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Abstract

Inflated elastomeric membranes have been utilized as compliant probes to achieve sensitive
adhesion measurement or pneumatic control of adhesive forces. This paper presents an analytical
model for the adhesive contact between a circular elastic membrane under inflation and a rigid
curved substrate. By adopting an incompressible neo-Hookean model for the membrane and
introducing an approximation under large stretch, we obtain analytical solutions describing the
three stages of adhesive contact: making contact, contact pinning and delamination. Among these
three stages, the making contact stage is assumed to be adhesionless and frictionless, while the
other two stages are subjected to a given work of adhesion between the membrane and the substrate.
Two limiting cases of tangential interface behaviors (i.e., no slip and frictionless) are considered
for the stages of contact pinning and delamination. Our analytical model provides solutions to the
deformed membrane profile as well as relationships between key parameters such as applied
pressure, contact force, contact radius and displacement, and is verified against computational
results from finite element analysis. This analytical model can enable faster solutions for the
adhesive contact mechanics of inflated membranes and is applicable as a design, optimization, and
system refinement tool for applications such as adhesion measurement, transfer printing and soft

robotic gripping.
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1. Introduction

The nonlinear mechanics of soft elastic membranes under inflation has received extensive
interests due to its relevance in various engineering applications. Inflation of a circular flat
membrane (Hart-Smith and Crisp, 1967) was first studied as an experimental configuration for
testing the mechanical behavior of rubber sheets under biaxial tension (Treloar, 1944; Rivlin and
Saunders, 1951). Contact between a spherical balloon with internal pressure and two rigid parallel
plates (Feng and Yang, 1973) is relevant to the mechanical deformation of biological cells
(Hiramoto, 1963; Wan and Liu, 2001). Adhesion needs to be considered in the contact mechanics
of inflated membranes when there are attractive interactions on the interface. Indeed, inflated
membranes have been used as probes for experimental characterization of adhesion (Shanahan,
1997; Flory et al., 2007; Xu and Liechti, 2011; Laprade et al., 2013). For example, Guvendiren et
al. (2009) used an inflated elastomeric membrane to measure the adhesion between a type of
molecule found in mussel secreted proteins to different substrates by functionalizing the membrane
surface with the adhesive molecule. In comparison to the widely applied Johnson-Kendall-Roberts
(JKR) test (Johnson et al., 1971) where solid hemispheres were used as adhesive probes
(Chaudhury and Whitesides, 1991; Shull, 2002), inflated membranes can lead to enhanced
sensitivity to adhesion by increasing the mechanical compliance of contact (Flory et al., 2007).
Another useful feature of using inflated membranes as probes is that their adhesive force with
another surface can be tuned by the applied pressure (Dening et al., 2014; Plaut, 2022a, 2022b),
thereby opening the door to pneumatic control of adhesive force for applications such as transfer
printing (Carlson et al., 2012) and soft robotic gripping (Song and Sitti, 2014; Song et al., 2017).
More recently, it has been demonstrated that by inflating or deflating a suspended elastic
membrane on a device, one can achieve switchable adhesive strength through the suction cup effect

(Song et al., 2021; Frey et al., 2022) or rigidity tuning (Swift et al., 2020).

From a theoretical perspective, the adhesive contact mechanics of pressurized elastic films
have been studied and reported in numerous previous works. Among these works, the underlying
elastic film was modeled as a plate with purely bending deformation (Plaut et al., 2003), a
membrane with purely stretching deformation (Williams, 1997; Plaut et al., 2003; Xu and Liechti,
2011; Zhu et al., 2017, 2018), or a von Karman plate with both bending and stretching deformation
(Plaut et al., 2003). It has been shown that if the film is thin and subjected to large deflection or

pre-stretch, the membrane model with purely stretching deformation is more appropriate
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(Komaragiri et al., 2005; Long et al., 2010), which is the regime considered in this work.
Specifically, here we analyze the problem of an inflated circular membrane in adhesive contact
with a rigid substrate, as schematically illustrated in Fig.1. To enhance the generality of our model,
we assume the substrate surface to be spherically curved with a radius of curvature R; (see Fig.1).
The special case of flat substrate is recovered by taking the limit of Ry approaching infinity. This
problem i1s motivated by the applications of membrane-based adhesion test (Laprade et al., 2013)
or soft robotic gripper (Song and Sitti, 2014). In these applications, the membrane often undergoes
large deflection which can also lead to large stretch within the membrane. To capture the nonlinear
effects associated with large deflection and stretch, finite deformation kinematics and hyperelastic
constitutive relations (Libai and Simmonds, 1998) should be used to model the membrane
deformation, which requires one to solve a set of nonlinear differential equations (Long et al.,
2010). Moreover, the boundary conditions associated with adhesive contact can change as the
contact area evolves. Therefore, solving the nonlinear membrane deformation upon adhesive
contact can be a challenging task. Existing studies in the literature mostly rely on numerical
methods (Long et al., 2010; Sohail et al., 2013; Srivastava and Hui, 2013; Patil et al., 2014, 2015).
In comparison to numerical methods, analytical methods can enable faster solutions and thus are
advantageous for exploring the parametric space during design or controlling the adhesive force

(e.g., for soft robotic gripper).

This work aims to develop an analytical model for the membrane contact problem illustrated
in Fig.1. It should be mentioned that Song et al. (2019) recently developed an analytical model for
the adhesion of inflated circular membranes on curved surfaces. Their model approximated the
deformed shape of free standing membrane (i.e., the membrane outside the contact region) as a
truncated cone, and was shown to capture the experimentally observed detachment process.
However, they also noted discrepancy due to the truncated cone approximation and suggested a
more accurate analysis to be carried out. Recently we presented a set of analytical solutions for the
Hertzian contact (i.e., frictionless and adhesionless) between an inflated membrane with various
surfaces (Yang et al., 2021). These solutions were based on an approximation found by Foster
(1967a, 1967b) for membranes made of the incompressible neo-Hookean solid under large stretch.
Here we extend this approach to adhesive contact. Specifically, Section 2 briefly summarizes the
analytical solution of inflated neo-Hookean membrane with large stretch and discusses the

boundary conditions for adhesive contact. The solutions for adhesive contact are presented in
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Section 3. Note that our solutions do not rely on any assumption regarding the deformed shape of
the membrane. To demonstrate the accuracy of our solutions, we build a Finite Element Analysis
(FEA) model to simulate the adhesive contact process of an inflated neo-Hookean membrane, and
compare our analytical solutions to the FEA results. The model for FEA simulation is described
in Section 4. In Section 5, we illustrate our solutions and the comparisons with FEM results for
two different contact scenarios inspired by soft robotic gripping (e.g., Fig.1c) and membrane based

adhesion tests (e.g., Fig.1d). Conclusions are given in Section 6.
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Figure 1. Schematics of adhesive contact between an inflated circular membrane and a rigid
spherical surface. (a) The inflated membrane is placed above the rigid sphere with radius Rs with
their axes of symmetry aligned. (b) Contact between the inflated membrane and the rigid sphere
can be established by either increasing the pressure P or decreasing the gap d. (c) Membrane
delamination by increasing the gap d under a fixed pressure P. (d) Membrane delamination by

decreasing the pressure P under a fixed gap d.



2. Analytical Model
2.1 Axisymmetric membrane deformation: kinematics and equilibrium

To analyze the adhesive contact problem illustrated in Fig.1, we first define the membrane
geometry and describe the underlying assumptions. As shown in Fig.2a, the membrane in its
undeformed configuration has a flat circular shape with radius £ and thickness /4. Before inflation,
the membrane is subjected to a uniform equibiaxial pre-stretch Ao and then is fixed at its edge. The
pre-stretched membrane, with a radius of b = Aof, deforms under a uniform pressure P and makes
contact with a rigid, spherically curved substrate with radius Rs. Both the deformed membrane and
the spherical substrate are axisymmetric. We assume that their axes of symmetry are aligned so
that their contact area has a circular boundary. The size of contact area can be controlled by varying
the pressure P or the gap d between the membrane’s edge and the substrate (Fig.1b). For example,
in the experiments of Laprade et al. (2013), the membrane was placed at a fixed gap d above the
substrate and was inflated under an increasing pressure P. Contact was established when P is
sufficiently large, while delamination was achieved by decreasing P (Fig.1d). Alternatively, one
can use the inflated membrane as an adhesive probe, i.e., indenting the inflated membrane on the
substrate by lowering the gap d and then detaching the membrane from the substrate by increasing

d (Fig.1c). In this case, the inflated membrane resembles the elastic hemisphere used in a JKR test
(Shull, 2002).

It has been widely observed that the adhesion between two surfaces is smaller when they are
approaching each other (i.e., making contact) than when they are being separated from an
established contact interface (Chaudhury and Whitesides, 1991; Vajpayee et al., 2008). Motivated
by this phenomenon known as “adhesion hysteresis” (Shull, 2002), we assume Hertzian contact
(i.e., frictionless and adhesionless) between the membrane and the substrate when they are making
contact, and adhesive contact when the membrane is being detached from the substrate. The former
problem of Hertzian contact has been solved in our recent work (Yang et al., 2021). This work
focuses on the latter problem of adhesive contact. Our goal is to obtain analytical solutions that
can relate the pressure P, the gap d, the radius of contact area a, and the contact force F' which is

the total force exerted on the membrane by the substrate and is positive in compression.
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Figure 2. Axisymmetric membrane deformation. (a) A schematic showing the kinematics of
membrane deformation. The material point at (p,0) in the undeformed membrane (i.e., the red
line) is displaced to (7, z) in the deformed membrane (i.e., the brown curve). Here the deformed
membrane is illustrated using the case in Fig.1c as an example, i.e., the membrane is undergoing
delamination while subjected to a pressure P. The contact angle « is defined as the angle between
the free standing membrane and the tangential direction of the spherical substrate at the contact
edge. (b) The two cases of solutions for an incompressible neo-Hookean membrane under free

inflation with Pb/2uh = 0.6 (or R/b = 1.67).

Our analysis is based on the well-established hyperelastic membrane theory (Libai and
Simmonds, 1998). Recall that the membrane only undergoes stretching deformation, i.e., it is so
thin that its bending rigidity is negligible. Specifically, each material point in the membrane is
subjected to two principal stretch ratios within the tangential plane of the membrane surface (i.e.,
the in-plane stretch ratios) and a principal stretch ratio along the thickness direction of the
membrane. Also, the stretching deformation is assumed to be uniform across the membrane
thickness. This implies that the stretch ratios in the membrane only depend on the two in-plane
coordinates of the undeformed membrane. Further simplification is enabled by the axisymmetry
of our problem, i.e., the membrane surface can be described by a curve in the r-z plane of a

cylindrical coordinate system (r, @, z). The origin of this coordinate system is located at the center



of the undeformed membrane which is represented by a line segment from » =0 to » = f (Fig.2a).
Therefore, the stretch ratios in the membrane are only a function of the coordinate p (0 <
p < p)along the undeformed membrane. After deformation, a generic point (p,0) in the
undeformed membrane is displaced to (r, z), forming a curve for the deformed membrane (Fig.2a).
Because of axisymmetry, the two in-plane principal stretch ratios, denoted as A1 and A2, are along
the longitudinal direction (i.e., within the 7-z plane) of the deformed membrane and the latitudinal
direction (i.e., along the ¢-direction). In particular, A1 quantifies the stretch from a segment dp in
the undeformed membrane to d& in the deformed membrane in the -z plane (£ is the arc length
along the deformed membrane; see Fig. 2a), while A2 quantifies the stretch from a circular
perimeter of 27p along the ¢-direction of the undeformed membrane to 27 in the deformed

membrane:

_ds

ﬂq_dp’ (1)
A= )
Yo,

The principal stretch ratios 41 and A2 correspond to two principal tensile stresses within the
tangential plane of the deformed membrane. Since the principal tensile stresses are uniform across
the thickness direction, one can multiply them by the membrane thickness and define the principal
line tensions (force per unit length). The principal line tensions along the directions of 41 and A2
are denoted as 71 and 7%, respectively. Equilibrium along the normal direction and the longitudinal

direction (i.e., along the arc length &) of the deformed membrane requires (Long and Hui, 2012;

Yang et al., 2021):

R, ®
dé r

d(T
( lr)=7*2’ (4)
dr

where @ is the angle between the longitudinal tangent of the deformed membrane and the r-axis

(see Fig.2a) and is given by



cos@zﬂ,sinez—. (5)
de
If the applied pressure P is uniform, one can substitute eq. (4) into eq. (3) and integrate with respect
to , which gives (Long and Hui, 2012; Yang et al., 2021):

P(r2 + Cl)
2Tir

sind =

(6)

where C 1s an integration constant.

2.2 Approximation for neo-Hookean membrane under large stretch

The line tensions 71 and 72 are governed by the stretch ratios A1 and A2 through the hyperelastic
constitutive relation of the membrane. Here we adopt the incompressible neo-Hookean model with

the following strain energy density function:

Wb (5 2222 -3), ™

where g is the shear modulus of the membrane and A3 is the out-of-plane principal stretch ratio.
Incompressibility implies that A3 is related to the two in-plane principal stretch ratios A1 and A2 by
A3 = 1/(A142). Using eq. (7), we first evaluate the two in-plane principal Cauchy stresses and
multiply them by the deformed membrane thickness A3/ to obtain the line tensions 71 and 72 (Long
and Hui, 2012):
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It should be noted that eqgs. (8) and (9) rely on the plane stress approximation that the out-of-plane
principal stress is zero. Although a pressure P is applied on the membrane surface, it is much
smaller than the in-plane tensile stresses and thus can be neglected in the constitutive relation of

T and 7> (Libai and Simmonds, 1998).



Under very large stretch (41 >>1 and A2 >> 1), the term 173153 in egs. (8) and (9) is negligible
in comparison to A, /1, or A,/44, leading to the following approximation,

A a0l
T ~uh—=~uh —. 10
| R H 2 H T, (10)

Foster (1967a) discovered that by using egs. (6) and (10), one can further integrate eq. (3) to obtain

the following expression:

P’ (r2 +C )2

.
T ey

(11)

where C1 is the constant in eq. (6) and C2 is an additional integration constant. A detailed derivation
of eq. (11) can be found in our recent work (Yang et al., 2021). Once C1 and C> are determined
using boundary conditions, eq. (11) governs how the angle @varies along the deformed membrane
(i.e., as r varies), from which one can obtain the profile of the deformed membrane by integrating

dz/dr = tan@.

2.3 Free inflation

Before the membrane can make contact with the substrate, its deformation is solely due to the
applied pressure P. This case is referred to as free inflation and has been solved in our previous
work (Yang et al., 2021). Here we briefly review this case to demonstrate the determination of Ci
and C2 from boundary conditions. Under free inflation, the center of the deformed membrane is

flat and subjected to equi-biaxial stretch:

0=0,4=4atr=0 (12)
The former condition (8= 0 at » = 0) and eq. (6) imply that C1 = 0. The latter condition (11 = A2 at
r=0) and eq. (10) imply that

T =T, =uhatr=0 (13)

By substituting eq. (13) into eq. (6) and comparing the resulting equation with eq. (11), we
conclude that C> = 0. Therefore, eq. (11) becomes



2
sin 0= L, . (14)
2uh

Based on eq. (14), one can use (dz/dr)’ = tan’@ = sin’@/(1— sin’@) to obtain the deformed
membrane profile z(r) by integrating dz/dr and enforcing the boundary condition at the fixed edge
(i.e.,z=0atr =b). As detailed in Yang et al. (2021), the resulting membrane profile is a spherical
cap with radius R = 2uh/P. However, there are two possible solutions under the same pressure P,
which are essentially the two caps of one sphere with radius R and are referred to as Case I and II
(see Fig.2b for example). Mathematically these two solutions can be obtained by restricting & to
be smaller than ©/2 at the fixed edge » = b (Case 1) or allowing & to be larger than n/2 at r = b
(Case II). The non-uniqueness of free inflation solutions for the neo-Hookean membrane is well
known in the literature (Foster, 1967b; Hassager et al., 1999). In particular, Case II corresponds to
an unstable branch of solutions where the membrane deflection decreases with the pressure (Yang
etal., 2021). For simplicity, here we focus our study for adhesive contact on the stable branch (i.e.,
Case I). For Case I solutions, the deflection at the apex of the inflated membrane, denoted as do, is

given by

d(,:—z(rzo):z—;‘f’— (M) -b*. (15)

Equation (15) is useful for the solutions of membrane contact since it provides the initial value of

gap d (see Fig.1b) when the apex of the inflated membrane just reaches the substrate.

2.4 Adhesionless contact

When the gap d is smaller than do, the inflated membrane makes contact with the substrate and
establishes a circular contact area with a circular boundary whose radius is denoted as a (see
Fig.3a). During this making contact stage, the membrane/substrate contact is assumed to be
adhesionless and frictionless. This problem has also been solved in our previous work (Yang et al.,
2021). Briefly, the membrane within the contact area conforms to the substrate and hence has the
shape of a spherical cap with radius Rs. This implies that the contacting membrane is effectively

inflated by P.— P, where P-. is the uniform contact pressure from the substrate and P is the applied
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pressure. Using the free inflation solution, we can obtain the following equation for the contact

pressure Pe:

P :P+—2£lh. (16)

s

Note that in the special case of a flat substrate, Rs approaches infinity and hence P. = P. The

compressive contact force F'is

F=raP. (17)

The contact radius a (see Fig.3a) needs to be solved using the membrane profile outside the contact
area. Specifically, we utilize the boundary conditions that the tangent angle & and the stretch ratios
(A1 and A2) are continuous at the edge of the contact area for adhesionless contact (Yang et al.,

2021). First, the tangent angle at the contact edge (r = a) is
0(r=a)=6, =arcsin(—a/R,), (18)

where @, is the angle between the tangential direction of the substrate at the contact edge and the
horizontal direction (see Fig.3a). Second, since the membrane within the contact area makes
conformal contact with the substrate, it has a spherical profile and is subjected to equi-biaxial
stretch. Therefore, at the contact edge (» = @) we expect that 41 = A2. Using these two boundary

conditions, one can determine the two constants Ci and C2 in eq. (11) as

Clzm_az:_[Hﬁ]cf and C, =0, (19)
P R

N

Recall that R = 244h/P is the radius of the freely inflated membrane with pressure P. Using eq. (19),

we can rewrite eq. (11) as

(P ~(1+R/R)a*)

sin® @ = e
r

(20)

The membrane profile z(7) outside the contact area can be obtained by integrating dz/dr determined
from eq. (20) and enforcing the boundary condition at the fixed edge (z =0 at » = b) (Yang et al.,
2021). This leads to closed-form analytical solutions for the membrane profile as well as relations

between the contact radius a, the applied pressure P, the contact force F' and the gap d. Here we
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will use these analytical solutions to describe the making contact stage between the inflated
membrane and the substrate (Fig.1b). If the making contact stage is controlled by reducing the gap

d, it is useful to define the contact displacement ¢ as the difference between d and do (eq. (15)):

o=d,—d. (21)
Making Contact Contact Pinning Delamination
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Figure 3. The three stages of contact between the inflated membrane and the spherical substrate.
(a) The making contact stage where the membrane makes adhesionless and frictionless contact
with the upper hemisphere of the substrate under increasing pressure P or decreasing gap d. (b)
The contact pinning stage where the membrane has a tendency of being detached from the substrate
due to the reversal of external loading (i.e., decreasing P or increasing d). Here the contact interface
between membrane and substrate becomes adhesive which resists the tendency of detachment (G
< Wud). The inset shows that a contact angle « and a discontinuity in the longitudinal line tension
T1 can develop at the contact edge. (c¢) The delamination stage where the membrane is continuously

detaching from the substrate in a quasi-static manner (G = Waq) under decreasing P or increasing

d.

2.5 Adhesive contact

After a certain contact radius (denoted as a = am) is established in the making contact stage, the
membrane is retracted from the substrate either by increasing the gap d (Fig.1c) or reducing the
pressure P (Fig. 1d). During retraction, the contact between membrane and substrate is adhesive.
Adhesion could be captured by introducing attractive tractions between the membrane and
substrate surfaces through a cohesive zone model (Hui et al., 2011). However, this would make it

difficult to derive analytical solutions. Here we follow the energetic approach adopted in the JKR
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theory (Johnson et al., 1971) and represent the effect of adhesion by the energy required to separate
a unit area of interface which is defined as the work of adhesion Waa. In this approach, adhesion
can provide a concentrated force pinning the contact edge (Fig. 3b), thereby enabling
discontinuities at the contact edge in terms of the tangential direction, stretch ratio, and tension of
the deformed membrane. For example, the non-contacting membrane does not need to remain
tangential to the substrate at the contact edge. Instead, it can make a contact angle of o with the
substrate (Fig. 3b), which is related to the tangent angle fat the contact edge through the following

equation:
O(r=a)=0,=a—arcsin(a/R,) . (22)

Note that for adhesionless contact, & = 0 and eq. (18) is recovered. Also, the longitudinal stretch
ratio 41 can be discontinuous across the contact edge, while the latitudinal stretch ratio A2 must

remain continuous due to the continuity in » (see eq. (2)). Because of the discontinuity in A1 at the

contact edge, we denote its value within and out of the contact region as A, and A4, , respectively.

Whether the membrane can be detached from the substrate is governed by an energetic criterion
that compares the energy release rate G with the work of adhesion Waa. It was derived (Long et al.,
2010) that the energy release rate for a neo-Hookean membrane under axisymmetric deformation

1S

G=T"(1-cosa)+ " wfﬂ{) P 1—3[’11—;} +2(ﬂ1—;] . (23
2| Ak )l W) TG

where 7" is the longitudinal membrane tension right outside the contact edge and can be

determined using eq. (8) with the stretch ratios 4, and A2 at the contact edge. At the beginning of

the retracting stage, G < Waa so that the contact edge remains pinned by adhesion, which will be
referred to as the contact pinning stage. During this stage, only the non-contacting membrane
responds to the external loading (e.g., increasing gap d or decreasing pressure P), causing the
energy release rate G to increase. Once G becomes equal to Waa, the membrane starts to be
detached from the substrate. This is the delamination stage during which the membrane is peeled

from the substrate and the equilibrium condition G = Waa is maintained for quasi-static peeling. It

13



is worth mentioning that for adhesionless contact (Section 2.4), the contact angle « is zero and the
stretch ratio A1 is continuous across the contact edge (i.e., 4, = 4 ). Plugging these two

conditions into eq. (23) results in G = 0, which is expected for adhesionless contact.

Apart from the adhesion criterion, we also need to specify the tangential behavior of the
interface, i.e., whether relative slip is allowed between the membrane and the substrate within the
contact region. Early analyses on membrane peeling assume no interfacial slip between the
contacting membrane and substrate (Kendall, 1971, 1975; Gent and Kaang, 1986; Williams, 1997;
Wan, 1999). More recently, it has been experimentally observed that the contacting membrane can
slide on the substrate while maintaining adhesion with it (Newby and Chaudhury, 1997, 1998;
Begley et al., 2013). Such slip is induced by the tangential component of the peel force and
depends on the adhesive interface. For example, Newby et al. (1995) showed that interfacial slip
can be controlled by functionalizing the substrate through a self-assembled monolayer. While the
effect of interfacial slip can be modeled by accounting for the mixed-mode condition of interface
fracture (Cheng et al., 2012), this would require a detailed characterization of the mode-dependent
adhesion as well as a local stress analysis at the interface crack tip (i.e., the contact edge) to
determine the mode-mixity (Hutchinson and Suo, 1991). To probe the effect of interfacial slip
while keeping the analysis tractable, we consider two limiting cases: no-slip and frictionless (Long
et al., 2010), which are also known as “sticking” contact and “sliding” contact, respectively (Wang
and Li, 2007; Begley et al., 2013; Collino et al., 2014). The former assumes infinite resistance to
interfacial slip while the latter assumes zero resistance. These two cases entail different boundary

conditions at the contact edge, which will be discussed in the following section.

3. Solutions of adhesive contact

Here we derive solutions for the membrane contact problem using the governing equations and
boundary conditions outlined in Section 2. These solutions are organized according to the three
stages illustrated in Fig.3. Recall that during the first stage (“making contact”), the
membrane/substrate contact is assumed to be adhesionless and frictionless, while adhesion is
included during the next two stages (“‘contacting pinning” and “delamination”) with either no-slip

or frictionless condition.
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3.1 Making contact

During this stage, the membrane profile outside the contact region (» > @) can be determined
by integrating eq. (20). As systematically discussed in our previous work (Yang et al., 2021), there
are several branches of solutions depending on the range of . Here we focus on Case I inflation
(see Fig.2b and Section 2.3) with < /2 at the fixed edge » = b. Moreover, we assume the contact
area is within the upper hemisphere of the substrate. These two assumptions imply that the range
of @1is from — n/2 to n/2. Using this range and eq. (20), it can be derived that the non-contacting

membrane profile is given by

o (s-(1+R/R)a’)

z(r)=

- zds (a<r<bh), (24)
r b\/st2 ~(s*=(1+R/R,)d’)

where s is an integration variable, R = 2uh/P, and R; is the radius of the spherical substrate. Based

on eq. (24), the gap d between the membrane’s fixed edge and the apex of the substrate is

2 2
d—j [-(+R/R)) ds—R +\R>—a’* . (25)

y b\/st2 (s —(1+R/Rs)a2)2
In addition, the contact force F' given in eq. (17) can be rewritten as follows using eq. (16):
F=7m2P(1+R/RS). (26)

The membrane profile within the contact region is a spherical cap with radius Rs. Since the
contact interface is adhesionless and frictionless, the tractions exerted by the substrate on the
membrane are normal to the interface (i.e., the contact pressure P.) and should be uniformly
distributed to maintain the spherical profile of the contacting membrane (Yang et al., 2021). To
facilitate the calculation of the energy release rate G during retraction, it is important to determine
the stretch ratios in the contacting membrane. We use the fact that the contacting membrane is
subjected to equi-biaxial tension, i.e., A1 = A2, due to its spherical profile (Yang et al., 2021). Note
that this does not imply that 41 and A2 are uniform in the contacting membrane. Instead, 41 and A2
are larger at the center of the contacting membrane and decrease as the contacting edge is
approached (Yang et al., 2021). Using the condition 41 = A2 and egs. (1), (2) and (5), we can write

the following equation for the contacting membrane (7 < a@):
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F_r 27)
dp cos@dp p
The spherical profile of the contacting membrane leads to the following identity:
}"2
cosf = [1-— forr<a. (28)

s

Substituting eq. (28) into eq. (27) and integrating from the center of the contacting membrane (r =

0 and p=0), we have

. 2 .
I, RgRirz %dr:fp Zdp. (29)
where 7* (< a) represents a generic point within the contacting membrane and p  is the
corresponding material coordinate. There is a removable singularity in eq. (29) at the center (» =0
and p = 0). To address this issue, we denote the equi-biaxial stretch ratio at the center as A. and
replace the lower integral limits in eq. (29) by » = € and p = £/Ac where ¢ is a small length (& <<
a). This allows us to integrate eq. (29) and obtain

1+y1-(¢/R) .

In r —lngzln(lcp*)—lng. (30)
1+ 1-(F /R )

The removable singularity of eq. (29) is reflected in the Ing term as ¢ approaches 0. Cancelling the
Ing term on both sides and taking the limit of € — 0, we have

A(r)=24(r) ’”Z—ﬂclwl_(; '2) 31)

for " < a.

Equation (31) can also be recast into the function p'(+"), i.e., the material coordinate at any point

(r* < a) within the contact region. It is worth noting that if the substrate is flat, Ry approaches
infinity and hence eq. (31) is reduced to 4,(r')=A,(r )=r"/ p = A_, implying that the contacting

membrane is under uniform equi-biaxial stretch. This is expected given that the contact interface

1s flat and frictionless.
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Although eq. (31) specifies the variation of stretch ratios within the contacting membrane, it is
subjected to an unknown coefficient Ac. This coefficient can be determined by considering the non-
contacting membrane (r > a). Specifically, combining eqgs. (6) and (11), we find that the non-

contacting membrane must satisfy
2 2712 C2
I'=wh +—  (rza. (32)

Moreover, after applying the approximation in eq. (10) and using eqgs. (1), (2) and (5), we obtain

2
(@Y _wree, .
cos’ @\ dp -

Given that the non-contacting membrane satisfies eq.(20) and C2 = 0 according to eq. (19), we can

rewrite eq. (33) as

! = dr=ldp for r > a, (34)
\/rz—(rz—(1+R/Rs)az) /R P

where we have applied the condition that &1is between —n/2 to /2 (hence cos@> 0) due to the two
assumptions of Case I inflation and upper hemisphere contact. Integrating eq. (34) from the contact

edge (r = a) to the fixed edge (» = b) gives the following result:

b
| 1 ——dr=1n b (35)
a\/rz—(rz—(lJrR/Rs)az) /R AP,

where p. and b/Ao are the material coordinates at the contact edge and fixed edge, respectively.

Equation (35) allows us to determine the material coordinate p. for a given contact radius a. Once

pq 1s found, it can be plugged into eq. (31) to determine A, i.e.,

1 = 2a (36)

c pa(1+1/1—(a/Rs)2)’

which, together with eq. (31), can be used to fully determine the stretch ratios within the contacting

membrane.
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In summary, during the making contact stage, we have obtained analytical solutions for the
membrane profile in eq. (24), the gap d in eq. (25), the contact force F in eq. (26), the material
coordinate at the contact edge p. in eq. (35), and the biaxial stretch ratios in the contacting
membrane in eqs. (31) and (36), all of which are expressed as functions of the contact radius a and

the applied pressure P (through R = 2uh/P).

3.2 Contact pinning

At the end of the making contact stage, a contact area with radius a» has been established. The

material coordinate pa.m at the contact edge » = am can be determined using eq. (35):

b
oo _ L xp| - | 1 —dr | with R, _2uh (37)
A | a P (P -+ R, R )G ) IR #

where P is the applied pressure at the end of the making contact stage. During the contact pinning
stage, G is no longer zero, but is less than Waq so that the membrane is not yet detaching from the
substrate. Therefore, the material coordinate of the contact edge remains unchanged during this
stage, i.e., pu = pam, but the contact angle « can be non-zero (see Fig.3b) and the stretch ratio 4
can be discontinuous at the contact edge. In particular, the non-contacting membrane can change
its shape in response to the external loading (i.e., increasing gap d or decreasing pressure P),
leading to an increasing contact angle a. Whether the contact radius a changes or not depends on
the tangential boundary condition. Specifically, under the no slip condition, the contacting
membrane is locked on the substrate during contact pinning, implying that the contact radius a
remains fixed, i.e., @ = am. However, under the frictionless condition, the contacting membrane
can slide on the substrate freely and hence can change its stretch in response to the external loading,
which can cause changes in the contact radius a. This difference needs to be captured by assigning

different boundary conditions at the contact edge as elaborated below.
3.2.1 No slip condition

Under this condition, pa = pam and a = am. The deformed profile of the non-contacting
membrane is still governed by eq. (11), but the constants Ci and C: are different from those in eq.

(19) for the making contact stage. To determine them, we first note that eqs. (32) and (33) rely
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only on the large stretch approximation and are still valid for adhesive contact. Combining egs. (6)

and (32) and knowing that 71 > 0 based on eq. (10), we obtain:

P(I”2+C1) _ F2+C1
2\/,uzhzr2 +C, R\/r2 +C, ’

sin@ = (38)

where we have defined 52 =C,/ 4°h’ to simplify notation and used R = 24/1/P. Right outside the

contact edge (r = am), 6 1s equal to &: which is related to the contact angle « through eq. (22).

Applying this boundary condition to eq. (38) and using eq. (22), we have

2
C = 1—(2—’"] sina—%cosa R\a: +C,-d’. (39)

N s

Another equation is required to solve for the two unknowns C1 and 52 . This can be obtained by
substituting cos?@in eq. (33) by 1 —sin’@and using eq. (11), which results in
1
JP+8)-(P+c) iR

Integration of eq. (40) from the contact edge (p= pam and r = am) to the fixed edge (p= b/Ao and r

dr|=l
dp| p’

(40)

= b) can provide an additional equation for C1 and 52 . However, we note that dr/dp in eq. (40) is

not always positive as illustrated in Fig.4. Since the range of contact angle « is from 0 to m, it is

possible for @, which is equal to « —arcsin(am / RS), to exceed m/2. This results in a negative
cos b, implying that r first decreases from the contact edge until a transition point » = 7 where 8=
n/2 and then increases to reach the fixed edge (r = b) (Fig.4b). Below we consider the two
possibilities shown in Fig.4. If &< /2 (Fig. 4a), dr/dp is positive throughout the non-contacting
membrane. Therefore, integrating eq. (40) from the contact edge to the fixed edge gives

b
% =1In .
Pan /10 p am

(41)

jb 1 dr=Inp
" P +C)- () R

If 8.> n/2 (Fig. 4b), dr/dp is first negative between » = 77 and » = am and then negative between r

= n and r = b, which results in the following equation:
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The transition point 7 can be determined by setting = n/2 at » = n7in eq. (38), i.e.,

Ry*+C, =n*+C,, (43)

which is essentially a quadratic equation for 77 and has two possible solutions:

(B 6o R+ K
n _( > q}_r\/(c2 C )R+ T (44)

Since 77 < am, the solution in eq.(44) that is between 0 and a_ should be selected.

a 9{:5 /2 b 9,_, > T/2
Z
4
P i "
Y 5 gy e I frran 4 L_ Sy
5 .!--'j:. ’( k ..-h' --}F A WA 1.- -i\“i’-ﬁ!_\_. i ._,__rla"'"!--.' A
h Fixed edge: d NP Fixed edge:
¥ ™, r=h e h.".."_" ' i (] F=b, = hid
o 1 S
y “I.
Contact edae: Contact edge:

F =8y P= P F 50 7= P

Figure 4. Contact pinning under no slip condition. (a) Membrane profile when 6, < /2. Along the
non-contacting membrane, the radial coordinate » monotonically increases from the contact edge
(r = am) to the fixed edge (» = b). (b) Membrane profile when &.> n/2. Along the non-contacting
membrane, the radial coordinate 7 first decreases from an to 77 and then increases from 7 to b. (c-

d) Free body diagrams for the contacting membrane (including the contact edge) when (c) 6 <
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7/2 and (d) 6:> /2. The insets show zoomed-in views of the localized normal and shear interface

tractions at the contact edge that underlie the concentrated adhesion force.

For a given contact angle « (0 < a <), the two constants Ci and 52 can be determined using
eqs. (39) and (41) when a <n/2 + arcsin(an/Rs) or using eqgs. (39) and (42) when o >
1/2 + arcsin(am/Rs). However, closed-form solutions for Ci and 52 are not available for any « in
general. Instead, they need to be solved for numerically. Specifically, one can substitute eq. (39)
into eq. (41) or (42) and solve for 52 first and then Ci. Once Ci1 and 52 are determined, we can

use the eq. (38) to obtain the following governing equation of the non-contacting membrane profile:

dz'Y sin® @ (”2+C1)2
(_J an® 6= _ . (45)

dr) T 1=sin’ 0 R2(240,)= (4G

Integration of eq. (45) depends on & or the contact angle & (i.e., the two cases in Fig.4). If &, <

n/2 (Fig. 4a), we have

z(r)z—ji S2+C1

r\/Rz(s2+52)—(sz+Cl)2

ds (am<r<b). (46)

If 8.> n/2 (Fig. 4b), the non-contacting membrane profile is obtained by joining two branches of

the z(r) function:

_j' S2+C1 zds n<r<b
0 R (s2+8)~(s2+C) o
Z\r)= .

—I 4G zds—b s 4G =ds n<r<a,

R (2+C)-(v+0) 1R (s+C)~(2+C)

Using eq. (46) or (47), we can evaluate the gap d (see Fig.4) as

d=-z(r=a,)-R +\R -a, . (48)
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Next we derive the contact force F' during contact pinning. Because of adhesion, the contact
force F includes two contributions, one from the contact pressure and the other from the adhesive
traction on the interface. The adhesive traction should include components that are tangential and
normal to the interface. In particular, the tangential component (i.e., interface shear stress) results
from the constraint that the contact membrane is locked on the substrate, while the normal
component resists separation between the membrane and the substrate (see the insets of Fig.4c-
4d). It has been shown in the literature that for a pre-stretched elastic film perfectly bonded to a
stiff substrate, the interface traction is localized in a small stress transfer region near the edge of
the film, the size of which is on the order of the film thickness (Yu et al., 2001). Given that the
membrane thickness 4 is much smaller than the characteristic length scale of our problem (e.g.,
contact radius a), we have represented the stress transfer zone as a point at the contact edge, and
the adhesive traction as a concentrated adhesion force at the contact edge. Axisymmetry dictates
that the two contributions from the contact pressure P. and the adhesion force result in a net force
along the z-axis, which is the contact force F (positive when compressive). Using the free body

diagrams shown in Fig.4c-4d and enforcing equilibrium, £ is found to be
F=ra P-2ra,T"sind,, (49)
where 7" is the longitudinal line tension right outside the contact edge (r = am) and can be

evaluated using eq. (32), i.e., T;" = uhy1+ 62 / a,i . Using this result and eq. (22), we can rewrite

eq. (49) as

=—zPC,, (50)

where we have used R = 2uh/P. A special case worth pointing out is the beginning of contacting
pinning when & = 0 and C, = 0. Using these values, eq. (50) is reduced to F = ma,P(1+R/R,)
which recovers the adhesionless contact solution in eq. (26).

The energy release rate G is expected to increase from 0 during contacting pinning. To evaluate
G, we use eq. (23) and implement the large stretch approximation and the equi-baxial condition in

the contacting membrane (4, = 4,) to obtain:
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G:]T(l—cosa)-i-%h[%— j : (51)

Since A" /A, =T" | uh=4J1+C /@, we can further rewrite eq. (51) as
1 2

— — 2
%: 1+%(1cosa)+%£ /1+%21] . (52)
ﬂ a’n am

In summary, for contact pinning under the no slip condition, we prescribe the contact angle o
and numerically solve the two constants C1 and 52 . The membrane profile, gap d, contact force F/

and energy release rate G can all be computed using analytical solutions given above.

3.2.2 Frictionless condition

Under this condition, adhesion only prevents normal separation of the contacting membrane
from the substrate but cannot resist sliding of the contacting membrane on the substrate. Therefore,
the contacting membrane can freely adjust its stretch, resulting in a changing contact radius a while
the material coordinate of the contact edge p. remains fixed at pum. On the other hand, the absence
of interface shear traction implies that the adhesion force (see Fig.4c-4d) does not have any
component along the tangential direction of the interface, which leads to the following local force

balance at the contact edge:

I'cosa=T, (53)

where 7" and 7, are the longitudinal line tension at the contact edge from the non-contacting and

contacting parts of the membrane, respectively (see the inset of Fig.3b). Applying the large stretch

approximation in eq. (10), we can rewrite eq. (53) as

A _ ph

Cosar=—=="—
AT

(54)

where we have used the condition that the contacting membrane is under equal-biaxial stretch

(A4 =4,)) so that I;” = uh . Equation (54) implies that the contact angle a < /2 so that cosa > 0,
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otherwise the tangential force balance in eq. (53) cannot be satisfied. This is different from the no
slip condition where & can exceed 7/2. The line tension 7, can be determined by applying eq. (32)

at the contact edge (» = a), based on which we can rewrite eq. (54) as
C,=d’tan’ . (55)

To solve for C1, we substitute eq. (55) into eq. (38) and utilize & (r = a) = € and cosa > 0, which

gives

coSa

N s

. 2
C1=M—a2=aR 1—[%] tana—[lJr%jaz, (56)

where we have used eq. (22) to relate 6; and «. Unlike the no slip solution where the contact radius
is fixed during contact pinning, here the contact radius a can change as the contact angle o
increases. To determine a, we note that eq. (40) is still valid for the non-contacting membrane and
the material coordinate at the contact edge remains at pum. Since here a < n/2, we conclude that &,
< n/2, implying dr/dp > 0 for the non-contacting membrane, i.e., only the scenario in Fig.4a is
possible for the frictionless condition. Using this condition and integrating eq. (40) from the

contact edge (o= pam and r = a) to the fixed edge (o= b/4o and r = b), we obtain

[ ! dr=tn—2— (57

a 2 ﬂ/
\/(rz +a’ tan’ a)—(r2 +aR\1-(a/R.) tana—(1+R/RS)a2) / R? 0Pan

where pum is given by eq. (37) and we have substituted 52 and Ci using eq. (55) and (56),

respectively. Equation (57) allows us to determine the contact radius a numerically for a given

contact angle a. After that, the C, and Ci can be readily calculated, and hence the profile of the

non-contacting membrane can be determined using eq. (46) except that the range of » should be

changed to a <r <b. The gap d is evaluated using the z(») function in eq. (46):

d=-z(r=a)-R +\R*~a*. (58)
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Similar to Section 3.2.1, the contact force F and energy release rate G are still respectively

given by eq. (49) and (51) except that the contact radius an should be replaced by a. Here since

T," = uh/ cosa , the contact force F' can be further simplified to

2
F=rnP (l+§]a2—aR 1—(%] tana |=-7PC,. (59)

N N

The energy release rate G is

2 2
G l-cosa 1( 1 _lj :tan a. (60)

E_ cosa 2\ cosa 2

Interestingly, eq. (60) shows that G approaches +o as « approaches 772, consistent with the

constraint o < /2 from eq. (54).

In summary, for contact pinning under the frictionless condition, we prescribe the contact angle

a, numerically determine the contact radius a from eq. (57) and then calculate the two constants
Ci1 and 52. The membrane profile, gap d, contact force F' and energy release rate G can all be

computed using analytical solutions derived in this section.

3.3 Delamination

The contact pinning stage ends when the energy release rate G reaches the work of adhesion
Waa. After that the contacting membrane starts to be detached from the substrate. Consequently,
the material coordinate of the contact edge, denoted as puq, is smaller than its counterpart oum
during contact pinning and continues to decrease during delamination. Therefore, in this stage we
solve for the membrane deformation under a given pas (0 < pua < pam). The contact angle « is no
longer prescribed, but is rather determined from the equilibrium equation for quasi-static
delamination: G = Waa. Most of the analytical solutions in Section 3.2 can still be applied for this

stage as detailed below.

3.3.1 No slip condition
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Under the no slip condition, the membrane in the contact region (0 < p < paq) remains fixed
on the substrate. Therefore, we can determine the contact radius as corresponding to puq using the
deformation field established in the making contact stage (Section 3.1). Specifically, as and pud

can be identified as »* and p" in eq. (31). Moreover, using eq. (36) to substitute Ac, we obtain

1

a4 NI (4R (61)

Pam Ay 1+ 1—(ad/RS)2

The contact pinning solutions in Section 3.2.1 can be applied here provided that pu» and am are
replaced by pud and aq, respectively. However, the contact angle « is not given and needs to satisfy

the condition G = Waq4. Using eq. (52) and replacing am by as, we have

— — 2
/4
— = 1+£§(1—cosog)+l 1+£§—1 : (62)
Lh a, 2 a,

With eq. (62), we can solve for « through an iterative process. Specifically, for a set of given pus
and a4, we start with an initial guess of « and follow the procedures outlined in Section 3.2.1 to
solve for C1and 52 with pum and am replaced by pas and aq. The resulting 52 , together with o and
aa, are then substituted into the right hand side of eq. (62) to test whether this equation is satisfied.
If not, « is adjusted iteratively until eq. (62) is satisfied. Once « and the corresponding Ci and 52
are determined, we follow egs. (48) and (50) to determine the gap d and contact force F with am
replaced by aua.

3.3.2 Frictionless condition

Under the frictionless condition, the contact radius « corresponding to pus is not known.
However, eq. (60) shows that the energy release rate G depends only on the contact angle . Since

G = Waa during the delamination stage, we expect a constant contact angle given by

o = arctan 2% , (0<a<n/2). (63)
U
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Using this contact angle a, we can solve for the contact radius a from eq. (57) with pam replaced
by pua. After that, the constants C1and C,, the gap d, and the contact force F can be determined

from egs. (56), (55), (58) and (59), respectively.

4. Finite Element Analysis

We developed an axisymmetric Finite Element Analysis (FEA) model using a commercial
software package ABAQUS (version 2021, Simulia, Providence, RI) to simulate the inflation of a
neo-Hookean membrane and its contact with and delamination from a rigid substrate. The FEA
model is capable of simulating the contact mechanics between the inflated membrane and
substrates with different curvatures and adhesive interactions. Below we briefly describe the FEA
model and the simulation procedures. Since the purpose of the FEA model is to provide
independent results for comparison with our analytical model, we have only shown selected FEA

results in Section 5 and the corresponding model parameters are specified below.

The membrane in its undeformed state is a circular sheet with a radius of = b/A0 =1 mm and
a thickness of # = 1 um. It is modeled as an axisymmetric, deformable part and is meshed using
the two-node axisymmetric shell elements (SAX1) with a uniform mesh size of 2 pum. The material
model adopted for the membrane is the incompressible neo-Hookean solid with a shear modulus
of ©£=2 MPa. The spherically curved substrate with a radius of Rs = 1 mm was modeled using an
axisymmetric, analytically rigid wire which does not require meshing. Centers of the membrane
and the substrate are both placed on the axis of symmetry. To simulate adhesion between the
membrane and the substrate, we use the cohesive interaction feature in ABAQUS defined by a
damage initiation criterion driven by the maximum interfacial stress and a damage evolution rule
based on the energy release rate. We have used a maximum interface stress of omax = 50 kPa and
a work of adhesion of Was= 0.4 J/m* for the cohesive interaction. The two limiting cases of
tangential interface behaviors, no slip and frictionless conditions, are modeled by choosing specific
initial stiffness coefficients K of the cohesive traction-separation relation, i.e., isotropic (Kun = Kss
= Ku) for the no slip condition and zero-shear (Kss = K = 0) for the frictionless condition, where
the subscript n represents the normal direction of the interface and the subscripts s and ¢ represent

the two tangential directions of the interface.
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Each simulation consists of three steps. First, an equi-biaxial planar stretch of Ao = 2 is applied
to the membrane so that its radius becomes b =2 mm. Second, the membrane is inflated and makes
contact with the substrate. This is achieved either by inflating the membrane to a pressure P and
then reducing its gap with the substrate with the pressure kept constant or by moving the substrate
to a certain gap d below the membrane and then inflating the membrane under an increasing
pressure. The former loading method will be referred to as displacement control, and the latter will
be referred to as pressure control. During this step, the contact between the membrane and the
substrate is effectively adhesionless, because the cohesive interaction defined above is not
activated until a contact interface is established and thus does not provide any adhesive tractions
when the contact radius is increasing. Third, the last step simulates the contact pinning and
delamination stages, which is achieved by increasing the gap with the pressure kept constant
(displacement control) or reducing the applied pressure with the gap kept constant (pressure
control). During this step, the cohesive interaction can provide adhesive tractions across the contact
interface to resist separation. The external loadings, i.e., pressure and displacement, are applied
following a linear ramp. The first step (pre-stretch) and the second step (inflation and making
contact) are carried out using the Static solver of ABAQUS. For the third step (contact pinning
and delamination), to aid numerical convergence we switch to the Dynamic/Implicit solver.
Results for the contact force, contact displacement and applied pressure are extracted from the

FEA simulations and compared with those from the analytical model for validation.

5. Results and Discussions

In this section we illustrate results of our analytical model for the three stages of membrane
contact. To facilitate discussion, we first categorize the parameters of our analytical model into
two types: 1) loading parameters that vary during the contact process: applied pressure P, gap d (or
contact displacement 0), contact force F' and contact radius a; i1) system parameters that remain
constant during the contact process: pre-stretch Ao, membrane stiffness s, membrane radius b,
substrate radius Rs, work of adhesion W4, the maximum contact radius am» achieved after the
making contact stage and the corresponding material coordinate pu». With a set of prescribed
system parameters, our analytical model can provide solutions relating the loading parameters.

Specifically, we consider two experimentally motivated scenarios of membrane contact:

28



displacement control (Section 5.1) and pressure control (Section 5.2), where the contact process is
implemented by controlling the gap d under a fixed pressure P or controlling the pressure P under
a fixed gap d, respectively. In both scenarios, our focus is on calculating the contact force F

(positive when compressive) since it is typically measureable in experiments.

To reduce the number of independent variables, we set the pre-stretch at Ao= 2 and normalize
the loading and system parameters using the membrane stiffness g4 and the radius b. For example,
the normalized pressure is Pb/2uh, where the factor 2 is motivated by the fact that 2.44/P is the
free inflation radius R and hence Pb/2uh can be interpreted as b/R. Accordingly, the other
parameters are normalized as follows: gap d/b, contact displacement &/b, contact force F/2uhb,

substrate radius Rs/b, work of adhesion Wad/ pth, and the maximum contact radius am/b.

5.1 Displacement control

Under displacement control the inflated membrane is essentially a spherical adhesive probe
with a radius of R = 2uh/P. Here our goal is to obtain the contact force F as a function of the
contact displacement ¢. The making contact stage is analogous to the Hertzian contact between an
elastic sphere and a rigid sphere, except that here the elastic sphere is replaced by the inflated
membrane (i.e., a hollow spherical probe). In this stage, we first prescribe a contact radius a in the
range of 0 < a < am and use eqgs. (24), (25) and (26) to determine the membrane profile, gap d and
contact force F, respectively. Since the applied pressure is fixed at P, the Pn in eq. (37) is now

equal to P.
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Figure 5. Representative results for membrane contact under displacement control with no slip
condition. (a) Normalized contact force F/2uhb versus normalized contact displacement &/b. The
solid line (“ANA”) is obtained using our analytical model and the dashed line (“FEA”) represents
the FEA result. (b) Deformation profiles of the membrane at six different points in (a). The
parameters used are Pb/2uh = 0.6, Wad/pth = 0.2, Ri/b = 0.5 and aw/b = 0.25.

Results for the stages of contact pinning and delamination depend on whether the no slip or
frictionless condition is adopted. We first consider the no slip condition. During contact pinning,

we gradually increase the contact angle o from 0. For a given «, we follow the procedures
described in Section 3.2.1 to solve for the two constants C1 and 52 , and then the membrane profile,

gap d and contact force F using eq. (46) or (47), eq. (48) and eq. (50), respectively. Meanwhile,
the energy release rate G for any given « is determined using eq. (52). When G becomes equal to
Waa, the delamination stage begins. During delamination, the contact angle « cannot be prescribed.
Instead, we gradually change the contact radius as from an to 0 and use eq. (62) to solve for the
corresponding contact angle ¢, after which the membrane profile, gap d and contact force F can
be determined following the procedures described in Section 3.3.1. A representative result is
shown in Fig. 5a where the contact force F (positive when compressive) is plotted as a function of

the contact displacement O calculated from the gap d using eq. (21). The membrane profiles at six
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different points along the /-0 curve are shown in Fig. 5b. Also plotted in Fig. 5a is the F-o curve
obtained from FEA simulation, which agrees well with our analytical model. Interestingly, despite
that our solutions are obtained based on the nonlinear neo-Hookean membrane model, the F-6
relation during contact pinning (Point 3 to 5) is approximately linear, indicating a constant contact
stiffness during this stage. Note that the FEA result does not cover the entire delamination stage
(Point 5 to Point 6 and Point 1) due to convergence difficulties. In contrast, the analytical model

is capable of providing a full solution for the delamination stage.
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Figure 6. Parametric study for membrane contact under displacement control with no slip
condition. (a) Effect of adhesion Wad/pth with Pb/2uh = 0.6 and Rs/b = 0.5. (b) Effect of applied
pressure Pb/2uh with Wad/pth = 0.2 and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Wad/ 1ih
=0.2 and Pb/2uh = 0.6. For all results we have used an/b = 0.25.

The analytical model allows us to perform a parametric study efficiently, as demonstrated in
Fig.6 where we show how the work of adhesion Wa4/uh, applied pressure Pb/2uh and substrate
radius Ry/b affect the contact process. Specifically, Fig.6a shows that the work of adhesion W4
does not affect the stage of making contact and the stiffness (i.e., the slope of F-6 curve) during
contact pinning but can increase the pull-off force (i.e., the most negative value of F' during
delamination). This is expected since Waa determines only when the delamination stage is initiated
and how it progresses. Figure 6b shows the effect of applied pressure P: a higher P tends to
decrease the contact stiffness, as reflected in the smaller slope of the F-J curve, and reduce the

pull-off force. This trend is attributed to the smaller free inflation radius R (= 24/P) under a higher
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pressure P. Finally, Fig.6c shows that a larger substrate radius Rs tends to increase the contact

stiffness and pull-off force. Note that the limiting case of Ry/b = o represents a flat substrate.
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Figure 7. Representative results for membrane contact under displacement control with
frictionless condition. (a) Normalized contact force F/2uhb versus normalized contact
displacement &/b. The solid line (“ANA”) is obtained using our analytical model and the dashed
line (“FEA”) represents the FEA result. (b) Deformation profiles of the membrane at six different
points in (a). The parameters used are Pb/2pth = 0.6, Waa/pth = 0.2, Rs/b = 0.5 and an/b = 0.25.

Next we consider the frictionless condition. During contact pinning, for a given a, we first

solve for the contact radius a using eq. (57), based on which the two constants Ci and 52 can be

determined using egs. (56) and (55). With the values of Ci and C_’z, the membrane profile, gap d

and contact force F are calculated using eq. (46) (with an replaced by a), eq. (58) and eq. (59),
respectively. Since the energy release rate G is directly related to the contact angle « through eq.
(60), we can easily determine when the delamination stage begins as G reaches Waqs. During
delamination, eq. (63) suggests that the contact angle is a constant, which greatly simplifies the
solution process. Specifically, during delamination we prescribe the material coordinate of the

contact edge ud (0 < pud < pam) and follow the procedures described in Section 3.3.2 to determine
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the membrane profile, gap d and contact force F. A representative result is shown in Fig. 7a in
terms of the F-o curve with the corresponding membrane profiles given in Fig.7b. The shape of
the F-ocurve in Fig.7a closely resembles that for the no slip condition (see Fig.5a), but quantitative
comparison reveals that the frictionless condition leads to slight decreases in the contact stiffness
and pull-off force. The FEA result shown in Fig.7a is obtained using the zero-shear setting for the
cohesive interaction (see Section 4) and agrees well with the analytical model except near the end
of delamination (i.e., beyond Point 6 in Fig.7a). This discrepancy is due to the displacement
controlled loading in the FEA simulation, i.e., the delamination stage is simulated by
monotonically decreasing the contact displacement o (or increasing the gap d). As a result, the
segment from Point 6 to Point 1 in Fig.7a is not accessible to the FEA simulation. Instead, we
observe a sudden pull-off in the FEA simulation where the contact radius jumps to zero when the
minimum contact displacement (or the maximum gap) is achieved. This pull-off behavior is
essentially the onset of unstable interface crack propagation and is similar to that found in the JKR
theory (Johnson and Greenwood, 2013). In experiments the point of pull-off also depends on the
compliance of the loading device (Johnson and Greenwood, 2013). We also performed a
parametric study for the frictionless condition. The results, illustrated in Fig.8, show similar trends
as those observed for the no slip condition (see Fig.6). It is worth noting that the difference caused
by the no-slip and frictionless conditions is overall small but becomes more pronounced for the

flat substrate (see the case of Rs/b = « in Fig.6¢ and Fig.8c).
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Figure 8. Parametric study for membrane contact under displacement control with frictionless
condition. (a) Effect of adhesion Wad/pth with Pb/2uh = 0.6 and Rs/b = 0.5. (b) Effect of applied
pressure Pb/2uh with Wad/pth = 0.2 and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Wad/ 1ih
= 0.2 and Pb/2uh = 0.6. For all results we have used an/b = 0.25.
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5.2 Pressure control

The scenario of pressure control is motivated by experimental works that used an inflated
membrane for adhesion measurement (Flory et al., 2007; Laprade et al., 2013). In this scenario,
the pre-stretched membrane is placed at a fixed gap d above the substrate. The process of making
contact and delamination is implemented by increasing and decreasing the pressure P. Similar to
Section 5.1, our goal here 1s to compute the contact force ' as the applied pressure P changes. To
start the making contact stage, the pressure P should exceed a critical value P.r at which the
membrane deflection under free inflation (i.e., do in eq. (15)) is equal to the fixed gap d, since this
is the point where the apex of the inflated membrane first reaches the top of the substrate. Using
eq. (15), we find the normalized critical pressure Pc-b/2uh to be:

Pb _ 2(d/b)
2uh (d/bY +1°

(64)

Recall that in this work we focus on the Case I solution of free inflation (see Fig.2b), which
imposes an upper limit for the gap, i.e., d < b. Under this constraint, P, is an increasing function
of d. Note that it is possible for d to be negative. In this case, a negative Pcr is needed to maintain
point contact between the membrane and the substrate. When solving for the making contact stage,
we prescribe a contact radius a (0 < a < am) and numerically solve the pressure P (P > Pcr) from
eq. (25) to match the given fixed gap d. After that the membrane profile and contact force F are
calculated using eqs. (24) and (26), respectively.

The contact pinning and delamination stages depend on whether the no slip or frictionless
condition is assumed. We first consider the no slip condition. During contact pinning, we gradually
decrease the pressure P from Pn (i.e., the applied pressure at the end of the making contact stage).

For each prescribed P, we assume a contact angle ¢, solve for the two constants Ci and (_72, and

examine whether eq. (48) is satisfied with the fixed gap d. This allows us to iteratively determine
the contact angle o needed to enforce constant gap d under a decreasing pressure P. Once « is
determined, the membrane profile, contact force F' and energy release rate G can be calculated
using eq. (46) or (47), eq. (50) and eq. (52), respectively. The delamination stage starts when G =
Waa. During delamination, we prescribe a contact radius as ranging from an to 0 and numerically
solve for the contact angle « and the pressure P to enforce eq. (62) and the constant gap d, after

which the membrane profile and contact force F' can be determined accordingly following Section
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3.3.1. A representative result is shown in Fig. 9a where the contact force F is plotted as a function
of the pressure P. The membrane profiles at six different points along the /-6 curve are shown in
Fig. 9b. For this example, the fixed gap d = 0, indicating that the flat, pre-stretched membrane is
already in point contact with the top of the substrate (see membrane profile at Point 1 in Fig.9b).
As a result, the contact force F' starts to increase as soon as the pressure P is larger than zero.
Interestingly, the F-P curve in Fig.9a has a similar shape as the F-d curve in Fig.5a, despite the
distinct scenarios of load control. The FEA result shown in Fig.9a also agrees well with our

analytical model.
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Figure 9. Representative results for membrane contact under pressure control with no slip
condition. (a) Normalized contact force F/2uhb versus normalized applied pressure Pb/2uh. The
solid line (“ANA”) is obtained using our analytical model and the dashed line (“FEA”) represents
the FEA result. (b) Deformation profiles of the membrane at six different points in (a). The
parameters used are d/b = 0, Wad/pth = 0.2, Ri/b = 0.5 and amn/b = 0.25.

Figure 10 shows the F-P curves obtained using different parameters. While effects of the work
of adhesion Wad/pth (Fig. 10a) and substrate radius Rs/b (Fig. 10c) are similar to those observed for
displacement control (Fig. 6), the effect of the fixed gap d is more interesting. Increasing d clearly
shifts the F-P curve to the right, which is expected since larger d implies that a higher pressure is

needed to bring the membrane into contact with the substrate. Apart from the shift, increasing d
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also results in higher contact force to achieve the same contact radius during making contact but

reduces the pull-off force during delamination.
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Figure 10. Parametric study for membrane contact under pressure control with no slip condition.
(a) Effect of adhesion Wad/pth with d/b = 0 and Rs/b = 0.5. (b) Effect of gap d/b with Waa/pth = 0.2
and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Waa/pth = 0.2 and d/b = 0. For all results we
have used an/b = 0.25.

Next we consider the frictionless condition. During contact pinning, for a given pressure P (P
< Pm), we iteratively solve for the contact angle « by calculating the contact radius a from eq. (57)
and examining if the gap d is equal to the given value. Once « is determined, the membrane profile,
contact force F and energy release rate G are calculated using eq. (46) (with am replaced by a) and
eq. (59) and eq. (60), respectively. When G = Waa, the delamination stage starts during which the
contact angle « is a constant according to eq. (63). Therefore, we prescribe the material coordinate
of the contact edge pus (0 < pud < pam) and solve for the pressure P required to enforce the fixed
gap, after which the membrane profile and contact force F can be determined following Section
3.3.2. A representative result is shown in Fig. 11a in terms of the F-P curve with the corresponding
membrane profiles given in Fig.11b. Again, the shape of the F-P curve in Fig.11a resembles that
for the no slip condition (see Fig.9a), but the frictionless condition decreases the pull-off force
slightly. The FEA result shown in Fig.11a agrees well with the analytical model except that it
cannot capture the unstable segment from Point 6 and Point 1 and exhibits a pull-off behavior
instead (similar to the FEA result in Fig.7a). Results of the parametric study in Fig.12 exhibit

similar trends as those observed for the no slip condition (see Fig.10).
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Figure 11. Representative results for membrane contact under pressure control with frictionless
condition. (a) Normalized contact force F/2uhb versus normalized applied pressure Pb/2uh. The
solid line (“ANA”) is obtained using our analytical model and the dashed line (“FEA”) represents
the FEA result. (b) Deformation profiles of the membrane at six different points in (a). The
parameters used are d/b = 0, Wad/pth = 0.2, Ri/b = 0.5 and am/b = 0.25.
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Figure 12. Parametric study for membrane contact under pressure control with frictionless
condition. (a) Effect of adhesion Wua/pth with d/b = 0 and Ry/b = 0.5. (b) Effect of gap d/b with
Wad/pth = 0.2 and Rs/b = 0.5. (c) Effect of substrate radius Rs/b with Waa/pth = 0.2 and d/b = 0. For

all results we have used an/b = 0.25.
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5.3 Discussion

The results presented in Sections 5.1-5.2 demonstrate the utility of our analytical model. These
results are based on a number of assumptions in addition to the large stretch approximation for the
neo-Hookean solid (see eq. (10)). Here we summarize and discuss these assumptions since they

are instrumental for understanding the applicability range of our model.

First, we assumed two scenarios of loading, i.e., displacement control with fixed pressure and
pressure control with fixed gap. While both scenarios can be implemented experimentally, there
are other loading scenarios. For example, in the experiment of Song et al. (2019), an initially flat
circular membrane was first brought into contact with a spherical substrate under a preload. After
that a negative pressure was applied on the membrane by a syringe pump and then the membrane
was retracted from the substrate with the syringe pump held fixed. During the retraction process,
the pressure on the membrane was not constant. Instead, the amount of air within the space
enclosed by the membrane, the syringe, and the tube connecting them was held constant. As a
result, during retraction the pressure decreased as the membrane underwent deformation and
increased its enclosed volume. Our analytical model can be adapted to this loading scenario.
Specifically, the preload process can be modeled using the making contact stage (Section 3.1) with
displacement control and zero pressure. For the retraction, we can use solutions for the contact
pinning and delamination stages (Section 3.2 and 3.3) under displacement control. However, the
pressure P is not prescribed but should be obtained by enforcing the ideal gas law that the pressure
in the system (membrane, syringe, and tube) multiplied by the system volume is a constant. Note
that the pressure P in our analytical model is the pressure differential across the membrane and

hence is equal to the system pressure minus the atmospheric pressure.

Second, we have followed eq. (23) derived in Long et al. (2010) to determine the energy release
rate G. This energy release rate is defined with respect to the deformed membrane area, i.e., it is
the energy released per unit area of deformed membrane detached from the substrate. Accordingly,
the work of adhesion Was is also defined with respect to the deformed membrane area.
Alternatively, the energy release rate can be defined with respect to the undeformed reference
configuration of the membrane as in Begley et al. (2013). This definition, denoted as G"*, is

different from ours if the membrane undergoes large biaxial stretch. For the axisymmetric

geometry considered in this work, G and G** are related through G = A A,G since A, 4, is the
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areal stretch ratio at the contact edge (Long et al., 2010). The work of adhesion corresponding to

G"", denoted as W', is the energy required to detach a unit undeformed area of the membrane
from the substrate. Our analytical model can be readily modified to be in terms of G** and W, by
using G" =4 A4,G . The two approaches of modeling adhesion are equivalent if we set
w. =A AW, . However, since A 4, is not a fixed value but varies with membrane deformation,

we can only assume one of W' and Waa to be constant, which should depend on the nature of

adhesive interaction on the contact interface. An implicit assumption in our analytical model is

that Waa defined with respect to the deformed membrane area is a constant parameter.

Third, we considered two limiting cases of tangential interface behavior: no slip and
frictionless. The solution for the frictionless condition is simpler. However, the results presented
in Sections 5.1 and 5.2 show that these two cases do not result in any qualitative difference.
Quantitatively, the frictionless solution resulted in slightly smaller pull-off forces than the no slip
solution. Therefore, for simplicity the frictionless solution could be adopted. It is worth noting that
the frictionless solution here is analogous to the JKR theory for the adhesive contact between two
elastic spheres where any frictional tractions on the contact interface are neglected and only normal

tractions are considered.

Finally, we assumed Hertzian contact (i.e., adhesionless and frictionless) during the making
contact stage (see Section 2.1). If this is not the case, the making contact stage can also be assigned
a work of adhesion W, , which is typically smaller than the Waq during delamination (Shull, 2002;
Vajpayee et al., 2008). Accordingly, we need to enforce G=W,, and consider the no slip or
frictionless condition during the making contact stage. For the no slip condition, one can follow
similar procedures in Section 3.3.1 with Waa replaced by W; . Also, since we can no longer use

eq. (61) to relate as and pus, we would need to gradually increase the contact radius a and
incrementally solve for the stretch distribution within the contact area and the material coordinate

of the contact edge p.. In contrast, the frictionless condition is easier, since eq. (63) allows us to

prescribe a non-zero contact angle during the making contact stage: « = arctan /2., / uth . This

implies that we can gradually increase the contact radius a, and directly calculate C1 and C , using
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egs. (56) and (55) for the making contact stage. The material coordinate of the contact edge p. can

be determined by solving eq. (57) with pum replaced by pu.

6. Conclusions

We developed an analytical model to describe the adhesive contact mechanics of an inflated
neo-Hookean membrane with a spherically curved, rigid substrate. The entire contact process was
divided into three stages: making contact, contact pinning and delamination. Among them, the
making contact stage was assumed to be subjected to Hertzian contact (i.e., adhesionless and
frictionless), while the contact pinning and delamination stages were under adhesive contact with
either no slip or frictionless condition for the tangential interface behavior. Using the large stretch
approximation for the neo-Hookean membrane, we obtained analytical expressions relating the
membrane profile, contact force F and contact displacement J to the contact radius a, applied
pressure P, work of adhesion Waa and other system parameters. Solutions of our analytical model
were found to agree well with results from independent FEA simulations. We also found that the
frictionless condition resulted in simpler analytical solutions and yet gave qualitatively similar
results as those based on the no slip condition, thereby motivating the adoption of frictionless
condition for parametric studies. The analytical model developed in this work can benefit the
design, optimization and refinement for membrane-based adhesion systems such as adhesion

measurement, transfer printing and soft robotic gripping.
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