
mechanisms involving the formation and rupture of conduction filaments were visually identified at the 
nanoscale. Therefore, TEM is a powerful technique to characterize the device structure, more 
importantly, the morphology and composition of conductive filaments evolution which can reveal the 
switching mechanism definitively. 

3. X-ray photoelectron spectroscopy (XPS) 
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Fig. 2. XPS analyses for optimizing compositions of the switching layer and identifying the switching 
mechanisms. Bilayer TaOx-based memristors: (a) The structure of a bilayer tantalum oxide memristor. (b) 
Core-level HR Ta 4f XPS with peak fittings of each tantalum oxide layer and associated atomic 
percentage. The table summarizes the atomic percentage of each peak estimated from the HR XPS 
analyses. (c) XPS O 1s peak fittings of tantalum oxide layers. (d) Retention measurements at the three 
resistance states (RLRS, RIRS, and RHRS) of the bilayer tantalum oxide memristor (e) Schematic illustration 
of the switching mechanism of the bilayer tantalum oxide-based memristor, describing LRS, HRS and IRS. 



9 

Reproduced with permission from ref. 64; and NiOx-based memristor: XPS spectra of (f) Ni 2p core level 
and (h) O 1s core level and the associated valence-state concentration ratio in (g) and (i), respectively. (j) 
Ag 3d core level XPS spectra of pure Ag (TE) for both LRS and HRS states with a control condition (i.e., no 
Ag). (k) Associated Auger spectra of Ag MNN. (l) Proposed switching mechanism of NiOx-based 
memristor based on the XPS analysis. Reproduced with permission from ref. 39. 

 

X-ray photoelectron spectroscopy (XPS) offers a high-resolution identification of chemical environment 
of elements within a material, valence states, and electronic structures.51, 52 Due to these capabilities, 
XPS has been utilized in memristor applications to identify the chemical composition, doping states and 
functional bonding of the memristor components (i.e., switching layer and electrodes).53-63 Therefore, 
XPS is instrumental to analyze the major factors which control the evolution of the filaments and hence 
enhance the fundamentals of the switching mechanisms. 

With a TaOx-based memristive crossbar, Kim et al. demonstrated a functionally complete three-valued 
Łukasiewicz logic system, which describes a multivalued logic  for enhancing the computing efficiency by 
reducing the data size.64 At the single device level, the oxygen content in each oxide layer of a bilayered 
tantalum oxide-based memristor was modulated by adjusting the partial pressure of O2 during the 
deposition. Through XPS, the valence state of Ta and the oxygen deficiency were identified to 
understand their effect of the chemical environment on the memristor behavior. The structure of the 
bilayered memristor is schematically shown in Fig. 2a where the ‘x-‘ and ‘x+’ represent that TaOx− is 
more oxygen-deficient than TaOx+. And this oxygen content differentiation was confirmed by the high 
resolution (HR) XPS analysis of the Ta 4f spectra in Fig. 2b, indicating both layers were oxygen-deficient 
and quantitatively x-= ≈1.6 and x+ = ≈1.9, in reference to the stoichiometric phase, Ta2O5. The bottom 
table in Fig. 2b summarizes the atomic percentage of each valence state of Ta in the bilayers. The O 1s 
HR spectra for both layers were examined and depicted in Fig. 2c. The blue peak, which is located at 530 
eV and referred to as OI, and the green peak, which is located at 531 eV and referred to as OII, are 
associated with the bonding of Ta and O in a stoichiometric Ta2O5 and oxygen-deficient tantalum oxide, 
respectively. The ratio of the area of OI (blue) to OII (green) is 3.57 in TaOx− and 5.0 in TaOx±, validating 
that TaOx− is more oxygen-deficient, aligning with the results of the Ta 4f spectra. With the optimized 
oxygen content, the bilayered tantalum oxide-based memristor operates in three distinct states: LRS, 
HRS, and an intermediate resistance state (IRS). Fig. 2d shows the retention characteristics for these 
states, and they are stable enough to demonstrate the potential application for a logic system 
representing ternary states. The switching mechanism from oxygen concentration-modulated 
TaOx−/TaOx+ was proposed as in Fig. 2e where blue dots represent oxygen vacancies and each state with 
oxygen vacancy distribution is illustrated. Comparing with TaOx+, the oxygen-vacancy concentration is 
higher in the TaOx− layer in the pristine state. The first SET (i.e., forming) process yielded a conical shape 
conductive filament and it has wider width in the TaOx−, and only the thinner (weaker) filament in TaOx+ 
was dissolved during the first RESET process. With the second RESET process, the wider (stronger) 
filament in TaOx− was destroyed as well, leading to HRS. Then, only TaOx− filament was recovered by a 
SET process due to a larger oxygen vacancy concentration in TaOx− layer, creating the IRS. An additional 
SET is needed to extend the filament to TaOx+ for LRS.  

XPS may enable one to investigate chemical content variation for each switching stage, through which 
the switching mechanism of a memristor can be established. Park et al. reported such an investigation 
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on NiOx-based memristors.39 XPS analyses were carried out for the four following cases: (i) non-cleaned 
NiOx, (ii) cleaned (by ion beam) NiOx, (iii) NiOx at LRS, and (iv) NiOx at HRS. Fig. 2f exhibits the Ni 2p core 
levels XPS data for the four cases, where green Ni0 peaks are only observable in the case (iii) LRS and (iv) 
HRS, indicating a shift in the Ni 2p peaks. Fig. 2g compares the concentration ratios of Ni3+, Ni2+, and Ni0 

in the four cases. And it shows that a significant change in concentration ratios of Ni2+ and Ni0 occurred 
in (iii) LRS and (iv) HRS, whereas Ni3+ remained stable due to a stronger Ni3+-O bond. Thus, oxygen 
vacancies were formed around Ni2+ ions in LRS. O 1s core levels XPS spectra for four cases are plotted in 
Fig. 2h. The pink OIV peak at 532.4 eV indicates the presence of weak binding and/or interstitial oxygen 
and surface hydroxyl groups, i.e., NiO(OH), Ni3+state, and OIV peak can be perceived only in case (i) 
pristine NiOx. The NiOx film was cleaned in case (ii) with an Ar+ ion beam to remove chemical adsorption 
on the NiOx surface, resulting in a removal of the OIV peak. Peaks of OI, and OIII are related to oxygen 
lattice, oxygen vacancy, and non-lattice, respectively. According to Fig. 2i, from (iii) LRS to (iV) HRS, the 
oxygen-vacancy (OII) concentration decreased from 31.7% to 13.5%, while OIII was barely changed, 
similarly due to the strong bonding of Ni3+-O. In case (iv) HRS, the O2− ions repopulate the original lattice 
position of the NiOx, leading to a decrease in oxygen vacancy. In contrast, in case (iii) LRS, Ni2+ is reduced 
to Ni0. The XPS analysis was used to estimate the Ni and O composition ratios for cases (ii) to (iv). In case 
(ii), the Ni and O composition ratio was determined to be 1:1.3 without the presence of Ni0. After the 
forming process, this ratio shifted to 1:0.9 in case (iii) LRS and 1:1.2 in case (iv) HRS when Ni0 was 
present. This quantitative analysis implies that the digital bipolar switching behavior of the NiOx-based 
memristor is related to the valence change mechanism (VCM), which is influenced by changes in the 
oxygen vacancy within the NiOx layer. With further analyses of Ag 3d3/2 and Ag 3d5/2 core levels XPS 
spectra, the authors claimed the bipolar switching behavior arises from various electrochemical 
reactions at the Ag/NiOx interface, involving Ag and AgOx, and within the NiOx layer, involving Ni2+ and Ni. 
The switching mechanism of the Ag/NiOx/ITO memristor can be demonstrated based on the XPS analysis, 
as depicted in Fig. 2l. When SET voltage is applied to the Ag top electrode, the O2− ions from the NiOx 

layer are able to easily move into the Ag electrode, which results in the separation of the O2− ions from 
the oxygen lattice sites, or the drift of oxygen vacancy. The partial O2− ions from NiOx then gather at the 
Ag/NiOx interface, leading to the formation of AgOx (left side of Fig. 2l). In the NiOx layer, the conductive 
filament can be established between Ag/AgOx and ITO, switching the device to its LRS. On the other 
hand, when a RESET voltage is applied to the Ag top electrode, the O2− ions from AgOx are replenished 
back to the NiOx layer, partially neutralizing and recombining with oxygen vacancy (right side of Fig. 2l). 
This process can lead to the partial rupturing of the filament near the Ag top electrode, switching the 
device to its HRS. 

4. Atomic force microscopy (AFM) 



11 

 

Fig. 3. C-AFM Investigation on switching mechanism of MAPbI3-based memristor: (a) Diagram of C-AFM 
measurement procedure, where a large voltage scan is carried out only at the upper part of the square 
area, and then a low voltage read process is scanned on the entire area. Current mapping images of a 
MAPbI3/FTO structure with voltage bias of (b) -8 V, (d) +8 V for stressing in the upper area and (c) (e) 0.5 
V for corresponding read processes for both biases. Reproduced with permission from ref. 79. AFM 
examination on SiO2-based memristor: (f) AFM topography of the surface of the switching layer SiO2 
after initial bias applied and (g) its pristine counterpart image. Energy dissipation mapping images 
obtained with (h) a positive-bias initial stressing and (i) a negative one. Associated C-AFM conductivity 
mapping for (j) positive stressing and (k) negative one. Reproduced with permission from ref. 80. In-situ 
fabrication and investigation of SiOx -based memristors directly on Si formed by C-AFM: Diagrams for C-
AFM tip-induced oxidation (l) set up and (m) establishment. (n) Topography of silicon oxide hillocks on Si 
surface formed by applying 8 min +5 V bias scan. Reproduced with permission from ref. 81. 

 

Atomic force microscopy (AFM) is a technique used to measure not only the typical surface topography 
and mechanical properties but also electrical response, electronic structures (e.g., work function), and 
electrochemical behavior of materials at the nanoscale.65-73 It works by scanning a very sharp probe over 
the surface of a sample, and measuring the various signals between the probe and the surface. By 
plotting these signals as a function of the probe's position, an AFM can produce a detailed map of such 
informative properties to understand the nature of materials.74 

In addition to these various capabilities, it is further promising for memristor characterizations that AFM 
can identify the changes that occurred in these properties during the operation of the memristor. This 
information can be used to understand the mechanisms by which memristors function, and to optimize 
their performance.75, 76 For example, AFM can be used to measure the resistance of a memristor as a 
function of applied bias through, known as conductive AFM (C-AFM or current mapping), which can 
provide insights into the mechanisms underlying the device's resistive switching behavior.77 AFM can 
also identify the effect of the surface roughness and roughness distribution of the materials on the 
memristor performance.78 
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Sun et al. used the current mapping method on CH3NH3PbI3 (MAPbI3) -based memristors to investigate 
the switching mechanism.79 The tip of C-AFM was coated with Pt and served as a grounded top 
electrode, and Fluorine-doped Tin Oxide (FTO) is the bottom electrode where a bias voltage is applied 
(i.e., Pt/MAPbl3/FTO structure). The measurement is schematically described in Fig. 3a. The large bias 
voltage is applied to the upper part of the sample only. After the upper scanning, a full scan is carried 
out on the whole area of the sample with a small voltage, basically this is a read process. Fig. 3b shows 
the current mapping for a -8 V upper scanning and Fig. 3c presents a 0.5 V full read mapping. At another 
area with the same size, a +8 V upper scanning and 0.5 V full read process were completed and 
associated current mapping images are displayed in Fig. 3d and 3e. The areas were divided into high-bias 
scanned (high current level) and non-scanned (low current level) parts for both -8 V and +8 V cases. 
These results indicate that the MAPbI3 functioning layer can be turned on to LRS in both bias directions, 
which suggests that the resistive switching relies on its own defects of MAPbI3 film due to the fact that if 
the switching relies on ions from a specific electrode, only one biasing direction (i.e., to the specific 
electrode) should turn on the device. Also, an interesting phenomenon can be observed by comparing 
Fig. 3c and e that -8 V SET has a sharp edge between scanned and non-scanned parts and +8 V SET has 
an indistinct boundary, implying -8 V SET process is more complete than +8 V. This bias dependent 
behavior is attributed to that the area of the Pt-coated tip is smaller than the bottom electrode, causing 
an asymmetrical bipolar resistive switching. 

Mehonic et al. investigated the surface distortion of switching layer after bias applied through AFM in 
tapping mode.80 In order to eliminate the need for removing the upper electrode from a specimen after 
undergoing electrical stress, the SiOx switching layer was directly subjected to bias via a conductive 
probe, i.e., served as a top electrode. Voltage pulses of either +20 V or -20 V were applied at different 
locations, thus enabling examination on the effects of both positive and negative biases. As shown in Fig. 
3f, bubble-like features with diameters ranging up to hundreds of nanometers were commonly observed 
in the vicinity of the probe contact point. As comparison, Fig. 3g is the topography image of pristine SiOx, 
exhibiting highly flat surface with a 0.2 nm root-mean-square roughness. In some instances, permanent 
bumps were noticed at the bias point after undergoing electrical stress, these bumps were up to a few 
hundred nanometers in width and approximately 40 nanometers in height. The energy dissipation 
mapping can reveal material’s mechanical properties such Young’s modulus. Thus, the scans of energy 
dissipation are shown in Fig. 3h for positive bias and Fig. 3i for negative bias. These energy dissipation 
results suggest that the conductive region is less stiff than the pristine area. Elevated areas were found 
to dissipate more energy than the original surface under both positive and negative stress. Conversely, 
some regions demonstrated lower energy dissipation, indicating localized hardening. C-AFM reveals a 
correlation between surface distortion and areas of elevated conductivity (as demonstrated in Fig. 3 f,g). 
It can be inferred that both positive and negative biases cause an expansion of the oxide layer, which is 
accompanied by an increase in local conductivity. This implies that Joule heating caused by the flow of 
current leads to a distortion in the local structure, resulting in surface deformation and regions of 
varying hardness.80 

In addition to the surface, electrical and mechanical characterizations for memristor applications, AFM 
can also form an oxide switching layer directly from a metal species (then becomes a bottom electrode). 
Peiris et al. grew silicon oxide hillocks on Si surfaces by C-AFM tip-induced oxidation to fabricate a silica 
based memristor.81 The thickness of oxide film was controlled by the magnitude of the applied bias, 
duration polarity and the Si doping type, i.e., n-type and p-type. Fig. 3l demonstrates the process set up 
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schematically where a positive bias is applied on n-type Si. Fig. 3m pictorially describes an AFM tip-
induced silicon oxide hillock is established. For example, with an 8 min +5 V bias scan, the average 
height for the AFM tip-induced oxide achieved 6.3 ± 0.37 nm, as shown in Fig. 3n. And this kind of AFM 
tip-induced memristor shows an on/off ratio larger than 104. 

5. I-V DC sweeping 

 

Fig. 4. Elaboration of DC sweeping I-V characterization. (a) A detailed explanation of a typical I-V curve in 
linear-linear scale from DC sweeping, indicating bipolar resistive switching. (b) Actual DC sweeping I-V 
characteristics and corresponding switching mechanism of an Ag/HfO2/Pt memristor. Reproduced with 
permission from ref. 85; A SiO2/Ta2O5 based memristor, showcasing (c) 1000 cycles of DC sweeping data 
plotted in semi-log scale (linear scale x-axis and log scale y-axis). The curves of all cycles are displayed 
and the first and last cycles are highlighted. (d) Associated endurance characteristics obtained from 
resistance values read at 0.1 V at HRS and LRS. Reproduced with permission from ref. 86; and (e) 
Double-log scale analysis for an Ag/ZnO/ITO memristor, where the slopes of HRS and LRS determine the 
α value in the I∝Vα, indicating the conduction mechanism. Reproduced with permission from ref. 99. 

In this section, DC sweep measurements will be reviewed as a typical electrical evaluation of memristors, 
which can also serve as a great starting point for learning the resistive switching behavior and associated 
mechanism. Fig. 4a describes a typical I-V curve for the most studied bipolar filamentary memristor. The 
top electrode is connected to the electrical bias and the bottom electrode is grounded. Thus, the 
ramped voltage stresses are added across the switching layer of the memristor. An as-prepared (or un-
biased) memristor is initially in the high resistance state (HRS), or OFF state which can be considered as 
logic value ‘0’. With an application of the positive external electrical stress, a formation of conductive 
filament in the switching layer and the memristor is switched to a low resistance state (LRS), or ON state 
which can be considered as logic value ‘1’. This process is referred to as the ‘SET’ process, and the 
voltage ignited the transition is called SET voltage (Vset). After reaching the LRS, the positive voltage is 
reduced to 0, and increase negatively to enable another transition. At certain negative bias, a RESET 
voltage (Vreset), the conductive filament is ruptured, and the LRS of the memristor is switched back to 
initial HRS, i.e., a RESET process is established. During the forward and backward sweeps, the current 
values are checked at the same voltage, typically ∼0.1 V, which turns out that there is a gap between 
these two current levels. This current checking is called “read”, and the resistances (RHRS and RLRS) at two 
states can be simply calculated with the read voltage (∼0.1 V) and current values. It is worth noting that 
a limited current (compliance current) was usually employed during the DC sweeping for collecting 
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hysteretic I−V curves. And the compliance current can prevent an irreversible hard break on the 
memristor.82-84 Fig. 4b presents one cycle of I-V sweeping characteristics in linear scale of an Ag/HfO2/Pt 
memristor with associated schematic elucidation of its switching mechanism.85 It clearly introduces the 
relations between the electrochemical processes and each switching state in the electrical 
characteristics. With a positive bias, the top electrode, chemically active Ag, is partially oxidized as Ag+ 
ions. And then, these Ag+ ions migrate towards the bottom noble Pt, and are reduced to Ag atoms there. 
The accumulated Ag atoms form conductive filaments across the dielectric layer and a SET process is 
completed. Thus, in the LRS, the memristor exhibits an ohmic transport mechanism. When a negative 
bias is applied to the top Ag electrode, the oxidation of Ag filaments into Ag+ ions and reduction at the 
Ag electrode reversibly occurred, which led to the rupture of the filament conduction path and 
switching these devices to an OFF state (RESET process). DC sweeping I-V evaluation is often plotted as 
the logarithm of currents’ absolute values vs linear voltage values which is called semi-log or butterfly 
graph. In this way, the RLRS/RHRS ratio is visualized much more clearly. Fig. 4c is a semi-log presentation of 
the measurement for a SiO2/Ta2O5 based memristor.86 1000 cycles of DC sweeping data are all plotted in 
the butterfly graph. The plot commonly shows the variation of each cycle, it is reasonable to highlight 
typical cycles, such as the first and last cycle, as Fig. 4c does, or the average/fit of all cycles. Fig. 4d 
summarizes the distribution of resistance values of SiO2/Ta2O5 based memristor at HRS and LRS along 
with the cycle number, i.e., endurance behavior, which is extracted from I-V measurements at 0.1V. The 
endurance characterization visualizes the on/off ratio, switching variation, and cycling number during 
the repeated DC sweeping in a more quantitative way. When the semi-log and endurance characteristics 
are reported, the data in very cycle should be included, especially, only 100 cycles are presented for DC 
sweeping commonly. It should be noted that measured RHRS and RLRS 
in each cycle should be all reported. If one uses only one data point to present 10 cycles of data, it is 
possible that some failure cycles occur within 10 cycles, thus, the endurance is overestimated. This issue 
is also noticed in another article, and the authors argued that measuring and reporting endurance for 
every cycle is especially important for advanced materials (e.g., 2D materials, perovskites, MXenes)87-92 
based memristors and nanostructured (e.g., nanowires and nanotubes)93-96 memristors as their 
switching mechanisms and their reliability have not been demonstrated by other groups and not been 
established.97 Therefore, the performance of these devices requires further objective evaluations as the 
performance since related mechanisms are controversial and not widely accepted. The DC sweeping 
data can be interpreted in double logarithm scale to analyze the conduction mechanisms.98 For example, 
in the Fig. 4e, the DC sweeping current–voltage curves from an Ag/ZnO/ITO memristor was plotted in 
double logarithmic coordinates during the SET process.99 During initial HRS within low positive bias 
region, the current flowing shows a linear relationship (I∝V, i.e., the slope is around 1) indicating an 
ohmic conduction mechanism, corresponding to thermally generated carriers. Along with an increasing 
bias, the slope of the current–voltage curve increases to 1.9, i.e., I∝V2, which implies that the current 
flowing follows a space charge limit current (SCLC) conduction mechanism before the HRS/LRS 
transition.99, 100 When Ag filaments were formed, the memristor transitioned to LRS and the slope 
became 1 again, followed Ohm's law. Although the DC sweeping is a basic characterization for 
memristor, this measurement can reveal key information such as endurance, variation and conduction 
mechanism with different interpretations. 

6. Pulse 
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Fig. 5. Demonstration of pulse measurements for endurance and linearity characterization. A typical 
endurance characteristic of memristor with pulse, enabling large number of cycling: (a) A pulse 
measured endurance characteristics of a cellulose nanocrystal (CNC)-based memristor with 104 pulse 
cycles. Reproduced with permission from ref. 108; (b) A segment of pulse endurance characteristics. A 
blue pattern represents the applied pulse scheme and red pattern provides the recorded current values. 
The smaller amplitudes of pulses are READ pulses. And the larger ones are SET/RESET pulses. 
Reproduced with permission from ref. 97; and linearity testing on MoS2-based memristor: (c) A pulse 
characteristic of the LTP/LTD process of a MoS2-based memristor. (d) Pulse train profiles for the LTP/LTD 
testing. 1000 continuous identical negative SET pulses and READ pulses followed by 1000 continuous 
identical positive RESET pulses and READ pulses. (e) LTP/LTD characteristics measured from the same 
MoS2-based memristor, under various SET/RESET pulse width combinations. SET and RESET pulse 
amplitudes are −15 and +10 V, respectively for all measurements. Reproduced with permission from ref. 
117. 

 

As reviewed in the previous section, a variety of information can be retrieved by utilizing DC sweeping 
characterization. However, the slow DC ramping may be not suitable for most of the practical 
electronics applications. Lanza et al. claimed that if the memristor device fails to switch within 1 
microsecond, it becomes not useful for the majority of resistance switching technologies.97 In addition, 
many reports claim that 106 or higher endurance performance, thus, through time-consuming DC 
sweeping is not a realistic approach for measuring such a high number of switching cycles.101-107 

Pulse measurements are instrumental to address these issues Fig. 5a is a typical endurance 
characteristics plot employing the pulse technique, obtained from cellulose nanocrystal (CNC)-based 
memristor.108 The x-axis represents the pulse number and y-axis is labeled for resistance, or other 
equivalent information such as current, or conductance. A typical scheme of a pulse train for endurance 
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characterization is shown in Fig. 5b, which includes the cycle as follows: a READ pulse, a SET pulse, a 
READ pulse, a RESET pulse, and a READ pulse.97 And sufficient number of data points is also crucial since 
insufficient data points (i.e., with low resolution) may not be able to identify the SET/RESET behaviors. In 
Fig. 5b, the SET/RESET processes are exampled with the adequately large number of points, showing 
detailed switching behaviors. However, a large volume of data often limits obtaining pulse 
measurements beyond a certain number of data points. Therefore, optimizing the size of data while 
being able to demonstrate the performance profile is required. Despite the practical usefulness of pulse 
measurements as a memristor characterization, we notice two major issues. First, READ pulse is missing 
in the pulse scheme. Second, the result does not report all the resistance values for the whole cycling 
test. These data exhibitions are not recommended. 

Another major application of pulse measurements for memristors is to characterize the synaptic weight 
updating, especially for neuromorphic computing applications.109-116 Typical plots of synaptic weight 
updating process are displayed in Fig. 5c.117 In principle, this characteristic demonstrates a series of SET 
(long-term potentiation (LTP)) and RESET (long-term depression (LTD)) processes of the memristor with 
repeated pulses. The representative scheme of the pulse train for a cycle of LTP and LTD is shown in Fig. 
5d. If we temporarily ignore the READ pulse for an easier comparison, the pulse train scheme for 
endurance is a (1 SET + 1 RESET) * N pattern, however, for the LTP/LTD characterization, it is a (1 SET * n 
+ 1 RESET *n) * N pattern where n is the continuous count number for one polarization and N is the 
cycling number. For instance, in Fig. 5d, one LTP/LTD cycle contains 1000 times of -15 V pulses with 5 ms 
pulse width, followed by 1000 times of 2ms +10V pulses, thus, n=1000. And in Fig. 5c, the plot shows 
three cycles of LTP/LTD, i.e., N=3. Fig. 5e suggests that the characteristics can be tuned/optimized by the 
modulate the pulse’s width and amplitudes. 

We recommend that researchers should provide a detailed description, including diagrams, of the pulse 
train scheme, testing setup circuit, data recording resolution, and all resistance values obtained in 
endurance testing. This information helps other researchers understand the methodology and 
replication of the study and provides transparency and accountability in the research process. 

7. Image processing 

 

Fig. 6. Image processing fundamentals with memristor-based neuromorphic computing. (a) A simple 
neural network diagram. (b) A demonstration of the neural network on a memristive crossbar. Note, 
different shades of orange indicate different conductance at each junction. Reproduced with permission 
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from ref. 126; and image classification with metal-oxide memristors: (c) 3x3 binary image sets. (d) The 
schematic of single-layer perceptron for image classification. (e) Circuit demonstration of a 10 x 6 
fragment of a memristive crossbar for this single-layer perceptron. (f) An illustration of the classification 
process for a specific input pattern (in this case, a stylized letter 'z'), using input signals of +VR or -VR on 
the Al2O3/TiO2-x memristive crossbar, depending on the color of the pixel. (g) An illustration of the 
process of adjusting the weights in a specific column (in this case, the first positive column) based on a 
specific error matrix by using set/reset pulse 𝑉𝑉𝑊𝑊

± = ±1.3 𝑉𝑉. Reproduced with permission from ref. 127.  

The characterization techniques reviewed in the preceding sections are focused on the single-device 
level. An increasing number of studies have shown brain-inspired computing such as deep neural 
networks (DNNs) were realized by utilizing memristive crossbars.118-125 Therefore, image processing is 
considered a characterization technique for demonstrating the advanced capabilities of memristors. Xia 
and Yang summarized fundamental knowledge of neuromorphic computing, and key concepts are 
reintroduced here concisely.126 Fig. 6a is a schematic of a simple neural network. The input layer 
neurons receive signals and transmit them to the neurons in the hidden layers that have a nonlinear 
activation function to process the weighted sum and send them to the output layer. The synaptic 
weights 𝑊𝑊𝑖𝑖𝑖𝑖 can be tuned during training to minimize the error between the output and known targets 
by gradient descent algorithm. This kind of brain-inspired computing function can be realized with a 
memristive crossbar by performing vector-matrix multiplication, as shown in Fig. 6b. In principle, 
according to Ohm's law (𝐼𝐼 = 𝑉𝑉𝑉𝑉), an input voltage vector is applied to each junction with varying 
conductance (G) (i.e., a conductance matrix), resulting in a current. While the conductance is always 
positive, synaptic weights can be negative in a memristive neural network, thus, the weights are 
commonly depicted by the conductance difference between two devices called a differential pair. 
Prezioso et al. demonstrated a fully operational neural network by utilizing a memristive crossbar with a 
Al2O3/TiO2-x-based memristor at each cross point to classify the 3x3 binary (black or white) patterns in 
Fig. 6c.127 This single-layer perceptron contains ten inputs and three outputs, which were fully connected 
with 30 synaptic weights (i.e., 10x3=30) as shown in Fig. 6d. As illustrated in the scheme, the 
perceptron's outputs 𝑓𝑓𝑖𝑖 (with i = 1, 2, 3) are computed using nonlinear activation function, 𝑓𝑓𝑖𝑖 =
tanh(𝛽𝛽𝐼𝐼𝑖𝑖), and where the vector-by-matrix product components, 𝐼𝐼𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑉𝑉𝑗𝑗10

𝑗𝑗=1 . The input signals are 
denoted by 𝑉𝑉𝑗𝑗  with j = 1,…,9. 𝑉𝑉10 is a constant bias for accelerating the convergence process and the 
function’s nonlinearity is controlled by β, finally, the adjustable (trainable) synaptic weights are labeled 
as 𝑊𝑊𝑖𝑖𝑖𝑖. This type of network is capable of classifying 3x3-pixel black and white images into three classes, 
with nine inputs corresponding to the pixel values. Three stylized letters ‘z’, ‘v’ and ‘n’ were tested on 
this network with 30 patterns (three sets) displayed in Fig. 6c.  For example, there are a set of 10 
versions of letter z and the first one in this set is the correct one. The rest 9 versions are the noisy 
(incorrect) ones, formed by flipping one of the pixels of the correct image. These sets were used for both 
training and testing due to the small set size. The bias input 𝑉𝑉10 was set to -0.1 V. Each input signal, 
voltage 𝑉𝑉𝑗𝑗  was equal to either +0.1 V (+VR) or -0.1 V (-VR), corresponding to the black or white pixel 
respectively. Every two memristors are considered as a differential pair, a total of 60 memristors in the 
crossbar (30x2=60) were drawn in Fig. 6e. Fig. 6f elaborates an operation for pattern z. The input 
voltages can be determined by previously described rules and were applied to cross bar, and the 
resulting currents for each column (each top electrode bar) were evaluated then convert to perceptron’s 
outputs with an activation function. These outputs were compared with the preset label values for letter 
z, n, v to get the differences which are known as the loss functions. Based on the loss function, back-
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calculate the adjustments of each weight using the gradient descent algorithm. This process is known as 
the back-propagation process. Fig. 6g presents the next step: the adjustments were physically 
established by using set pulse and reset pulse to tune the conductance of the synapses. When the 
output signal for the correct class of the applied pattern was higher than the signals for all other classes, 
the perfect classification was reached, on average, after 23 training epochs. It should be noted that the 
training of the network was performed in-situ, without using an external computer model. Although this 
is a simple neural network only with one layer, it is a classical case study for examining if one possesses 
enough prerequisite knowledge about the algorithm to conduct advanced image processing 
characterizations. More importantly, it can be inferred that good reliability at single device level is 
required because realizing neural network on a memristive crossbar basically involves manipulations of 
numerous memristors with multiple conductance levels. Hence, the fundamental study on memristor at 
single device level remains of paramount importance. If researchers do not have access to crossbar 
fabrication, or prefer to work on optimizing performance at single device level, one can simulate the 
image processing performance like recognizing handwriting numbers for a single device level of 
memristor study by using an in-house software or simulator such as CrossSim.39, 128-133 

8. Cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) 

Fig. 7. Interpretation of CV and EIS characterizations with exemplary works. comparison and 
categorization of the CV of the tested active electrode materials in SiO2-based memristors which can be 
classified based on their redox behavior: (a) Reversible process, meaning that no passive film is formed, 
and the species can return to its original state. (b) Irreversible oxidation, where the formed product 
cannot be restored to its initial chemical state. Reproduced with permission from ref. 145; Influence of 
the CE material on the redox reactions preceding resistive switching: (c) CV plots of Cu/SiO2/CE 
memristors with various inert CE materials (Pt, Ir, and Ru). (d) Al, a passive metal that may form an 
interfacial oxide, as CE. Reproduced with permission from ref. 146; and EIS measurements on different 
states of Au/TiO2−x/TiO2/Au memristor: (e) EIS characteristics of the pristine device. Inset 1 displays a 
high-frequency spectrum. Inset 2 is the equivalent circuit. (f) After the SET process, A single contour was 
observed, revealing the device retained at LRS. The associated equivalent circuit is displayed in inset 1. 
Inset 2 is a schematic for LRS. (g) After the reverse voltage passed zero, two semicircles appeared, 
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indicating the initiation of rupturing of filaments. The insets again demonstrate the equivalent circuit 
and schematic for the testing state. Reproduced with permission from ref. 150. 

Cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) are widely used to 
characterize electrochemical behaviors in various fields such as corrosion, electrocatalysis and 
battery.134-139 CV and EIS have also been employed to characterize the electrochemical behavior of 
memristors and hence enhance an understanding of the memristor behavior.140-144  

In memristor investigations, CV measurements can give insight into the redox processes happening 
before the switch events.145 Lübben et al. examined the electrochemical redox characteristics of various 
metals as active electrode materials within a M/SiO2/Pt system (M represents metal) spanning from 
noble to transition metals.145 Fig. 7a summarizes the CVs of metal electrodes, demonstrating no 
significant passivation effects, i.e., no interfacial oxide was formed, indicating a reversible process. The 
general pattern is that the lower the nobility of a metal, the greater the negative potential required for 
reduction processes, with V, Ni, Fe, Cu, Ag, and Au ordered from most negative to most positive cell 
potential, with Au having the highest positive potential. The reaction rate varies among the active 
metals, with Cu, V, Au, and Ni having higher reaction rates, and Fe and Ag being less electrochemically 
active. Determining a clear order for oxidation reactions is difficult as most metals don't exhibit a 
prominent oxidation peak. Fig. 7b compares the cyclic voltammograms of active electrode metals with 
high oxygen affinity. The first cycles are analyzed as they determine the formation of a passive film that 
impacts the shape and intensity of the CV curves. The potentials and currents of the peaks give insight 
into the redox reactions' thermodynamic driving force and reaction rate. For instance, aluminum rapidly 
begins oxidation, but its dense barrier-type layer significantly reduces current and further oxidation. A 2-
3 nm interfacial Al2O3 film is enough to passivate the device. In contrast, tantalum shows slower reaction 
rate, but can be oxidized over a wider voltage range to form oxide films up to several tens of 
nanometers, still permitting ionic motion. Titanium and Zirconium exhibit oxidation behavior between 
aluminum and tantalum, with Zr showing lower current densities and faster passivation compared to 
titanium. It's crucial to note that the crystallographic and defect-chemical structure of the interfaces 
formed also influences the device properties, not just the oxidation potentials. The choice of the counter 
electrode is equally important as the active electrode due to the electrochemical nature of filament 
formation.146, 147 The starting point of filament formation is the counter electrode (typically BE), which is 
negatively biased during the SET process. The counter electrode's ability to catalyze reduction reactions 
is critical to the process.147 Cyclic voltammograms for various counter electrode materials of Cu/SiO2/CE 
(CE represent counter electrode) memristors are reported by Valov et al., of which the plots for noble 
metals are shown in Fig. 7c and Al in Fig. 7d.146, 147 As shown, noble metal electrodes exhibit varying 
catalytic activity, with Ir being the most active followed by Ru, then Pt. From an electrochemical 
standpoint, devices using Ir or Ru electrodes should perform better, particularly in terms of switching 
time since their CV curves contained higher current density (Fig. 7j) peak than the Pt.147 Electrodes with 
a high affinity for oxygen, such as Al, are prone to passivation and inhibit further reactions. The results 
indicate that the counter electrode reaction rate is lower compared to that of the active electrode, 
which determines the reaction rate of the overall system. Increasing the counter electrode reaction rate 
leads to a higher reaction rate in the active electrode and, therefore, a shorter switching time. From the 
analysis above, we can see that CV measurements can be effective to provide foundational reference 
information for the selection of electrodes. 
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The purpose of EIS is to analyze electrochemical systems and gain insight into the underlying 
electrochemical processes by measuring impedance changes at different sinusoidal frequencies.148 
Accurate modeling is crucial to interpret the data, which is often accomplished through the use of 
equivalent circuit models.148 This non-invasive evaluation technique transforms EIS data into meaningful 
parameters such as capacitance (C), resistance (R), and constant phase element (CPE) that describe the 
electrochemical process.148 Nyquist plots, generated through EIS, effectively display the relationship 
between impedance and frequency.149 By using EIS to analyze memristor devices, which change their 
resistance in response to an applied electric field in a range of frequencies, we can gain insight into the 
different resistive regimes related to their switching behavior (SET/RESET). This nondestructive 
approach allows us to provide additional or supplementary evidence of the results obtained using TEM 
investigations which often require exquisite manipulations of the samples and specific accessories for 
memristive behaviors imaging.150 The impedance response of pristine Au/TiO2−x/TiO2/Au memristor cells 
was measured by Dash et al. at equilibrium (zero applied bias) to examine Z″ vs. Z,  where Z″ is the 
imaginary part and Z′ is the real part of the impedance,  at frequencies ranging from 1 MHz to 10 
mHz.150 The results in Fig. 7e show two distinct resistive regimes in the Nyquist plot, confirmed by two 
semicircular frequency dispersion contours, likely attributed to the bilayer of TiO2−x and TiO2. The 
frequency dispersion was well within the bulk impedance response of resistive/capacitive. The 
resistance values of 57 kΩ and 65 kΩ for contour 1 and 2 respectively, indicate the relative resistances of 
non-stoichiometric TiO2−x and stoichiometric TiO2. To gain a deeper understanding of the impedance 
response at different switching states, impedance measurements were conducted as an ex-situ analysis 
by interrupting the potential sweep at points where resistive changes occur. The resulting data showed 
a single impedance contour, which suggests the presence of a single charge transfer resistance (Rct) and 
interfacial capacitance connected in parallel, indicating that the formation of a filamentary galvanic 
contact with the TE had occurred. As depicted in inset 1 of Fig. 7f, this is supported by the equivalent 
circuit model. The researchers then applied a reverse voltage towards zero, and upon passing zero, they 
performed another EIS measurement. The spectrum returned to its original pristine-like state, with two 
clearly distinguishable impedance contours as shown in Fig. 7g. 

 

Part II. Reliability Issues in Memristors 

9. Endurance 
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Fig. 8. The failure modes associated with actual memristor failures, mechanisms and improvements in 
cycling endurance. Type I: (a) Failure mode demonstration. Both RHRS and RLRS degrade and meet in the 
middle. (f) Measured data from TiN/HfOx/Pt memristor, with +2 V SET and -2 V RESET pulses, pulse time 
width (TW) is 1µs. Note, RESET 2V in the figure only represents its magnitude. This is also true for (g) and 
(h). (k) Illustration of failure mechanism. Type II: (b) Trend lines for a sudden RRHS degradation mode. (g) 
Measured data from TiN/HfOx/TiOx/HfOx/TiOx/Pt memristor. Testing condition is the same as (f). (l) 
Schematic of failure mechanism. Solid line circles represent oxygen ions and dash line ones are oxygen 
vacancies. Type III: (c) Graph of the gradual RRHS degradation mode. (h) Measured data from TiN/HfOx/Pt 
memristor, with +1.5 V SET and -2 V RESET pulses, pulse TW is 1µs. (m) Corresponding mechanism 
explanation. Dash line squared area is the interface between the switching layer and electrode. 
Reproduced with permission from ref. 152; Type IV: (d) Failure mode illustration of steep RLRS 
degradation. (i) Measured data from HfO2/Al2O3 multilayer memristor with a transistor (1T1R). (n) 
Associated failure mechanism elaboration. White circles represent oxygen vacancies. And red lines 
symbolize conduction paths. (d) Reproduced with permission from ref. 153; (i) and (n) Reproduced with 
permission from ref. 151; Type V: (e) Presentation of failure mechanisms of gradual HLRS degradation. (j) 
Measured data from K-birnessite MnO2-based memristor. (e) Reproduced with permission from ref. 153. 
(j) Reproduced with permission from ref. 154; (O) Diagram of endurance versus operation voltage 
conditions describing the device states in (i). Reproduced with permission from ref. 151; and an example 
of endurance improvement: (p) Endurance characteristics of the reference device, a HfOx-based 
memristor. After about 2x106 times cycling, the device encounters a stuck-at-LRS failure. The insets are 
related SEM and AFM images obtained from failed devices, indicating severe damage to the top 
electrode. (q) is the corresponding image by using scanning transmission x-ray microscopy, from which 
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intensive morphology disorder was identified. (r) On the left, it is a schematic of redesigned HfOx-based 
memristor, and with the new structure, the cycling number increased up to ~109, shown on the right. 
Reproduced with permission from ref. 164. 

 

Endurance is a key metric in evaluating a memristor's reliability, defined as the maximum number of 
cycles before failure occurs.151 However, most of the memristors suffer endurance degradation and/or 
failure after a number of switching cycles. The endurance is usually visualized by resistance/conductance 
versus cycle number graph. Chen et al. observed and categorized endurance failure symptoms into three 
types for their transition metal oxide (TMO)-based memristors with TiN and Pt electrodes: in Type I, RHRS 
decreasing and RLRS increasing occur simultaneously; in Type II, RLRS remains stable and RHRS decreases 
and RHRS suddenly drops to RLRS’s level;  and in Type III, RLRS keeps stable and RHRS gradually decreases to 
RLRS’s level.152 Fadeeva and Rudenko also point out another two types of endurance failure/degradation 
symptoms which are basically opposite behaviors of type II and type III, meaning that RHRS is stable but 
RLRS increases gradually (Type V) or more abruptly (Type IV).153 These five types of failure and 
degradation behaviors are illustrated in Fig. 8(a) – (e) with trend lines.  Fig. 8(f) – (j) present the practical 
examples of the associated categories.154 Physical mechanisms were suggested to understand these 
failure/degradation behaviors and these mechanisms are schematically explained in Fig. 8(k) – (n). Due 
to the nature of the TMO switching layer and noble electrodes, oxygen-related mechanisms govern the 
failures of Type I, II, and III.152 Type I is caused by a metal oxide barrier formed by Joule heating and 
oxygen ions creation during the forming processing, which blocks the transportation of electrons and 
oxygen ions.152 Type II can be explained as excess oxygen vacancies induced by an electrical field, which 
thickens the conductive filaments.152 Type III is attributable to the overabundant depletion of oxygen 
ions, caused by RESET processes, thus, reducing the likelihood of recombination between oxygen ions 
and oxygen vacancies and hence rupture of the conduction filament.152 The Type IV degradation of LRS is 
accounted by Zhao et al. for the presence of unrepairable and large gaps caused by the exhaustion of 
oxygen vacancies (Fig. 8n).151 They also describe an endurance evolution with the different voltage 
programming conditions, causing different failure/degradation types (Fig. 8o). Type II and III are also 
classified as stuck-at-LRS while Type IV and V as stuck-at-HRS, and Type I as stuck-at-MRS (MRS 
represents medium resistance state). Among them, stuck-at-LRS is the most common failure type, 
relating the unruptured conduction filament. 

The strategies for improving cycling endurance are desirable and enhanced endurance has been 
accomplished.155-162 For example, Kumar et al. demonstrated an improvement in endurance of about 
three orders of magnitude by modifying the device structure.163 The initial memristor structure 
consisted of Pt/TiN/HfO/Pt. With voltage pulse, the device ultimately malfunctioned by becoming 
permanently stuck in the ON state (stuck-at-LRS) after approximately 2 million cycles and was unable to 
be restored even when higher levels of DC bias were applied (Fig. 8p). Fig. 8q is the image of the failed 
device obtained through scanning transmission x-ray microscopy, where substantial fluctuations in 
intensity were observed, indicating widespread morphological disorder. Further X-ray and AFM analyses 
identified electrode damage as well as the separation and movement of oxygen. The failure in switching 
was likely due to one or more clusters that were highly lacking in oxygen becoming highly conductive 
and causing the electrodes to short permanently. To create a more consistent reservoir for excess 
oxygen and to prevent the formation of clusters, they increased the thickness of the TiN electrode layer. 
In addition, to accommodate high voltage or power spikes with a minimal temperature increase during 
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memristor cycles, the thickness of the Pt electrodes was increased as well. Then, to make the top 
electrode more stable in terms of delamination or deformation, a capping layer of HfOx+Al2O3 was 
applied to cover the top electrode and the entire device. With the new device structure (Fig. 8r), the 
memristor exhibited repeated switching up to 109 cycles (Fig. 8r). Fujii et al. evaluated and compared 
cycling endurance for the SiO2 based memristors with various dimensions of the switching layer (i.e., 
SiO2).164 They found that cycling endurance was improved with scaling down the memristor’s dimension. 
The device with a 30 nm size showed a cycling endurance of 104 cycles, while the one with 100 nm size 
experienced a much earlier failure after about 102 cycles. All devices ultimately experienced a RESET 
failure, i.e., stuck-at-LRS, suggesting the strong conductive filament was eventually formed and could 
not be ruptured, leading to a failure. Another failure was reported for SiO2-based memristors with Cu 
ions excessively doped into the switching layer, of which the stuck-at-LRS failure was also mitigated by 
scaling down the device. A spatial limitation in a smaller device may suppress the excessive injection and 
accumulation of Cu ions.  

10. Variation 

 

Fig. 9. Non-ideal variation in the memristor performance and enhancement strategies. IGZO-based 
memristors: I-V characteristics in the semi-log scale of (a) reference Pt/IGZO/TiN memristor and (b) 
plasma treated Pt/IGZO:N/TiN. (c) Associated SET voltages distribution for both memristors for a 
comparison. (d) Schematical illustration for switching mechanisms of both memristors and the effect of 
plasma treatment on performance variation. Reproduced with permission from ref. 169; Native SiOx-
based memristors: (e) I-V performance in the semi-log scale of a pure Ag/native SiOx/p++-Si, (f) 
corresponding endurance characteristics with schematics of total RESET and Quasi-RESET. (g) I-V cycling 
of native SiOx-based with Ag-Au composite TE and p++-Si BE. (h) associated endurance with a schematic 
of the Quasi-RESET process. Reproduced with permission from ref. 171; and TaOx-based memristors: I-V 
characteristics in the semi-log scale of (i) reference Ta/TaOx/Pt memristor (Device1), (j) TaOx-based 
memristor with a 2 nm Al2O3 inserting layer, that is Ta/TaOx/2 nm Al2O3/Pt (Device2), and (k) Ta/TaOx/4 
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nm Al2O3/Pt (Device3). (l) Corresponding distribution of SET and RESET voltages for all three memristors. 
The statistical distribution of the SET and RESET voltages is narrow for the memristor with the 2 nm 
Al2O3 inserting layer. Reproduced with permission from ref. 177. 

Memristors typically exhibit undesirable variations in resistance values and SET and RESET voltages from 
one device to device (also called D2D or spatial variation) and from one cycle to cycle (also called C2C or 
temporal variation).165, 166 From the perspective of physical mechanism, the cycle-to-cycle variation 
originates from the stochastic formation and rupture of conductive filaments.43 The device-to-device 
variation stems from the limitations of fabrication techniques, which produce nonideal film morphology 
and homogeneity, resulting in the different electrical characteristics between memristors.167 It has been 
shown that by initializing plasma treatment, varying metallization, or inserting another layer, the 
temporal variation in I-V performance can be reduced.168-171 

Zhang et al. reported an improvement on the variation of IGZO-based memristor by nitrogen plasma 
treatment.169 For the reference Pt/IGZO/TiN memristor (untreated control sample), the I-V curves in Fig. 
9a indicate that the switching parameters are not consistent, showing significant SET/RESET voltage 
variations over 100 cycles of DC sweeping. As a strategy to mitigate the variation, plasma treatment, 
generated from a mixed gas of N2:Ar (ratio of 50:12), was applied to modify the switching layer of IGZO. 
Before the plasma treatment, the sample was kept in the sputter chamber to limit exposure to air and 
undesirable any surface contaminations. As a result, an IGZO:N film was obtained after a plasma 
treatment time of 30 seconds. Subsequently, an additional 18 nm IGZO layer was deposited through 
sputtering. Fig. 9b shows the I-V characteristics for the Pt/IGZO/IGZO:N/TiN memristor, from which less 
variation on switching behaviors can be observed in Fig. 9b. And the distribution of the set voltages is 
statistically analyzed in Fig. 9c. It was observed that the IGZO:N device exhibits a narrower distribution 
of Vset in the range of 0.65 V to 0.75 V. In contrast, the distribution of Vset is much larger, 0.3-1.3 V in the 
untreated IGZO memristor. A model was established to clarify the contribution of the IGZO:N inserting 
layer on the enhanced variation. The model in Fig. 9d depicts the formation of oxygen vacancies that 
connect the Pt and TiN electrodes in the forming process. During operation, the connection and 
breaking of this oxygen-vacancy filament cause oxidation and reduction reactions (i.e., redox process) 
near the TiN electrode. In the Pt/IGZO/TiN device, the oxygen vacancies are recovered randomly, 
leading to widely distributed Vset and poor uniformity, particularly in HRS, as shown in Fig. 9d(left). The 
SET process of the Pt/IGZO/IGZO:N/TiN device is described schematically in Fig. 9d (right). The higher N-
O bonding energy of 201 kJ/mol compared to the O-O bonding energy of 146 kJ/mol allows nitrogen 
atoms to easily capture and concentrate oxygen ions around the CF tips.172This makes the IGZO:N layer 
act as an oxygen reservoir 169, enabling easier recombination between oxygen and oxygen vacancy and 
hence rupture of the conduction filaments (CFs), compared to the untreated Pt/IGZO/TiN device. The N 
atoms also help suppress the random formation of CFs, allowing the CF tips to grow along fixed paths in 
the IGZO:N layer, thereby improving the uniformity of set voltage distribution (i.e., less variation). 

Ma et al. reduced performance variation for a native SiOx-based memristor by employing Ag-Au 
composite as top electrode.171 In Fig. 9e and f, the memristor with single Ag as TE exhibits a sudden 
switching behavior with large variations in set voltages at the start of switching cycles (as shown in Fig. 
9d with gray lines). This significant switching variation is mainly due to the formation of multiple delicate 
conductive filaments.173, 174 After a few switching cycles, the abrupt switching behavior of the device 
becomes uniform analog switching, as shown with black lines in Fig. 9e. This coincides with an increase 
in the conductance of HRS, as seen in Fig. 9f, which is indicative of a quasi-reset mode that is stabilized 
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by residual (i.e., incompletely ruptured) Ag. In their theoretical study, the presence of residual Ag is the 
main cause of variation improvement of resistive switching due to the depressed randomness of the 
conductive filament since residual Ag localizes the electric field.175, 176 To reduce the performance 
variation, the top electrode was redesigned: an Ag-Au composite was deposited on the native SiOx layer, 
then the entire structure was capped with a pure Au layer. The I-V characteristics for the new design are 
displayed in Fig. 9g and h. Less variation is observed from the beginning of switching, i.e., there is no 
transition from abrupt to analog switching. The active Ag in the Ag-Au composite is not continuous 
anymore because it is isolated by Au. The injection of Ag cations from the Ag-Au composite electrode is 
not widespread anymore, thus fewer but stronger Ag conductive filaments were formed during the 
initial set, resulting in a quasi-reset. This is further validated by the enhancement in retention 
characteristics. 

Jiang et al. reported less variation of TaOX-based memristor by inserting an Al2O3 layer between the 
switching layer and Pt bottom electrode.177 The reference Ta/TaOx/Pt memristor (Device1) was 
characterized by I-V sweeping and the result of 100 cycling is shown in Fig. 9i. Under the same testing 
condition, the characteristics of TaOX-based memristors by inserting a 2 nm- (Device2) and 4 nm-thick 
(Device3) Al2O3 layer are displayed in Fig. 9j and k, respectively. From these I-V semi-log representations, 
Device2 has a higher on/off ratio and less variation than Device1. Device3 also has a high on/off ratio 
but appears more variation than Device1 and Device2. The statistics distribution of the SET and RESET 
voltages of the three devices present the variation differences in a quantitative way, confirming Device2 
with a 2 nm inserting layer has the best performance in terms of variation. The authors proposed the 
following mechanisms behind the phenomena. The Al2O3 layer can be considered a limiting layer for the 
diffusion of oxygen ions.177-180 Thus, the Al2O3 layer can be used to engineer the conductance modulation 
of the Ta/TaOx/Al2O3/Pt memristor, by which the switching mechanism is modified and the DC sweeping 
characteristics are expected to be enhanced. Compared to the control memristor (i.e., without the Al2O3 
insertion layer), the oxygen ions along with the CFs are confined within the Al2O3 layer, leading to a 
quicker formation and disruption of the CFs.177 However, employing a thicker inserting layer increased 
the variation. This could be due to the increased limiting effect of oxygen ion diffusion caused by a 
higher concentration of Al ions in the Al2O3 layer, leading to a more randomized connection and 
disconnection of the conductive filaments.177 Therefore, optimization of the inserting layer’s thickness is 
decisive as well.  

11. Retention 
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Fig. 10. Representative retention behaviors of memristors. (a) Retention characteristics at 85 °C of 
sample-1 Pt/HfOx/Ti and sample-3 PDA/AgNPs modified TE memristors. Reproduced with permission 
from ref. 189; (b) Retention measurement on Cu/α-Si/α-C/Pt memristor at 100 °C, and the extrapolated 
retention, reaching 10 years of retention. Reproduced with permission from ref. 190; MAPbI3:Ag-based 
memristors: (c) The relationship between retention time and the Ag doping concentration. (d) The 
schematic of the mechanisms of the threshold and resistive switching. Reproduced with permission 
from ref. 191; Superlattice-like (SLL) structure memristors: (e) The design of Ti/(HfOx/AlOy)SLL/TiN 
memristor, where yellow colored layers are AlOy and layers with light blue represent HfOx. (f) At 85 °C, 
retention characteristics of eight conductance levels. Reproduced with permission from ref. 196; and 
Nanosheets CIS-based memristor: (g) Structure of memristive arrays with Au top electrodes. (h) Top 
view SEM image of the CIS nanosheets layer. Reproduced with permission from ref. 197. 

Retention time is another technological merit to characterize the performance in terms of memristors’ 
reliability.177, 181-188 The retention time is defined as, after the electrical bias is removed, the time 
duration that keeps each resistive state stable. Fig. 10a presents a comparison of retention time 
characteristics between an early failed reference sample-1 (Pt/HfOx/Ti memristor) and a long retention 
sample-3.189 The current level of sample-1 was read with 0.1 V every 5 seconds at 85 °C. After 100 s, the 
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resistive states changed abruptly (i.e., resistance dropped), indicating the storage information in the 
memristor was lost. With modified bottom electrode Ti by polydopamine (PDA)/Ag nanoparticles 
(AgNPs), sample-3’s HRS and LRS last 104 s under the same measurement conditions. The longer 
retention time of sample-3 was ascribed to the local electrical field enhancement of AgNPs. It is widely 
accepted that the memristor should have 10 years of retention time at 85 °C for practical applications, 
and such long-time testing is not realistic, so the data are extrapolated to get an estimation. In Fig. 10b, 
the data from retention test of a Cu/α-Si (amorphous Si)/α-C (amorphous C)/Pt device in a memristor 
crossbar array at 100 °C is displayed.190 The resistive states kept stable for more than 105 s and the 
data’s extrapolation reached 10 years of retention time approximately. The mechanism of retention was 
related to the conductive filament’s rupture. Im et al. enhanced the retention time of Halide perovskites 
(HPs) based memristors by modulating the Ag doping concentration and suggested related 
mechanisms.191 There is a persistent tendency for the conductive filament to diffuse out, and so its 
conductive network is broken down. This is caused by the chemical potential gradient at the filament's 
surface and the desire to minimize its surface energy.191-195 Based on the Gibbs-Thomson effect, the 
surface atomic flux (Js) on the filament surface determines the lifespan of conductive filament, and Js 
strongly depends on the filament’s radius.191, 195 The larger radius yields a slower surface diffusion. Fig. 
10c shows that the retention time changes with the Ag concentrations in CH3NH3PbI3 (MAPbI3):Ag-based 
memristors. A transition from volatile threshold switching (temporary switching) to non-volatile resistive 
switching was observed. With a rise in the Ag doping concentration, there was a corresponding increase 
in retention time. The mechanisms of threshold, resistive switching, and transition were proposed in Fig. 
10d. Low Ag concentration devices induce weak filaments with a smaller radius due to the limited Ag 
concentration. As discussed previously, a smaller radius of filaments leads to larger Js, i.e., faster surface 
diffusion.191, 195 Thus, the removal of the external field annihilates the weak filaments, resulting in a 
shorter retention time. In a similar way, the higher Ag doping concentration prolonged lifetime of the 
filament by slowing down the diffusion. It is desirable to achieve multiple conductance states with long 
retention time, especially for neuromorphic computing, which may require additional components in 
the device structure (i.e., changing device structure). Wang et al. demonstrated a superlattice-like (SLL) 
structure memristor (Fig. 10e) by incorporating several layers of alternating AlOy (yellow) with the HfOx 
functioning layer.196 Under the test condition of 10 mV read voltage and 1 second read interval at 85 °C, 
eight conductance states remained stable for more than 104 s without considerable drift. Adding several 
AlOy barrier layers to the HfOx switching layer reduced the strength of the Vo conductive filament, by 
which the formation and rupture process becomes gradual. Then, multiple states were achieved 
because oxygen ions must continuously pass through the barrier layers when exposed to successive 
pulses of limited energy during the migration process. Besides the barriers, Hf-O-Al bond on oxygen 
atoms triggered the confinement effect, thus, the relaxation of the conductive filament was controllable. 
Another method for improving retention characteristics is to change the morphology of the switching 
layer. Hu et al. used unique vertical nanosheet CuInS2 (CIS) arrays featuring nanoscale pores rather than 
conventional CIS film as the functioning layer (Fig. 10g).197 Fig. 10h is the top view high-magnification 
SEM image of the CIS nanosheets layer. The retention time for nanosheets CIS-based memristor was 
reported as much enhanced 104 s, compared to that of the conventional film-based memristor. The 
enhancement was attributed to the network-limited vertical structure and efficient isolation of leakage 
paths by the demonstrated porous structure. 
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12. Linearity 

 

Fig. 11. Demonstration of synaptic weight updating process: (a) Conductance changes by applying 
identical pulses (b) Weight updating process based on ideal linearity. Reproduced with permission from 
ref. 198; Synaptic weight updating performance and mechanisms on memristors with the switching 
layer of (c)(f) low-density a-Si, (d)(g) densified a-Si, and (e)(h) Ti nanoclusters embedded densified a-Si. 
Reproduced with permission from ref. 209; and Conductance changes of Si-based memristor by applying 
nanosecond scale pulses with (i) Ag only top electrode and (j) Ag-Cu alloying one. (k) Associated 
statistics report on ANL of these two kinds of memristors. (l) 30-cycle conductance programming of Ag-
Cu alloying memristor. Reproduced with permission from ref. 210. 

 

In the section on image processing, we reviewed a neural network implemented by a memristive 
crossbar for in situ backpropagation training. One of the key takeaways that we gleaned from that 
characterization method is that synaptic weight was denoted as memristor’s conductance (G), and it 
was modulated continuously during the training. In a view of the single device level, this kind of 
modulation can be considered as that memristor mimics the long synaptic plasticity including long-term 
potentiation (LTP) and long-term depression (LTD). The LTP process increases the conductance of the 
memristor and LTD decreases it. These processes are induced by applying the opposite bias of the pulse 
train and visualized in Fig. 11a with an inset image of a memristive crossbar.198 It is preferable to tune 
the memristor in a linear and symmetric manner, ensuring that every electrical stimulus (e.g., pulse 
count or width) elicits an equal update of conductance during both potentiation (SET) and depression 
(RESET) transitions.199 However, in reality, the LTP and LTD processes are plagued by non-linearity and 
asymmetry issues from the conductance modulation. The symptoms of these issues were summarized in 
Fig. 11b. By applying identical pulses (i.e., same duration and the same amplitude, but opposite 
directions for the two train), the red line symbolizes the ideal correspondence between conductance 
and the number of pulses, and the black curve portrays the one for an actual memristor device. In a LTP 
process, for a scenario where the conductance of a memristor is required to be increased from a to b, 
the ideal linear function is usually used to calculate the needed pulse stimuli.198 Yet, upon application of 
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the calculated pulses to the actual memristor, the conductance deviates from its expected trajectory 
and shifts from point a to c instead of from point a to b. A comparable error in weight updating happens 
during the LTD process. As a result, the actual updates in conductance and the desired change are vastly 
disparate due to the nonlinearity issue, which subsequently diminishes the accuracy of the neural 
network computing. One alternate mechanism behind the nonlinearity issue is the presence of two 
phases in the evolution process of the conductive filament.200 Using the creation of the filament as an 
illustration, the first stage involves the growth of the conductive filament until it connects the bottom 
and top electrode, which is regulated by the drift of metallic ions or oxygen vacanccies200-202 Once the 
filament is formed, it tends to further thicken by ion diffusions.200, 202-204 

The strategies such as material engineering have been employed to attain desirable linearity.205-208 Kang 
et al. achieved an improved linearity of amorphous Si (a-Si)-based memristors through densification of 
the switching layer a-Si.209 The linearity was further enhanced by the inclusion of Ti nanoclusters. Fig. 
11c shows the a-Si-based memristor suffered a non-linearity issue, under three different amplitudes of 
pulses and a filamentary mechanism is illustrated in Fig. 11f. They claimed that the relatively low density 
of a-Si leads to high cation mobility, thus the injected Ag ions rapidly arrive at the bottom electrode and 
reduce and accumulate there. Consequently, the filament that grows from the bottom experiences 
strong reinforcement from the local electric field, resulting in a non-linear issue. So, a densified a-Si 
memristor was fabricated to slow the ions’ migration so that the Ag-clusters are formed inside the a-Si 
to reduce the buildup of silver (Fig. 11g). Its performance was plotted in Fig. 11d and the improvements 
on linearity were observed, especially with low amplitudes of pulses. The large dynamic range, i.e., 
on/off ratio, is important to memristors, thus, the linearity with high pulse amplitudes should continue 
to be optimized. They introduced Ti nanoclusters with negative reduction potential to capture and 
reduce the migrating Ag cations to Ag-clusters (Fig. 11h). The linearity results summarized in Fig. 11e 
manifest the enhancements with all three pulse amplitudes due to the increased reduction probability 
of Ag cations inside the a-Si switching layer. The quantitative evaluation method for linearity was clearly 
described in this work as well. Yeon et al. demonstrated that alloying top electrode helps alleviate the 
nonlinearity issue.210 Fig. 11i is a linearity examination for a Si-based memristor with a commonly used 
Ag top electrode, and shows a sudden drop of conductance, indicating a nonlinearity issue. With the Ag-
Cu alloying, a more linear and symmetric switching was achieved (Fig. 11j) and the asymmetric non-
linearity factor (ANL) was calculated to characterize the improvement which drops to an average value 
from 0.59 to 0.3 with Ag only devices (Fig. 11k). They speculated the alloying yields a stabilized 
interaction of conduction channels to refine the performance of conductance updating. 30 cycles of 
LTP/LTD on Ag-Cu alloying memristor were measured by using nanosecond scale width for the pulses 
and associated results were displayed in Fig. 11l. Engineering pulsing scheme may also address the 
nonlinearity challenge;211, 212 however, the linearity and symmetry problems need to be more 
fundamentally mitigated by engineering materials structures and properties, and the associated device 
architecture.200 

 

Part III. Theoretical Calculations 

13. Density Functional Theory (DFT) and Molecular Dynamics (MD) Simulations 
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Fig. 12. DFT and MD simulations for device design and mechanism exploration. DFT simulations for a-
HfO2-based memristors with Pt TE and TiN BE: (a) The formation energy distribution of oxygen vacancies 
in a-HfO2 and a-HfO2:Al. The insets display the a-HfO2 and a-HfO2:Al structures with a VO. Reproduced 
with permission from ref. 224; DFT simulations for Al2O3-based memristors with Pd TE and Al BE: (d) The 
defect formation energy of native and Mg-related defects in Al2O3 as a function of the Fermi level. 
Reproduced with permission from ref. 225; MD simulations for SiO2-based memristors: (d) The scale 
indicates how the SiO2-based memristor switches on and off in response to the simulation time. The 
evolution of atomic structure and charge states is represented at (e) initial HRS, (f) forming LRS, (g) HRS, 
and (h) SET LRS. Reproduced with permission from ref. 226. 

 

Density functional theory (DFT) and molecular dynamics (MD) simulations are extensively leveraged to 
study the electronic structure of materials and the dynamic behavior of atoms and molecules, which is 
often difficult to be identified with macroscale characterizations, in the fields of physics, chemistry, and 
materials science.213-216 Regarding memristors, these simulation methods are commonly employed to 
investigate the switching mechanisms, assist in device design, and provide support for experimental 
findings.217-223  

Zhu et al. optimized the amorphous HfO2 (a-HfO2)-based memristor performance with an additional Al-
doped HfO2 layer (i.e., bilayer structure).224 The Pt/HfO2:Al/HfO2/TiN memristor demonstrated enhanced 
cycling endurance and less cycle-to-cycle variation. DFT simulation was employed to study the 
properties of the HfO2:Al layer which provided a foundation to explain the switching mechanism and the 
underlying reasons for the enhancements. Fig. 12a displays the statistical distribution of the calculated 
formation energies of VO in a-HfO2 and a-HfO2:Al, which were calculated at ten different positions within 
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the considered unit cell of the two cases, reflecting the disordered states of amorphous materials (i.e., 
HfO2). In a-HfO2, the average Vo formation energy is approximately 6.24 eV, whereas in a-HfO2:Al, it is 
3.29 eV, indicating that VO is more easily generated with the incorporation of Al. Fig. 12b and c illustrate 
the diffusion barrier profiles of VO migration in a-HfO2 and a-HfO2:Al, simulated by relocating the oxygen 
atom from its original site to neighboring vacancies. The migration barrier of VO in a-HfO2 is 2.72 eV, 
compared to 2.21 eV in a-HfO2:Al, indicating that VO can migrate more easily in a-HfO2:Al. Consequently, 
the VO CF is likely to have a greater preference for growth in a-HfO2:Al. 

Goul et al. reported tunable on/off ratio Al2O3-based memristors guided by their DFT simulation 
results.225 Fig. 12d displays the computed defect formation energy plotted against the Fermi level 
location. The graph showcases the results for native defects, such as VO, aluminum vacancy (VAl), and 
aluminum interstitial (Ali), and defects from Mg doping, including Mg substituting on Al (MgAl), Mg 
substituting on Al (MgO), and Mg interstitials (Mgi) under both Al-rich and O-rich conditions. By 
introducing Mg in the DFT calculation, the anticipated position of the Fermi level will relocate towards 
the valence band maximum, as indicated by the arrows and solid vertical lines in Fig. 12d. This 
downward Fermi level shift yields two benefits for improving the performance of Al2O3-based 
memristors: firstly, a reduced Fermi level implies greater insulation/resistance in the HRS of Mg-doped 
Al2O3. Secondly, at these lower Fermi levels, the formation energy of VO is decreased, indicating that a 
greater number of VO will form. Following the DFT calculations, interfacial MgO layer(s) as the method of 
Mg doping is implemented in the Al2O3 switching layer to engineer the switching performance of Al2O3-
based memristors.  

Onofrio et al. simulated ECM switching behaviors in a SiO2-based memristor by the MD method.226 The 
active electrode was Cu and its surface was designed with triangular or conical patterns to emulate the 
unevenness, typically observed in actual samples. Figure 12d depicts the cell's resistance state over time 
as a result of the simulation, while 12f-i exhibits atomic snapshots capturing crucial stages of the process. 
Applying the initial forming voltage causes the Cu atoms near the active electrode's surface to become 
positively charged (blue atoms in Fig. 12f), which increases their likelihood of dissolving into the SiO2 
electrolyte. Within one nanosecond, the simulations indicate that these dissolved atoms form the first 
bridging filaments. Interestingly, these early connections are short-lived, unstable states consisting of a 
single-atom chain, and the device switches back and forth between the on and off states for another 
nanosecond until a stable filament is formed. The snapshots in Fig. 12g display the stable nanofilament 
that bridges the electrodes, along with other partially grown filaments linked to the inactive electrode. 
With a negative bias, the filament fractures near the inactive electrode, leaving behind an incomplete 
filament that is now attached to the active electrode (refer to Fig. 12h). After the RESET, applying a 
positive bias quickly creates a new connection (shown in Fig. 12i), effectively turning the device back on. 
The MD simulations offer a detailed view of the operational mechanisms at an atomic level, and with a 
superior time resolution. 

In summary of this section, DFT and MD simulations are effective methods for studying the formation 
energy of defects, the energy barriers of ion migration, and the dynamics of resistive switching at the 
atomic level, which will be valuable supplements to instrumental characterizations.   
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14. Conclusions and Perspectives 

This review comprehensively focuses on the two main aspects of memristors and their potential energy-
efficient neuromorphic computing. As one of the focused topics of characterizations for memristor 
materials and devices, structure, chemical and electronic evaluation techniques such as TEM, XPS, and 
AFM are of crucial importance to examining the device structure, identifying the switching mechanisms, 
and engineering the switching layer (e.g., composition and dimension). Figures of merit performance of 
memristor devices are generally determined by various electrical measurements. DC sweeping provides 
a variety of fundamental characteristics, including bipolar switching behavior, on/off ratio, endurance, 
and conduction mechanism. Pulse measurements are another instrumental electrical characterization 
method to evaluate endurance behaviors in a way closer to practical application while linearity needs to 
be considered for neural network establishment. Advanced image processing is a characterization 
method to evaluate analog tuning accuracy. CV and EIS are widely used in electrochemical research, and 
they are also introduced for exploring the selection criterion of electrode materials and switching 
mechanisms of memristors. As another main subject, the reliability of memristors is typically evaluated 
by four criteria including endurance, variation, retention, and linearity. Each of these reliability issues is 
discussed in-depth and corresponding characteristics indicators, mechanisms, and measurement 
standards are provided and elaborated. Possible mitigation approaches to these reliability concerns are 
suggested as well. DFT and MD simulations play an important role in the design process, aiding in the 
interpretation of experimental results and facilitating an understanding of switching behaviors. 

The memristor has been theoretically proposed for more than forty years, and experimental efforts 
have been made actively for more than a decade. However, some of the fundamentals stay 
controversial, and the commercial adoption of memristors is still hindered due to the lack of these 
fundamentals and reliability issues. Further endeavors must be pursued to rectify these limitations. 
Besides applying memristors to numerous applications, it is urgent to objectively report the 
characteristics, clarify the key issues of various non-ideal performance and identify the underlying 
mechanisms. Researchers from diverse fields still possess a remarkable opportunity to drive the 
progression of memristors by further establishing the switching/failure mechanisms with both typical 
and novel characterization techniques. In addition, strategic designs of materials and devices can 
address multiple reliability concerns simultaneously. For instance, as demonstrated in Yeon et al.'s study 
reviewed in the linearity section, the Ag-Cu electrode alloying significantly improved both the variation 
and retention as well at the single device level, which in turn leads to reliable crossbar arrays.210 Also, as 
this example shows, the improvements in crossbar performance frequently stem from single-device 
level optimization, thus, the examination at the single-device level remains crucial and is still highly 
recommended in this field. Meanwhile, with booming neuromorphic applications, materials researchers 
should acquire knowledge of neural networks to address the issues at a single-device level and 
synergistically collaborate with data science and circuit engineers for practical computing applications. 
We believe that advancing the characterization methods will continue enhancing the memristor’s 
fundamentals and understanding the reliability issues constitutes a vital step towards optimizing the 
functioning of the memristor. 
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