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Abstract 

Inflated elastomeric membranes have been utilized as compliant probes to achieve sensitive 

adhesion measurement or pneumatic control of adhesive forces. This paper presents an analytical 

model for the adhesive contact between a circular elastic membrane under inflation and a rigid 

curved substrate. By adopting an incompressible neo-Hookean model for the membrane and 

introducing an approximation under large stretch, we obtain analytical solutions describing the 

three stages of adhesive contact: making contact, contact pinning and delamination. Among these 

three stages, the making contact stage is assumed to be adhesionless and frictionless, while the 

other two stages are subjected to a given work of adhesion between the membrane and the substrate. 

Two limiting cases of tangential interface behaviors (i.e., no slip and frictionless) are considered 

for the stages of contact pinning and delamination. Our analytical model provides solutions to the 

deformed membrane profile as well as relationships between key parameters such as applied 

pressure, contact force, contact radius and displacement, and is verified against computational 

results from finite element analysis. This analytical model can enable faster solutions for the 

adhesive contact mechanics of inflated membranes and is applicable as a design, optimization, and 

system refinement tool for applications such as adhesion measurement, transfer printing and soft 

robotic gripping. 
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1. Introduction 

 The nonlinear mechanics of soft elastic membranes under inflation has received extensive 

interests due to its relevance in various engineering applications. Inflation of a circular flat 

membrane (Hart-Smith and Crisp, 1967) was first studied as an experimental configuration for 

testing the mechanical behavior of rubber sheets under biaxial tension (Treloar, 1944; Rivlin and 

Saunders, 1951). Contact between a spherical balloon with internal pressure and two rigid parallel 

plates (Feng and Yang, 1973) is relevant to the mechanical deformation of biological cells 

(Hiramoto, 1963; Wan and Liu, 2001). Adhesion needs to be considered in the contact mechanics 

of inflated membranes when there are attractive interactions on the interface. Indeed, inflated 

membranes have been used as probes for experimental characterization of adhesion (Shanahan, 

1997; Flory et al., 2007; Xu and Liechti, 2011; Laprade et al., 2013). For example, Guvendiren et 

al. (2009) used an inflated elastomeric membrane to measure the adhesion between a type of 

molecule found in mussel secreted proteins to different substrates by functionalizing the membrane 

surface with the adhesive molecule. In comparison to the widely applied Johnson-Kendall-Roberts 

(JKR) test (Johnson et al., 1971) where solid hemispheres were used as adhesive probes 

(Chaudhury and Whitesides, 1991; Shull, 2002), inflated membranes can lead to enhanced 

sensitivity to adhesion by increasing the mechanical compliance of contact (Flory et al., 2007). 

Another useful feature of using inflated membranes as probes is that their adhesive force with 

another surface can be tuned by the applied pressure (Dening et al., 2014; Plaut, 2022a, 2022b), 

thereby opening the door to pneumatic control of adhesive force for applications such as transfer 

printing (Carlson et al., 2012) and soft robotic gripping (Song and Sitti, 2014; Song et al., 2017). 

More recently, it has been demonstrated that by inflating or deflating a suspended elastic 

membrane on a device, one can achieve switchable adhesive strength through the suction cup effect 

(Song et al., 2021; Frey et al., 2022) or rigidity tuning (Swift et al., 2020).  

 From a theoretical perspective, the adhesive contact mechanics of pressurized elastic films 

have been studied and reported in numerous previous works. Among these works, the underlying 

elastic film was modeled as a plate with purely bending deformation (Plaut et al., 2003), a 

membrane with purely stretching deformation (Williams, 1997; Plaut et al., 2003; Xu and Liechti, 

2011; Zhu et al., 2017, 2018), or a von Karman plate with both bending and stretching deformation 

(Plaut et al., 2003). It has been shown that if the film is thin and subjected to large deflection or 

pre-stretch, the membrane model with purely stretching deformation is more appropriate 
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(Komaragiri et al., 2005; Long et al., 2010), which is the regime considered in this work. 

Specifically, here we analyze the problem of an inflated circular membrane in adhesive contact 

with a rigid substrate, as schematically illustrated in Fig.1. To enhance the generality of our model, 

we assume the substrate surface to be spherically curved with a radius of curvature Rs (see Fig.1). 

The special case of flat substrate is recovered by taking the limit of Rs approaching infinity. This 

problem is motivated by the applications of membrane-based adhesion test (Laprade et al., 2013) 

or soft robotic gripper (Song and Sitti, 2014). In these applications, the membrane often undergoes 

large deflection which can also lead to large stretch within the membrane. To capture the nonlinear 

effects associated with large deflection and stretch, finite deformation kinematics and hyperelastic 

constitutive relations (Libai and Simmonds, 1998) should be used to model the membrane 

deformation, which requires one to solve a set of nonlinear differential equations (Long et al., 

2010). Moreover, the boundary conditions associated with adhesive contact can change as the 

contact area evolves. Therefore, solving the nonlinear membrane deformation upon adhesive 

contact can be a challenging task. Existing studies in the literature mostly rely on numerical 

methods (Long et al., 2010; Sohail et al., 2013; Srivastava and Hui, 2013; Patil et al., 2014, 2015). 

In comparison to numerical methods, analytical methods can enable faster solutions and thus are 

advantageous for exploring the parametric space during design or controlling the adhesive force 

(e.g., for soft robotic gripper).  

 This work aims to develop an analytical model for the membrane contact problem illustrated 

in Fig.1. It should be mentioned that Song et al. (2019) recently developed an analytical model for 

the adhesion of inflated circular membranes on curved surfaces. Their model approximated the 

deformed shape of free standing membrane (i.e., the membrane outside the contact region) as a 

truncated cone, and was shown to capture the experimentally observed detachment process. 

However, they also noted discrepancy due to the truncated cone approximation and suggested a 

more accurate analysis to be carried out. Recently we presented a set of analytical solutions for the 

Hertzian contact (i.e., frictionless and adhesionless) between an inflated membrane with various 

surfaces (Yang et al., 2021). These solutions were based on an approximation found by Foster 

(1967a, 1967b) for membranes made of the incompressible neo-Hookean solid under large stretch. 

Here we extend this approach to adhesive contact. Specifically, Section 2 briefly summarizes the 

analytical solution of inflated neo-Hookean membrane with large stretch and discusses the 

boundary conditions for adhesive contact. The solutions for adhesive contact are presented in 
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Section 3. Note that our solutions do not rely on any assumption regarding the deformed shape of 

the membrane. To demonstrate the accuracy of our solutions, we build a Finite Element Analysis 

(FEA) model to simulate the adhesive contact process of an inflated neo-Hookean membrane, and 

compare our analytical solutions to the FEA results. The model for FEA simulation is described 

in Section 4. In Section 5, we illustrate our solutions and the comparisons with FEM results for 

two different contact scenarios inspired by soft robotic gripping (e.g., Fig.1c) and membrane based 

adhesion tests (e.g., Fig.1d). Conclusions are given in Section 6. 

 

Figure 1. Schematics of adhesive contact between an inflated circular membrane and a rigid 

spherical surface. (a) The inflated membrane is placed above the rigid sphere with radius Rs with 

their axes of symmetry aligned. (b) Contact between the inflated membrane and the rigid sphere 

can be established by either increasing the pressure P or decreasing the gap d. (c) Membrane 

delamination by increasing the gap d under a fixed pressure P. (d) Membrane delamination by 

decreasing the pressure P under a fixed gap d.  
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2.  Analytical Model 

2.1 Axisymmetric membrane deformation: kinematics and equilibrium 

  To analyze the adhesive contact problem illustrated in Fig.1, we first define the membrane 

geometry and describe the underlying assumptions. As shown in Fig.2a, the membrane in its 

undeformed configuration has a flat circular shape with radius  and thickness h. Before inflation, 

the membrane is subjected to a uniform equibiaxial pre-stretch 0 and then is fixed at its edge. The 

pre-stretched membrane, with a radius of b = 0, deforms under a uniform pressure P and makes 

contact with a rigid, spherically curved substrate with radius Rs. Both the deformed membrane and 

the spherical substrate are axisymmetric. We assume that their axes of symmetry are aligned so 

that their contact area has a circular boundary. The size of contact area can be controlled by varying 

the pressure P or the gap d between the membrane’s edge and the substrate (Fig.1b). For example, 

in the experiments of Laprade et al. (2013), the membrane was placed at a fixed gap d above the 

substrate and was inflated under an increasing pressure P. Contact was established when P is 

sufficiently large, while delamination was achieved by decreasing P (Fig.1d). Alternatively, one 

can use the inflated membrane as an adhesive probe, i.e., indenting the inflated membrane on the 

substrate by lowering the gap d and then detaching the membrane from the substrate by increasing 

d (Fig.1c). In this case, the inflated membrane resembles the elastic hemisphere used in a JKR test 

(Shull, 2002).  

 It has been widely observed that the adhesion between two surfaces is smaller when they are 

approaching each other (i.e., making contact) than when they are being separated from an 

established contact interface (Chaudhury and Whitesides, 1991; Vajpayee et al., 2008). Motivated 

by this phenomenon known as “adhesion hysteresis” (Shull, 2002), we assume Hertzian contact 

(i.e., frictionless and adhesionless) between the membrane and the substrate when they are making 

contact, and adhesive contact when the membrane is being detached from the substrate. The former 

problem of Hertzian contact has been solved in our recent work (Yang et al., 2021). This work 

focuses on the latter problem of adhesive contact. Our goal is to obtain analytical solutions that 

can relate the pressure P, the gap d, the radius of contact area a, and the contact force F which is 

the total force exerted on the membrane by the substrate and is positive in compression.  
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Figure 2. Axisymmetric membrane deformation. (a) A schematic showing the kinematics of 

membrane deformation. The material point at (𝜌, 0) in the undeformed membrane (i.e., the red 

line) is displaced to (𝑟, 𝑧) in the deformed membrane (i.e., the brown curve). Here the deformed 

membrane is illustrated using the case in Fig.1c as an example, i.e., the membrane is undergoing 

delamination while subjected to a pressure P. The contact angle  is defined as the angle between 

the free standing membrane and the tangential direction of the spherical substrate at the contact 

edge. (b) The two cases of solutions for an incompressible neo-Hookean membrane under free 

inflation with Pb/2h = 0.6 (or R/b = 1.67). 

 

 Our analysis is based on the well-established hyperelastic membrane theory (Libai and 

Simmonds, 1998). Recall that the membrane only undergoes stretching deformation, i.e., it is so 

thin that its bending rigidity is negligible. Specifically, each material point in the membrane is 

subjected to two principal stretch ratios within the tangential plane of the membrane surface (i.e., 

the in-plane stretch ratios) and a principal stretch ratio along the thickness direction of the 

membrane. Also, the stretching deformation is assumed to be uniform across the membrane 

thickness. This implies that the stretch ratios in the membrane only depend on the two in-plane 

coordinates of the undeformed membrane. Further simplification is enabled by the axisymmetry 

of our problem, i.e., the membrane surface can be described by a curve in the r-z plane of a 

cylindrical coordinate system (r, , z). The origin of this coordinate system is located at the center 
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of the undeformed membrane which is represented by a line segment from r = 0 to r =  (Fig.2a). 

Therefore, the stretch ratios in the membrane are only a function of the coordinate ≤ 

≤along the undeformed membrane. After deformation, a generic point (𝜌, 0)  in the 

undeformed membrane is displaced to (𝑟, 𝑧), forming a curve for the deformed membrane (Fig.2a). 

Because of axisymmetry, the two in-plane principal stretch ratios, denoted as 1 and 2, are along 

the longitudinal direction (i.e., within the r-z plane) of the deformed membrane and the latitudinal 

direction (i.e., along the -direction). In particular, 1 quantifies the stretch from a segment d in 

the undeformed membrane to din the deformed membrane in the r-z plane ( is the arc length 

along the deformed membrane; see Fig. 2a), while 2 quantifies the stretch from a circular 

perimeter of 2along the -direction of the undeformed membrane to 2r in the deformed 

membrane: 

 1
d
d





 , (1) 

2
r




 .             (2)  

 The principal stretch ratios 1 and 2 correspond to two principal tensile stresses within the 

tangential plane of the deformed membrane. Since the principal tensile stresses are uniform across 

the thickness direction, one can multiply them by the membrane thickness and define the principal 

line tensions (force per unit length). The principal line tensions along the directions of 1 and 2 

are denoted as T1 and T2, respectively. Equilibrium along the normal direction and the longitudinal 

direction (i.e., along the arc length ) of the deformed membrane requires (Long and Hui, 2012; 

Yang et al., 2021): 

 1 2
sin ,dT T P

d r
 


   (3) 

 1
2

d T r
T

dr
 ,              (4) 

  

where  is the angle between the longitudinal tangent of the deformed membrane and the r-axis 

(see Fig.2a) and is given by 
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 cos dr
d




 , sin dz
d




 . (5) 

If the applied pressure P is uniform, one can substitute eq. (4) into eq. (3) and integrate with respect 

to r, which gives (Long and Hui, 2012; Yang et al., 2021): 

 
 2

1

1

sin
2

P r C
T r




  (6) 

where C1 is an integration constant.   

 

2.2 Approximation for neo-Hookean membrane under large stretch 

 The line tensions T1 and T2 are governed by the stretch ratios 1 and 2 through the hyperelastic 

constitutive relation of the membrane. Here we adopt the incompressible neo-Hookean model with 

the following strain energy density function:   

       2 2 2
1 2 3 3

2
W 

      ,            (7) 

where  is the shear modulus of the membrane and 3 is the out-of-plane principal stretch ratio. 

Incompressibility implies that 3 is related to the two in-plane principal stretch ratios 1 and 2 by 

3 = 1/(12). Using eq. (7), we first evaluate the two in-plane principal Cauchy stresses and 

multiply them by the deformed membrane thickness 3h to obtain the line tensions T1 and T2 (Long 

and Hui, 2012): 

 1
1 3 3

2 1 2

1T h 


  

 
  

 
, (8) 

2
2 3 3

1 1 2

1T h 


  

 
  

 
.                        (9) 

It should be noted that eqs. (8) and (9) rely on the plane stress approximation that the out-of-plane 

principal stress is zero. Although a pressure P is applied on the membrane surface, it is much 

smaller than the in-plane tensile stresses and thus can be neglected in the constitutive relation of  

T1 and T2  (Libai and Simmonds, 1998).  
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 Under very large stretch (1 >>1 and 2 >> 1), the term 𝜆1−3𝜆2−3 in eqs. (8) and (9) is negligible 

in comparison to 𝜆1/𝜆2 or 𝜆2/𝜆1, leading to the following approximation, 

 2 21
1

2 2

1T h h
T


 


  . (10) 

Foster (1967a) discovered that by using eqs. (6) and (10), one can further integrate eq. (3) to obtain 

the following expression: 

 
 

 

22 2
12

2 2 2
2

sin
4

P r C

h r C








 (11) 

where C1 is the constant in eq. (6) and C2 is an additional integration constant. A detailed derivation 

of eq. (11) can be found in our recent work (Yang et al., 2021). Once C1 and C2 are determined 

using boundary conditions, eq. (11) governs how the angle  varies along the deformed membrane 

(i.e., as r varies), from which one can obtain the profile of the deformed membrane by integrating 

dz/dr = tan.  

 

2.3 Free inflation 

 Before the membrane can make contact with the substrate, its deformation is solely due to the 

applied pressure P. This case is referred to as free inflation and has been solved in our previous 

work (Yang et al., 2021). Here we briefly review this case to demonstrate the determination of C1 

and C2 from boundary conditions. Under free inflation, the center of the deformed membrane is 

flat and subjected to equi-biaxial stretch:  

 0  , 1 2   at 0r   (12) 

The former condition ( = 0 at r = 0) and eq. (6) imply that C1 = 0. The latter condition (1 = 2 at 

r = 0) and eq. (10) imply that  

 1 2  at 0T T h r    (13) 

By substituting eq. (13) into eq. (6) and comparing the resulting equation with eq. (11), we 

conclude that C2 = 0. Therefore, eq. (11) becomes 
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2

2sin
2

P r
h




 
  
 

. (14) 

Based on eq. (14), one can use (dz/dr)2 = tan2 = sin2/(1− sin2) to obtain the deformed 

membrane profile z(r) by integrating dz/dr and enforcing the boundary condition at the fixed edge 

(i.e., z = 0 at r = b). As detailed in Yang et al. (2021), the resulting membrane profile is a spherical 

cap with radius R ≡ 2h/P. However, there are two possible solutions under the same pressure P, 

which are essentially the two caps of one sphere with radius R and are referred to as Case I and II 

(see Fig.2b for example). Mathematically these two solutions can be obtained by restricting  to 

be smaller than /2 at the fixed edge r = b (Case I) or allowing to be larger than  at r = b 

(Case II). The non-uniqueness of free inflation solutions for the neo-Hookean membrane is well 

known in the literature (Foster, 1967b; Hassager et al., 1999). In particular, Case II corresponds to 

an unstable branch of solutions where the membrane deflection decreases with the pressure (Yang 

et al., 2021). For simplicity, here we focus our study for adhesive contact on the stable branch (i.e., 

Case I). For Case I solutions, the deflection at the apex of the inflated membrane, denoted as d0, is 

given by 

  
2

2
0

2 20 h hd z r b
P P
  

      
 

. (15) 

Equation (15) is useful for the solutions of membrane contact since it provides the initial value of 

gap d (see Fig.1b) when the apex of the inflated membrane just reaches the substrate. 

 

2.4 Adhesionless contact 

 When the gap d is smaller than d0, the inflated membrane makes contact with the substrate and 

establishes a circular contact area with a circular boundary whose radius is denoted as a (see 

Fig.3a). During this making contact stage, the membrane/substrate contact is assumed to be 

adhesionless and frictionless. This problem has also been solved in our previous work (Yang et al., 

2021).  Briefly, the membrane within the contact area conforms to the substrate and hence has the 

shape of a spherical cap with radius Rs. This implies that the contacting membrane is effectively 

inflated by Pe − P, where Pe is the uniform contact pressure from the substrate and P is the applied 
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pressure. Using the free inflation solution, we can obtain the following equation for the contact 

pressure Pe:     

      
2

e
s

hP P
R


  .                           (16) 

Note that in the special case of a flat substrate, Rs approaches infinity and hence Pe = P. The 

compressive contact force F is  

      
2

eF a P .            (17) 

The contact radius a (see Fig.3a) needs to be solved using the membrane profile outside the contact 

area. Specifically, we utilize the boundary conditions that the tangent angle and the stretch ratios 

(1 and 2) are continuous at the edge of the contact area for adhesionless contact (Yang et al., 

2021). First, the tangent angle at the contact edge (r = a) is  

         arcsin /a sr a a R     ,        (18)  

where a is the angle between the tangential direction of the substrate at the contact edge and the 

horizontal direction (see Fig.3a). Second, since the membrane within the contact area makes 

conformal contact with the substrate, it has a spherical profile and is subjected to equi-biaxial 

stretch. Therefore, at the contact edge (r = a) we expect that 1 = 2. Using these two boundary 

conditions, one can determine the two constants C1 and C2 in eq. (11) as   

 2 2
1

2 sin 1a

s

ha RC a a
P R

   
     

 
 and 2 0C  . (19) 

Recall that R = 2h/P is the radius of the freely inflated membrane with pressure P. Using eq. (19), 

we can rewrite eq. (11) as 

 
  

22 2
2

2 2

1 /
sin sr R R a

R r


 
 . (20) 

The membrane profile z(r) outside the contact area can be obtained by integrating dz/dr determined 

from eq. (20) and enforcing the boundary condition at the fixed edge (z = 0 at r = b) (Yang et al., 

2021). This leads to closed-form analytical solutions for the membrane profile as well as relations 

between the contact radius a, the applied pressure P, the contact force F and the gap d.  Here we 
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will use these analytical solutions to describe the making contact stage between the inflated 

membrane and the substrate (Fig.1b). If the making contact stage is controlled by reducing the gap 

d, it is useful to define the contact displacement as the difference between d and d0 (eq. (15)):  

 0d d   . (21) 

 

 

Figure 3. The three stages of contact between the inflated membrane and the spherical substrate. 

(a) The making contact stage where the membrane makes adhesionless and frictionless contact 

with the upper hemisphere of the substrate under increasing pressure P or decreasing gap d. (b) 

The contact pinning stage where the membrane has a tendency of being detached from the substrate 

due to the reversal of external loading (i.e., decreasing P or increasing d). Here the contact interface 

between membrane and substrate becomes adhesive which resists the tendency of detachment (G 

< Wad). The inset shows that a contact angle and a discontinuity in the longitudinal line tension 

T1 can develop at the contact edge. (c) The delamination stage where the membrane is continuously 

detaching from the substrate in a quasi-static manner (G = Wad) under decreasing P or increasing 

d. 

 

2.5 Adhesive contact 

 After a certain contact radius (denoted as a = am) is established in the making contact stage, the 

membrane is retracted from the substrate either by increasing the gap d (Fig.1c) or reducing the 

pressure P (Fig. 1d). During retraction, the contact between membrane and substrate is adhesive. 

Adhesion could be captured by introducing attractive tractions between the membrane and 

substrate surfaces through a cohesive zone model (Hui et al., 2011). However, this would make it 

difficult to derive analytical solutions. Here we follow the energetic approach adopted in the JKR 
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theory (Johnson et al., 1971) and represent the effect of adhesion by the energy required to separate 

a unit area of interface which is defined as the work of adhesion Wad. In this approach, adhesion 

can provide a concentrated force pinning the contact edge (Fig. 3b), thereby enabling 

discontinuities at the contact edge in terms of the tangential direction, stretch ratio, and tension of 

the deformed membrane. For example, the non-contacting membrane does not need to remain 

tangential to the substrate at the contact edge. Instead, it can make a contact angle of  with the 

substrate (Fig. 3b), which is related to the tangent angle  at the contact edge through the following 

equation: 

         arcsin /a sr a a R       .       (22) 

Note that for adhesionless contact,  = 0 and eq. (18) is recovered. Also, the longitudinal stretch 

ratio 1 can be discontinuous across the contact edge, while the latitudinal stretch ratio 2 must 

remain continuous due to the continuity in r (see eq. (2)). Because of the discontinuity in 1 at the 

contact edge, we denote its value within and out of the contact region as 1
  and 1

 , respectively.  

 Whether the membrane can be detached from the substrate is governed by an energetic criterion 

that compares the energy release rate G with the work of adhesion Wad. It was derived (Long et al., 

2010) that the energy release rate for a neo-Hookean membrane under axisymmetric deformation 

is    

    
 

 

2 2 3
1 1 1 1

1 3
1 2 1 11 2

11 cos 1 3 2
2
hG T

   


    

   


  

      
          

       

,          (23) 

where 1T  is the longitudinal membrane tension right outside the contact edge and can be 

determined using eq. (8) with the stretch ratios 1
  and 2 at the contact edge. At the beginning of 

the retracting stage, G < Wad so that the contact edge remains pinned by adhesion, which will be 

referred to as the contact pinning stage. During this stage, only the non-contacting membrane 

responds to the external loading (e.g., increasing gap d or decreasing pressure P), causing the 

energy release rate G to increase. Once G becomes equal to Wad, the membrane starts to be 

detached from the substrate. This is the delamination stage during which the membrane is peeled 

from the substrate and the equilibrium condition G = Wad is maintained for quasi-static peeling. It 
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is worth mentioning that for adhesionless contact (Section 2.4), the contact angle  is zero and the 

stretch ratio 1 is continuous across the contact edge (i.e., 1
  = 1

 ). Plugging these two 

conditions into eq. (23) results in G = 0, which is expected for adhesionless contact.  

 Apart from the adhesion criterion, we also need to specify the tangential behavior of the 

interface, i.e., whether relative slip is allowed between the membrane and the substrate within the 

contact region. Early analyses on membrane peeling assume no interfacial slip between the 

contacting membrane and substrate (Kendall, 1971, 1975; Gent and Kaang, 1986; Williams, 1997; 

Wan, 1999). More recently, it has been experimentally observed that the contacting membrane can 

slide on the substrate while maintaining adhesion with it (Newby and Chaudhury, 1997, 1998; 

Begley et al., 2013).  Such slip is induced by the tangential component of the peel force and 

depends on the adhesive interface. For example, Newby et al. (1995) showed that interfacial slip 

can be controlled by functionalizing the substrate through a self-assembled monolayer. While the 

effect of interfacial slip can be modeled by accounting for the mixed-mode condition of interface 

fracture (Cheng et al., 2012), this would require a detailed characterization of the mode-dependent 

adhesion as well as a local stress analysis at the interface crack tip (i.e., the contact edge) to 

determine the mode-mixity (Hutchinson and Suo, 1991). To probe the effect of interfacial slip 

while keeping the analysis tractable, we consider two limiting cases: no-slip and frictionless (Long 

et al., 2010), which are also known as “sticking” contact and “sliding” contact, respectively (Wang 

and Li, 2007; Begley et al., 2013; Collino et al., 2014). The former assumes infinite resistance to 

interfacial slip while the latter assumes zero resistance. These two cases entail different boundary 

conditions at the contact edge, which will be discussed in the following section.  

 

3. Solutions of adhesive contact 

 Here we derive solutions for the membrane contact problem using the governing equations and 

boundary conditions outlined in Section 2. These solutions are organized according to the three 

stages illustrated in Fig.3. Recall that during the first stage (“making contact”), the 

membrane/substrate contact is assumed to be adhesionless and frictionless, while adhesion is 

included during the next two stages (“contacting pinning” and “delamination”) with either no-slip 

or frictionless condition.  
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3.1 Making contact 

 During this stage, the membrane profile outside the contact region (r ≥ a) can be determined 

by integrating eq. (20). As systematically discussed in our previous work (Yang et al., 2021), there 

are several branches of solutions depending on the range of  . Here we focus on Case I inflation 

(see Fig.2b and Section 2.3) with  < /2 at the fixed edge r = b. Moreover, we assume the contact 

area is within the upper hemisphere of the substrate. These two assumptions imply that the range 

of  is from − /2 to /2. Using this range and eq. (20), it can be derived that the non-contacting 

membrane profile is given by  

     
  

  

2 2

22 2 2 2

1 /

1 /

b
s

r
s

s R R a
z r ds

b R s s R R a

 
 

  
       (a ≤ r ≤ b) ,                  (24) 

where s is an integration variable, R = 2h/P, and Rs is the radius of the spherical substrate. Based 

on eq. (24), the gap d between the membrane’s fixed edge and the apex of the substrate is 

    
  

  

2 2
2 2

22 2 2 2

1 /

1 /

b
s

s s
a

s

s R R a
d ds R R a

b R s s R R a

 
   

  
 .        (25) 

In addition, the contact force F given in eq. (17) can be rewritten as follows using eq. (16): 

       2 1 / sF a P R R  .           (26) 

 The membrane profile within the contact region is a spherical cap with radius Rs. Since the 

contact interface is adhesionless and frictionless, the tractions exerted by the substrate on the 

membrane are normal to the interface (i.e., the contact pressure Pe) and should be uniformly 

distributed to maintain the spherical profile of the contacting membrane (Yang et al., 2021). To 

facilitate the calculation of the energy release rate G during retraction, it is important to determine 

the stretch ratios in the contacting membrane. We use the fact that the contacting membrane is 

subjected to equi-biaxial tension, i.e., 1 = 2, due to its spherical profile  (Yang et al., 2021). Note 

that this does not imply that 1 and 2 are uniform in the contacting membrane. Instead, 1 and 2 

are larger at the center of the contacting membrane and decrease as the contacting edge is 

approached  (Yang et al., 2021). Using the condition 1 = 2 and eqs. (1), (2) and (5), we can write 

the following equation for the contacting membrane (r < a): 
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 1
cos

d dr r
d d


   
  . (27) 

The spherical profile of the contacting membrane leads to the following identity: 

 
2

2cos 1
s

r
R

      for r < a. (28) 

Substituting eq. (28) into eq. (27) and integrating from the center of the contacting membrane (r = 

0 and  = 0), we have 

 
* *2

2 20 0

1 1r s

s

R dr d
R r r







  , (29) 

where r* (< a) represents a generic point within the contacting membrane and * is the 

corresponding material coordinate. There is a removable singularity in eq. (29) at the center (r = 0 

and  = 0). To address this issue, we denote the equi-biaxial stretch ratio at the center as c and 

replace the lower integral limits in eq. (29) by r =  and  =  c where  is a small length ( << 

a). This allows us to integrate eq. (29) and obtain 

  
 

 
 

2
* *

2*

1 1 /
ln ln ln ln

1 1 /

s
c

s

R
r

r R


   

 
  

   
  
 

.          (30)       

The removable singularity of eq. (29) is reflected in the ln term as  approaches 0. Cancelling the 

ln term on both sides and taking the limit of  → 0, we have 

     
 

2**
* *

1 2 *

1 1 /

2
s

c

r Rrr r  


 
    for r* < a.           (31) 

Equation (31) can also be recast into the function *(r*), i.e., the material coordinate at any point 

(r* < a) within the contact region. It is worth noting that if the substrate is flat, Rs approaches 

infinity and hence eq. (31) is reduced to * * * *
1 2( ) ( ) / cr r r      , implying that the contacting 

membrane is under uniform equi-biaxial stretch. This is expected given that the contact interface 

is flat and frictionless.  
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 Although eq. (31) specifies the variation of stretch ratios within the contacting membrane, it is 

subjected to an unknown coefficient c. This coefficient can be determined by considering the non-

contacting membrane (r ≥ a). Specifically, combining eqs. (6) and (11), we find that the non-

contacting membrane must satisfy  

       2 2 2 2
1 2

CT h
r

         (r ≥ a).          (32) 

Moreover, after applying the approximation in eq. (10) and using eqs. (1), (2) and (5), we obtain 

         
2 2 2 2

2
2 2 2 2

1
cos

h r Cdr
d h



   

  
 

 
   (r ≥ a).          (33) 

Given that the non-contacting membrane satisfies eq.(20) and C2 = 0 according to eq. (19), we can 

rewrite eq. (33) as 

    
  

22 2 2 2

1 1

1 / /s

dr d
r r R R a R






  

 for r ≥ a,       (34) 

where we have applied the condition that  is between −/2 to /2 (hence cosdue to the two 

assumptions of Case I inflation and upper hemisphere contact. Integrating eq. (34) from the contact 

edge (r = a) to the fixed edge (r = b) gives the following result: 

         
  

22 2 2 2 0

1 ln
1 / /

b

aa
s

bdr
r r R R a R  



  
 ,          (35) 

where a and b/0 are the material coordinates at the contact edge and fixed edge, respectively. 

Equation (35) allows us to determine the material coordinate a for a given contact radius a. Once 

a is found, it can be plugged into eq. (31) to determine c, i.e., 

     
  2

2

1 1 /
c

a s

a

a R





 

,            (36) 

which, together with eq. (31), can be used to fully determine the stretch ratios within the contacting 

membrane. 
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 In summary, during the making contact stage, we have obtained analytical solutions for the 

membrane profile in eq. (24), the gap d in eq. (25), the contact force F in eq. (26), the material 

coordinate at the contact edge a in eq. (35), and the biaxial stretch ratios in the contacting 

membrane in eqs. (31) and (36), all of which are expressed as functions of the contact radius a and 

the applied pressure P (through R =  2h/P).  

  

3.2 Contact pinning 

 At the end of the making contact stage, a contact area with radius am has been established. The 

material coordinate am at the contact edge r = am can be determined using eq. (35): 

       
  

22 2 2 20

1exp
1 / /m

b

am
a

m s m m

b dr
r r R R a R




 
 

  
   
 

  with 2
m

m

hR
P


  ,        (37) 

where Pm is the applied pressure at the end of the making contact stage. During the contact pinning 

stage, G is no longer zero, but is less than Wad so that the membrane is not yet detaching from the 

substrate. Therefore, the material coordinate of the contact edge remains unchanged during this 

stage, i.e., a = am, but the contact angle  can be non-zero (see Fig.3b) and the stretch ratio 1 

can be discontinuous at the contact edge. In particular, the non-contacting membrane can change 

its shape in response to the external loading (i.e., increasing gap d or decreasing pressure P), 

leading to an increasing contact angle . Whether the contact radius a changes or not depends on 

the tangential boundary condition. Specifically, under the no slip condition, the contacting 

membrane is locked on the substrate during contact pinning, implying that the contact radius a 

remains fixed, i.e., a = am. However, under the frictionless condition, the contacting membrane 

can slide on the substrate freely and hence can change its stretch in response to the external loading, 

which can cause changes in the contact radius a. This difference needs to be captured by assigning 

different boundary conditions at the contact edge as elaborated below.  

3.2.1 No slip condition 

 Under this condition, a = am and a = am. The deformed profile of the non-contacting 

membrane is still governed by eq. (11), but the constants C1 and C2 are different from those in eq. 

(19) for the making contact stage. To determine them, we first note that eqs. (32) and (33) rely 
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only on the large stretch approximation and are still valid for adhesive contact. Combining eqs. (6) 

and (32) and knowing that T1 > 0 based on eq. (10), we obtain: 

     
 2 2

1 1
2 2 2 2

2 2

sin
2

P r C r C
h r C R r C




 
 

 
,          (38) 

where we have defined 2 2
2 2 /C C h  to simplify notation and used R = 2h/P. Right outside the 

contact edge (r = am),  is equal to a which is related to the contact angle through eq. (22). 

Applying this boundary condition to eq. (38)  and using eq. (22), we have      

    

2
2 2

1 21 sin cosm m
m m

s s

a aC R a C a
R R

 

 
       

  
 

.                       (39) 

Another equation is required to solve for the two unknowns C1 and 2C . This can be obtained by 

substituting cos2 in eq. (33) by 1 − sin2 and using eq. (11), which results in 

     
   

22 2 2
2 1

1 1

/

dr
dr C r C R  



  

.           (40)

Integration of eq. (40) from the contact edge ( = am and r = am) to the fixed edge ( = b/ and r 

= b) can provide an additional equation for C1 and 2C . However, we note that dr/d in eq. (40) is 

not always positive as illustrated in Fig.4. Since the range of contact angle  is from 0 to , it is 

possible for a, which is equal to  arcsin /m sa R  , to exceed This results in a negative 

cosa, implying that r first decreases from the contact edge until a transition point r =  where  

and then increases to reach the fixed edge (r = b) (Fig.4b). Below we consider the two 

possibilities shown in Fig.4. If a ≤ Fig. 4a), dr/d is positive throughout the non-contacting 

membrane. Therefore, integrating eq. (40) from the contact edge to the fixed edge gives 

    
   
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22 2 2 0
2 1

1 ln ln
/

amm

b
b

a
am

bdr
r C r C R






 
 
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 .         (41) 

If a > Fig. 4b), dr/d is first negative between r =  and r = am and then negative between r 

=  and r = b, which results in the following equation: 



20 
 

  
       

2 22 2 2 2 2 2 0
2 1 2 1

1 1 ln
/ /

ma b
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bdr dr
r C r C R r C r C R

   
 

     
  .        (42) 

The transition point  can be determined by setting  at r =  in eq. (38), i.e.,  

      2 2
2 1R C C    ,           (43) 

which is essentially a quadratic equation for  and has two possible solutions: 

      
2 4

2 2
1 2 12 4

R RC C C R
 
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 

.        (44) 

Since am, the solution in eq.(44) that is between 0 and 2
ma  should be selected.  

 

Figure 4. Contact pinning under no slip condition. (a) Membrane profile when a ≤ Along the 

non-contacting membrane, the radial coordinate r monotonically increases from the contact edge 

(r = am) to the fixed edge (r = b). (b) Membrane profile when a >  Along the non-contacting 

membrane, the radial coordinate r first decreases from am to  and then increases from  to b. (c-

d) Free body diagrams for the contacting membrane (including the contact edge) when (c) a ≤ 
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and (d) a > The insets show zoomed-in views of the localized normal and shear interface 

tractions at the contact edge that underlie the concentrated adhesion force. 

 

 For a given contact angle  (0 ≤   ≤ ), the two constants C1 and 2C  can be determined using 

eqs. (39) and (41) when  ≤arcsin(am/Rs) or using eqs. (39) and (42) when  > 

arcsin(am/Rs). However, closed-form solutions for C1 and 2C  are not available for any  in 

general. Instead, they need to be solved for numerically. Specifically, one can substitute eq. (39) 

into eq. (41) or (42) and solve for 2C  first and then C1. Once C1 and 2C  are determined, we can 

use the eq. (38) to obtain the following governing equation of the non-contacting membrane profile: 

     

   

222 2
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.          (45) 

Integration of eq. (45) depends on a or the contact angle(i.e., the two cases in Fig.4). If a ≤ 

Fig. 4a), we have 

     
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     (am ≤ r ≤ b).        (46) 

If a > Fig. 4b), the non-contacting membrane profile is obtained by joining two branches of 

the z(r) function: 
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.        (47) 

Using eq. (46) or (47), we can evaluate the gap d  (see Fig.4) as  

       2 2
m s s md z r a R R a      .          (48) 
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 Next we derive the contact force F during contact pinning. Because of adhesion, the contact 

force F includes two contributions, one from the contact pressure and the other from the adhesive 

traction on the interface. The adhesive traction should include components that are tangential and 

normal to the interface. In particular, the tangential component (i.e., interface shear stress) results 

from the constraint that the contact membrane is locked on the substrate, while the normal 

component resists separation between the membrane and the substrate (see the insets of Fig.4c-

4d). It has been shown in the literature that for a pre-stretched elastic film perfectly bonded to a 

stiff substrate, the interface traction is localized in a small stress transfer region near the edge of 

the film, the size of which is on the order of the film thickness (Yu et al., 2001). Given that the 

membrane thickness h is much smaller than the characteristic length scale of our problem (e.g., 

contact radius a), we have represented the stress transfer zone as a point at the contact edge, and 

the adhesive traction as a concentrated adhesion force at the contact edge. Axisymmetry dictates 

that the two contributions from the contact pressure Pe and the adhesion force result in a net force 

along the z-axis, which is the contact force F (positive when compressive). Using the free body 

diagrams shown in Fig.4c-4d and enforcing equilibrium, F is found to be  

 2
12 sinm m aF a P a T    ,  (49) 

where 1T   is the longitudinal line tension right outside the contact edge (r = am) and can be 

evaluated using eq. (32), i.e., 2
1 21 / mT h C a   . Using this result and eq. (22), we can rewrite 

eq. (49) as  

  
2

2 2
2 11 sin cosm m

m m
s s

a aF P a R a C PC
R R

   

  
                

,        (50) 

where we have used R = 2h/P. A special case worth pointing out is the beginning of contacting 

pinning when = 0 and 2C  = 0.  Using these values, eq. (50) is reduced to  2 1 /m sF a P R R   

which recovers the adhesionless contact solution in eq. (26).  

 The energy release rate G is expected to increase from 0 during contacting pinning. To evaluate 

G, we use eq. (23) and implement the large stretch approximation and the equi-baxial condition in 

the contacting membrane ( 1 2   ) to obtain: 
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Since 2
1 2 1 2/ / 1 / mT h C a      , we can further rewrite eq. (51) as 
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In summary, for contact pinning under the no slip condition, we prescribe the contact angle  

and numerically solve the two constants C1 and 2C . The membrane profile, gap d, contact force F 

and energy release rate G can all be computed using analytical solutions given above. 

 

3.2.2 Frictionless condition 

 Under this condition, adhesion only prevents normal separation of the contacting membrane 

from the substrate but cannot resist sliding of the contacting membrane on the substrate. Therefore, 

the contacting membrane can freely adjust its stretch, resulting in a changing contact radius a while 

the material coordinate of the contact edge a remains fixed at am. On the other hand, the absence 

of interface shear traction implies that the adhesion force (see Fig.4c-4d) does not have any 

component along the tangential direction of the interface, which leads to the following local force 

balance at the contact edge: 

            1 1cosT T  ,            (53) 

where 1T   and 1T  are the longitudinal line tension at the contact edge from the non-contacting and 

contacting parts of the membrane, respectively (see the inset of Fig.3b). Applying the large stretch 

approximation in eq. (10), we can rewrite eq. (53) as              

                                                     2

1 1

cos h
T

 


  
  , (54) 

where we have used the condition that the contacting membrane is under equal-biaxial stretch 

( 1 2   ) so that 1T h  . Equation (54) implies that the contact angle  < /2 so that cos > 0, 
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otherwise the tangential force balance in eq. (53) cannot be satisfied. This is different from the no 

slip condition where  can exceed /2. The line tension 1T  can be determined by applying eq. (32) 

at the contact edge (r = a), based on which we can rewrite eq. (54) as 

 2 2
2 tanC a  . (55) 

To solve for C1, we substitute eq. (55) into eq. (38) and utilize (r = a) = a and cos > 0, which 

gives 
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,                                  (56) 

where we have used eq. (22) to relate a and  Unlike the no slip solution where the contact radius 

is fixed during contact pinning, here the contact radius a can change as the contact angle  

increases. To determine a, we note that eq. (40) is still valid for the non-contacting membrane and 

the material coordinate at the contact edge remains at am. Since here  < /2, we conclude that a 

< /2, implying dr/d > 0 for the non-contacting membrane, i.e., only the scenario in Fig.4a is 

possible for the frictionless condition. Using this condition and integrating eq. (40) from the 

contact edge ( = am and r = a) to the fixed edge ( = b/ and r = b), we obtain 
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where am is given by eq. (37) and we have substituted 2C  and C1 using eq. (55) and (56), 

respectively. Equation (57) allows us to determine the contact radius a numerically for a given 

contact angle . After that, the 2C  and C1 can be readily calculated, and hence the profile of the 

non-contacting membrane can be determined using eq. (46) except that the range of r should be 

changed to a  ≤ r ≤ b. The gap d is evaluated using the z(r) function in eq. (46): 

       2 2
s sd z r a R R a      .          (58) 
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 Similar to Section 3.2.1, the contact force F and energy release rate G are still respectively 

given by eq. (49) and (51) except that the contact radius am should be replaced by a. Here since 

1 / cosT h   , the contact force F can be further simplified to 

    
2

2
11 1 tan

s s

R aF P a aR PC
R R

  

 
   
         
    
 

.         (59) 

The energy release rate G is 

     
2 21 cos 1 1 tan1

cos 2 cos 2
G
h

 

  

  
    

 
.         (60) 

Interestingly, eq. (60) shows that G approaches + as  approaches /2, consistent with the 

constraint  < /2 from eq. (54).  

In summary, for contact pinning under the frictionless condition, we prescribe the contact angle 

, numerically determine the contact radius a from eq. (57) and then calculate the two constants 

C1 and 2C . The membrane profile, gap d, contact force F and energy release rate G can all be 

computed using analytical solutions derived in this section. 

 

3.3 Delamination 

 The contact pinning stage ends when the energy release rate G reaches the work of adhesion 

Wad.  After that the contacting membrane starts to be detached from the substrate. Consequently, 

the material coordinate of the contact edge, denoted as ad, is smaller than its counterpart am 

during contact pinning and continues to decrease during delamination. Therefore, in this stage we 

solve for the membrane deformation under a given ad (0 ≤ ad ≤ am). The contact angle  is no 

longer prescribed, but is rather determined from the equilibrium equation for quasi-static 

delamination: G = Wad. Most of the analytical solutions in Section 3.2 can still be applied for this 

stage as detailed below. 

3.3.1 No slip condition 



26 
 

 Under the no slip condition, the membrane in the contact region (0 ≤  ≤ ad) remains fixed 

on the substrate. Therefore, we can determine the contact radius ad corresponding to ad using the 

deformation field established in the making contact stage (Section 3.1). Specifically, ad and ad 

can be identified as r* and * in eq. (31). Moreover, using eq. (36) to substitute c, we obtain 

     
 

 

2

2

1 1 /

1 1 /

m sad d

am m d s

a Ra
a a R





 


 
.                      (61) 

The contact pinning solutions in Section 3.2.1 can be applied here provided that am and am are 

replaced by ad and ad, respectively. However, the contact angle  is not given and needs to satisfy 

the condition G = Wad. Using eq. (52) and replacing am by ad, we have  

      

2

2 2
2 2

11 1 cos 1 1
2

ad

d d

W C C
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


 
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 
 

.         (62) 

With eq. (62), we can solve for  through an iterative process. Specifically, for a set of given ad 

and ad, we start with an initial guess of  and follow the procedures outlined in Section 3.2.1 to 

solve for C1 and 2C  with am and am replaced by ad and ad. The resulting 2C , together with  and 

ad, are then substituted into the right hand side of eq. (62) to test whether this equation is satisfied. 

If not,  is adjusted iteratively until eq. (62) is satisfied. Once  and the corresponding C1 and 2C

are determined, we follow eqs. (48) and (50) to determine the gap d and contact force F with am 

replaced by ad. 

3.3.2 Frictionless condition 

 Under the frictionless condition, the contact radius  corresponding to ad is not known. 

However, eq. (60) shows that the energy release rate G depends only on the contact angle . Since 

G = Wad during the delamination stage, we expect a constant contact angle given by 

      2arctan adW
h




  ,    (0 ≤ < /2).        (63) 
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Using this contact angle , we can solve for the contact radius a from eq. (57) with am replaced 

by ad. After that, the constants C1 and 2C , the gap d, and the contact force F can be determined 

from eqs. (56), (55), (58) and (59), respectively. 

 

4. Finite Element Analysis 

 We developed an axisymmetric Finite Element Analysis (FEA) model using a commercial 

software package ABAQUS (version 2021, Simulia, Providence, RI) to simulate the inflation of a 

neo-Hookean membrane and its contact with and delamination from a rigid substrate. The FEA 

model is capable of simulating the contact mechanics between the inflated membrane and 

substrates with different curvatures and adhesive interactions. Below we briefly describe the FEA 

model and the simulation procedures. Since the purpose of the FEA model is to provide 

independent results for comparison with our analytical model, we have only shown selected FEA 

results in Section 5 and the corresponding model parameters are specified below. 

 The membrane in its undeformed state is a circular sheet with a radius of = b/0 = 1 mm and 

a thickness of h = 1 m. It is modeled as an axisymmetric, deformable part and is meshed using 

the two-node axisymmetric shell elements (SAX1) with a uniform mesh size of 2 m. The material 

model adopted for the membrane is the incompressible neo-Hookean solid with a shear modulus 

of  = 2 MPa. The spherically curved substrate with a radius of Rs = 1 mm was modeled using an 

axisymmetric, analytically rigid wire which does not require meshing. Centers of the membrane 

and the substrate are both placed on the axis of symmetry. To simulate adhesion between the 

membrane and the substrate, we use the cohesive interaction feature in ABAQUS defined by a 

damage initiation criterion driven by the maximum interfacial stress and a damage evolution rule 

based on the energy release rate. We have used a maximum interface stress of max = 50 kPa and 

a work of adhesion of Wad = 0.4 J/m2 for the cohesive interaction. The two limiting cases of 

tangential interface behaviors, no slip and frictionless conditions, are modeled by choosing specific 

initial stiffness coefficients K of the cohesive traction-separation relation, i.e., isotropic (Knn = Kss 

= Ktt) for the no slip condition and zero-shear (Kss = Ktt = 0) for the frictionless condition, where 

the subscript n represents the normal direction of the interface and the subscripts s and t represent 

the two tangential directions of the interface.  
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 Each simulation consists of three steps. First, an equi-biaxial planar stretch of 0 = 2 is applied 

to the membrane so that its radius becomes b = 2 mm. Second, the membrane is inflated and makes 

contact with the substrate. This is achieved either by inflating the membrane to a pressure P and 

then reducing its gap with the substrate with the pressure kept constant or by moving the substrate 

to a certain gap d below the membrane and then inflating the membrane under an increasing 

pressure. The former loading method will be referred to as displacement control, and the latter will 

be referred to as pressure control. During this step, the contact between the membrane and the 

substrate is effectively adhesionless, because the cohesive interaction defined above is not 

activated until a contact interface is established and thus does not provide any adhesive tractions 

when the contact radius is increasing. Third, the last step simulates the contact pinning and 

delamination stages, which is achieved by increasing the gap with the pressure kept constant 

(displacement control) or reducing the applied pressure with the gap kept constant (pressure 

control). During this step, the cohesive interaction can provide adhesive tractions across the contact 

interface to resist separation. The external loadings, i.e., pressure and displacement, are applied 

following a linear ramp.  The first step (pre-stretch) and the second step (inflation and making 

contact) are carried out using the Static solver of ABAQUS. For the third step (contact pinning 

and delamination), to aid numerical convergence we switch to the Dynamic/Implicit solver. 

Results for the contact force, contact displacement and applied pressure are extracted from the 

FEA simulations and compared with those from the analytical model for validation.  

 

5. Results and Discussions 

 In this section we illustrate results of our analytical model for the three stages of membrane 

contact. To facilitate discussion, we first categorize the parameters of our analytical model into 

two types: i) loading parameters that vary during the contact process: applied pressure P, gap d (or 

contact displacement ), contact force F and contact radius a; ii) system parameters that remain 

constant during the contact process: pre-stretch 0, membrane stiffness h, membrane radius b, 

substrate radius Rs, work of adhesion Wad, the maximum contact radius am achieved after the 

making contact stage and the corresponding material coordinate am. With a set of prescribed 

system parameters, our analytical model can provide solutions relating the loading parameters. 

Specifically, we consider two experimentally motivated scenarios of membrane contact: 
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displacement control (Section 5.1) and pressure control (Section 5.2), where the contact process is 

implemented by controlling the gap d under a fixed pressure P or controlling the pressure P under 

a fixed gap d, respectively. In both scenarios, our focus is on calculating the contact force F 

(positive when compressive) since it is typically measureable in experiments.  

 To reduce the number of independent variables, we set the pre-stretch at 0 = 2 and normalize 

the loading and system parameters using the membrane stiffness h and the radius b. For example, 

the normalized pressure is Pb/2h, where the factor 2 is motivated by the fact that 2h/P is the 

free inflation radius R and hence Pb/2h can be interpreted as b/R. Accordingly, the other 

parameters are normalized as follows: gap d/b, contact displacement /b, contact force F/2hb, 

substrate radius Rs/b, work of adhesion Wad/h, and the maximum contact radius am/b. 

 

5.1 Displacement control 

 Under displacement control the inflated membrane is essentially a spherical adhesive probe 

with a radius of R = 2h/P. Here our goal is to obtain the contact force F as a function of the 

contact displacement . The making contact stage is analogous to the Hertzian contact between an 

elastic sphere and a rigid sphere, except that here the elastic sphere is replaced by the inflated 

membrane (i.e., a hollow spherical probe). In this stage, we first prescribe a contact radius a in the 

range of 0 ≤ a ≤ am and use eqs. (24), (25) and (26) to determine the membrane profile, gap d and 

contact force F, respectively. Since the applied pressure is fixed at P, the Pm in eq. (37) is now 

equal to P. 
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Figure 5. Representative results for membrane contact under displacement control with no slip 

condition. (a) Normalized contact force F/2hb versus normalized contact displacement /b. The 

solid line (“ANA”) is obtained using our analytical model and the dashed line (“FEA”) represents 

the FEA result. (b) Deformation profiles of the membrane at six different points in (a). The 

parameters used are Pb/2h = 0.6, Wad/h = 0.2, Rs/b = 0.5 and am/b = 0.25. 

 

 Results for the stages of contact pinning and delamination depend on whether the no slip or 

frictionless condition is adopted. We first consider the no slip condition. During contact pinning, 

we gradually increase the contact angle  from 0. For a given , we follow the procedures 

described in Section 3.2.1 to solve for the two constants C1 and 2C , and then the membrane profile, 

gap d and contact force F using eq. (46) or (47), eq. (48) and eq. (50), respectively. Meanwhile, 

the energy release rate G for any given  is determined using eq. (52). When G becomes equal to 

Wad, the delamination stage begins. During delamination, the contact angle  cannot be prescribed. 

Instead, we gradually change the contact radius ad from am to 0 and use eq. (62) to solve for the 

corresponding contact angle , after which the membrane profile, gap d and contact force F can 

be determined following the procedures described in Section 3.3.1. A representative result is 

shown in Fig. 5a where the contact force F (positive when compressive) is plotted as a function of 

the contact displacement  calculated from the gap d using eq. (21). The membrane profiles at six 
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different points along the F- curve are shown in Fig. 5b. Also plotted in Fig. 5a is the F- curve 

obtained from FEA simulation, which agrees well with our analytical model. Interestingly, despite 

that our solutions are obtained based on the nonlinear neo-Hookean membrane model, the F- 

relation during contact pinning (Point 3 to 5) is approximately linear, indicating a constant contact 

stiffness during this stage. Note that the FEA result does not cover the entire delamination stage 

(Point 5 to Point 6 and Point 1) due to convergence difficulties. In contrast, the analytical model 

is capable of providing a full solution for the delamination stage.  

 

 

Figure 6. Parametric study for membrane contact under displacement control with no slip 

condition. (a) Effect of adhesion Wad/h with Pb/2h = 0.6 and Rs/b = 0.5. (b) Effect of applied 

pressure Pb/2h with Wad/h = 0.2 and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Wad/h 

= 0.2 and Pb/2h = 0.6. For all results we have used am/b = 0.25.  

 

 The analytical model allows us to perform a parametric study efficiently, as demonstrated in 

Fig.6 where we show how the work of adhesion Wad/h, applied pressure Pb/2h and substrate 

radius Rs/b affect the contact process. Specifically, Fig.6a shows that the work of adhesion Wad 

does not affect the stage of making contact and the stiffness (i.e., the slope of F- curve) during 

contact pinning but can increase the pull-off force (i.e., the most negative value of F during 

delamination). This is expected since Wad determines only when the delamination stage is initiated 

and how it progresses. Figure 6b shows the effect of applied pressure P: a higher P tends to 

decrease the contact stiffness, as reflected in the smaller slope of the F- curve, and reduce the 

pull-off force. This trend is attributed to the smaller free inflation radius R (= 2h/P) under a higher 
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pressure P. Finally, Fig.6c shows that a larger substrate radius Rs tends to increase the contact 

stiffness and pull-off force. Note that the limiting case of Rs/b =  represents a flat substrate.  

 

Figure 7. Representative results for membrane contact under displacement control with 

frictionless condition. (a) Normalized contact force F/2hb versus normalized contact 

displacement /b. The solid line (“ANA”) is obtained using our analytical model and the dashed 

line (“FEA”) represents the FEA result. (b) Deformation profiles of the membrane at six different 

points in (a). The parameters used are Pb/2h = 0.6, Wad/h = 0.2, Rs/b = 0.5 and am/b = 0.25.  

 

 Next we consider the frictionless condition. During contact pinning, for a given , we first 

solve for the contact radius a using eq. (57), based on which the two constants C1 and 2C  can be 

determined using eqs. (56) and (55). With the values of C1 and 2C , the membrane profile, gap d 

and contact force F are calculated using eq. (46) (with am replaced by a), eq. (58) and eq. (59), 

respectively. Since the energy release rate G is directly related to the contact angle  through eq. 

(60), we can easily determine when the delamination stage begins as G reaches Wad. During 

delamination, eq. (63) suggests that the contact angle is a constant, which greatly simplifies the 

solution process. Specifically, during delamination we prescribe the material coordinate of the 

contact edge ad (0 ≤ ad  ≤ am) and follow the procedures described in Section 3.3.2 to determine 
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the membrane profile, gap d and contact force F. A representative result is shown in Fig. 7a in 

terms of the F- curve with the corresponding membrane profiles given in Fig.7b. The shape of 

the F- curve in Fig.7a closely resembles that for the no slip condition (see Fig.5a), but quantitative 

comparison reveals that the frictionless condition leads to slight decreases in the contact stiffness 

and pull-off force. The FEA result shown in Fig.7a is obtained using the zero-shear setting for the 

cohesive interaction (see Section 4) and agrees well with the analytical model except near the end 

of delamination (i.e., beyond Point 6 in Fig.7a). This discrepancy is due to the displacement 

controlled loading in the FEA simulation, i.e., the delamination stage is simulated by 

monotonically decreasing the contact displacement (or increasing the gap d). As a result, the 

segment from Point 6 to Point 1 in Fig.7a is not accessible to the FEA simulation. Instead, we 

observe a sudden pull-off in the FEA simulation where the contact radius jumps to zero when the 

minimum contact displacement (or the maximum gap) is achieved. This pull-off behavior is 

essentially the onset of unstable interface crack propagation and is similar to that found in the JKR 

theory (Johnson and Greenwood, 2013). In experiments the point of pull-off also depends on the 

compliance of the loading device (Johnson and Greenwood, 2013). We also performed a 

parametric study for the frictionless condition. The results, illustrated in Fig.8, show similar trends 

as those observed for the no slip condition (see Fig.6). It is worth noting that the difference caused 

by the no-slip and frictionless conditions is overall small but becomes more pronounced for the 

flat substrate (see the case of Rs/b =  in Fig.6c and Fig.8c). 

 

Figure 8. Parametric study for membrane contact under displacement control with frictionless 

condition. (a) Effect of adhesion Wad/h with Pb/2h = 0.6 and Rs/b = 0.5. (b) Effect of applied 

pressure Pb/2h with Wad/h = 0.2 and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Wad/h 

= 0.2 and Pb/2h = 0.6. For all results we have used am/b = 0.25. 



34 
 

5.2 Pressure control 

 The scenario of pressure control is motivated by experimental works that used an inflated 

membrane for adhesion measurement (Flory et al., 2007; Laprade et al., 2013). In this scenario, 

the pre-stretched membrane is placed at a fixed gap d above the substrate. The process of making 

contact and delamination is implemented by increasing and decreasing the pressure P. Similar to 

Section 5.1, our goal here is to compute the contact force F as the applied pressure P changes. To 

start the making contact stage, the pressure P should exceed a critical value Pcr at which the 

membrane deflection under free inflation (i.e., d0 in eq. (15)) is equal to the fixed gap d, since this 

is the point where the apex of the inflated membrane first reaches the top of the substrate. Using 

eq. (15), we find the normalized critical pressure Pcrb/2h to be: 

           2

2( / )
2 ( / ) 1

crP b d b
h d b



.           (64) 

Recall that in this work we focus on the Case I solution of free inflation (see Fig.2b), which 

imposes an upper limit for the gap, i.e., d ≤ b. Under this constraint, Pcr is an increasing function 

of d. Note that it is possible for d to be negative. In this case, a negative Pcr is needed to maintain 

point contact between the membrane and the substrate. When solving for the making contact stage, 

we prescribe a contact radius a (0 ≤ a ≤ am) and numerically solve the pressure P (P ≥ Pcr) from 

eq. (25) to match the given fixed gap d. After that the membrane profile and contact force F are 

calculated using eqs. (24) and (26), respectively. 

 The contact pinning and delamination stages depend on whether the no slip or frictionless 

condition is assumed. We first consider the no slip condition. During contact pinning, we gradually 

decrease the pressure P from Pm (i.e., the applied pressure at the end of the making contact stage). 

For each prescribed P, we assume a contact angle , solve for the two constants C1 and 2C , and 

examine whether eq. (48) is satisfied with the fixed gap d. This allows us to iteratively determine 

the contact angle  needed to enforce constant gap d under a decreasing pressure P. Once is 

determined, the membrane profile, contact force F and energy release rate G can be calculated 

using eq. (46) or (47), eq. (50) and eq. (52), respectively. The delamination stage starts when G = 

Wad. During delamination, we prescribe a contact radius ad ranging from am to 0 and numerically 

solve for the contact angle  and the pressure P to enforce eq. (62) and the constant gap d, after 

which the membrane profile and contact force F can be determined accordingly following Section 
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3.3.1. A representative result is shown in Fig. 9a where the contact force F is plotted as a function 

of the pressure P. The membrane profiles at six different points along the F- curve are shown in 

Fig. 9b. For this example, the fixed gap d = 0, indicating that the flat, pre-stretched membrane is 

already in point contact with the top of the substrate (see membrane profile at Point 1 in Fig.9b). 

As a result, the contact force F starts to increase as soon as the pressure P is larger than zero. 

Interestingly, the F-P curve in Fig.9a has a similar shape as the F-d curve in Fig.5a, despite the 

distinct scenarios of load control. The FEA result shown in Fig.9a also agrees well with our 

analytical model.   

 

 

Figure 9. Representative results for membrane contact under pressure control with no slip 

condition. (a) Normalized contact force F/2hb versus normalized applied pressure Pb/2h. The 

solid line (“ANA”) is obtained using our analytical model and the dashed line (“FEA”) represents 

the FEA result. (b) Deformation profiles of the membrane at six different points in (a). The 

parameters used are d/b = 0, Wad/h = 0.2, Rs/b = 0.5 and am/b = 0.25. 

 

 Figure 10 shows the F-P curves obtained using different parameters. While effects of the work 

of adhesion Wad/h (Fig. 10a) and substrate radius Rs/b (Fig. 10c) are similar to those observed for 

displacement control (Fig. 6), the effect of the fixed gap d is more interesting. Increasing d clearly 

shifts the F-P curve to the right, which is expected since larger d implies that a higher pressure is 

needed to bring the membrane into contact with the substrate. Apart from the shift, increasing d 
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also results in higher contact force to achieve the same contact radius during making contact but 

reduces the pull-off force during delamination.   

 

Figure 10. Parametric study for membrane contact under pressure control with no slip condition. 

(a) Effect of adhesion Wad/h with d/b = 0 and Rs/b = 0.5. (b) Effect of gap d/b with Wad/h = 0.2 

and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Wad/h = 0.2 and d/b = 0. For all results we 

have used am/b = 0.25. 

 

 Next we consider the frictionless condition. During contact pinning, for a given pressure P (P 

≤ Pm), we iteratively solve for the contact angle  by calculating the contact radius a from eq. (57) 

and examining if the gap d is equal to the given value. Once is determined, the membrane profile, 

contact force F and energy release rate G are calculated using eq. (46) (with am replaced by a) and 

eq. (59) and eq. (60), respectively. When G = Wad, the delamination stage starts during which the 

contact angle  is a constant according to eq. (63). Therefore, we prescribe the material coordinate 

of the contact edge ad (0 ≤ ad ≤ am) and solve for the pressure P required to enforce the fixed 

gap, after which the membrane profile and contact force F can be determined following Section 

3.3.2. A representative result is shown in Fig. 11a in terms of the F-P curve with the corresponding 

membrane profiles given in Fig.11b. Again, the shape of the F-P curve in Fig.11a resembles that 

for the no slip condition (see Fig.9a), but the frictionless condition decreases the pull-off force 

slightly. The FEA result shown in Fig.11a agrees well with the analytical model except that it 

cannot capture the unstable segment from Point 6 and Point 1 and exhibits a pull-off behavior 

instead (similar to the FEA result in Fig.7a). Results of the parametric study in Fig.12 exhibit 

similar trends as those observed for the no slip condition (see Fig.10). 
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Figure 11. Representative results for membrane contact under pressure control with frictionless 

condition. (a) Normalized contact force F/2hb versus normalized applied pressure Pb/2h. The 

solid line (“ANA”) is obtained using our analytical model and the dashed line (“FEA”) represents 

the FEA result. (b) Deformation profiles of the membrane at six different points in (a). The 

parameters used are d/b = 0, Wad/h = 0.2, Rs/b = 0.5 and am/b = 0.25. 

 

 

Figure 12. Parametric study for membrane contact under pressure control with frictionless 

condition. (a) Effect of adhesion Wad/h with d/b = 0 and Rs/b = 0.5. (b) Effect of gap d/b with 

Wad/h = 0.2 and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Wad/h = 0.2 and d/b = 0. For 

all results we have used am/b = 0.25. 
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5.3 Discussion 

 The results presented in Sections 5.1-5.2 demonstrate the utility of our analytical model. These 

results are based on a number of assumptions in addition to the large stretch approximation for the 

neo-Hookean solid (see eq. (10)). Here we summarize and discuss these assumptions since they 

are instrumental for understanding the applicability range of our model.  

 First, we assumed two scenarios of loading, i.e., displacement control with fixed pressure and 

pressure control with fixed gap. While both scenarios can be implemented experimentally, there 

are other loading scenarios. For example, in the experiment of Song et al. (2019), an initially flat 

circular membrane was first brought into contact with a spherical substrate under a preload. After 

that a negative pressure was applied on the membrane by a syringe pump and then the membrane 

was retracted from the substrate with the syringe pump held fixed. During the retraction process, 

the pressure on the membrane was not constant. Instead, the amount of air within the space 

enclosed by the membrane, the syringe, and the tube connecting them was held constant. As a 

result, during retraction the pressure decreased as the membrane underwent deformation and 

increased its enclosed volume. Our analytical model can be adapted to this loading scenario. 

Specifically, the preload process can be modeled using the making contact stage (Section 3.1) with 

displacement control and zero pressure. For the retraction, we can use solutions for the contact 

pinning and delamination stages (Section 3.2 and 3.3) under displacement control. However, the 

pressure P is not prescribed but should be obtained by enforcing the ideal gas law that the pressure 

in the system (membrane, syringe, and tube) multiplied by the system volume is a constant. Note 

that the pressure P in our analytical model is the pressure differential across the membrane and 

hence is equal to the system pressure minus the atmospheric pressure. 

 Second, we have followed eq. (23) derived in Long et al. (2010) to determine the energy release 

rate G. This energy release rate is defined with respect to the deformed membrane area, i.e., it is 

the energy released per unit area of deformed membrane detached from the substrate. Accordingly, 

the work of adhesion Wad is also defined with respect to the deformed membrane area. 

Alternatively, the energy release rate can be defined with respect to the undeformed reference 

configuration of the membrane as in Begley et al. (2013). This definition, denoted as Gun, is 

different from ours if the membrane undergoes large biaxial stretch. For the axisymmetric 

geometry considered in this work, G and Gun are related through 1 2
unG G   since 1 2   is the 
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areal stretch ratio at the contact edge (Long et al., 2010). The work of adhesion corresponding to 

Gun, denoted as un
adW , is the energy required to detach a unit undeformed area of the membrane 

from the substrate. Our analytical model can be readily modified to be in terms of Gun and un
adW  by 

using 1 2
unG G  . The two approaches of modeling adhesion are equivalent if we set 

1 2
un

ad adW W  . However, since 1 2   is not a fixed value but varies with membrane deformation, 

we can only assume one of un
adW  and Wad to be constant, which should depend on the nature of 

adhesive interaction on the contact interface. An implicit assumption in our analytical model is 

that Wad defined with respect to the deformed membrane area is a constant parameter. 

 Third, we considered two limiting cases of tangential interface behavior: no slip and 

frictionless. The solution for the frictionless condition is simpler. However, the results presented 

in Sections 5.1 and 5.2 show that these two cases do not result in any qualitative difference. 

Quantitatively, the frictionless solution resulted in slightly smaller pull-off forces than the no slip 

solution. Therefore, for simplicity the frictionless solution could be adopted. It is worth noting that 

the frictionless solution here is analogous to the JKR theory for the adhesive contact between two 

elastic spheres where any frictional tractions on the contact interface are neglected and only normal 

tractions are considered.  

 Finally, we assumed Hertzian contact (i.e., adhesionless and frictionless) during the making 

contact stage (see Section 2.1). If this is not the case, the making contact stage can also be assigned 

a work of adhesion *
adW , which is typically smaller than the Wad during delamination (Shull, 2002; 

Vajpayee et al., 2008). Accordingly, we need to enforce *
adG W  and consider the no slip or 

frictionless condition during the making contact stage. For the no slip condition, one can follow 

similar procedures in Section 3.3.1 with Wad replaced by *
adW . Also, since we can no longer use 

eq. (61) to relate ad and ad, we would need to gradually increase the contact radius a and 

incrementally solve for the stretch distribution within the contact area and the material coordinate 

of the contact edge a. In contrast, the frictionless condition is easier, since eq. (63) allows us to 

prescribe a non-zero contact angle during the making contact stage: *arctan 2 /adW h  . This 

implies that we can gradually increase the contact radius a, and directly calculate C1 and 2C  using 
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eqs. (56) and (55) for the making contact stage. The material coordinate of the contact edge a can 

be determined by solving eq. (57) with am replaced by a.  

 

6. Conclusions 

 We developed an analytical model to describe the adhesive contact mechanics of an inflated 

neo-Hookean membrane with a spherically curved, rigid substrate. The entire contact process was 

divided into three stages: making contact, contact pinning and delamination. Among them, the 

making contact stage was assumed to be subjected to Hertzian contact (i.e., adhesionless and 

frictionless), while the contact pinning and delamination stages were under adhesive contact with 

either no slip or frictionless condition for the tangential interface behavior. Using the large stretch 

approximation for the neo-Hookean membrane, we obtained analytical expressions relating the 

membrane profile, contact force F and contact displacement  to the contact radius a, applied 

pressure P, work of adhesion Wad and other system parameters. Solutions of our analytical model 

were found to agree well with results from independent FEA simulations. We also found that the 

frictionless condition resulted in simpler analytical solutions and yet gave qualitatively similar 

results as those based on the no slip condition, thereby motivating the adoption of frictionless 

condition for parametric studies. The analytical model developed in this work can benefit the 

design, optimization and refinement for membrane-based adhesion systems such as adhesion 

measurement, transfer printing and soft robotic gripping. 
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