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Abstract— Global warming is one of the world’s most pressing 
issues. The study of its effects on the polar ice caps and other arctic 
environments, however, can be hindered by the often dangerous 
and difficult to navigate terrain found there. Multi-terrain 
autonomous vehicles can assist researchers by providing a mobile 
platform on which to collect data in these harsh environments 
while avoiding any risk to human life and speeding up the research 
process. The mechanical design and ultimate efficacy of these 
autonomous robotic vehicles depends largely on the specific 
missions they are deployed for, but terrain conditions can vary 
wildly geographically as well as seasonally, making mission 
planning for these unmanned vehicles more difficult. This paper 
proposes the use of various UNet-based neural network 
architectures to generate digital elevation maps from satellite 
images, and explores and compares their efficacy on a single set of 
training and validation datasets generated from satellite imagery. 
These digital elevation maps generated by the model could be used 
by researchers not only to track the change in arctic topography 
over time, but to quickly provide autonomous exploratory 
research rovers with the topographical information necessary to 
decide on optimal paths during the mission. This paper analyzes 
different model architectures and training schemes: a traditional 
UNet, a traditional UNet with data augmentation, a UNet with a 
single active skip-layer vision transformer (ViT), and a UNet with 
multiple active skip-layer ViT. Each model was trained on a 
dataset of satellite images and corresponding digital elevation 
maps of Ellesmere Island, Canada. Utilizing ViTs did not 
demonstrate a significant improvement in UNet performance, 
though this could change with longer training. This paper 
proposes opportunities to improve performance for these neural 
networks, as well as next steps for further research, including 
improving the diversity of images in the dataset, generating a 
testing dataset from a completely different geographic location, 
and allowing the models more time to train. 

Keywords—Machine learning, UNet, vision transformer neural 
network, autonomous robotics, arctic exploration, terrain 
identification. 

I. INTRODUCTION 

In recent years, environmental scientists have watched vast 
tracts of Arctic Sea ice - including Greenland’s ice sheet - melt 
away [1]. There is a growing demand for survey missions 
focusing on climate change research in the Arctic using rovers 
[2]. Arctic missions, however, can be very dangerous for 
researchers. A combination of the harsh arctic weather, 
treacherous terrain conditions, and remoteness of important 
research locations slows manned research efforts. To aid 
research efforts and eliminate the danger faced by researchers, 
some have proposed autonomous rover systems for these 
exploratory missions. Autonomous rover systems have been 
used in the past to explore the polar regions of the earth [3, 4], 
and while autonomous rovers have been deployed successfully 
as data collection tools in the Antarctic, they have been limited 
to areas of flat and mostly uniform terrain. The rapidly changing 
Arctic climate presents unique and heterogeneous combinations 
of terrain, ranging from snow and ice to firm, frozen permafrost, 
ice-covered lakes, and even flowing mixtures of sea ice and open 
ocean. In addition to the rapid changes in the terrain caused by 
global climate change, the terrain also varies seasonally, making 
the mission planning process more difficult, limiting the use of 
autonomous vehicles.  Exciting rover technologies, including 
those extensively developed for Lunar and Martian exploration, 
can be applied to multi-terrain rovers designed for Arctic 
missions, but the design, control, and capabilities of these rovers 
would greatly depend on the mission specifications determined 
during the mission planning phase. Specifically, the terrain the 
rover will encounter is important to consider beforehand, and as 
previously mentioned, is difficult to predict quickly and 
accurately for Arctic missions.  

Having topographical data such as the elevation and slope of 
the terrain, as well as the location of any bodies of water, is 
crucial not only for mission planning, but for designing the 
rovers themselves. Depending on the dynamics of the rover, 



certain regions may be deemed too steep or inaccessible for the 
rover. Formulating mission targets in terms of total area of 
exploitation, duration of mission, research activities, and a step-
by-step plan for achieving said mission targets requires the 
knowledge of rover locomotion dynamics and information about 
the environments of operation- i.e., topographical data. 
Additionally, the elevation of a particular mission path will also 
determine the rover’s capabilities of communicating with either 
humans or other potential autonomous agents, and thereby its 
decision-making capabilities, or more specifically its controller. 
Thus, the topographical data will be essential in designing a 
controller that can operate with intermittent feedback. While 
advanced field surveying techniques exist, most methods require 
extensive fieldwork in, as previously mentioned, dangerous and 
inaccessible areas [5]. This paper proposes the use of deep 
neural networks with novel model architectures to quickly 
generate digital elevation maps for autonomous rovers to utilize 
during their research expeditions into the Arctic.  

Neural networks (NNs) have a wide variety of uses, and can 
be adapted to many different problems by changing their 
architectures and input and output data types. Transformers, for 
example, are a kind of neural network that was originally 
developed for natural language processing [12]. The transformer 
architecture helps a model to identify the relationship between 
individual input datapoints. After their successful 
implementation on one-dimensional data analysis problems, 
they were adapted for use on two-dimensional data as well [11]. 
The UNet is another example of neural network architecture 
developed to solve a completely different problem. The UNet is 
built of multiple convolutional encoding-decoding pair layers 
linked with a skip connection designed originally to perform 
medical image semantic segmentation [7]. The UNet model is 
capable of generating new images equal in size and shape to the 
original input image it is fed, but able to alter them to match a 
desired output. This could be outlining an important feature in 
found in the input image, or changing the image all together. 
Often times, different neural network architectures are 
combined to enhance performance on a given problem. UNet 
and Transformer neural networks specifically have been 
combined in the past with great success [9]. This paper proposes 
combining transformer neural networks with UNets in a novel 
way, by implementing the transformer neural network within the 
skip connections found within the UNet. Using satellite imagery 
from Sentinel Hub [6] along with this novel neural network 
model, a digital elevation map of several regions in the Arctic 
can be derived.  

II. GENERATING THE DATASET 

A. Generating Data With Sentinel Hub 

The dataset for this paper was generated using Sentinel Hub. 
Sentinel hub is a big-data satellite imagery service. Data from 
Sentinel Hub (in this case, satellite imagery of the earth’s surface 
captured by the Sentinel-2 satellite mission and the 
corresponding DEMs available on Sentinel Hub) was pulled and 
processed to build our data set.  

An area in the Arctic that is relevant to climate change 
research – Ellesmere Island, was selected for this project. The 
original dataset was built by creating a large bounding box over 
Ellesmere Island that specified the longitudes and latitudes of  

 

 
Fig. 1. The first four satellite image (top row) and DEM image (bottom row) 

pairs from the dataset before resizing using the transform function. 

the bottom left and top right coordinates of the box that 
contained the island. Twenty-thousand satellite images and their 
matching DEMs were then randomly sampled via smaller boxes 
from within this larger bounding box. In order to maximize the 
number of images with useful data, the bounding box was 
chosen in such a way as to minimize the amount of area showing 
bodies of water, and any images with more than 5% cloud 
coverage were rejected, resulting in a dataset of 11,100 images 
and their corresponding DEMs. These image pairs were then 
split into training, testing, and validation, respectively. A test 
dataset was not created. Figure 1 shows examples of the satellite 
and corresponding DEM images created in the datasets.  

B. Possible issues with the dataset generated  
1) Imbalanced instances of topographical features: 

Ellesmere Island has a wide variety of topographical and 
geographic features including mountains, plateaus, fjords, 
lakes, and flat plains near the coast. However, the distribution 
and instances of each type of feature is not uniform. Sampling 
satellite images of Ellesmere Isalnd evenly across the bounding 
box could have resulted in data imbalances that would cause the 
model to be more likely to identify some types of topographical 
features correctly and confuse the others. Similarly, since the 
dataset consists of randomly spliced images, the dataset could 
be additionally imbalanced if a large portion of the dataset was 
by chance disproportionately sampled from one subsection of 
the island’s bounding box. 

2) Poor overall quality of terrain images: Instances of 
cloud coverage could affect the image quality since clouds 
could be mistaken by the model’s algorithm as topographical 
features. Similarly, depending on when the picture was taken 
by the Sentinel-2 satellite, glare bouncing off the snow-clad 
area could result in poor image quality. The issue of potential 
cloud coverage was tackled by filtering out images with more 
than 5% cloud coverage during the dataset creation process, but 
no solution has yet been found for removing images with a set 
amount of measured solar glare bouncing off snowy and icy 



regions other than the manual removeal of said images based 
on researchers’ best judgement from the dataset post-
generation. As such, images with solar glare were not filtered 
from the dataset. 

3) Lack of consistency between topographical features 
across different DEM images: Upon inspection of the dataset, 
possible inconsistencies between DEM and satelite image pairs 
that have seemingly similar topographical features were found. 
The cause of these inconsistencies is unknown. 

4) Future steps for improving the quality of the dataset: 
Steps were taken to mitigate the effect of these technical 
difficulties, but more work could always be done to improve the 
quality of the dataset. Future steps for improving the quality of 
the dataset are discussed in the conclusion section of this paper.  

 Before the dataset was used to train the model, each image 
was preprocessed to assure uniformity. Since the images in the 
dataset were created by randomly generating latitude and 
longitude values that created smaller boxes within a range of 
sizes, the images all had slightly different shapes. The transform 
function in the Torchvision library was used to resize the images 
to a prescribed square shape to ensure that all images fed to the 
model as inputs had the same size. The results of this paper will 
show that the performance of the model varied drastically as the 
resolution of these images was altered, making it an important 
hyperparameter. Two resolutions were considered during the 
hyperparameter optimization phase of this project – 64 by 64 
and 128 by 128. 

III. ARCHITECTURES TESTED AND METHODOLOGY 

A. UNet baseline (with and without data augmentation) 
A UNet is a convolutional neural network that was 

developed for biomedical image segmentation [7]. Its 
architecture consists of a specific encoder-decoder scheme: (1) 
The encoder (also called the contraction path) reduces the 
spatial dimensions in every layer and increases the channels, 
and (2) the decoder (also called the expansion path) increases 
the spatial dimensions while reducing the channels. The 
concatenation of feature maps from encoder to the decoder  
helps give localization information. The specifics of the 
architecture are shown in Figure 2 and described as follows: 

1) Encoder (left side): It consists of the repeated application 
of two 3x3 convolutions. Each conv layer is followed by a 
ReLU. A max pooling operation is applied to reduce the spatial 
dimensions. At each downsampling step, we double the number 
of feature channels, while we cut in half the spatial dimensions. 

2) Decoder (right side): Every step in the expansive path 
consists of a 2x2 transpose convolution, which halves the 
number of feature channels. We also have a concatenation with 
the corresponding feature map from the contraction path, and a 
3x3 convolution (each followed by a ReLU). At the final layer, 
a 1x1 convolution is used to map penultimate features to an 
output prediction with the appropriate number of channels. 

B. Basic data augmentation 
The baseline UNet described above was trained with and 

without basic data augmentation. The augmentation applied 

 
Fig. 2. Visual diagram depicting UNet model architecture from Ronneberger, 

O. et al. [7] 

consisted of a 50% chance of applying a horizontal flip to 
image/label pairs during training, and a 50% chance of applying 
a vertical flip. The goal of these augmentations is to help make 
the network more robust, by preventing it from relying too 
heavily on shadow position and orientation in satellite imagery 
(meaning better performance on datasets taken from different 
hemispheres or at different times of the day or year). Future 
tests will include evaluating the model at different 
augmentation application probabilities to determine an optimal 
augmentation policy, as well as potentially include more 
augmentations such as scaling the images, changing the 
contrast or saturation of the image, or rotating the image by 
some prescribed angle. 

C. TransUNet with single active skip layer transformer 

Transformer Neural Networks were originally developed 
and used primarily for natural language processing tasks. More 
recently, transformers have been repurposed for computer vision 
applications, and have shown promising results in a variety of 
different applications.  

Traditional transformers take in a vector (in NLP this vector 
is the representation of a sentence) input, and output a similar 
vector. They are unique in that they use self-attention to 
“understand” how each component of the sentence relates to 
every other component. They do this by creating a Query, Key, 
and Value vector for each word in the sentence by multiplying 
the word’s vector by learned Query, Key, and Value matrices 
each separately. Each word is then given a score value derived 
by taking the dot product of the Query and Key vectors 
calculated for that word. This score value is soft-maxed and can 
be thought of as a value between zero and one given to every 
word in the sentence that represents how important each word in 
the sentence is to the word presently being encoded by the 
transformer. This means that each word in the sentences receives 
a new score when the next word in the sentence is being 
encoded. The value vectors for each word are then multiplied by 
their respective scores. This has the effect of minimizing the 
value vectors that are not as important or directly related to the 
word being encoded at the time, while keeping the important 
words’ value vectors relatively unchanged. These updated value 
vectors are then summed to create the output of the self-attention 



component of the transformer network for a single word in the 
sentence.  

When utilizing transformers in computer vision, the 
“sentence” is an image that has been evenly split up into N 
number of “patches.” A clever way of doing this is to pass the 
input image through a convolutional layer with the kernel and 
step size both equal to the preferred patch size, and then 
flattening the output into a vector. Each of the resultant patches 
(now in vector form) represents a single word in the image 
sentence.  

For the purposes of this paper, the input image was 64 by 64 
pixels, and was split into 16 patches, each having the dimensions 
of 16 by 16 pixels.  

The implementation of this UNet was inspired by the 
implementation of a Transformer model within a UNet 
architecture by Chen, J. Et al [11]. In their paper, Chen, J. Et al. 
place their transformer model in the skip connection between the 
lowest most encoder-decoder pair of their UNet model. Figure 3 
shows a visual representation of the network architecture 
utilized by Chen, J. et al.  

For this paper, the transformer was placed in the skip 
connection between the uppermost encoder-decoder pair in the 
UNet. Figure 4 shows a visual representation of the architecture 
utilized in this paper. 

D. TransUNet with multiple active skip layer transformer 

It was hypothesized that implementing the vision 
transformers on lower-level skip connections further away from 
the final output of the UNet would allow the decoding 
convolutional layers of the model more time to smooth the 
output image, and move it away from the heavily pixelated look 
vision transformers are predisposed to outputting due to the 
manner in which they split up their input images and reconstruct 
them for their outputs.   

To accomplish this, an updated Multi-Transformer UNet 
model was made, and it was built in such a way that a 
transformer block was placed in every skip-connection. The 
transformer blocks within each skip connection could be turned 
on or off when calling the model. If they were turned off, they 
behaved as a regular skip-connection, but if they were turned on, 
the skip connection was fed through a vision transformer (ViT) 
block. Figure 5 shows a visual of the model architecture.  

 

 
Fig. 3. Visual diagram depicting the TransUNet model from Chen, J. et al 

[9]. 

The updated model was trained on the same dataset as the 
previous models with every one of the transformer skip-
connections turned on. This was done partially as a means of 
confirming that each transformer skip-connection worked, 
however having each transformer turned on at once may have 
had detrimental effects on the model’s output. These effects will 
be discussed in section IV, subsection D.  

IV. RESULTS AND EVALUATION 

A. Results of model arcitecture 1: UNet without data 
augmentation (baseline model) 
The DEM data queried from Sentinel Hub was used to train 

the UNet baseline model in two different ways. In the first 
approach the model was trained using only the DEM images for 
labels, while in the second approach, the model was trained 
using the elevation data represented in the original DEM 
images and two additional label features, slope and aspect of  

 
Fig. 4. Visual diagram of TransUNet model trained for this paper. A vision 

transformer (ViT, figure modified from Dosovitskiy, Alexey, et al. [11]) 
was implemented within the uppermost skip layer of the UNet 

Arcitechture. 

 

 
Fig. 5. Visual diagram depicting the Multi-Transformer UNet arcitechture. 

Four vision transformer neural networks were implimented within the 
skip connections of the baseline UNet model. 



the terrain. The team was, however, unable to gain access to a 
GPU to speed the training of the model, so tuning was only 
feasible for certain hyperparameters (image size, number of 
epochs, etc.), and not with as much fidelity as would be ideal. 
The relevant results and hyperparameter tuning regimes that 
were able to be performed given hardware limitations are 
discussed below. 

1) Using only elevation labels during training: The first 
iteration of the UNet model was run for 100 epochs with images 
of size 128x128 pixels, optimized using stochastic gradient 
descent (SGD) with learning rate 0.01 and batch size 16. The 
mean squared error (MSE) loss function was used as the 
training objective. Figure 6 shows the results of the model after 
100 epochs and the training and validation loss curves during 
training. 

While loss curves for both the training and validation sets 
show an overall downward trend, the loss curve for the training 
set in particular is especially noisy and does not consistently 
improve. This initial result prompted the researchers to  make 
several changes to the hyperparameters and optimizer, 
including (1) reducing image size to simplify identifying 
topographical features, (2) increasing batch size to smooth the 
loss curve during training, and (3) moving from vanilla 
Stoachstic Gradient Descent to the Adam optimizer and 
decreasing the learning rate. 

The above changes resulted in a much-improved 
performance of the UNet model using only the DEM images as 
labels. The loss curve showed a prominent downward trend 
visible even with half the original number of epochs, likely due 
to the use of the Adam optimizer and increased batch size. The 
reduction in image size also resulted in improved identification  

 

 
Fig. 6. The satelite image, model estimated DEM, and true DEM pairs for 
the first and one-hundredth epochs (top), and the loss curves for the model’s 
performance on training and validation sets utilizing elevation data only, pre-

hyperparameter tuning plotted against the number of epochs (bottom).  

of topographical features, and the increased batch size 
reduced training time considerably. The results of this model 
are shown in Figure 7. 

2) Using elevation, slope, and aspect labels during 
training: The second UNet model, referred to as the SEA model 
for the slope, elevation, and aspect labels it was fed, utilized 
three output labels as opposed to the baseline UNet model’s 
one. In addition to elevation, this version of the model was 
given slope and aspect data as additional output labels, and was 
asked to generate slope and aspect maps alongside the elevation 
map for input original satellite imagery. The RichDEM library 
[13] was used to create labels for these features based on the 
original DEM data used for training. 

Because this version of the UNet model was attempting to 
learn to predict three outputs instead of one, the method of 
training needed to be reconsidered. While there was still one 
loss function used to train the model, each predicted feature 
contributed its own loss term during training. These terms were 
weighted and summed into a combined loss that was used to 
train the model. Giving weights to each individual loss term 
created an additional set of hyperparameters that must be 
considered during hyperparameter tunning. 

The SEA model produced the results found in Figure 8, and 
used a learning rate of 0.001, a batch size of 64, the Adam 
optimizer, equal weights for each loss function label term, and 
an image size of 64 by 64 pixels. The model appeared to plateau 
within 20 epochs, and did not improve upon the previous 
version of the UNet model that utilized only elevation labels 
yields superior results. However, this could change with further 
hyperparameter tuning. 

 

 

 
Fig. 7. The satelite image, model estimated DEM, and true DEM pairs for 
the first and one-hundredth epochs (top), and the loss curves for the model’s 

performance on training and validation sets utilizing elevation data only, post-
hyperparameter tuning plotted against the number of epochs (bottom).  



 

 
Fig. 8. The satelite image, model estimate of corresponding DEM, and true 

DEM pairs for the first and twentieth epochs (top), and the loss curves for the 
SEA UNet model’s performance on the training and validation sets post-
hyperparameter tunning plotted against the number of epochs (bottom).  

B. Results of Model Architecture 1 with data augmentation 

Next, basic data augmentation was introduced when 
training the baseline UNet models described above. During 
training, images and their corresponding labels featured a 50% 
chance of being horizontally flipped and an independent 50% 
chance of being vertically flipped.  

The model was trained with an image size of 64x64 pixels, 
the Adam optimizer with learning rate 0.001, and a batch size 
of 64. Once again, the MSE loss function was used for training 
and evaluating performance. Figure 9 shows an input satellite 
image from the dataset, the model’s predicted DEM after the 
final epoch of training, and the satellite image’s corresponding 
true DEM. The loss curves for the training and validation sets 
across 20 epochs of training are shown in Figure 10.  

 The loss curves are not as steep and do not reach the same 
loss as the baseline model. Similarly to the baseline, however, 
the proposed model does not seem to plateau after 20 epochs. It 
could be that the proposed model trains slower but to an 
eventual lower loss than the baseline without augmentation. 
Allowing the model to train for a higher number of epochs 
could help to determine if this is the case. 

Based on the first twenty epochs, the baseline model 
outperforms the proposed model utilizing some basic data 
augmentation techniques. In future research, each model will be 
run for a longer duration to ensure they each converge. 

C. Results of Model Architecture 2: TransUNet with single 
active skip layer vision transformer 

 The third model proposed by this paper is the TransUNet 
model architecture with a single active skip layer vision 

transformer. The model was trained with an image size of 64x64 
pixels, using the Adam optimizer with a learning rate of 0.001 
and a batch size of 64. The MSE loss function was used for 
training and for evaluating performance. 

Figure 11 shows an example prediction of the TransUNet 
model for an input satellite image on its first and twentieth 
epochs, alongside the corresponding ground-truth label. These 
outputs can be contrasted with Figure 12, which shows the 
outputs from the baseline UNet model that did not use a vision 
transformer in the uppermost skip connection, but was otherwise 
identical. The TransUNet model’s outputs are considerably 
more pixelated. This could be due to the vision  

 

Fig. 9. The satellite image, UNet DEM estimate, and true DEM on the final 
(twentieth) epoch of the baseline UNet model with data augmentation. 

 

Fig. 10. Loss curves during training for the UNet Model with data 
augmentation on the training and validation datasets for the first twenty 

epochs. 

Epoch 1 

 
Epoch 20 

 
Fig. 11. TransUNet DEM predictions for 64x64 pixel images at Epochs 1 and 

20 (the satellite images displayed in the leftmost column were fed into 
the model as full RGB images, but are only displayed here, and 

throughout the paper, on a blue to yellow gradient). 



Epoch 1 

 

Epoch 20 

 

Fig. 12. Baseline UNet DEM predictions for 64x64 pixel images at Epochs 1 
and 20 (the satellite images displayed in the leftmost column were fed 
into the model as full RGB images, but are only displayed here, and 

throughout the paper, on a blue to yellow gradient). 

transformer underfitting. Loss values during training for the 
TransUNet on training and validation data are shown for images 
of size 128x128 pixels in Figure 13, and for images of size 
64x64 pixels in Figure 14. It’s unclear if either model converged 
with the epochs provided. Further testing with a higher number 
of epochs is necessary to make this determination. 

D. Results of Model Architecture 4: TransUNet with multiple 
active skip layer transformers 

 The Multi-TransUNet model was trained on the same dataset 
as the previous models with a vision transformer applied to 
every skip connection. This was done in part to confirm that each 
transformer skip-connection worked as intended, though having 
each transformer enabled at once may have had detrimental 
effects on the model’s output. Figure 15 shows the Multi-
Transformer UNet model’s elevation predictions on the first and 
twentieth epochs. The Multi-Transformer UNet model did not 
meaningfully learn over a period of 20 epochs. This is confirmed 
by the training and validation loss curves for the model shown 
in Figure 16. The validation loss curve does not trend 
downward, remaining approximately flat on average, while the 
training loss curve fluctuates noisily.  

While the immediate results do not support the usage of a 
Multi-Transformer UNet model, further study is needed to 
determine just how detrimental, or helpful, each skip-connection 
transformer can be to the model on its own and when combined. 
Transformers are known for taking longer to train than some 
other architectures (including convolutional neural networks, 
which employ additional inductive biases), and the poor learning 
and validation curves shown  could be a result of an error in the 
code, improper hyperparameter configuration, or insufficient 
training.  

 
Fig. 13. Loss values during training of TransUNet model on Training and 

Validation sets of 128x128 images over the first twenty epochs. 

 
Fig. 14. Loss values during training of TransUNet performance on Training 

and Validation sets of 64x64 images over the first twenty epochs.  

Epoch 1 

 

Epoch 20 

 
Fig. 15. Multi-Transformer UNet DEM predictions for 64x64 pixel images at 

Epochs 1 and 20 (the satellite images displayed in the leftmost column 
were fed into the model as full RGB images, but are only displayed here, 
and throughout the paper, on a blue to yellow gradient). 

 



 
Fig. 16. Loss values during training of Multi-Transformer UNet model on 

Training and Validation sets of 64x64 images over 20 epochs. 

V. CONCLUSIONS 
In summary, this paper has compared different neural 

network architectures and their ability to accurately predict 
digital elevation maps for Arctic land depicted in satellite 
imagery. Specifically, the following can be said: (1) Providing 
the baseline UNet neural network with additional slope and 
aspect label data did not improve the performance of the model 
significantly; (2) Implementing a vision transformer within the 
uppermost skip connection improved the performance slightly, 
but implementing vision transformers within every skip 
connection impaired and complicated learning; and (3) simple 
data augmentation did not noticeably increase model 
performance within the first 20 epochs of training.  

Future work should include: (1) Further experimentation 
with hyperparameter tuning for each model; (2) Training the 
models for a longer number of epochs so that researchers can be 
sure that each model can converge; and (3) Checking the dataset 
for imperfections that might be affecting the quality of the model 
outputs or the fidelity of model evaluation. 

Even without in-depth hyperparameter tuning, the baseline 
UNet model showed promisingly accurate results when 
converting the satellite images to digital elevation maps. If given 
ample time to train, with a quality dataset, using a neural 
network to generate a digital elevation map from a satellite 
image could constitute a quick way to gain a reasonable 
estimation for the elevation of difficult to navigate terrain. This 
could be used not only for Arctic exploration, but for 
extraplanetary exploration as well, to better prepare autonomous 
rovers for exploratory missions. Including vision transformer 
neural networks within the baseline UNet architecture might be 
one way of increasing the accuracy of the neural network 
model’s predictions, but further research is necessary to be 
certain.  
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