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Abstract—A reliable command and control (C2) data link is
required for unmanned aircraft systems (UAS) operations in
order to monitor the status and support the control of UAS. A
practical realization of the C2 communication and mission data
links for commercial UAS operations is via LTE/SG networks.
While the trajectory of each UAS directly determines the flight
distance and mission cost in terms of energy dissipation, it also
has a strong correlation to the quality of the communication
link provided by a serving base station, where quality is defined
as the achieved signal-to-interference-plus-noise ratio (SINR)
required to maintain the control link of the UAS. Due to
signal interference and the use of RF spectrum resources, the
trajectory of a UAS not only determines the communication link
quality it will encounter, but also influences the link quality
of other UAS in its vicinity. Therefore, effective UAS traffic
management must plan the trajectory for a group of UAS taking
into account the impact to the interference levels of other base
stations and UAS communication links. In this paper, an SINR
Aware Predictive Planning (SAPP) framework is presented for
trajectory planning of UAS leveraging 4G/5G communication
networks in a simulated environment. The goal is to minimize
flight distance while ensuring a minimum required link quality
for C2 communications between UAS and base stations. The
predictive control approach is proposed to address the challenges
of the time varying SINR caused by the interference from other
UAS’s communication. Experimental results show that the SAPP
framework provides more than 3dB improvements on average
for UAS communication parameters compared to traditional
trajectory planning algorithms while still achieving shortest path
trajectories and collision avoidance.

Index Terms—UAS, UAV Trajectory Planning, A*, Communi-
cation Quality

I. INTRODUCTION

General traffic planning for UAS (Unmanned Aircraft Sys-
tems) involves the search for an optimal path within certain
constraints to avoid potential reduced separation events with
manned aircraft, collisions with ground-based infrastructure,
and to ensure mission safety. During most UAS operations,
it is mission-critical to maintain a stable C2 link. The C2
link can be established over LTE/5G network services. To
leverage these networks, several factors such as the location
of LTE/5G ground base stations, the effective communication
coverage areas and interference, among others, need to be
considered. The high-bandwidth and low-latency communi-
cation capabilities offered by these networks are essential for

real-time control of UAVs, and in the context of LTE/5G, an
important indicator for the quality of the communication link
is the Signal-to-Interference-plus-Noise Ratio (SINR). High
SINR values indicate a strong and reliable C2 link, while low
SINR values can result in communication failure or delays,
which can compromise the safety and effectiveness of UAV
operations. Therefore, ensuring a high SINR is critical when
planning trajectories using LTE/5G networks as the commu-
nication backbone. In this work, we propose an SINR Aware
Predictive Planning (SAPP) framework to provide the best
trajectory for each UAV with guaranteed SINR improvement
while also preserving the benefits of collision avoidance and
minimizing trajectory length, and we refer to such trajectory
as Communication Optimized Trajectory (COT).

In order to compare candidate trajectories, or more accu-
rately, candidate waypoints, prior knowledge of communi-
cation link quality of the environment is required to search
for a COT before launching a new UAV, which makes the
prediction model of SINR a necessity. With this motivation,
we develop a prediction model that can accurately estimate
the SINR of the downlink connections between a UAS and its
attached base station based on their geographical location and
the geographical locations of other base stations and UAS in
the vicinity. The management of spectrum resources between
base stations in our analysis is based on the Hard Frequency
Reuse Method (HFRM) but it can be easily extended to
other frequency reuse methods. For each downlink connection
between the UAS and the attached base station, the model
calculates the SINR as a composition of three variables,
namely peak SINR (without interference), worst-case SINR
due to interference, and the probability that another base
station in the vicinity will transmit at the same time (i.e., the
possibility of having interference). The model is able to predict
the best-case link quality when there is no interference and also
the worst-case SINR with the consideration of interference
from neighboring base stations and UAS’s. Neural network
models are constructed and trained for the prediction of each
variable. The predictions made by the models have a very high
correlation (~0.98) with the simulated results. The model is
flexible by design and can be applied to various combinations
of communication link scenarios with different configurations.



Benefiting from our previous simulation platform [1], we
can first analyze the most dominant factors that affect the
communication quality from the simulation data. Then use
the simulator to generate the training data to train the SINR
prediction model.

Having an accurate SINR prediction model on hand enables
us to work towards designing a trajectory planning algorithm
to search for a COT. We further design a UAS traffic planning
algorithm that utilizes the SINR predictor to evaluate the
communication link quality during UAS trajectory planning. In
addition to collision avoidance, the algorithm searches for the
shortest path that can achieve a minimum acceptable level of
communication link quality along the path. The predicted com-
munication link quality is used by the A* (A-star) algorithm to
search for the optimal path within spatio-temporal dimensions.
A* [2] is a path search algorithm that in general does not
take communication link parameters into consideration. In
this paper, we propose a communication-enhanced version
of A* (CommA¥*) that incorporates communication costs and
constraints into the path search algorithm in order to improve
performance in communication-constrained environments.

The rest of the paper is organized as the follows. Section
IT provides an overview of related work. In Section III, we
inspect the five most dominant factors that affect the commu-
nication link quality in greater detail, followed by an introduc-
tion to SINR prediction models and a numerical evaluation of
the models in Section IV. We discuss the background related
to the A* algorithm and introduce the design details of the
CommA* algorithm in Section V. In Section VI, we compare
the experimental results of CommA* and A* algorithms under
low, medium and high traffic load.

II. RELATED WORK

The increasing popularity of small unmanned aerial systems
(sUAS) has brought to light several crucial and noteworthy
concerns related to sUAS traffic management. As a result,
various approaches and frameworks have been suggested to
address these concerns.

The authors in [3] proposed a method based on optical
flow to improve obstacle avoidance for sUAS. While there are
more recent works using machine learning methods, a deep
reinforcement learning framework that has the capability to
perform energy-efficient way-point planning has been adopted
in [4]. However, these works mainly targeted trajectory plan-
ning for a single UAV.

Trajectory planning for multiple UAVs has also been ad-
dressed in the literature. [5] and [6] used mixed integer linear
programming to enable UAVs to find a feasible path that is
collision free with shortest trajectory distance. UAV commu-
nications are not considered during the planning. [7] proposed
a trajectory planning framework that is capable of meeting
the constraints of no fly zones, static and dynamic obstacles
and minimum communication link quality. However, a rather
preliminary model is used to estimate the communication link
quality.

The communication quality in cellular UAV communica-
tions is commonly measured by the signal-to-noise ratio (SNR)
of the link between the unmanned aerial system (UAS) and
the ground control station (GCS), as per recent studies. In
[8], the authors propose an algorithm for optimizing the
trajectory of a single UAS with the objective of achieving
maximum energy efficiency while ensuring that the SNR of the
connection between the UAS and base station remains above
a predetermined threshold. On the other hand, [9] utilizes
simulations to assess the communication quality based on a
specific propagation model, which considers only the SNR
parameter. However, SNR is not sufficient in measuring the
quality of the wireless channel. A more accurate metric is the
signal-to-interference-plus-noise ratio (SINR).

In this paper, we propose a trajectory planning that aims
for a COT, where we include the experienced SINR along the
trajectory as part of the quality metrics for the trajectory.

III. VARIABLES AFFECTING SINR

In the rest of the paper, we use downlink SINR as the metric
for communication link quality. This is the SINR measured
on the signal transmitted from the base station to the UAV.
The downlink SINR, which we abbreviate as SINR in the
remainder of the paper, is determined by S, the received
downlink signal power spectral density (PSD); NV, the noise
PSD and I the PSD of the downlink interfering signals, as
shown below:
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The notations for the above mentioned terms are as shown in
Table I . In the following subsections, the dominating factors
that impact the above mentioned terms are discussed.

SINR =

(D

A. Signal PSD

The signal PSD Sgy is dominated by two major factors: the
PSD from the transmitter Sty and the pathloss of the channel
PL:

o STx
-~ PL’

Stx, the PSD from the transmitter is determined by the
total transmission power and allocation of the power across
the used spectrum. We follow the common method where the
transmission power is allocated uniformly across the entire
active bandwidth, and the active bandwidth is determined by a
frequency reuse method. Hence, the transmission power of the
base station and the frequency reuse method jointly determine
the transmission PSD. For the remainder of this paper, the
Hard Frequency Reuse Method (HFRM) is considered. HFRM
is a frequency reuse method that divides the entire frequency
bandwidth into a few (usually 3) sub-bands, and assigns
cells different orthogonal sub-bands such that the neighboring
cells are completely separated in the frequency domain, as
illustrated in Figure 1. The smallest level of granularity used
for frequency assignment is a resource block (RB), and each
RB spans 180kHz. In the later sections of this paper, the sub-
band bandwidth is measured by RBs.
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TABLE I
VARIABLES IN SINR FORMULA

Variable notation

SRx The received downlink signal power spectral density(PSD).
I The PSD of the downlink interfering signals
N The noise PSD
PowerT other base stations serving other UAVs. The power of such
interfering signals is affected by their respective transmission
Cell 1 - power and the pathloss experienced from the interfering base
Powera RBs stations to the victim UAYV, thus the transmission power of
Cell 2 the interfering base stations and the distance between the
> victim UAV and the interfering base stations are two of the
Cell 3 Powers RBs dominating factors. The inter-cell interference is also heavily
affected by the frequency reuse method, i.e., how orthogonal
. sub-bands are assigned to adjacent cells such that inter-
RBs cell interference is mitigated. For instance, in HFRM, the

Fig. . HFRM assigns neighboring cells with orthogonal sub-bands such that
they each enjoy a completely separated sub-band. Within the sub-band, power
is distributed evenly across the sub-band bandwidth.

PL, the pathloss, describes the attenuation effects of the
channel. According to the guidelines from 3GPP on enhanced
LTE support for aerial vehicles [10], for UAVs flying at a
height between 40 meters and 300 meters, the line of sight
(LOS) probability is 1. Thus, the LOS path loss model for
macro base stations in rural and urban scenarios, given as,

PLRMa—AV—LOS = max(239 —1.8 loglo(hUT)a 20) (3)
407rfc)

PLUMa—AV—LOS =28.0+ 22 loglo(d_gD) + 20 lOglo fc7 (4)

x log;o(dsp) + 201og; o (

are suitable for the scenarios that we will consider. In the
above formulations, hyr is the height of the UAV, dsp is the
3D distance from the UAV to the corresponding base station
and f. is the carrier frequency.

It is evident that for both models, the distance between the
UAV and the serving base station is the key factor.

B. Noise PSD

The noise power N is modeled by a fixed noise figure
that describes the noise introduced by both the transmission
device and the receiving device. We would like to mention
that despite adopting the common method of modeling the
channel noise with a fixed noise figure, such information
remains unknown to the predictor. The impact of the noise
is learned by the prediction models in Section IV via machine
learning methods, without information about the underlying
noise figure configuration.

C. PSD of Interfering Signals

The PSD of the downlink interfering signal, I, is dominated
by the inter-cell interference generated by the signal from

configured sub-band bandwidth determines to which degree
the sub-bands for adjacent cells are overlapping.

Moreover, interference is present only when the interfer-
ing base station is transmitting. The traffic pattern of the
interfering base stations, i.e., whether the transmission occurs
randomly or follows some periodic behavior, is critical to
predicting the experienced SINR. In this work, we consider
a scheduled traffic pattern where all the transmissions happen
synchronously to simulate a worst case scenario, and a random
traffic pattern of Poisson arrivals, where the transmission
interval of each UAV associated with the interfering base
stations follows an exponential distribution to simulate an
average case.

IV. PREDICTION MODELS

As introduced in Section III, interference is a dominating
factor in SINR prediction. However, unlike the other deter-
ministic factors, the presence of interference is dependent on
the transmission pattern of the other UAVs, which, in the real
world, is random.

To develop the prediction models that enable SAPP, a four-
step process is adopted:

« First, a prediction model is trained for the peak SINR,
which is the SINR achieved when there is no interference.

e Secondly, the factors affecting the worst-case SINR,
which is the SINR achieved when there is constant
interference from other base stations, is analyzed and the
prediction model for the worst-case SINR is developed.

« Thirdly, the prediction model for interference probability,
which predicts the probability of interference experience
for a particular subject UAV, is developed and trained.

« Finally, the average SINR prediction model can be ob-
tained by combining all above predictions.

All training data are acquired from simulations utilizing the
integrated simulation platform developed in [1].

The platform is an air traffic and communication co-
simulator, consisting of two components: i) a Multi-agent Air



Traffic and Resource Usage Simulation (MATRUS) frame-
work, based on the Repast agent-based simulation platform,
that simulates UAS air traffic and collects UAS mobility infor-
mation; and ii) a communications network simulator developed
on top of the ns-3 platform and its LTE modules, that provides
detailed and realistic cellular communication simulation under
LTE protocols.

The co-simulation framework enables users to model var-
ious scenarios by adjusting parameters like base station lo-
cations, resource block count, and propagation models for
urban or rural settings, along with mission profiles and no-
fly zone definitions. The integrated simulator can produce
detailed communication link quality reports. These desirable
features enables the training for our prediction models and the
implementation of our proposed trajectory planning algorithm.

A. Peak SINR Prediction Model

Under the assumption that interference would always be
absent, the peak SINR is mainly affected by the PSD from
the Tx and the pathloss, as shown in (2). The two jointly
determine the received signal PSD, i.e., the numerator of the
SINR value as shown in (1). The pathloss is as shown in (3)
and (4) for rural and urban scenarios, respectively. The value
of the transmitted signal PSD and the pathloss can be further
influenced by the variables stated in Table II.

A multi-layer perceptron model (MLP), with 1 input layer,
2 hidden layers and 1 output layer is trained for the peak SINR
prediction. We define a vector of input Zserving eNB a8

TServing eNB = [dservingv P7 Bw7 RBuseda RBoffset]- (5)

We the
fPeuk (xServing eNB)'

The correlation between the true peak SINR value (i.e., the
label of the data) acquired from simulations and the peak SINR
value predicted by the model is shown in Figure 2. We achieve
a correlation coefficient larger than 0.99, indicating that the
predicted value is highly positively related to the label. The
mean squared error (MSE) loss is less than 0.18, showing that
the error made by the prediction model is small.

denote peak SINR prediction model as

B. Worst-case SINR Prediction Model

As introduced in Section III, the downlink interference
signals are essentially signals from other base stations intended
to serve other UAVs. We first conduct various experiments
exploring the impact of the number of other UAVs associated
with (i.e. being served by) interfering base stations. The
experiment was simulated with one base station serving the
subject UAV, and one interfering base station serving various
numbers of UAVs. All UAVs are scheduled to transmit at the
same time, to ensure that interference is always present. The
results are shown in Table III. It can be seen that the number
of UAVs attached to the interfering base station had negligible
impact on the SINR.

The factors in Table IV will be used to predict the percent-
age of SINR drop when a UAV suffers from interference from
a number of interfering base stations, which is measured by

Loss (MSE) = 0.1789 Corr = 0.9997
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Fig. 2. Correlation figure for predicted peak SINR, where y represents true
peak SINR value acquired from simulation (label); ¢ is the predicted peak
SINR from the trained model.
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Fig. 3. The structure used for the prediction model for the worst-case SINR.

(SINRpeak - SINRworst)
SINRpeqr

Drop = .

In order to support an arbitrary number of interfering base
stations, we build the predictor based on Long Short Term
Memory (LSTM) model. Following the order from nearest
to farthest, the features of the interfering base stations are
fed into the LSTM model. The predicted drop percentage are
calculated from the hidden state of LSTM using several layers
of a fully connected network. The structure is illustrated in
Figure 3. Theoretically, our model can support any number of
interfering base stations with high accuracy.

We define a vector of input Zerfering base station S

T

Tlnterfering eNB = | (6)
Tn

@i = [di tnterferer Pi Bw RByea RBofts| — (7)

where n is number of interfering base stations.

We denote the drop percentage prediction model as
fLoss(@mnerfering exg ). It is the ratio between the worst case
SINR and the peak SINR of the UAV.

The correlation between the true drop percentage (the label
of the data) acquired from simulations and the model predicted



TABLE II
INPUT VARIABLES FOR PEAK SINR PREDICTION

Base Station PSD P

The transmission power of base station.

Bw The bandwidth of base station.
RBysed The number of RBs allocated for HFRM.
R Boffset The RB offset in HFRM.
Pathloss dserving  The 3D distance between subject UAV and its serving base station, d3p in section IIL

TABLE III
VARIOUS UAVS ATTACHED TO INTERFERING BASE STATION

Number of UAVs at interferer

SNR (no interference) (dB)

Worst-case SINR (dB)

1 33.46 32.64

3 33.36 32.64

5 33.46 32.64

7 33.46 32.63

9 33.46 32.63
TABLE IV

INPUT VARIABLES FOR WORST-CASE SINR PREDICTION

Interfering Base Station PSD P
Bw
RBused
R Boffset

The transmission power of the interfering base station.

The bandwidth of interfering base station.
The number of RBs allocated for HFRM.
The RB offset in HFRM.

Pathloss dinterferer

The distance between subject UAV and the interfering base station.

Loss (MSE) = 0.0002 Corr = 0.9983
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Fig. 4. Correlation figure for predicted worst-case SINR, where y represents
true SINR drop percentage acquired from simulation (label); g is the predicted
SINR drop percentage from the trained model.

drop percentage is shown in Figure 4. We again achieve a
correlation coefficient of larger than 0.99, which means that
the predicted SINR drop percentage is highly positively related
to the label. The mean squared error (MSE) loss is less than
0.0001, showing that the error of the prediction model is small.

By combining the predicted peak SINR and the predicted

percentage SINR drop, we can predict the worst-case SINR as
(®)

Jworst-case = fPeak (xServing eNB) * [Loss (xlnterfering eNB)
C. Interference Probability Model

In practical applications, the traffic pattern of UAVs would
be highly random. As discussed in Section III, we adopt the
assumption that all the UAVs’ packet flows follow a Pois-
son pattern. That is, the interval between two transmissions
for a UAV is an exponential random variable. Utilizing the
simulation platform in [1], we implement this Poisson traffic
pattern with an On/Off application in ns3. This application
consists of two parameters: the OnT'ime for the duration of
the transmission from the UAV and the Of fTime for the
interval between two transmissions. We always configure the
OnTime as the exact time needed to transmit one packet,
which is roughly 0.5ms, and the O f fTime as the exponential
random variable that gives the desired Poisson traffic pattern.
Since data flow towards each UAV follows a Poisson traffic
pattern, the number of UAVs attached to both the serving base
station (sibling UAVs) and the interfering base station will
impact the probability that the subject UAV will experience
interference. The input variables for the probability prediction
model are listed in Table V.

We acquire simulated probability by attaching random num-
bers of UAVs to the serving base station and the interfering
base station. We then use the simulated probability as the label
for the training data. The correlation between the measured
probability of interference acquired from simulation (the label



TABLE V
INPUT VARIABLES FOR INTERFERENCE PROBABILITY PREDICTION

Serving Base Station Ngib Number of Sibling UAVs
OnTime The time to transmit one packet.
OffTime  The parameter of the exponential random variable determining the time interval between two transmissions.
interfering Base Station  np¢p Number of interfering UAVs
OnTime The time to transmit one packet.
Of fTime The parameter of the exponential random variable sampling the time interval between two transmissions.

Loss (MSE) = 0.0003 Corr = 0.9973
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Fig. 5. Correlation figure for predicted interference probability, where y
represents true simulated interference probability acquired from simulation
(label); ¥ is the predicted interference probability from the trained model.

of the data) and the predicted interference probability is shown
as figure 5. We achieved a higher correlation (greater than
0.997), and a low MSE error (low than 0.0002).

We denote the predicted interference probability as fp;.op.
Combining it with predicted peak SINR and predicted per-
centage SINR drop, the average SINR can be calculated as

SINRavg - fPeak : fLoss : fProb + fPeak : (1 - fProb)
)

In addition to interference probability, average SINR is
acquired from the simulation with the same settings above
and the predicted average SINR is calculated following (9).
The correlation between label and predicted average SINR is
depicted in Figure 6 with correlation coefficient equal to 0.996
and MSE loss equal to 0.03.

V. A* WITH COMMUNICATION CONSIDERATION

A. Environment Assumptions

As mentioned in Section I, the goal of the CommA* routing
algorithm is to provide a COT that guarantees improvement
in terms of the SINR experienced along the trajectory, while
maintaining collision avoidance and a comparable route length
with respect to to A*.

Loss (MSE) = 0.1260 Corr = 0.9961
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Fig. 6. Correlation figure for predicted average SINR, where y represents
true simulated average SINR (label); ¢ is the predicted average SINR from
the trained model.

We adopt a proactive trajectory planning strategy that plans
a conflict free trajectory for each SUAS at launch time or at the
time when it enters the controlled airspace. As the trajectories
for all UAVs in the designated airspace are planned by the
corresponding control center, it can surely plan a COT for
the incoming UAV if such a trajectory is feasible. If there
is no possible path (i.e., there is collision on every possible
path), the launch of such UAV will be delayed until a collision
free path is available. As the SAPP is a proactive trajectory
planner executed at the control center, power consumption or
computing power would not be a limit. Any other possible air
traffic constraint could be easily integrated as well.

We limit the trajectories to a Manhattan style to reduce the
search space. Also, we adopt the “sky lane” concept proposed
by [11]. Similarly, we divide the airspace into grids with
uniform size. In the rest of the paper, we consider the scenario
where the UAVs navigate through a 2D spatial plane. These
limitations constrain the UAVs to fly at a constant speed and
height, and to only make 90° turns. Note that the size of the
grid cells naturally translates to the minimum separation of
the UAVs for operational safety.

By considering time as one of the dimensions, the 2D spatial
plane is then extended into a 3D spatio-temporal model, as
depicted in Figure 7. Each cubic cell in the grid is located by
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Fig. 7. Illustration of a temporal-spatial space. Note that each cell has 4
neighbors, all of which located on the next time step. For instance, the current
cell (z,y,t) is marked blue. Cell (z + w,y,t + &) is marked black because
of its unavailability.

three coordinates: (latitude, longitude, time). Each cell would
be of size (w,w,d), where w is the minimum separation
between UAVs and 4§ is the time needed for a UAV to travel
a distance of w. Note that § is a constant as the UAVs are
assumed to travel at a constant speed.

The environment consists of static obstacles (i.e., building,
no-fly zones, etc.) and dynamic components with respect to
occupation of a cell by another UAV and fluctuation of signal
strength. For static obstacles, we use a 2D map for their
storage, where each of the obstacles occupy a specific location.
Since the static obstacles are time invariant, the information
along the ¢ axis is redundant and hence it can be eliminated.
For the dynamic obstacles, we exploit their spatial sparsity and
store them using hash tables along the ¢ axis. Each location
on the ¢ axis is associated with a hash table, which stores the
(x, y) coordinates of dynamic obstacles at the corresponding
time.

B. Plain A* Routing Algorithm

The A* routing algorithm [2] is a heuristic routing algo-
rithm that performs a best-first search. A* uses a combined
evaluation function f(n) to estimate the cost of the best path
that goes through node n:

f(n) = g(n) + h(n),

where 7 is a neighboring node of the current node, g(n) is the
cost function from the source node to node n, h(n) is a heuris-
tic estimation of the lowest cost from n to the destination. If
the heuristic function h(n) satisfies the “admissible” property,
which requires h(n) to never overestimate the cost to goal,
then the A* algorithm is guaranteed to find the least-costly
route from the source node to the destination.

We utilize the A* routing algorithm to find the optimal path
from the launching position to the destination in our spatio-
temporal model. A UAV trajectory starts from a source grid
cell (s;,sy,s:), and ends at any one of the destination grid

(10)

cells (ds, dy), where (s, s,) and (d,,d,) are the coordinates
of the launching position and destination grid cell, and ¢ is
the launch time.

The pseudo code for the original A* algorithm implemented
on the discussed environment is shown in Algorithm 1. An
instant refreshing mechanism is used such that the algorithm
stores only the dynamic obstacles at or beyond the current time
step. It is demonstrated in [2] that this saves from additional
memory cost.

Algorithm 1: A* algorithm

Data: Starting Coordinates(s,Sy,S¢),
Destination Coordinates(d,,d,)
Result: The optimal routing trajectory for one UAV
OpenlList = ();
ClosedList = 0
ClosedList.add(start_position);
while OpenList # () do
node = OpenList.poll();
Instant Refreshing Mechanism;
if node == destination then
trajectory = retrieveTrajectory(node);
break;
end
ClosedList.add(node);
foreach neighbor € CandidateSelection do
if neighbor € OpenList then
| neightbor = OpenList.get(neighbor)
end
Calculate neightbor’s NewM ovementCost;
if NewMovementCost <
OldM ovementCost||neighbor ¢ OpenList
then
update neighbor’s MovementCost;
update neighbor’s DestinationCost;
OverallCost =
MovementCost + DestinationCost;
end
if neighbor ¢ OpenList then
| OpenList.add(neighbot);
end

end
end

foreach position € trajectory do
mark OBSTACLE in 3D_dynamic_projection;

end
return trajectory;

C. Communication Enhanced A*

The accurate prediction models introduced in Section IV
enables us to design a communication enhanced A* routing
algorithm, which takes into consideration the communication
link quality along the trajectory while maintaining the virtues
of a short flight distance and collision avoidance.



Algorithm 2: Candidate Selection

Data: Current Position(curr N ode),
Past Selected Positions(ClosedList)
Result: The candidate neighbors of the current position
neighbors = (;
foreach position in Directions do
check position in 2D_static_projection;
check position in 3D_dynamic_projection;
if position IS_VALID and no obstacle in
2D/3D_projections and have enough signal
support and position ¢ ClosedList then
position initialization
netghbors.add(position);
end

end
return neighbors;

To achieve such a goal, the evaluation functions of the A*
algorithm is modified as follows:

g(n) = g(n —1) + max(1 + 3”18_78(”),0) (11)
th
h(n) = max(1+ M,O) x d(n,dst)  (12)

Sth

where s(n) is the communication link quality at location 7,
s(n, dst) is the average communication link quality in the area
between location n and the destination, sy, is the threshold for
communication link quality, and d(n,dst) is the Manhattan
distance from n to the destination. Note that s, is left open
for a user defined, mission-dependent parameter.

Note further that we leave the definition of “communication
link quality” open to any of the three SINR values introduced
in Section IV. s(n) and s(n, dst) could be the estimated peak
SINR (i.e., no interference at all), worst SINR (the case of
always being interfered) or the average SINR (the expected
SINR, where the expectation is taken over the randomness
introduced by random transmission from other UAVs).

The rationale behind such modifications is to penalize the
trajectory where the communication link quality is below sy,
by increasing its distance cost and decreasing it if it is above
the threshold.

VI. EXPERIMENTAL RESULTS

In the following experiments, an urban setting near Watford
City, ND is considered. A map of this area is given in Figure 8.
We have one launching area colored red on the west of the map
and one landing area serving as the destination, colored purple
on the east of the map. There are 4 base stations located in
this area, and they are located at the red markers at the center
of the green circles.

As discussed in Section V, all the UAVs in the following
experiments fly at a fixed altitude of 100 meters and a fixed
speed of 18m/s. The transmission powers of the base station
and UAS are fixed at 40dBm and 15dBm, respectively. We use
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Fig. 8. A map for the considered urban area near Watford City. The red
launching area is located in the northeast of the map. The smaller purple
destination is located in the east of the map. The four base stations are located
at the red markers in the center of the green circles.

the 3GPP urban macro model in [10] as the propagation model.
The total bandwidth supports 15 RBs, and the frequency
management is done via HFRM with the subband bandwidth
set as 6 RBs.

As discussed previously, we adopt a spatio-temporal model
in the environment for trajectory planning. The grid length
for the spatial grid is 90 meters, i.e., the 2D spatial plane
is divided into grids of size 90 x 90, and the length in the
temporal dimension is the corresponding time for the UAV to
travel from one grid to a neighboring grid.

We then conduct experiments involving different traffic
patterns using different trajectory planning algorithms, where,
for CommA¥*, we further vary the prediction models used for
the SINR evaluation s(n), s(n, dst) in equations (11) and (12).
We measure the SINR experienced along the trajectory by
calculating the percentage of the trajectory where the SINR is
above a threshold of 30dB. Note that there are UAVs launched
from the launching area and routed to the destination, which
we refer to as the subject UAVs. In addition to these UAVs,
there are also other UAVs attached to these base stations, these
UAVs are used to simulate UAVs performing other missions
and their communications activity will generate interference.

A. No Interference

The results in Table VI are acquired using the aforemen-
tioned experimental setup, but with no interference present at
all. We launch 1 UAV from the launching zone and observe
the trajectory planning offered by the A* and CommA*, where
the SINR evaluation s(n), s(n, dst) in equations (11) and (12)
is acquired from the peak SINR predictor.

B. Persistent Interference

The results presented in Table VII are acquired with a traffic
pattern where the interfering base stations have scheduled
transmissions that are perfectly synchronous with the sched-
uled transmission from the serving base station to the subject
UAV. We configure that each base station transmits to its 10
attached UAVs at time t,+n-At, and the subject UAV receives
packets from its serving base station at time ,+n-At as well.



TABLE VI
ONE UAYV, NO INTERFERENCE

Average SINR along trajectory(dB)

Route Length(km)  SINR above threshold(%)

A* 31.694923
CommA*(peak SINR) 32.371898

8.91
9.63

92.1844%
93.9759%

This configuration leads to the persistent downlink interference
experienced by the subject UAV.

We then launch 1 UAV from the launching zone and observe
the trajectory planning offered by the A* and CommA*, where
the SINR evaluation s(n), s(n, dst) in equations (11) and (12)
is acquired from the worst-case SINR predictor.

C. Random Interference

We then configure a random traffic pattern, where the base
stations transmit randomly to their attached UAVs. The interval
between two packets sent for a particular UAV is set to be an
exponential random variable with a mean of 100ms. Again, in
addition to the launched subject UAVs, we attach each base
station with 10 other UAVs to generate downlink interference.
These UAVs adopt the same traffic pattern, i.e., the base station
transmits to them in the same way they transmit to the subject
UAVs. Note that since interference is only present when there
are interfering base station transmitting, the subject UAVs
would experience random interference within such setups.

We conduct experiments with light, medium and high traf-
fic loads, corresponding to 15, 50 and 100 UAVs launched
from the launching areas. We perform trajectory planning for
each traffic load using original A*, CommA*(peak SINR),
CommA*(worst-case SINR) and CommA*(average SINR),
where the configurations in between parentheses denote which
predictor is used for the SINR evaluation s(n), s(n,dst) in
equations (11) and (12).

The results are provided in Table VIII. The numerical results
reported in Table VIII are averaged over all subject UAVs.
Interestingly, with medium or high travel traffic volume,
routing algorithms based on the worst-case SINR prediction
give the best results. This is because, like all A* algorithms,
the CommA* is a greedy algorithm. When planning UAV
trajectories, it only considers the interference caused by the
UAVs that have already been launched. It ignores the potential
interference that will be introduced by the UAVs that will
enter the air space at a later time. As a result, the actual
SINR the UAV experiences is always lower than that the
algorithm estimated during the planning time. Hence a plan-
ning algorithm based on the worst-case SINR works better
because it provisions for potential further SINR degradation.
Such provisioning is not necessary when the traffic is light.
That is why the CommA* performs the best with the average
SINR prediction instead of the worst-case SINR prediction
under light traffic.

VII. CONCLUSION

In this paper, we have proposed SAPP framework using a
communication aware A* routing algorithm for UAS trajectory

planning using 4G/5G cellular networks. The proposed frame-
work includes accurate prediction models trained from sim-
ulations involving detailed communication metrics, enabling
the accurate prediction of the peak SINR, the worst-case
SINR and the average SINR. With the mentioned prediction
models, we developed a CommA* algorithm that takes the
experienced communication link quality along the trajectory
into consideration, and plans for a communication optimized
trajectory. While maintaining the merit of collision avoidance
and short flight distance, CommA* demonstrated a substantial
improvement in communication link quality in the experiments
conducted based on real word scenarios. Moreover, we note
that while the prediction models were trained under HFRM,
they can be easily extended to other spectrum management
schemes.
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