
Excessive SSD-Internal Parallelism
Considered Harmful

Xiangqun Zhang
Syracuse University
xzhang84@syr.edu

Shuyi Pei
Samsung Semiconductor
shuyi.pei@samsung.com

Jongmoo Choi
Dankook University

choijm@dankook.ac.kr

Bryan S. Kim
Syracuse University
bkim01@syr.edu

ABSTRACT
Modern SSDs achieve high throughput by utilizing multi-
ple independent channels and chips in parallel. However,
we find that excessive parallelism inadvertently amplifies
the garbage collection (GC) overhead due to the larger unit
of space reclamation. Based on this observation, we design
PLAN, a novel SSD parallelism management and data place-
ment scheme that allocates different levels of parallelism
to different workloads with different needs to minimize the
GC overhead. We demonstrate the effectiveness of PLAN
by evaluating it against other state-of-the-art designs across
various real-world workloads. PLAN reduces write amplifi-
cation with comparable or better performance to the other
designs that are always at full parallelism.

CCS CONCEPTS
• Information systems→ Flash memory; • Computer
systems organization→ Firmware; Embedded software.

KEYWORDS
Solid State Drive, Write Amplification, Garbage Collection
ACM Reference Format:
Xiangqun Zhang, Shuyi Pei, Jongmoo Choi, and Bryan S. Kim. 2023.
Excessive SSD-Internal Parallelism Considered Harmful. In 15th
ACM Workshop on Hot Topics in Storage and File Systems (HotStorage
’23), July 9, 2023, Boston, MA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3599691.3603412

1 INTRODUCTION
SSD requires time- and resource-consuming internal space
reclamation, namely garbage collection (GC) [8, 9]. It is nec-
essary to perform GC because (1) an SSD prohibits in-place

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

HotStorage '23, July 9, 2023, Boston, MA, USA
© 2023 Copyright is held by the owner/author(s). Publication rights
licensed to ACM.
ACM 979-8-4007-0224-2/23/07…$15.00
https://doi.org/10.1145/3599691.3603412

Full 1/2 1/4 1/8
0
2
4
6
8

W
AF

Full 1/2 1/4 1/8
0
25K
50K
75K
100K

IO
PS

Figure 1: WAF and throughput of SSDs when four dif-
ferent write threads concurrently issue requests with
respect to different levels of SSD-internal parallelism,
conducted using a 256GiB, FEMU-emulated SSD with
greedy GC algorithm.

updates and (2) the unit of an erase (flash memory block)
is much larger than the unit of a program (flash memory
page) [3, 31]. Due to these peculiarities, an SSD writes all
updates to a new location and invalidates the prior physical
copy. To reuse this invalidated physical space the flash mem-
ory block must be first erased after relocating all surviving
valid data. Garbage collection refers to this SSD-internal data
relocation process, and reducing its overhead has been the
focal point of research in SSDs for many years [6, 15, 16, 27].
While there have been significant advancements in the

algorithmic aspect of GC, particularly on lifetime-based data
characterization schemes [6, 15, 16, 27], the effect of flash
memory technological trends on GC overhead is often over-
looked. More specifically, the increasing flash memory page
size, number of pages per block, and parallelism (number
of channels and chips) effectively increase the unit of GC.
As an effect, the amount of data copied per space reclaimed
statistically increases for the same workload. Figure 1 illus-
trates this example. We concurrently run four FIO threads
writing data of different characteristics to SSDs with differ-
ent levels of internal parallelism: full parallelism stripes data
across all channels and chips, 1/2 parallelism stripes data to
all channels but only 1/2 of the chips for each channel, 1/4 to
1/4 of the chips, and 1/8 to 1/8 of the chips. We observe that
the write amplification factor (WAF) increases to 230% as
the parallelism increases from 1/8 to full. Paradoxically, full
parallelism does not achieve the highest throughput due to
the high WAF: half parallelism configuration achieves nearly
40% higher throughput than the full.

Based on this observation, we argue that excessive paral-
lelism in SSDs is, in fact, harmful. While a large superblock

65

https://doi.org/10.1145/3599691.3603412
https://doi.org/10.1145/3599691.3603412
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3599691.3603412&domain=pdf&date_stamp=2023-07-10

HotStorage ’23, July 9, 2023, Boston, MA, USA X. Zhang et al.

(a collection of blocks from each chip in the SSD that are
written together) improves the overall bandwidth [3, 12],
this comes at the cost of high GC overhead, an overhead
that affects not only the lifetime but also the performance
of the SSD due to interference. The crux of the problem is
that a fixed superblock size cannot attain both high peak
performance and low GC overhead.

We address this problem by designing PLAN (Parallelism-
and Lifetime-aware AllocatioN), a novel SSD parallelism
management and data placement scheme that provides differ-
ent levels of parallelism to different workloads with different
needs. Unlike the traditional design with a single level of par-
allelism across the whole SSD, PLAN rightsizes the amount of
parallelism: higher parallelism for bandwidth-intensive I/Os
and lower for others. Our work thus improves the overall
throughput by significantly reducing the GC overhead.

2 BACKGROUND AND MOTIVATION
In this section, we describe the algorithmic aspects of garbage
collection (GC) and the common approach in reducing GC-
induced write amplification factor (WAF). We then discuss
further details on how parallelism affects GC performance.

2.1 Garbage collection essentials
The amount of data copied during GC is affected by (1) when
GC is performed and (2) which flash memory block the al-
gorithm selects to clean. Lazily cleaning allows the SSD to
absorb more writes and to have more data invalidated, but
this can block host writes if GC is unable to reclaim space on
time[22, 24]. Thus, modern GC algorithms carefully select
their trigger conditions (e.g., when available free blocks drop
below a watermark) to reduce data copies while ensuring
that free blocks are available for incoming host requests[8, 9].
To select a victim block to clean, an SSD not only main-

tains per-block information such as valid count and age, but
also efficiently organizes blocks to facilitate the selection. A
common garbage collection approach is to greedily choose
the block with the least valid data as the victim, denoted
as greedy GC[8, 9]. To reduce the overhead of traversing
through per-block metadata for selection, mechanisms such
as windowed GC or random selections are considered to
realize a fast and efficient victim selection[13, 25]. In addi-
tion, algorithms such as cost-benefit consider the age of the
data to avoid cleaning soon-to-be-updated hot data[24], and
identifying infrequently-updated cold data and separating
them from hot reduces the amount of data copies by creating
a bimodal distribution of the valid data among blocks[22].

The separation of hot and cold data can be further assisted
by host-level hints. The multi-stream interface allows the
host to tag data with different stream IDs, which are used
by the SSD to separate them during block allocation[15]. Its

 Host

 Requests

Large
superblocks

Small
superblocks

S M L E S M L E

Large, sequential requests Small, random requests

DD

GC

S

L

M

E

: Short lifetime

: Long lifetime

: Medium lifetime

: Extremely long lifetime

D : Default GC : Garbage Collection

… …

…

Figure 2: The overall design of PLAN. Data will be writ-
ten to different superblocks based on their size and
lifetime characteristics.

successor, AutoStream, provides the automatic assignment
of stream IDs based on I/O characteristics[27]. Other stream-
based approaches, including FStream[23], PCStream[16], and
WARCIP[28], provide automatic stream ID assignment based
on filesystem metadata, program context, and minimization
of write interval differences. These approaches require sup-
port from the application, the host system, and/or the SSD,
bringing extra overheads for their adoption.

2.2 Effect of SSD parallelism on GC
With the significantly grown SSD capacity over the past
decade, the unit of SSD internal management has also grown
larger to reduce management overhead. The increasing num-
ber of pages per block and blocks per chip requires more in-
formation to be tracked for the FTL. Therefore, modern SSDs
usually handle incoming write requests on the superblock
level[14, 20, 21]. Data are striped over all available channels
and chips to increase parallelism and reduce DRAM usage.
The SSD also performs GC on the superblock level, where it
chooses a superblock as the GC victim, relocates any valid
pages in it, and erases the whole superblock[26].
However, a larger management unit trades off perfor-

mance for space[11]. As larger superblocks lead to fewer GC
candidates, the GC algorithm must erase the whole victim
even if its valid page distribution is skewed since few work-
loads are entirely uniform; more valid pages will be relocated
during the GC process, which causes performance degrada-
tion and shortens SSD lifetime. Therefore, SSDs should have
smaller superblocks for better GC efficiency.

3 DESIGN
Figure 2 shows the overall structure of PLAN. SSD requires
large superblocks with high parallelism to prevent large, se-
quential I/O from stalling but favors small superblocks for
GC, so our design must satisfy both requirements. Large,

66

Excessive SSD-Internal Parallelism
Considered Harmful HotStorage ’23, July 9, 2023, Boston, MA, USA

sequential requests continue using large superblocks with
full parallelism, while small, random requests are directed
to small superblocks. On the other hand, Prior works have
shown the effectiveness of lifetime-based data characteriza-
tion schemes[15, 16, 27]. Based on the predicted data lifetime,
the SSD chooses the most appropriate target superblock to
write data of similar lifetimes to the same superblock.

Compared to prior works, our approach is implemented
entirely inside the SSD. This means PLAN is transpar-
ent to users; it does not require any application[15, 30],
filesystem[23], operating system[16, 27], or SSD protocol[15]
modification when compared to prior works. Furthermore,
no prior training is needed compared to machine learning-
based approaches[5, 29]. This eliminated the need for chang-
ing anything except for the SSD itself in the storage stack.

3.1 Flexible Superblocks
Traditional SSDs organize blocks into a superblock, which
contains a block from every single chip[14, 26]. This design
ensures incoming data can be striped across all available
channels and chips. Intuitively, this provides better paral-
lelism and guarantees higher throughput, but this effectively
increases the superblock size, which is also the unit of GC[26].
However, a larger GC unit causes higher WAF. Therefore, it
is necessary to reduce the size of GC units.

How does an SSD reduce the size of a superblock? The size
of a traditional SSD superblock striping across all channels
and chips equals to pages per block × chips per channel × #
of channels in the SSD, as each superblock uses one block
per chip. Reducing one of these factors can reduce the size
of the GC unit. Pages per block used per superblock cannot
be changed as the smallest erase unit is a block. This leaves
the only choices to be chips per channel and # of channels,
affecting SSD parallelism. PLAN reduces the superblock size
by reducing chips per channel used for each channel, as each
channel can handle I/O requests independently[31]; reducing
the # of channels used per superblock may cause several chips
to share the same channel, which is undesirable since this
can congest the channel and stall the request.

With this problem in mind, PLAN uses all available chan-
nels for all superblocks, similar to traditional SSDs, but it uses
2 chips per channel (1/4 parallelism) for small superblocks as
the default configuration since further reducing parallelism
degrades performance without significantly reducing WAF
compared to the baseline. Using 1/4 parallelism for small
superblocks also shows the best overall throughput in our
evaluation. PLAN SSD keeps a given number of big and small
superblocks concurrently open to host writes and uses full
parallelism collectively to serve requests of different sizes.
The SSD can easily obtain the number of pages required by
the request by checking the starting/ending sectors and de-
cide if a big or small superblock should serve the request. Big

superblocks still span across all chips on all channels, simi-
lar to traditional SSDs; sequential requests spanning across
8 pages or more can continue enjoying high throughput
with a higher level of parallelism, whereas the WAF of small,
random requests spanning across less than 8 pages can be
reduced with smaller superblocks.

The GC algorithm must also be modified since PLAN sup-
ports superblocks of different sizes. All superblocks in tra-
ditional SSDs are the same size, meaning the greedy GC
can easily choose the victim by finding the superblock with
the least number of valid pages. PLAN, on the other hand,
have different superblock sizes for big and small superblocks.
Naïvely choosing the superblock with the least number of
valid pages leads to a constant selection of small superblocks
as GC victim. PLAN addresses this issue by choosing the su-
perblock with the least valid data ratio. This ensures the SSD
always picks the superblock that frees up the most space.

3.2 Lifetime Predictor
Lifetime prediction has been proven effective in reducing GC
overhead[15, 27]. By grouping data of similar lifetimes, they
will be invalidated almost simultaneously, transitioning the
superblock from a mostly valid state (where the superblock
will not be chosen as GC victim) to a mostly invalid state
(where the GC overhead is low). This requires metadata,
including lifetime and previous I/O operation, to be recorded
for host data.

To save valuable SSD DRAM space, we chunk the logical
address space similar to prior works[27, 28]; each chunk
requires a 4-byte structure to record its lifetime information,
including the chunk’s weighted average history lifetime in
granularity of seconds, the time of the last write, and the
previous operation. Similar to the observation in AutoStream,
our evaluation shows smaller chunk size does not always
bring better performance[27], and a chunk size of 32 pages
performs the best overall. This requires a total of 8MiB of
DRAM for a 1TiB SSD with a 16 KiB page size.

When a chunk is overwritten or invalidated, we calculate
a weighted average using the old history lifetime and the
chunk lifetime since the previous write as the new history
lifetime. We use a weight of 0.1 for the old history lifetime as
it performs the best overall by quickly adapting to changing
workload characteristics. The newly calculated weighted
average will be used as the expected lifetime of this write
and be recorded as the new history lifetime.
After the lifetime predictor calculates the expected life-

time, the SSD chooses an open superblock to write to.
Data with different lifetimes are written to different su-
perblocks by this mechanism to create the desired bimodal
distribution. As prior work shows data in different lifetime-
based superblocks show exponential lifetime range[16],
lifetime-based superblocks are designed to accept data of

67

HotStorage ’23, July 9, 2023, Boston, MA, USA X. Zhang et al.

Table 1: Evaluation configurations.

FEMU

Channels 8 Page size 16KiB
Chips per channel 8 Physical capacity 256GiB
Planes per chip 1 Logical capacity 240GiB
Blocks per plane 1024 Over-provisioning 0.0625
Pages per block 256 GC Policy Greedy
CPU cores per VM 12 DRAM per VM 8GB

exponentially-sized lifetime ranges: the short lifetime su-
perblock accept data (denoted S in Figure 2) with a lifetime
smaller than 1s; medium lifetime superblock (denoted M)
accepts data with a lifetime between 1 and 3s; long lifetime
superblock (denoted L) accepts data with a lifetime between
3 and 7s, and so on.

Another tunable parameter is the number of concurrently
opened superblocks for data of different lifetimes. Figure 2
shows an example of 4 large superblocks and 4 small su-
perblocks for host writes based on data lifetime; each of
them accepts data with different lifetimes. More concurrently
opened superblocks provide better granularity when sepa-
rating data of different lifetimes[27, 28]. Therefore, we use
8 large superblocks and 8 small superblocks for PLAN, as
commercial SSDs can have at least 16 concurrently opened
superblocks[27]. There is also a big superblock and a small
superblock as default superblocks for data without prior
lifetime information since more concurrently opened su-
perblocks are allowed if they are internal to the SSD[16].
Lastly, an extra superblock with full parallelism for GC pre-
vents GC-incurred latency caused by the reduced parallelism.

With the lifetime predictor grouping data by their lifetime
characteristics and PLAN providing a smaller GC unit, we
can effectively reduce the GC overhead.

4 EVALUATION
We implement PLAN on our customized FEMU[17] with
TRIM and multi-stream support[2]. Table 1 shows the pa-
rameters we use in our evaluation. We conduct the following
evaluations with workloads of different I/O characteristics.
• FIO workload with 4 FIO processes running concurrently.
Each process issues 256GiB of I/O in total (50% read, 50%
write) to differently sized files (size ratio 1:10:30:64) on dif-
ferent partitions similar to AutoStream[27], creating data
of different lifetime characteristics. All I/Os are uniformly
random and 4KiB in size using libaio with iodepth=32.

• TPC-C workload with 30 terminals and 30 warehouses
using BenchBase[10], running on MySQL with a 4KiB
InnoDB page size.

• YCSB[7], which first inserts 100 million key-value pairs,
then issues 50 million operations (workload A: 50% read,
50% update) on top of RocksDB[19].

• Fileserver workload from Filebench[1] with 1 million
128KiB files and 16 instances.

• GCC Linux kernel compilation workload with 100 itera-
tions. Each iteration copies the Linux kernel source code
to the SSD, compiles the kernel, and deletes the source
code and compiled binary.

For every workload, we run it under the following settings
with the same number of concurrently opened superblocks
and use all 8 channels for every superblock.

• Baseline: Traditional SSD, no data classification scheme.
• Partial GC: Traditional SSD but using partial GC, i.e. the
SSD still uses full parallelism for superblocks and stripes
data across all available channels and chips, but the SSD
chooses a block (instead of superblock) as the GC victim
with the least amount of valid pages.

• Multi-stream: Traditional SSD with multi-stream[15].
• AutoStream: Traditional SSD with AutoStream (SFR)[27].
• PLAN-NoPred-1/4: PLAN without any data classification
scheme. All large, sequential requests are sent to the de-
fault big superblock, whereas all small, random requests
are sent to the default small superblock. Small superblocks
use all channels and 2 chips per channel (1/4 parallelism).

• PLAN-NoPred-1/8: Similar to PLAN-NoPred-1/4 but
small superblocks use 1 chip per channel (1/8 parallelism).

• PLAN-Pred-1/4: PLAN with in-SSD lifetime prediction.
Small superblocks use all channels and 2 chips per channel
(1/4 parallelism). This is the recommended configuration.

• PLAN-Pred-1/8: Similar to PLAN-Pred-1/4 but small
superblocks use 1 chip per channel (1/8 parallelism).

To emulate an aged SSD with existing user files, we fill the
SSD using valid data to certain levels before evaluations[6,
16, 22, 23]. For multi-stream evaluations, we assign a stream
ID to a write request based on the issuing process name if
the process did not provide a stream ID to the request; re-
quests from different processes will be assigned with differ-
ent stream IDs. If an application (i.e., FIO and YCSB) assigns
stream ID to a request, we leave the application-assigned
stream ID untouched.

4.1 Write Amplification Reduction
Figure 3 shows the WAF of the evaluations. Workloads is-
suing many small, random writes, including FIO, TPC-C,
Fileserver, and GCC, reduces WAF by at least 25% on PLAN-
Pred-1/4. FIO running on PLAN-Pred-1/4 reduces WAF by
42%, showing improved GC efficiency with smaller GC units.
The most interesting evaluation isGCC, which reducedWAF
by more than half to a negligible level between 1.04 and 1.07

68

Excessive SSD-Internal Parallelism
Considered Harmful HotStorage ’23, July 9, 2023, Boston, MA, USA

Baseline
Partial GC

Multi-stream
AutoStream

PLAN-NoPred-1/4
PLAN-NoPred-1/8

PLAN-Pred-1/4
PLAN-Pred-1/8

FIO TPC-C YCSB Fileserver GCC
 0

2
4
6
8

W
AF

Figure 3: WAF of the workloads. Lower is better.

FIO TPC-C YCSB Fileserver GCC
0

0.25
0.5

0.75
1

1.25

No
rm

. #
 e

ra
se

d
bl

oc
ks

Figure 4: Total number of blocks erased. Lower is better.

using PLAN. The workload deletes the source code and com-
piled binaries after each iteration, which invalidates all data
created during the iteration before the new iteration starts.
Ideally, this should not incur any GC overhead. However,
for all other approaches other than PLAN, files created by
the GCC workload may be mixed with existing user data,
causing existing user data to be relocated during GC. PLAN,
however, separated cold user files from hot, ephemeral GCC
data. After each iteration, superblocks containing GCC data
can be fully invalidated as the workload data are deleted. On
the other hand, PLAN reduced WAF by 5% for YCSB, which
issues mostly large, sequential writes. Similar to the obser-
vation from Figure 1, reducing parallelism from full to 1/4
shows significant WAF reduction, but reducing parallelism
from 1/4 to 1/8 reduces WAF marginally.
Figure 4 shows the number of blocks erased during the

workload evaluation. PLAN shows the most benefit in FIO
andGCC, reducing the number of erased blocks by up to 46%
and 69% compared to the baseline. Figure 5 shows the CDF
of the valid data ratio for the victim superblocks during each
GC. Curves of PLAN are more toward the left compared
to other approaches in FIO, TPC-C, Fileserver, and GCC,
showing better GC performance. For the YCSB workload,
multi-stream performs the best since the RocksDB database
has the best knowledge of data lifetime expectations; the
database directly tags write requests with a stream ID, which
the SSD will use to group the incoming data accordingly. To-
gether with fewer blocks erased and a less valid data ratio in
each victim superblock, PLAN can reduce WAF significantly.

Last but not least, Figure 3 to Figure 5 all show partial GC
by single blocks does not provide much benefit compared to
greedy GC by superblocks. This is because each block only

receives shards of correlated data from a request, as data is
striped among all channels and chips used by the superblock
to prevent stalls during writes. This indicates data from the
same GC unit (i.e., block) will not be invalidated at similar
times, preventing the desired bimodal distribution of the GC
units. On the other hand, if we characterize data by lifetime
and write them to individual blocks, the GC will be efficient,
but this wastes the SSD’s internal parallelism, which leads
to performance degradation. Therefore, keeping the GC unit
at the superblock level and also with some parallelism is
essential.

4.2 Performance
As PLAN reduces SSD parallelism, Evaluating PLAN on per-
formance is essential to ensure the design does not hinder
performance. Figure 6 shows the throughput information.
Although PLAN reduces parallelism for some superblocks,
the throughput was not affected even for the YCSBworkload
with a significant number of large, sequential I/Os.

For CPU-bounded workloads including TPC-C, YCSB and
GCC, PLAN keeps (if not improves) the performance while
reducing write amplification. Meanwhile, Fileserver benefits
more from PLAN with an improvement of around 10%, as
the improved GC efficiency frees up SSD internal resources,
allowing the SSD to handle more host I/O requests. FIO on
PLAN-Pred-1/4 improved throughput by 30%.
The parallelism used for small superblocks also affects

performance. Using 1/4 instead of 1/8 parallelism for small
superblocks significantly improves FIO performance, as the
workload issues 4KiB random requests intensely. Fileserver
first issues a large, sequential write request, then issues a
small, random write request in each iteration. The extra
WAF reduction using 1/8 parallelism for small superblocks
allows large, sequential I/O using full parallelism to perform
better, leading to a slightly better performance than using
1/4 parallelism. Nevertheless, it is recommended to use 1/4
parallelism than 1/8 for PLAN: FIO, TPC-C, YCSB, and GCC
all perform the same or better using 1/4 parallelism even
compared to non-PLAN schemes, especially when under
intense I/O pressure (i.e., FIO).

5 RELATED WORK
5.1 Multi-stream SSD
Multi-stream SSDs are created to enable on-host I/O char-
acteristic classification schemes[15]. These schemes assign
a stream ID to the data based on data I/O characteristics,
as the host has more information regarding the workload.
SSD will then place data with the same stream ID to the
same erase unit (i.e., superblock). This requires change for
the operating system, SSD interface, and SSD. Aside from
these changes, a stream ID delegate is also required to man-
age stream ID assigned to the I/O requests. The original

69

HotStorage ’23, July 9, 2023, Boston, MA, USA X. Zhang et al.

Baseline Partial GC Multi-stream AutoStream PLAN-NoPred-1/4 PLAN-NoPred-1/8 PLAN-Pred-1/4 PLAN-Pred-1/8

0.00 0.25 0.50 0.75 1.00
Valid Data Ratio of Victims

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) FIO

0.00 0.25 0.50 0.75 1.00
Valid Data Ratio of Victims

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) TPC-C

0.00 0.25 0.50 0.75 1.00
Valid Data Ratio of Victims

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) YCSB

0.00 0.25 0.50 0.75 1.00
Valid Data Ratio of Victims

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(d) Fileserver

0.00 0.25 0.50 0.75 1.00
Valid Data Ratio of Victims

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(e) GCC

Figure 5: CDF of GC victim’s valid data ratio during each GC. A line towards the left indicates fewer valid pages
relocated during GC, i.e., better GC efficiency.

Baseline
Partial GC

Multi-stream
AutoStream

PLAN-NoPred-1/4
PLAN-NoPred-1/8

PLAN-Pred-1/4
PLAN-Pred-1/8

FIO TPC-C YCSB Fileserver GCC
0

0.5

1

1.5

No
rm

. t
hr

ou
gh

pu
t

Figure 6: Normalized throughput. Higher is better.

multi-stream requires changes on existing applications, as
the applications must explicitly assign a stream ID to their
I/O requests[15]. AutoStream provides a daemon for auto-
matically assigning stream ID based on data characteristics,
including access sequentiality, frequency, and recency[27].
FStream automatically separates different filesystem meta-
data and user data[23] to different streams. PCStream auto-
matically separates requests from different program contexts
(PCs) based on the call stack by arguing write requests from
different PCs show different characteristics[16].
Despite its promises, Linux kernel recently removed the

support for multi-stream, disconnecting the communication
link between the on-host data characterization schemes and
multi-stream SSDs. The maintainers stated a lack of support
from the drive vendors and the applications[18]. Due to the
removal of the multi-stream interface, the host cannot coor-
dinate with the SSD on I/O characteristics easily as before.
However, prior works show I/O characterization is effective
in reducing WAF. To leverage the benefits of I/O characteri-
zation, the job should be offloaded to the SSD (e.g., PLAN) so
that the users can immediately enjoy lower WAF and higher
throughput without user intervention and system changes.

5.2 Zoned Namespaces (ZNS) SSD
Similar to multi-stream SSDs, ZNS SSDs also allow hosts to
participate in the data placement process, as the host has
more data characterization information. ZNS SSDs expose

zones to the host, which is similar to the stream in multi-
stream SSDs. Similar to erase units of a traditional SSD, data
can only be appended to zones in a log-like manner, and a
zone has to be erased to reclaim space after it is full. The
host is in charge of not only data placement based on some
mechanism (e.g., data characterization schemes) to zones but
also garbage collection, which reduces theWAF and increases
the SSD throughput by improving GC efficiency[4].
Also similar to multi-stream SSDs, major changes in the

whole storage stack are required to support ZNS SSDs. appli-
cation, OS, filesystem, SSD protocol, and SSD are all required
to be changed to support ZNS SSDs. The application and/or
the filesystem also have to choose a zone to write to, and
the OS and the SSD protocol have to be modified to support
ZNS SSDs[4]. Therefore, PLAN requires less change than
ZNS SSDs and less user intervention.

6 CONCLUSION
In this paper, we present PLAN, a novel SSD parallelism
and data placement scheme that provides different levels
of parallelism to different workloads with different needs.
PLAN reduces WAF by up to 52% and increases throughput
up to 30% for I/O-bounded workloads with small, random
writes without sacrificing the performance of large, sequen-
tial writes.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their
valuable suggestions. This work is supported in part by the
Ministry of Science and ICT (MSIT) of Korea under the
High-Potential Individuals Global Training Program (RS-
2022-00154903) supervised by the IITP (Institute for Informa-
tion & Communications Technology Planning & Evaluation),
and Samsung Memory Solutions Lab through the National
Science Foundation I/UCRC ASIC (Alternative Sustainable
and Intelligent Computing) Center (CNS-1822165).

70

Excessive SSD-Internal Parallelism
Considered Harmful HotStorage ’23, July 9, 2023, Boston, MA, USA

REFERENCES
[1] 2011. filebench/filebench: File system and storage benchmark that uses

a custom language to generate a large variety of workloads. https:
//github.com/filebench/filebench

[2] 2017. NVMe streams directive function support · multi-
stream/qemu@9888fff. https://github.com/multi-stream/qemu/
commit/9888fffbf3695f7de4170e97f49231ea18fa8cd4#. (Accessed on
03/29/2023).

[3] Nitin Agrawal, Vijayan Prabhakaran, TedWobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. 2008. Design Tradeoffs for SSD Per-
formance. In USENIX 2008 Annual Technical Conference (Boston, Mas-
sachusetts) (ATC’08). USENIX Association, USA, 57–70.

[4] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 689–703. https://www.usenix.org/conference/atc21/
presentation/bjorling

[5] Chandranil Chakraborttii and Heiner Litz. 2021. Reducing Write
Amplification in Flash by Death-Time Prediction of Logical Block
Addresses. In Proceedings of the 14th ACM International Conference
on Systems and Storage (Haifa, Israel) (SYSTOR ’21). Association for
Computing Machinery, New York, NY, USA, Article 11, 12 pages.
https://doi.org/10.1145/3456727.3463784

[6] M.-L. Chiang and R.-C. Chang. 1999. Cleaning policies in mobile
computers using flash memory. Journal of Systems and Software 48, 3
(1999), 213–231. https://doi.org/10.1016/S0164-1212(99)00059-X

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(Indianapolis, Indiana, USA) (SoCC ’10). Association for Computing
Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/
1807128.1807152

[8] Peter Desnoyers. 2012. Analytic Modeling of SSD Write Performance.
In Proceedings of the 5th Annual International Systems and Storage
Conference (Haifa, Israel) (SYSTOR ’12). Association for Computing
Machinery, New York, NY, USA, Article 12, 10 pages. https://doi.org/
10.1145/2367589.2367603

[9] Peter Desnoyers. 2014. Analytic Models of SSD Write Performance.
ACM Trans. Storage 10, 2, Article 8 (mar 2014), 25 pages. https://doi.
org/10.1145/2577384

[10] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudré-Mauroux. 2013. OLTP-Bench: An Extensible Testbed for
Benchmarking Relational Databases. PVLDB 7, 4 (2013), 277–288.
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf

[11] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. 2009. DFTL: A
Flash Translation Layer Employing Demand-Based Selective Caching
of Page-Level Address Mappings. In Proceedings of the 14th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Washington, DC, USA) (ASPLOS XIV). As-
sociation for Computing Machinery, New York, NY, USA, 229–240.
https://doi.org/10.1145/1508244.1508271

[12] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2017. The Unwritten Contract of Solid State Drives.
In Proceedings of the Twelfth European Conference on Computer Systems
(Belgrade, Serbia) (EuroSys ’17). Association for Computing Machinery,
New York, NY, USA, 127–144. https://doi.org/10.1145/3064176.3064187

[13] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and
Roman Pletka. 2009. Write Amplification Analysis in Flash-Based
Solid State Drives. In Proceedings of SYSTOR 2009: The Israeli Experi-
mental Systems Conference (Haifa, Israel) (SYSTOR ’09). Association

for Computing Machinery, New York, NY, USA, Article 10, 9 pages.
https://doi.org/10.1145/1534530.1534544

[14] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta
Sengupta, Bikash Sharma, and Moinuddin K Qureshi. 2017. Flash-
Blox: Achieving Both Performance Isolation and Uniform Lifetime
for Virtualized SSDs.. In FAST, Vol. 17. USENIX Association, 375–
390. https://www.usenix.org/conference/fast17/technical-sessions/
presentation/huang

[15] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho.
2014. The Multi-streamed Solid-State Drive. In 6th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 14). USENIX
Association, Philadelphia, PA. https://www.usenix.org/conference/
hotstorage14/workshop-program/presentation/kang

[16] Taejin Kim, Duwon Hong, Sangwook Shane Hahn, Myoungjun Chun,
Sungjin Lee, Jooyoung Hwang, Jongyoul Lee, and Jihong Kim. 2019.
Fully Automatic Stream Management for Multi-Streamed SSDs Using
Program Contexts. In 17th USENIX Conference on File and Storage
Technologies (FAST 19). USENIX Association, Boston, MA, 295–308.
https://www.usenix.org/conference/fast19/presentation/kim-taejin

[17] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Matias Bjørling, and Haryadi S Gunawi. 2018. The CASE
of FEMU: Cheap, accurate, scalable and extensible flash emulator. In
16th USENIX Conference on File and Storage Technologies (FAST 18).
USENIX Association, 83–90. https://www.usenix.org/conference/
fast18/presentation/li

[18] Torvalds Linus. 2022. Merge tag ‘for-5.18/write-streams-
2022-03-18’ of git://git.kernel.dk/. . . · torvalds/linux@561593a
— github.com. https://github.com/torvalds/linux/commit/
561593a048d7d6915889706f4b503a65435c033a. [Accessed 06-
Feb-2023].

[19] Meta Platforms, Inc. and Contributors. [n.d.]. RocksDB | A persis-
tent key-value store | RocksDB. https://rocksdb.org/. (Accessed on
03/20/2023).

[20] Micron. 07. TN-29-28: Memory Management in NAND Flash Ar-
rays. https://www.micron.com/-/media/client/global/documents/
products/technical-note/nand-flash/tn2928.pdf. (Accessed on
03/21/2023).

[21] Micron. 18. TN-FD-22: Client SATA SSD SMART Attribute Refer-
ence. https://www.micron.com/-/media/client/global/documents/
products/technical-note/solid-state-storage/tnfd22_client_ssd_
smart_attributes.pdf. (Accessed on 03/21/2023).

[22] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee,
and Young Ik Eom. 2012. SFS: Random Write Considered Harm-
ful in Solid State Drives. In 10th USENIX Conference on File and
Storage Technologies (FAST 12). USENIX Association, San Jose,
CA. https://www.usenix.org/conference/fast12/sfs-random-write-
considered-harmful-solid-state-drives

[23] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty,
Jooyoung Hwang, Sangyeun Cho, Daniel DG Lee, and Jaeheon Jeong.
2018. FStream: Managing Flash Streams in the File System. In
16th USENIX Conference on File and Storage Technologies (FAST 18).
USENIX Association, Oakland, CA, 257–264. https://www.usenix.org/
conference/fast18/presentation/rho

[24] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and
Implementation of a Log-Structured File System. ACM Trans. Comput.
Syst. 10, 1 (feb 1992), 26–52. https://doi.org/10.1145/146941.146943

[25] Benny Van Houdt. 2013. A Mean Field Model for a Class of Garbage
Collection Algorithms in Flash-Based Solid State Drives. In Proceedings
of the ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems (Pittsburgh, PA, USA) (SIGMETRICS ’13).
Association for Computing Machinery, New York, NY, USA, 191–202.
https://doi.org/10.1145/2465529.2465543

71

https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://github.com/multi-stream/qemu/commit/9888fffbf3695f7de4170e97f49231ea18fa8cd4#
https://github.com/multi-stream/qemu/commit/9888fffbf3695f7de4170e97f49231ea18fa8cd4#
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://doi.org/10.1145/3456727.3463784
https://doi.org/10.1016/S0164-1212(99)00059-X
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2367589.2367603
https://doi.org/10.1145/2367589.2367603
https://doi.org/10.1145/2577384
https://doi.org/10.1145/2577384
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://doi.org/10.1145/1508244.1508271
https://doi.org/10.1145/3064176.3064187
https://doi.org/10.1145/1534530.1534544
https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/kang
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/kang
https://www.usenix.org/conference/fast19/presentation/kim-taejin
https://www.usenix.org/conference/fast18/presentation/li
https://www.usenix.org/conference/fast18/presentation/li
https://github.com/torvalds/linux/commit/561593a048d7d6915889706f4b503a65435c033a
https://github.com/torvalds/linux/commit/561593a048d7d6915889706f4b503a65435c033a
https://rocksdb.org/
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2928.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/nand-flash/tn2928.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/solid-state-storage/tnfd22_client_ssd_smart_attributes.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/solid-state-storage/tnfd22_client_ssd_smart_attributes.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/solid-state-storage/tnfd22_client_ssd_smart_attributes.pdf
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://www.usenix.org/conference/fast18/presentation/rho
https://www.usenix.org/conference/fast18/presentation/rho
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/2465529.2465543

HotStorage ’23, July 9, 2023, Boston, MA, USA X. Zhang et al.

[26] Shunzhuo Wang, Fei Wu, Chengmo Yang, Jiaona Zhou, Changsheng
Xie, and Jiguang Wan. 2019. WAS: Wear Aware Superblock Manage-
ment for Prolonging SSD Lifetime. In 2019 56th ACM/IEEE Design Au-
tomation Conference (DAC). 1–6. https://ieeexplore.ieee.org/document/
8806851

[27] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi, and Vijay
Balakrishnan. 2017. AutoStream: Automatic Stream Management for
Multi-Streamed SSDs. In Proceedings of the 10th ACM International
Systems and Storage Conference (Haifa, Israel) (SYSTOR ’17). Association
for Computing Machinery, New York, NY, USA, Article 3, 11 pages.
https://doi.org/10.1145/3078468.3078469

[28] Jing Yang, Shuyi Pei, and Qing Yang. 2019. WARCIP: Write Amplifi-
cation Reduction by Clustering I/O Pages. In Proceedings of the 12th
ACM International Conference on Systems and Storage (Haifa, Israel)
(SYSTOR ’19). Association for Computing Machinery, New York, NY,
USA, 155–166. https://doi.org/10.1145/3319647.3325840

[29] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun, Wenwen Chen,
Zhonggang Chen, Wei Xia, Junke Li, and Kihyoun Kwon. 2019. Re-
ducing Garbage Collection Overhead in SSD Based on Workload Pre-
diction. In 11th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 19). USENIX Association, Renton, WA. https:
//www.usenix.org/conference/hotstorage19/presentation/yang

[30] Hwanjin Yong, Kisik Jeong, Joonwon Lee, and Jin-Soo Kim. 2018.
vStream: Virtual Stream Management for Multi-streamed SSDs. In
10th USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage 18). USENIX Association, Boston, MA. https://www.usenix.
org/conference/hotstorage18/presentation/yong

[31] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong Kang, Jongmoo
Choi, Sungroh Yoon, and Jaehyuk Cha. 2013. VSSIM: Virtual machine
based SSD simulator. In 2013 IEEE 29th Symposium on Mass Storage
Systems and Technologies (MSST). 1–14. https://doi.org/10.1109/MSST.
2013.6558443

72

https://ieeexplore.ieee.org/document/8806851
https://ieeexplore.ieee.org/document/8806851
https://doi.org/10.1145/3078468.3078469
https://doi.org/10.1145/3319647.3325840
https://www.usenix.org/conference/hotstorage19/presentation/yang
https://www.usenix.org/conference/hotstorage19/presentation/yang
https://www.usenix.org/conference/hotstorage18/presentation/yong
https://www.usenix.org/conference/hotstorage18/presentation/yong
https://doi.org/10.1109/MSST.2013.6558443
https://doi.org/10.1109/MSST.2013.6558443

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Garbage collection essentials
	2.2 Effect of SSD parallelism on GC

	3 Design
	3.1 Flexible Superblocks
	3.2 Lifetime Predictor

	4 Evaluation
	4.1 Write Amplification Reduction
	4.2 Performance

	5 Related Work
	5.1 Multi-stream SSD
	5.2 Zoned Namespaces (ZNS) SSD

	6 Conclusion
	References

