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Abstract— Global warming is one of the world’s most pressing
issues. The study of its effects on the polar ice caps and other arctic
environments, however, can be hindered by the often dangerous
and difficult to navigate terrain found there. Multi-terrain
autonomous vehicles can assist researchers by providing a mobile
platform on which to collect data in these harsh environments
while avoiding any risk to human life and speeding up the research
process. The mechanical design and ultimate efficacy of these
autonomous robotic vehicles depends largely on the specific
missions they are deployed for, but terrain conditions can vary
wildly geographically as well as seasonally, making mission
planning for these unmanned vehicles more difficult. This paper
proposes the use of various UNet-based neural network
architectures to generate digital elevation maps from satellite
images, and explores and compares their efficacy on a single set of
training and validation datasets generated from satellite imagery.
These digital elevation maps generated by the model could be used
by researchers not only to track the change in arctic topography
over time, but to quickly provide autonomous exploratory
research rovers with the topographical information necessary to
decide on optimal paths during the mission. This paper analyzes
different model architectures and training schemes: a traditional
UNet, a traditional UNet with data augmentation, a UNet with a
single active skip-layer vision transformer (ViT), and a UNet with
multiple active skip-layer ViT. Each model was trained on a
dataset of satellite images and corresponding digital elevation
maps of Ellesmere Island, Canada. Utilizing ViTs did not
demonstrate a significant improvement in UNet performance,
though this could change with longer training. This paper
proposes opportunities to improve performance for these neural
networks, as well as next steps for further research, including
improving the diversity of images in the dataset, generating a
testing dataset from a completely different geographic location,
and allowing the models more time to train.

Keywords—Machine learning, UNet, vision transformer neural
network, autonomous robotics, arctic exploration, terrain
identification.
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L INTRODUCTION

In recent years, environmental scientists have watched vast
tracts of Arctic Sea ice - including Greenland’s ice sheet - melt
away [l]. There is a growing demand for survey missions
focusing on climate change research in the Arctic using rovers
[2]. Arctic missions, however, can be very dangerous for
researchers. A combination of the harsh arctic weather,
treacherous terrain conditions, and remoteness of important
research locations slows manned research efforts. To aid
research efforts and eliminate the danger faced by researchers,
some have proposed autonomous rover systems for these
exploratory missions. Autonomous rover systems have been
used in the past to explore the polar regions of the earth [3, 4],
and while autonomous rovers have been deployed successfully
as data collection tools in the Antarctic, they have been limited
to areas of flat and mostly uniform terrain. The rapidly changing
Arctic climate presents unique and heterogeneous combinations
of terrain, ranging from snow and ice to firm, frozen permafrost,
ice-covered lakes, and even flowing mixtures of sea ice and open
ocean. In addition to the rapid changes in the terrain caused by
global climate change, the terrain also varies seasonally, making
the mission planning process more difficult, limiting the use of
autonomous vehicles. Exciting rover technologies, including
those extensively developed for Lunar and Martian exploration,
can be applied to multi-terrain rovers designed for Arctic
missions, but the design, control, and capabilities of these rovers
would greatly depend on the mission specifications determined
during the mission planning phase. Specifically, the terrain the
rover will encounter is important to consider beforehand, and as
previously mentioned, is difficult to predict quickly and
accurately for Arctic missions.

Having topographical data such as the elevation and slope of
the terrain, as well as the location of any bodies of water, is
crucial not only for mission planning, but for designing the
rovers themselves. Depending on the dynamics of the rover,



certain regions may be deemed too steep or inaccessible for the
rover. Formulating mission targets in terms of total area of
exploitation, duration of mission, research activities, and a step-
by-step plan for achieving said mission targets requires the
knowledge of rover locomotion dynamics and information about
the environments of operation- i.e., topographical data.
Additionally, the elevation of a particular mission path will also
determine the rover’s capabilities of communicating with either
humans or other potential autonomous agents, and thereby its
decision-making capabilities, or more specifically its controller.
Thus, the topographical data will be essential in designing a
controller that can operate with intermittent feedback. While
advanced field surveying techniques exist, most methods require
extensive fieldwork in, as previously mentioned, dangerous and
inaccessible areas [5]. This paper proposes the use of deep
neural networks with novel model architectures to quickly
generate digital elevation maps for autonomous rovers to utilize
during their research expeditions into the Arctic.

Neural networks (NNs) have a wide variety of uses, and can
be adapted to many different problems by changing their
architectures and input and output data types. Transformers, for
example, are a kind of neural network that was originally
developed for natural language processing [12]. The transformer
architecture helps a model to identify the relationship between
individual input datapoints. After their successful
implementation on one-dimensional data analysis problems,
they were adapted for use on two-dimensional data as well [11].
The UNet is another example of neural network architecture
developed to solve a completely different problem. The UNet is
built of multiple convolutional encoding-decoding pair layers
linked with a skip connection designed originally to perform
medical image semantic segmentation [7]. The UNet model is
capable of generating new images equal in size and shape to the
original input image it is fed, but able to alter them to match a
desired output. This could be outlining an important feature in
found in the input image, or changing the image all together.
Often times, different neural network architectures are
combined to enhance performance on a given problem. UNet
and Transformer neural networks specifically have been
combined in the past with great success [9]. This paper proposes
combining transformer neural networks with UNets in a novel
way, by implementing the transformer neural network within the
skip connections found within the UNet. Using satellite imagery
from Sentinel Hub [6] along with this novel neural network
model, a digital elevation map of several regions in the Arctic
can be derived.

1I. GENERATING THE DATASET
A. Generating Data With Sentinel Hub

The dataset for this paper was generated using Sentinel Hub.
Sentinel hub is a big-data satellite imagery service. Data from
Sentinel Hub (in this case, satellite imagery of the earth’s surface
captured by the Sentinel-2 satellite mission and the
corresponding DEMs available on Sentinel Hub) was pulled and
processed to build our data set.

An area in the Arctic that is relevant to climate change
research — Ellesmere Island, was selected for this project. The
original dataset was built by creating a large bounding box over
Ellesmere Island that specified the longitudes and latitudes of

Fig. 1. The first four satellite image (top row) and DEM image (bottom row)
pairs from the dataset before resizing using the transform function.

the bottom left and top right coordinates of the box that
contained the island. Twenty-thousand satellite images and their
matching DEMs were then randomly sampled via smaller boxes
from within this larger bounding box. In order to maximize the
number of images with useful data, the bounding box was
chosen in such a way as to minimize the amount of area showing
bodies of water, and any images with more than 5% cloud
coverage were rejected, resulting in a dataset of 11,100 images
and their corresponding DEMs. These image pairs were then
split into training, testing, and validation, respectively. A test
dataset was not created. Figure 1 shows examples of the satellite
and corresponding DEM images created in the datasets.

B. Possible issues with the dataset generated

1) Imbalanced instances of topographical features:
Ellesmere Island has a wide variety of topographical and
geographic features including mountains, plateaus, fjords,
lakes, and flat plains near the coast. However, the distribution
and instances of each type of feature is not uniform. Sampling
satellite images of Ellesmere Isalnd evenly across the bounding
box could have resulted in data imbalances that would cause the
model to be more likely to identify some types of topographical
features correctly and confuse the others. Similarly, since the
dataset consists of randomly spliced images, the dataset could
be additionally imbalanced if a large portion of the dataset was
by chance disproportionately sampled from one subsection of
the island’s bounding box.

2) Poor overall quality of terrain images: Instances of
cloud coverage could affect the image quality since clouds
could be mistaken by the model’s algorithm as topographical
features. Similarly, depending on when the picture was taken
by the Sentinel-2 satellite, glare bouncing off the snow-clad
area could result in poor image quality. The issue of potential
cloud coverage was tackled by filtering out images with more
than 5% cloud coverage during the dataset creation process, but
no solution has yet been found for removing images with a set
amount of measured solar glare bouncing off snowy and icy



regions other than the manual removeal of said images based
on researchers’ best judgement from the dataset post-
generation. As such, images with solar glare were not filtered
from the dataset.

3) Lack of consistency between topographical features
across different DEM images: Upon inspection of the dataset,
possible inconsistencies between DEM and satelite image pairs
that have seemingly similar topographical features were found.
The cause of these inconsistencies is unknown.

4) Future steps for improving the quality of the dataset:
Steps were taken to mitigate the effect of these technical
difficulties, but more work could always be done to improve the
quality of the dataset. Future steps for improving the quality of
the dataset are discussed in the conclusion section of this paper.

Before the dataset was used to train the model, each image
was preprocessed to assure uniformity. Since the images in the
dataset were created by randomly generating latitude and
longitude values that created smaller boxes within a range of
sizes, the images all had slightly different shapes. The transform
function in the Torchvision library was used to resize the images
to a prescribed square shape to ensure that all images fed to the
model as inputs had the same size. The results of this paper will
show that the performance of the model varied drastically as the
resolution of these images was altered, making it an important
hyperparameter. Two resolutions were considered during the
hyperparameter optimization phase of this project — 64 by 64
and 128 by 128.

III. ARCHITECTURES TESTED AND METHODOLOGY

A. UNet baseline (with and without data augmentation)

A UNet is a convolutional neural network that was
developed for biomedical image segmentation [7]. Its
architecture consists of a specific encoder-decoder scheme: (1)
The encoder (also called the contraction path) reduces the
spatial dimensions in every layer and increases the channels,
and (2) the decoder (also called the expansion path) increases
the spatial dimensions while reducing the channels. The
concatenation of feature maps from encoder to the decoder
helps give localization information. The specifics of the
architecture are shown in Figure 2 and described as follows:

1) Encoder (left side): 1t consists of the repeated application
of two 3x3 convolutions. Each conv layer is followed by a
ReLU. A max pooling operation is applied to reduce the spatial
dimensions. At each downsampling step, we double the number
of feature channels, while we cut in half the spatial dimensions.

2) Decoder (right side): Every step in the expansive path
consists of a 2x2 transpose convolution, which halves the
number of feature channels. We also have a concatenation with
the corresponding feature map from the contraction path, and a
3x3 convolution (each followed by a ReLU). At the final layer,
a 1x1 convolution is used to map penultimate features to an
output prediction with the appropriate number of channels.

B. Basic data augmentation

The baseline UNet described above was trained with and
without basic data augmentation. The augmentation applied

Decoder

Encoder

Fig. 2. Visual diagram depicting UNet model architecture from Ronneberger,
O.etal. [7]

consisted of a 50% chance of applying a horizontal flip to
image/label pairs during training, and a 50% chance of applying
a vertical flip. The goal of these augmentations is to help make
the network more robust, by preventing it from relying too
heavily on shadow position and orientation in satellite imagery
(meaning better performance on datasets taken from different
hemispheres or at different times of the day or year). Future
tests will include evaluating the model at different
augmentation application probabilities to determine an optimal
augmentation policy, as well as potentially include more
augmentations such as scaling the images, changing the
contrast or saturation of the image, or rotating the image by
some prescribed angle.

C. TransUNet with single active skip layer transformer

Transformer Neural Networks were originally developed
and used primarily for natural language processing tasks. More
recently, transformers have been repurposed for computer vision
applications, and have shown promising results in a variety of
different applications.

Traditional transformers take in a vector (in NLP this vector
is the representation of a sentence) input, and output a similar
vector. They are unique in that they use self-attention to
“understand” how each component of the sentence relates to
every other component. They do this by creating a Query, Key,
and Value vector for each word in the sentence by multiplying
the word’s vector by learned Query, Key, and Value matrices
each separately. Each word is then given a score value derived
by taking the dot product of the Query and Key vectors
calculated for that word. This score value is soft-maxed and can
be thought of as a value between zero and one given to every
word in the sentence that represents how important each word in
the sentence is to the word presently being encoded by the
transformer. This means that each word in the sentences receives
a new score when the next word in the sentence is being
encoded. The value vectors for each word are then multiplied by
their respective scores. This has the effect of minimizing the
value vectors that are not as important or directly related to the
word being encoded at the time, while keeping the important
words’ value vectors relatively unchanged. These updated value
vectors are then summed to create the output of the self-attention



component of the transformer network for a single word in the
sentence.

When utilizing transformers in computer vision, the
“sentence” is an image that has been evenly split up into N
number of “patches.” A clever way of doing this is to pass the
input image through a convolutional layer with the kernel and
step size both equal to the preferred patch size, and then
flattening the output into a vector. Each of the resultant patches
(now in vector form) represents a single word in the image
sentence.

For the purposes of this paper, the input image was 64 by 64
pixels, and was split into 16 patches, each having the dimensions
of 16 by 16 pixels.

The implementation of this UNet was inspired by the
implementation of a Transformer model within a UNet
architecture by Chen, J. Et al [11]. In their paper, Chen, J. Et al.
place their transformer model in the skip connection between the
lowest most encoder-decoder pair of their UNet model. Figure 3
shows a visual representation of the network architecture
utilized by Chen, J. et al.

For this paper, the transformer was placed in the skip
connection between the uppermost encoder-decoder pair in the
UNet. Figure 4 shows a visual representation of the architecture
utilized in this paper.

D. TransUNet with multiple active skip layer transformer

It was hypothesized that implementing the vision
transformers on lower-level skip connections further away from
the final output of the UNet would allow the decoding
convolutional layers of the model more time to smooth the
output image, and move it away from the heavily pixelated look
vision transformers are predisposed to outputting due to the
manner in which they split up their input images and reconstruct
them for their outputs.

To accomplish this, an updated Multi-Transformer UNet
model was made, and it was built in such a way that a
transformer block was placed in every skip-connection. The
transformer blocks within each skip connection could be turned
on or off when calling the model. If they were turned off, they
behaved as a regular skip-connection, but if they were turned on,
the skip connection was fed through a vision transformer (ViT)
block. Figure 5 shows a visual of the model architecture.
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Fig. 3. Visual diagram depicting the TransUNet model from Chen, J. et al
[9].

The updated model was trained on the same dataset as the
previous models with every one of the transformer skip-
connections turned on. This was done partially as a means of
confirming that each transformer skip-connection worked,
however having each transformer turned on at once may have
had detrimental effects on the model’s output. These effects will
be discussed in section IV, subsection D.

IV. RESULTS AND EVALUATION

A. Results of model arcitecture 1: UNet without data

augmentation (baseline model)

The DEM data queried from Sentinel Hub was used to train
the UNet baseline model in two different ways. In the first
approach the model was trained using only the DEM images for
labels, while in the second approach, the model was trained
using the elevation data represented in the original DEM
images and two additional label features, slope and aspect of
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Fig. 4. Visual diagram of TransUNet model trained for this paper. A vision
transformer (ViT, figure modified from Dosovitskiy, Alexey, et al. [11])
was implemented within the uppermost skip layer of the UNet
Arcitechture.
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the terrain. The team was, however, unable to gain access to a
GPU to speed the training of the model, so tuning was only
feasible for certain hyperparameters (image size, number of
epochs, etc.), and not with as much fidelity as would be ideal.
The relevant results and hyperparameter tuning regimes that
were able to be performed given hardware limitations are
discussed below.

1) Using only elevation labels during training: The first
iteration of the UNet model was run for 100 epochs with images
of size 128x128 pixels, optimized using stochastic gradient
descent (SGD) with learning rate 0.01 and batch size 16. The
mean squared error (MSE) loss function was used as the
training objective. Figure 6 shows the results of the model after
100 epochs and the training and validation loss curves during
training.

While loss curves for both the training and validation sets
show an overall downward trend, the loss curve for the training
set in particular is especially noisy and does not consistently
improve. This initial result prompted the researchers to make
several changes to the hyperparameters and optimizer,
including (1) reducing image size to simplify identifying
topographical features, (2) increasing batch size to smooth the
loss curve during training, and (3) moving from vanilla
Stoachstic Gradient Descent to the Adam optimizer and
decreasing the learning rate.

The above changes resulted in a much-improved
performance of the UNet model using only the DEM images as
labels. The loss curve showed a prominent downward trend
visible even with half the original number of epochs, likely due
to the use of the Adam optimizer and increased batch size. The
reduction in image size also resulted in improved identification
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Fig. 6. The satelite image, model estimated DEM, and true DEM pairs for
the first and one-hundredth epochs (top), and the loss curves for the model’s
performance on training and validation sets utilizing elevation data only, pre-

hyperparameter tuning plotted against the number of epochs (bottom).

of topographical features, and the increased batch size
reduced training time considerably. The results of this model
are shown in Figure 7.

2) Using elevation, slope, and aspect labels during
training: The second UNet model, referred to as the SEA model
for the slope, elevation, and aspect labels it was fed, utilized
three output labels as opposed to the baseline UNet model’s
one. In addition to elevation, this version of the model was
given slope and aspect data as additional output labels, and was
asked to generate slope and aspect maps alongside the elevation
map for input original satellite imagery. The RichDEM library
[13] was used to create labels for these features based on the
original DEM data used for training.

Because this version of the UNet model was attempting to
learn to predict three outputs instead of one, the method of
training needed to be reconsidered. While there was still one
loss function used to train the model, each predicted feature
contributed its own loss term during training. These terms were
weighted and summed into a combined loss that was used to
train the model. Giving weights to each individual loss term
created an additional set of hyperparameters that must be
considered during hyperparameter tunning.

The SEA model produced the results found in Figure 8, and
used a learning rate of 0.001, a batch size of 64, the Adam
optimizer, equal weights for each loss function label term, and
an image size of 64 by 64 pixels. The model appeared to plateau
within 20 epochs, and did not improve upon the previous
version of the UNet model that utilized only elevation labels
yields superior results. However, this could change with further
hyperparameter tuning.
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Fig. 7. The satelite image, model estimated DEM, and true DEM pairs for
the first and one-hundredth epochs (top), and the loss curves for the model’s
performance on training and validation sets utilizing elevation data only, post-
hyperparameter tuning plotted against the number of epochs (bottom).
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SEA UNet model’s performance on the training and validation sets post-
hyperparameter tunning plotted against the number of epochs (bottom).

B. Results of Model Architecture 1 with data augmentation

Next, basic data augmentation was introduced when
training the baseline UNet models described above. During
training, images and their corresponding labels featured a 50%
chance of being horizontally flipped and an independent 50%
chance of being vertically flipped.

The model was trained with an image size of 64x64 pixels,
the Adam optimizer with learning rate 0.001, and a batch size
of 64. Once again, the MSE loss function was used for training
and evaluating performance. Figure 9 shows an input satellite
image from the dataset, the model’s predicted DEM after the
final epoch of training, and the satellite image’s corresponding
true DEM. The loss curves for the training and validation sets
across 20 epochs of training are shown in Figure 10.

The loss curves are not as steep and do not reach the same
loss as the baseline model. Similarly to the baseline, however,
the proposed model does not seem to plateau after 20 epochs. It
could be that the proposed model trains slower but to an
eventual lower loss than the baseline without augmentation.
Allowing the model to train for a higher number of epochs
could help to determine if this is the case.

Based on the first twenty epochs, the baseline model
outperforms the proposed model utilizing some basic data
augmentation techniques. In future research, each model will be
run for a longer duration to ensure they each converge.

C. Results of Model Architecture 2: TransUNet with single
active skip layer vision transformer

The third model proposed by this paper is the TransUNet
model architecture with a single active skip layer vision

transformer. The model was trained with an image size of 64x64
pixels, using the Adam optimizer with a learning rate of 0.001
and a batch size of 64. The MSE loss function was used for
training and for evaluating performance.

Figure 11 shows an example prediction of the TransUNet
model for an input satellite image on its first and twentieth
epochs, alongside the corresponding ground-truth label. These
outputs can be contrasted with Figure 12, which shows the
outputs from the baseline UNet model that did not use a vision
transformer in the uppermost skip connection, but was otherwise
identical. The TransUNet model’s outputs are considerably
more pixelated. This could be due to the vision
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Fig. 9. The satellite image, UNet DEM estimate, and true DEM on the final
(twentieth) epoch of the baseline UNet model with data augmentation.
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Fig. 11. TransUNet DEM predictions for 64x64 pixel images at Epochs 1 and
20 (the satellite images displayed in the leftmost column were fed into
the model as full RGB images, but are only displayed here, and
throughout the paper, on a blue to yellow gradient).
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Fig. 12. Baseline UNet DEM predictions for 64x64 pixel images at Epochs 1
and 20 (the satellite images displayed in the leftmost column were fed
into the model as full RGB images, but are only displayed here, and
throughout the paper, on a blue to yellow gradient).

transformer underfitting. Loss values during training for the
TransUNet on training and validation data are shown for images
of size 128x128 pixels in Figure 13, and for images of size
64x64 pixels in Figure 14. It’s unclear if either model converged
with the epochs provided. Further testing with a higher number
of epochs is necessary to make this determination.

D. Results of Model Architecture 4: TransUNet with multiple
active skip layer transformers

The Multi-TransUNet model was trained on the same dataset
as the previous models with a vision transformer applied to
every skip connection. This was done in part to confirm that each
transformer skip-connection worked as intended, though having
each transformer enabled at once may have had detrimental
effects on the model’s output. Figure 15 shows the Multi-
Transformer UNet model’s elevation predictions on the first and
twentieth epochs. The Multi-Transformer UNet model did not
meaningfully learn over a period of 20 epochs. This is confirmed
by the training and validation loss curves for the model shown
in Figure 16. The validation loss curve does not trend
downward, remaining approximately flat on average, while the
training loss curve fluctuates noisily.

While the immediate results do not support the usage of a
Multi-Transformer UNet model, further study is needed to
determine just how detrimental, or helpful, each skip-connection
transformer can be to the model on its own and when combined.
Transformers are known for taking longer to train than some
other architectures (including convolutional neural networks,
which employ additional inductive biases), and the poor learning
and validation curves shown could be a result of an error in the
code, improper hyperparameter configuration, or insufficient
training.
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Fig. 13. Loss values during training of TransUNet model on Training and
Validation sets of 128x128 images over the first twenty epochs.
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and throughout the paper, on a blue to yellow gradient).
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V. CONCLUSIONS

In summary, this paper has compared different neural
network architectures and their ability to accurately predict
digital elevation maps for Arctic land depicted in satellite
imagery. Specifically, the following can be said: (1) Providing
the baseline UNet neural network with additional slope and
aspect label data did not improve the performance of the model
significantly; (2) Implementing a vision transformer within the
uppermost skip connection improved the performance slightly,
but implementing vision transformers within every skip
connection impaired and complicated learning; and (3) simple
data augmentation did not noticeably increase model
performance within the first 20 epochs of training.

Future work should include: (1) Further experimentation
with hyperparameter tuning for each model; (2) Training the
models for a longer number of epochs so that researchers can be
sure that each model can converge; and (3) Checking the dataset
for imperfections that might be affecting the quality of the model
outputs or the fidelity of model evaluation.

Even without in-depth hyperparameter tuning, the baseline
UNet model showed promisingly accurate results when
converting the satellite images to digital elevation maps. If given
ample time to train, with a quality dataset, using a neural
network to generate a digital elevation map from a satellite
image could constitute a quick way to gain a reasonable
estimation for the elevation of difficult to navigate terrain. This
could be used not only for Arctic exploration, but for
extraplanetary exploration as well, to better prepare autonomous
rovers for exploratory missions. Including vision transformer
neural networks within the baseline UNet architecture might be
one way of increasing the accuracy of the neural network
model’s predictions, but further research is necessary to be
certain.
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