Verification of Recurrent Neural Networks with Star Reachability

Hoang-Dung Tran Sungwoo Choi Xiaodong Yang
dtran30@unl.edu schoi9@huskers.unl.edu xiaodong.yang@vanderbilt.edu
University of Nebraska-Lincoln University of Nebraska-Lincoln Vanderbilt University
Lincoln, Nebraska, USA Lincoln, Nebraska, USA Nashville, Tennessee, USA
Tomoya Yamaguchi Bardh Hoxha Danil Prokhorov
tomoya.yamaguchi@woven- bardh.hoxha@toyota.com danil. prokhorov@toyota.com
planet.global Toyota NA R&D Toyota NA R&D

Woven Planet
Tokyo, Japan

ABSTRACT

The paper extends the recent star reachability method to verify the
robustness of recurrent neural networks (RNNs) for use in safety-
critical applications. RNNs are a popular machine learning method
for various applications, but they are vulnerable to adversarial
attacks, where slightly perturbing the input sequence can lead to an
unexpected result. Recent notable techniques for verifying RNNs
include unrolling, and invariant inference approaches. The first
method has scaling issues since unrolling an RNN creates a large
feedforward neural network. The second method, using invariant
sets, has better scalability but can produce unknown results due
to the accumulation of overapproximation errors over time. This
paper introduces a complementary verification method for RNNs
that is both sound and complete. A relaxation parameter can be
used to convert the method into a fast overapproximation method
that still provides soundness guarantees. The method is designed
to be used with NNV, a tool for verifying deep neural networks
and learning-enabled cyber-physical systems. Compared to state-
of-the-art methods, the extended exact reachability method is 10x
faster, and the overapproximation method is 100X to 5000 faster.

CCS CONCEPTS

« Software and its engineering — Software verification.

KEYWORDS

Recurrent Neural Networks, Reachability Analysis, Verification

ACM Reference Format:

Hoang-Dung Tran, Sungwoo Choi, Xiaodong Yang, Tomoya Yamaguchi,
Bardh Hoxha, and Danil Prokhorov. 2023. Verification of Recurrent
Neural Networks with Star Reachability. In Proceedings of the 26th ACM
International Conference on Hybrid Systems: Computation and Control (HSCC
'23), May 09-12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3575870.3587128

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC °23, May 09-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0033-0/23/05...$15.00
https://doi.org/10.1145/3575870.3587128

Ann Arbor, Michigan, USA

Ann Arbor, Michigan, USA

1 INTRODUCTION

A recurrent neural network (RNN) [20] is a particular neural
network that supports modeling of sequential or time-series data.
RNNss are designed to store information for periods of time and can
learn complex patterns in data. The stored information influences
the current input and output. Consequently, RNNs are well-
suited for ordinal or temporal problems such as natural language
processing [9, 18], speech recognition [4], and sensor/engine health
prediction [5, 21]. Although RNNs are a powerful tool to address
many complex, real-world challenges, they are also vulnerable to
adversarial attacks. A slight and careful change in the input can
fool an accurate RNN into an unexpected classification error [16].
To deploy RNNS in safety-critical applications, we need methods
that formally verify their correctness.

Although formal verification of deep neural networks has
received significant attention recently, most current works focus on
FFNNs and CNNs [11, 31, 33]. Only a few papers deal with RNNs
[1, 12, 23, 35] despite their extensive usage in practice. Verifying
an RNN is challenging due to the “memory units” of the network.
Unrolling is the first well-known approach [1]. This approach is not
scalable as the size of the unrolled network quickly becomes too
large to verify as the number of time steps in verification increases.
Invariant inference [12, 23, 35] is another well-known approach
for RNN verification. It constructs an invariant set of an RNN for
verification without unrolling the network. The invariant inference
approach is more scalable than the unrolling technique, but it may
produce unknown verification results due to the accumulation of
errors over time due to overapproximation.

In this paper, we extend the recent reachability method for
verifying RNNs, using the notion of the star set representation.
The star-set representation enables efficient computation of affine
mapping and intersection operations and has been used for
verification of FFNNs [3, 28, 29]. Its extension, ImageStar, can
be used for verifying CNNs [26] and semantic segmentation
networks (SSNs) [30] by efficient set propagation of average pooling
and convolution layers. Reachability analysis of recurrent neural
networks (RNNs) is challenging, as we need to deal with the "past
information" stored in memory units. In RNN reachability, we have
sequential or time-series input sets instead of sequential or time-
series input points.

To solve this problem, we use star sets to derive exact and
over-approximate reachability algorithms for RNNs with ReLU
activation functions (piecewise activation functions in general)

https://doi.org/10.1145/3575870.3587128
https://doi.org/10.1145/3575870.3587128
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575870.3587128&domain=pdf&date_stamp=2023-05-09

HSCC 23, May 09-12, 2023, San Antonio, TX, USA

Outputs

Whn, b

Inputs

Figure 1: A recurrent neural network.

without unrolling. The key idea is that the dependencies between
the current hidden states and previous hidden states are directly
encoded as a set of constraints of the constructed reachable set
(invariant) via the Minkowski sum operation of star sets. Therefore,
the method can avoid the unrolling process. In exact reachability
analysis, the number of output sets increases exponentially, making
the verification of large RNNs a challenge. Therefore, we also
present an over-approximation method that alleviates the scalability
issue while still providing formal guarantees. We implement the
algorithms in NNV [32], a verification tool for deep neural networks
and learning-enabled cyber-physical systems. We evaluate the
method in comparison with state-of-the-art methods RnnVerify
and RNSVerify on a set of benchmarks. Experimental results show
that our exact verification method is 10X faster than RNSVerify.
The main contributions of this paper are summarized as follows.

o A novel verification approach for recurrent neural networks.

e Exact and over-approximate reachability algorithms.

o Algorithms developed and included in the NNV software
package with a

o A thorough evaluation and comparison with state-of-the-art
techniques on a set of benchmarks.

2 BACKGROUND

2.1 Recurrent Neural Networks

A recurrent neural network, depicted in Figure 1, receives time-
series (sequential) data x; as inputs to compute and store the hidden
states h; that are used to obtain the outputs o;. Mathematically, the
hidden states and the output at the time step ¢ are defined as:

he = fu(Whphe—1 + Whyxe + bp),
ot = ﬁ)(Wohht + bo),

Where Wy, Wy, and W}, are the hidden-state-to-hidden-state,
input-to-hidden-state, hidden-state-to-output mapping matrices
respectively; by, and b, are the hidden and output bias vectors; fj,
and f, are the activation functions. In this paper, we are interested
in the Rectified Linear Unit (ReLU) activation function which is
commonly used for training neural networks. One can see that
the outputs o; are computed from the hidden states h; whose
values depend on the previous hidden state h;_1. Therefore, unlike
FFNNs or CNNs, in an RNN, the previous inputs influence the
current hidden states and outputs. We note that, the RNN shown in
Figure 1 can be combined with an FFNN or an CNN to form a more

1

Tran et al.

complex network for a specific task, e.g., classification or prediction.
Formally, an RNN forward computation is defined as follows.

Definition 2.1 (RNN Forward Computation). Given an input
sequence x = [x1,x2, ..., xT], where x; is the input vector at step i,
the evaluation of the RNN on the input sequence x is the process
of computing the sequence of hidden states hy, hy, ..., hT and the
sequence of outputs o0 = [01,02,...,0r]. The initial hidden state
hy is initialized by users and is usually set as a zero vector. The
evaluation of the RNN is done recursively using Equation 1.

An adversarial entity may slightly perturb the input of an RNN
to generate an undesirable output.

Definition 2.2 (Attack on Inputs of an RNN). Given an input
sequence x = [x1,X,...,xT], an e-bounded attack A (x) alters
the inputs in the sequence within an epsilon ¢, i.e., Ae(x) : x; —
x},|x] — xi| < €. The attack creates a sequence of input sets X =
[X1, Xz, ..., X7] in which X; = {x]|x; — € < x| < x; +¢€}.

To evaluate whether such an attack is feasible, we may conduct
reachability analysis and evaluate the robustness of the RNN.

Definition 2.3 (Reachability of an RNN). Given a sequence
of input sets X = [X1,Xa,...,X7], and an RNN N, reachability
analysis is the process of computing the corresponding sequence
of outputs set O = [01,02,...,0r] in which O; = N(I;),i =
1,2,...,T.

PROBLEM 1 (SAFETY VERIFICATION OF AN RNN). Given an
RNN N, an input sequence x = [x1,x2,...,x7], a set of linear
constraints on the output sequence P, = Py, A Py, -+ A Pop in
which P,; = {0;|Cijo; < d;} representing the “unsafe region” that
the output o; should not reach (or shortly, o; ¥ P,,), and an attack
Aec(x), determine whether thethe network is robust under the attack
ifforallx] € I = {x]|xi —€ < x{ < x;+e}hi=12,...,T, the
corresponding output sequence o’ = [0],05,...,07%] still does not
satisfy the constraint Py, i.e., o; does not satisfy Py, : Cjo; < d; (or
shortly, o] ¥ Py,).

PROBLEM 2 (SAFETY VERIFICATION OF AN RNN). Given a RNN
N, an input sequence x = [x1, Xy, ..., xT], and an e-bounded attack
Ae(x), the robustness verification is to check whether the network is
robust under the attack.

We note that the robustness of an RNN is defined on a single
input sequence x = [x1,x2,...,x7]. To evaluate the robustness
of the network, we will compute its average robustness on a

collection of N input sequences Cy = {xl,xz, e xN} in which
x) = [x{ , xé e ,x%]. For example, if we can prove that the network

is robust for 20 cases in a collection of 25 input sequences, then the
average robustness of the network is 20/25 = 0.8.

This paper focuses on verifying the robustness of a RNN using
reachability analysis. The input sets created by the attack I,
represented using star sets (defined in the following), are propagated
through the network to compute the corresponding reachable sets
of the outputs O;. The reachable sets containing all possible outputs
under the attack are used to verify the robustness of the network.

2.2 Star Set Representation

Definition 2.4 (Generalized Star Set [2, 6, 28]). A generalized star
set (or simply star) © is a tuple (¢, V, P,l,u) where ¢ € R" is the

Short Title

center, V = {v1,02, -+ ,um} is a set of m vectors in R" called basis
vectors, P : R™ — {T, 1} is a predicate, [and u are the lower-
bound and upper-bound vectors of the predicate variables. The
basis vectors are arranged to form the star’s n X m basis matrix. The
set of states represented by the star is given as:

[6] = {x|x=c+3Z (aivi), P(ar," - ,am) =T,

11i] < a; < uli]}.

@

For the sake of brevity, we refer to both the tuple © and the set
of states [®] as ©. In this work, we restrict the predicates to be
a conjunction of linear constraints, P(a) = Ca < d where, for p
linear constraints, C € RP*™_ « is the vector of m-variables, i.e.,
a=lag,- - ,am]T, and d € RP*1 A star is an empty set if and
only if P(e) is empty.

PROPOSITION 2.5. Any bounded convex polyhedron P =
{x | Cx < d,x € R} can be represented as a star.

PRrOPOSITION 2.6. [Affine Mapping of a Star] Given a star set © =
(¢, V,P,1,u), an affine mapping of the star ® with the affine mapping
matrix W and offset vectorb defined by® = {y |y = Wx+b, x € O} is
another star with the following characteristics: © = (¢, V,P,1, @), ¢ =
We+b, 5= {Wo,Wug,--+ ,Wo},P=Pl=la=u.

PROPOSITION 2.7 (STAR AND HALF-SPACE INTERSECTION). The
intersection of a star ® = (¢, V,P,l,u) and a half-space H =
{x | Hx < g} is another star with the following characteristics.
=ONH=(V,PLa),c=c, V=V, P=PAP,

¢)
P(a) 2 (HXVp)a <g-Hxc, Vi =[v1 02 0],

o~

=1 da=u.

PROPOSITION 2.8. [Minkowski sum of two stars] Given two stars
01 = {c1,V1,P1, 11, u1) and Oy = {c2, Vo, Po, l2, up) with the same
dimensions, the Minkowski sum of the two stars is another star set
© =080, = {(,V,P,Lu), wherec = ¢1 +c3, V = [V} V5],
P=Pi APyl = [ll lg]T, andu = [u1 uz]T.

The advantages in computing affine mapping, intersection, and
Minkowski addition make star set an efficient approach to the
computation of reachable sets of an RNN given a sequence of star
input sets. Star input sets will be defined in detail in the next section.

PROPOSITION 2.9. [Optimized range of a state] Given a star set
© = (c¢,V,P,l,u), the range of the ith state x[i] of the star set can
be found by solving the following linear programming optimization
problems:

x[i]min(max) = min(max)(c[i] + z}n:ﬂ)j [i]aj)’
st.P(a) 2Ca<d I <a<u.

PROPOSITION 2.10. [Estimated range of a state] Given a star set
© = (c,V,P,l,u), the range of the state vector x of the star set
can be estimated quickly without solving the linear programming

optimization problems by using only the lower bound and upper bound
vectors of the predicate variables.

lest <x=c+Va=c+max(0,V)a+ min(0,V)a < uest,
lest = ¢+ max(0, V)l + min(0,V)u,

Uest = ¢ + max(0,V)u + min(0,V)L.

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

The optimized (estimated) ranges of all states in a star set are
used to construct an over-approximate reachable set of an RNN
using approximate (relaxed) reachability, which is studied in the
next section.

3 REACHABILITY ANALYSIS OF AN RNN

This section focuses on investigating the exact and approximate
reachability of a ReLU RNN. The exact reachability algorithm
is used to compute the exact reachable set of the network,
while the approximate reachability algorithm provides a tight
overapproximation of the exact reachable sets.

3.1 Exact Reachability

From Equation 1, we can see that the reachable set of the output
O; is obtained by applying the ReLU activation function f, on
the affine map of the reachable set of the hidden states, i.e., Oy =
ReLU(H;) = ReLU(W,,H; + b,). Therefore, the key is to compute
the reachable set of the hidden states H;, which depends on their
previous reachable set H;—; and the current input sets X;:

Hp = ReLU ((WppHy—1 + bp) © Wiy Xy),

in which @ is the Minkowski sum operation.

Computing the first output set. Without loss of generality, we
assume that the initial hidden states (hg) are set to zeros and the
input set X; is a star set X; = (c{, V¥, Pf, I}, uf). Using Proposition
2.6, we have:

Hy = Wiy X + by, = (61, V1, Py, Iy, i),
¢ = thc)lc +bh, f/] = thle, 151 = Pf, Z] = lf, U = uf

The reachable set of the first hidden states is H; = ReLU(H;),
which can be computed exactly by a sequence of stepReLU
operations [27, 28] as follows.

Hi = ReLUy(ReLUp_1(... (ReLU; (H1)))),

where n is the dimension of the star set H; and ReLU; is the
stepReLU operation applied to the ith state of the star set. It is
known that each stepReLU operation may split one intermediate
star set into two new star sets. Therefore, the exact reachable set of
the first hidden states H; may consist of multiple star sets.

Hy = [HLH?, ... ,HM,H = (¢}, Vi, PL I ul)

From the exact reachable set of the first hidden states Hy, we
perform affine mapping operation and then apply ReLU activation
function on the obtained star sets to compute the corresponding
output set O; as follows:

H = Wy,H + b, i=1,2,...,m

O} = ReLU,(ReLUp—1(. .. (ReLU1 (H1)))),

01 =[0},0%,...,01],
where p is the dimension of the output state vector o;.
Computing the (i +1)* h output set. Assume that at the step i,
the exact reachable set of the hAiddenAstatAes Hj contains m star sets,
ie, H; = [HllleHlm]Hl] = <C{Vl]Pl]llju{) and the input
setis X; = (c;‘, Vl.x, Pl?‘, ll?‘, ui‘) The reachable set of the (i + 1)”’

HSCC 23, May 09-12, 2023, San Antonio, TX, USA

hidden states H;;1 is computed as follows.
H | = (WypH! +bp) © Wiy X = (63, Vi, By, i, i),
&i = Wine! + by + Whxcel, Vi = [WhpVi Wiy V],

Py =PI AP = [B iy = [u] uf]",

i

H/,, = ReLUy(ReLUy1(. .. (ReLU1 (HY)))),
Jo_ gl g2 J.M;

Hi+1 - [Hi+1’Hi+1’ . "’Hi+1j]’

Hiyp = [Hil+1’Hi2+1’ . ~~’Hin+q-1]~

We can see that, for individual hidden states star set Hl] at step i,
the exact reachability scheme obtains a new hidden states reachable
J ot ; S) J»M;
set H;, | consisting of multiple star sets H; ,H;"|,..., H;;,” due

to splitting in stepReLU operations.
For each individual hidden states star set H/:* at stepi+1, we

i+1
compute the corresponding output set Oj41 as in the first step.

ik _ Jk _ -)
H = WopH +bo, j=12,....m k=12....Mj

-7 k
= ReLU,(ReLUp1(... (ReLUy (H]))))),

Jk _ rnkl Hik2 J.k.N
Oi+1 - [Oi+1 ’ Oi+l 2 Oi+1 I

o’k

i+1

Exact Reachability. Algorithm 3.1 shows the process of computing
the reachable set of an RNN N = (Wy,p,,bp,, Wiy, Wop, bo) given a
sequence of T star input sets X = [X1, X, ..., Xt]. The algorithm
computes the exact reachable set of hidden states H; at each step
(lines 3 to 9) before obtaining the exact reachable set of the output
states (lines 10 to 14). The exact reachable set of the hidden states
is computed based on their previous reachable set and the current
input set (lines 7 to 9). We note that the ReLU operation in the
algorithm is performed via a sequence of stepReLU operations (lines
4,9, and 14) to construct the exact reachable set of the network.
The sub-procedure for the stepReLU operation at the neuron i, i.e.,
ReLU;(+) is presented from lines 16 to 27.

REMARK 1. The exact reachability algorithm directly computes
the reachable set of the hidden states (lines 2-10 in Algorithm 3.1)
without unrolling the network as the RNSVerify approach [1]. By
taking advantage of the Minkowski sum of star sets, a new star
representing the current hidden state reachable set can be constructed
directly and efficiently from the previous hidden state reachable set
and the current input set (line 8 in Algorithm 3.1).

Implementation Highlight. In the implementation of the exact
reachability algorithm, we do not need to find the exact range of the
input to each neuron (Proposition 2.9), i.e., [; and u; (line 19), which
is computationally expensive. Instead, we only need to quickly
determine if a split occurs at a specific neuron using its estimated
range (Proposition 2.10) or using zonotope prefilter techniques
[3, 29] to minimize the number of LPs solved in the exact analysis.

Complexity of the Exact Reachability.

LEMMA 3.1. Given an RNN network N with an n-dimensional
hidden states space, and p-dimensional output space, the complexity
of the number of star sets in the exact reachability of the network at
step T in the worst-case is O(2T™*P). The complexity of the number
of constraints in the predicate of a star in the reachable set of the

Tran et al.

Algorithm 3.1 Exact Reachability of an RNN.

Input: N = (W, by, W, Won, bo), X = [X1, Xa, ..., XT]
Output: O =[04,0;,...,07]

1: procedure O = ExactReach(N, X)

2: fori=1:Tdo

3: if i=1 then H; = Wj»X; + by,

4 H; = ReLU,,(ReLUy,_1 (. .. (ReLU; (H;))))

5: else

6: m = length(H;-1)

7: forj=1:mdo

8: I:IIJ = (WhhH{,l +bp) & Wi X;

9 H/ = ReLU, (ReLUp_1 (... (ReLU; (H)))))
10: Hi — Hlj

11: M = length(H;)

12: fork=1: Mdo

13: Hlk = WohHlk +bo

14: OF = ReLU, (ReLUp_1(... (ReLU ((HF))))
15: O; « Of

16: procedure R = ReLU;(I)

172 R=0,1=[6; --- 6]
18: for j=1:kdo

19: [li,ui] = é)j.getRange(i) > range of the input to the ith neuron
20: Ri=0.M=[ere; ---ei10€y -~ en]

21: if [; > 0then Ry = ©; = (¢, V;, P, 1, 1)

22: ifuiSOtheanZM*é]‘:<M&j,M‘~/j,Pj,l~j,ﬁj>
23: if li~< 085ui > 0 then o

24 0, =0, Ax[i] 20=1(;,V;, P, 1;.1;)

25: 9}’:9]' A x|i] <0:<£‘j,Vj,P]’~’,lj,ﬁj>

26: Ry =®}UM*®}'

27: R=RUR,

output states is O(T(n + ncmax) + p), where nemay is the maximum
number of constraints in the input sets.

ProoF. At the first step, the number of star sets in the reachable
set of the hidden states Hj is at most 2" (line 4) as each stepReLU
operation may split a star set into two new star sets. Therefore,
the number of star sets in the reachable set of the output O (line
14) is at most 2"2P = 2™*P_ At the second step, the number of star
sets in the reachable set of the second hidden states H; is at most
212" = 22" Consequently, the number of star sets in the reachable
set of the output O is at most 22727 = 22™*P Tt is easy to generalize
that at step T, the number of the star sets in the reachable set of the
hidden states Hr is at most 27", and the corresponding number of
star sets in the output reachable set is at most 277+?,

At each stepReLU operation, a star set may be split into two new
stars (line 23 to 26). Each new star set has one more constraint, i.e.,
x[i] £ 0 or x[i] < 0 (line 24 and 25). Therefore, at the first step,
a star set in the reachable set of the hidden states H; has at most
n + ncy constraints where ncy is the number of contraints in the
predicate of the input set Xj (ncp is the number of columns of the
predicate matrix P{.C). Consequently, a star set in the reachable
set of the first output O; has at most n + ncy + p constraints. One
can see that, at step T, a star set in the reachable set of the hidden
states Hy has at mostn+nci +n+nca+...n+necyr =Tn+ Z{nc,—.
Assume that nc; < nemgy, i = 1,..., T, then the complexity of the

Short Title

number of constraints in the predicate of a star in the reachable set
of the output is T(n + ncmax) + p- |

REMARK 2. The computational complexity of the exact reachability
algorithm indicates that, as the size of the network increases, the
potential number of star sets may increase exponentially. The number
of constraints of a star set in the reachable set is useful for estimating
the theoretical scalability of our verification approach using state-of-
the-art LP solvers. We expand this analysis in the next section.

3.2 Overapproximation Method

i~ i i = ReLU(x;
Approximate |77 RelUx) gpproximate Approximate |Vt (€D}
set set » set »
A
£\
l L [. up X
hy B
Zonotope Exact set Abstract-domain Exact set

Figure 2: The exact output y; of the ReLU activation function
on a neuron x; where splitting occurs, ie., ; < x <
ui, I; < 0, u; > 0 can be overapproximated by a triangle
(our method), or a zonotope [24] or an abstract-domain [25].
This overapproximation domain can be captured by a single
new variable a;.,, with associated constraints. The triangle
overapproximation is the tightest one.

To overcome the explosion in the number of hidden-state and
output star sets in the exact reachability, i.e., line 4, 9, and 14
in Algorithm 3.1, we overapproximate the stepReLU operation
ReLU; by a triangle over-approximation rule. Let [; and u; be
the lower bound and upper bound of the input x[i] (a star set)
to the i’ neuron in a n-neurons (hidden/output) layer (after an
affine mapping operation). If ; < 0 and u; > 0, applying ReLu
activation function on this neuron causes a splitting which results
in two separate segments shown in Figure 2 (in blue color). We
can overapproximate these two segments by a single set using a
triangle (our method) or a zonotope [24] or an abstract-domain [25].
We represent the triangle set by a new predicate variable apeq, i.€.,
y[i] = ReLU(x[i]) = anew, with three associating constraints in
the following:

u;

(x[i] =).

When applying the triangle over-approximation rule for all
splitting neurons in the layer, we can construct a single star set
that is an over-approximation of the exact reachable set (containing
multiple star sets). The overapproximate set has at most n new
predicate variables and 3n new constraints.

The lower bound ! and upper bound u vectors of the input x to
the layer are required to construct an overapproximate reachable
set. These bounds can be obtained by solving 2n LP optimization
problems (Proposition 2.9) which is computationally expensive. To
reduce the computation time, we combine the optimized ranges
(Proposition 2.9) and estimated ranges (Proposition 2.10) of neurons
in constructing the approximate reachable set. The idea is to choose
neurons at which the overapproximation causes potentially the
largest errors, i.e., the neurons with the largest triangle areas, to
optimize their ranges and then combine with estimated ranges

Onew < 0, Qnew 2 x[i], Qnew < w1
i~

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

from other neurons with smaller overapproximation errors (small
triangle areas) to construct a relaxed approximate reachable set.
The relaxed reachability method requires a relaxation factor (RF),
scaled from 0% to 100% as an input [30]. When RF = 0, there is no
relaxation in the approximate reachability. When RF = 100%, we
use the estimated ranges of all neurons to construct the reachable
set. The larger the RF, the smaller the required computation time.
When we fully relax the approximate reachability, i.e., RF = 100%,
the verification process becomes very fast and can even be used in
a real-time setting. We study the effect of various relaxation factors
in detail in the evaluation section.

Approximate Reachability Algorithm. Algorithm 3.2 describes
the relaxed approximate reachability of an RNN, which constructs
the relaxed overapproximation reachable sets of the hidden states H;
(line 3, 4, and 5) and the output O; (line 6 and 7) using the ReLU, ..},
procedure (line 8 to 19). The ReLU,.,j,4, procedure estimates the
ranges of all states in a star set quickly using Proposition 2.10 (line
9). Using the estimated ranges, it finds all indexes of the states
at which overapproximations are needed (line 10). It then ranks
these indexes using their estimated triangle overapproximation
areas, i.e., S; = 0.5u;(u; — I;) (line 11). From the ranked indexes,
we choose RF X N indexes with the highest ranks, i.e., the largest
estimated overapproximation areas, to optimize their ranges by
solving LP optimizations using Proposition 2.9 (line 13 and 14).
Finally, it combines the optimized ranges and estimated ranges
(lines 15 and 16) before using relaxed stepReLU ReLUjrl to construct
the reachable set (lines 20 to 36). Note that the relaxed stepReLU
uses mixed ranges from the previous step instead of optimized
ranges for all neurons.

Implementation Highlight. The relaxed stepReLU operations
(line 18 and 19) in Algorithm 3.2 is written in a for loop for easy
understanding. In our implementation, after computing the mixed
ranges, we perform the relaxed stepReLU operations on multiple
neurons simultaneously to reduce the computation time.

4 VERIFICATION OF RNNS

The goal of this research is to verify the robustness of an RNN
under an adversarial attack, i.e., solve Problem 1. To achieve that,
we first represent the adversarial inputs caused by the attack Ae (x)
as a sequence of stars X = [X1,Xy,...,X7] in which X; = {x]|x; —
€ < xj < xj+e = (c, V), PL, I, uf)}. Using the reachability
methods in the previous section, we then compute the reachable
set of outputs of the network O = [01, O3, ..., Or] corresponding
to the sequence of stars input set X. Finally, we check if there is the
intersection between each star output set O; and its corresponding
unsafe property Py, = Cjo; < d;. If the output set O; does not
reach its unsafe property, then the network is ROBUST under the
attack. Otherwise, depending on the reachability methods used in
verification, the result can be NOT ROBUST or UNKNOWN.

Verification Algorithm. Algorithm 4.3 describes our verification
approach for an RNN using star reachability. The Algorithm
receives the network N, the input sequence x = [x1, X2, ..., xT], the
unsafe property P, = Py, A -+ A Poy, the input disturbance bound
€, the reachability method method and the relaxation factor RF (for
relaxed reachability) as inputs. It outputs the verification result
and counterexample (if exact reachability is used). From the input

HSCC 23, May 09-12, 2023, San Antonio, TX, USA Tran et al.
Algorithm 3.2 Relaxed Reachability of an RNN. Algorithm 4.3 Robustness Verification of an RNN.
Input: N = (Whp, bp, Whx, Won, bo), X = [X1, X2, ..., XT], RF Input: N, x = [x1,x2,...,x7],Po =Po; A--- A Por, €, method, RF
Output: O =[04,0;,...,07] Output: ROBUST, NOT_ROBUST,UNKNOWN, CEx
1: procedure O = RelaxReach(N, X, RF) 1: procedure result = Verify(N,x, e, method, RF)
2: fori=1:Tdo 2: fori=1:T do » construct input sets
if i=1 then H; = W, X; + by, Xi = {x}|x;i —€ < x} < x; +€} ={c], VX, PF,I¥, uf)

else Hi = (WppHi—1 +bp) & Wi X

IiIi = ReLUy¢ax (H;, RF)

H; = WopHi + bo

O; = ReLUyelax (Hi)RF)
procedure R = ReLU,¢14x(©, RF)

[I,u] = ©.estimateRanges » estimate ranges of all states

10: ids = find(j,1[j] < 0,u[j] > 0)
11: ranked_ids = rank(id € ids,ulid] x (ulid] - I[id]))
12: N = length(ranked_ids)
13: opt_ids = ranked_ids[1: RF X N]

b A

14: [lopt: topr] = ©.getRanges(opt_ids)

15: Imix = I(I[opt_ids]| < lopt)

16: Umix = u(ulopt_ids] «— uops)

17: R=06

18: for j=1:ndo

19: R= ReLUj’l (R, Lmixe» Umix)

20: procedure R= ReLUjrl(C:), Linixs Umix)

21: M=leje; ---ej_10ej -~ en]

22: if Imix[j] > 0then R=0 = (¢, V, P, I, 41)

23: if Umix[j] < 0 then R = M % © = (Mé, MV, P, [, 1)
24: if Lnix[j] <0& um,x[]] > 0 then

25: P(a) LCa<da= [al,ag, am]T

26: a = [0{1, L Oy zxm+1] > new variable ;741

27: Ci=[00---0-1],d1 =0 sam 20

28: C; = [V(j,:) -1], dz = =€[j] » ams 2 x[j]
29: y= m > ama < Y (] = bmix 1)
30: Cs=|]V(J, D) 11, ds = ylmix [j1(1 = €[j])
31: Co = [C Omxl], dy=d

32: C’' = [Co;C1;Co;C3], d" = [do; dy; da; ds]

33: Pa)2Ca <d

34: ¢ =MEV =MV, V' =V’ ¢]

35: U =[10], 0 = [tmix[j]]

36: R={(c, V', P, I',u')

sequence x and the disturbance bound €, we construct the sequence
of input sets X (line 2 to 4). We then compute the reachable set
of the outputs given the sequence input sets and the reachability
method (line 5 to 8). Finally, we verify the robustness of the network
using the output reachable set O and its corresponding unsafe
property P, by initializing the result as ROBUST (line 9). If the
output reachable set O intersect with the unsafe property P, and the
relaxed reachability algorithm is used, then the verification result
is UNKNOWN (line 13). Similarly, but if the exact reachability
algorithm is used, the verification result is NOT_ROBUST (line 15)
and a set of counter examples is constructed (line 16).
Counterexample Construction. It is important to emphasize that,
using the exact reachability algorithm, we can construct a complete
set of counterexamples containing all input sequences CEx =
{(x1,x2,...,x®}, x/ = [x { x], .. .,x%] that make the network
Vlolates its property, i.e., the output sequences CO = {o!, 02

o™}, of = [o] oé, s oJT] reach the unsafe region defined by Po.
The set of counterexamples is constructed by applying the lemma.

3
4 X « X;

5: if method = “exactstar” then

6: O = ExactReach(N,X) » Algorithm 3.1

7 else if method = “relaxstar” then

8 O = RelaxReach(N, X, RF) » Algorithm 3.2
9: result = ROBUST,CEx =0

10: fori=1:Tdo

11: if O; N Py, # 0 then

12: if method = “relaxstar” then

13: result =UNKNOWN

14: else if method = “exactstar” then

15: result = NOT_ROBUST

16: CEx = GetCounterExample(O, P,, i)
17: break

LEMMA 4.1. [Counterexample input sets.] Given a sequence
of input sets X = [X1,Xo,...,X7], Xi = (], V5, PF, IF, uf) € RY,
and the exact output set at step i is O; = [O}, Oiz, el OIN"], if the
network violates its robustness property at step i, then the complete
counter input sets containing all possible counter input sequences is
CE = [CEj],1 £ j £ Nj in which:

0/ NPy, £ Cio < d; = (¢}, V7 P17 ul7y # 0,

CEj=[X].X],...X],...X]] k<i

0j 195 0j
Ogx(i-k)qls P> ;7 ;7).

X = (- [0gx (k-1)¢ V;
PrRoOOF. We remind that 1) the affine mapping operation (Prop.
2.6) does not change the predicate of a star set, 2) the intersection
between a star set and a halfspace does not change the center and
basis vectors of the star set and the new constraints are added to
the new predicate (Proposition 2.7), 3) the exact ReLU operation
does not increase the number of predicate variables but may add
more constraints to them, and 4) the Minkowski sum increases the
size of the basis vectors and the number of the predicate variables
as wells as the number of constraints in the new predicate (Pro 2.8).
Due to the Minkowski sum (line 8 in Algorithm 3.1), the number of
predicate variables of the output reachable set at step i is i X q. In the
exact analysis, the predicate of the output reachable set O; is built
upon the predicates of the input sets X1, X», . .., X; by adding more
constraints via the ReLU operation (lines 4, 9, and 14 in Algorithm
3.1) and the Minkowski sum (line 8 in the algorithm). Therefore, if
P?’ is the predicate of the unsafe output UJ O] U P,,, it contains
all constraints of the predicate variables of all correspondlng unsafe
input sets X{f(g . Xli ..)~(ZJ in which Xli is a subset of Xj.
Note that Plf)j contains the constraints of i X g predicate variables
while the input set X} is defined based on q predicate variables.
Therefore, the unsafe input set Xlﬁ (C X}) is constructed based on
i X q predicate varables. However, it does not depend on the first
(k — 1)q and the later (i — k) predicate variables. This means its

Short Title

basis vectors corresponding to these variables are zero vectors, i.e.,

\7]5 = [0gx(k-1)g V{ Ogx(i-k)ql- o

Soundness and Completeness. The soundness and completeness
of our verification algorithm is described in the following lemma.

LEmMMA 4.2. If the exact reachability algorithm is used, Algorithm
4.3 is sound and complete. Otherwise, it is sound.

5 EVALUATION

Experiment Setup. Our approach is implemented in NNV, a tool
for verification of deep neural networks and learning-enabled cyber-
physical systems [32]. All codes used to produce the results in this
paper are available for repeatability evaluation. We evaluate our
method in comparison with RnnVerify [12] and RNSVerify [1] on
the adversarial robustness verification for speaker recognition RNN
benchmarks (exactly the same as RnnVerify does). The RnnVerify
method implements the invariant inference approach to reduce the
complexity of verifying RNNs. The RNSVerify method is based on
the unrolling technique that transforms an RNN into an equivalent
feedforward network which can be encoded as a big MILP to reason
about the robustness. Similar to our exact verification approach,
RNSVerify is sound and complete, but computationally expensive.
Benchmarks. We use 6 speaker recognition RNNs [12] trained on
the VCTK dataset to compare our method with RnnVerify. Each
network N, , has an input layer of 40 dimensions, two hidden layers
with a = {2,4,8} and b = {0, 2,4, 8} memory units, followed by
5 fully connected layers with 32 ReLU nodes each, and an output
layer with 20 ReLU nodes. The output nodes represent the possible
speakers in which the one with the highest score is the classified
output, i.e., the recognized speaker. We refer readers to [12] for
further details of the networks. We also use a small network with
one hidden layer (in RnnVerify) to evaluate our exact verification
approach. Our experiment is done on a computer with the following
configurations: Intel Core i7-10700 CPU @ 2.90GHz X 8 Processors,
63.7 GiB Memory, 64-bit Ubuntu 18.04.6 LTS OS.

Adversarial Robustness Verification. We use the same 25 fixed
input points x = {x1,x2, ..., x25} generated randomly in RnnVerify
for our comparison. These input points are 40-dimensional vectors

and do not change over time, ie., x; € R4, xi1 = xl.z,...,:

xl.T’"“’CA For a network N, j, and input x;, the ground truth label

corresponding to the highest score output of the network at step
= Na’b(xl.l,xl.z, .. .,xiT'"“"). We want to verify that
if we arbitrarily attack the input sequence xil,xl.z, e ,xiT max by
bounded perturbation € = 0.01, then whether the output label at the

- S _ 2 T,
step Tmax is still the same, i.e., leax = Nap (X[x[%, o x, 7 mex)

AR
= 17, > Where A7 [|x7! = xt[|o < 0.01.

Tmax is It

max

5.1 Exact Verification

We evaluate our exact verification approach on a small RNN
with one hidden layer to compare its results with RnnVerify and
RNSVerify. We analyze the timing performance, the growth of
the number of star sets, and counterexample constructions of our
approach. The results of the exact reachability verification for the
small RNN network are presented in Table 1.

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

250 T T T T T T T T

— % —exact-star
— % —RNSVerify
approx-star

200 + —— RnnVerify B
0

O 150 | 1
£
[
c
i)

© 100 - J
L
=
=
()
>

50 - 1

e

0 L - 7\ Y I R - L)

2 4 6 8 10 12 14 16 18 20

Tonas

Figure 3: Average verification times of different approaches
for the small RNN network. Our exact verification
significantly outperforms RNSVerify.

Timing Performance. From Table 1, we can see that the
verification time varies significantly with different input points.
Input points x4, x10, X21, x22 and x24 dominate the verification
time. When T4y increases, the verification time grows quickly
in the exact analysis. Our exact verification scheme significantly
outperforms the RNSVerify method, as shown in Figure 3. We can
achieve = 10X times faster than RNSVerify on average when Tp,qx =
20. One can also see from the figure that, the exact verification
scheme is slower than the approximate one and RnnVerify when
Tinax is large.

Number of Star Sets. From the table, one can see that for those
input points that dominate the verification time, the number of
star sets in the output reachable set grows significantly when we
increase Tqx. For example, for the input point x24, the number of
star output sets increases from 3 at Tipax = 5 to 4181 at Tipax = 20.
For other input points, the number of star sets grows slowly (e.g.,
X1, x6) or does not grow (e.g., X2, x3) as Tpax increases.
Counterexamples. In RnnVerify, the paper claims that for the
small network, they can prove the robustness of the networks for
all 25 input points for all T;;,4x between 2 and 20. In our result, we
have found many counterexamples to prove that the network is
not robust. For example, at Tp,4x = 20, using our exact verification
scheme, we can prove that the network is not robust for 12 of 25
input points (see Table 1). Figure 4 shows the ranges of all outputs
of the network for the first output set in 8 counter output sets for
x1 with Tjuax = 20. One can see that there is the case that the 10tk
output will be the largest one. Therefore, the network may result
in the label 10 instead of 1 as expected. We note that the exact
verification results are consistent with the ones obtained by our
approximate verification scheme. For the cases that are not robust,
our approximate verification scheme produces UNKNOWN as a
result. We have tried the RnnVerify with different attack bound
values, i.e., . We have experienced that even if we let € = 1, which is
a significantly large bound, RnnVerify still proves that the network
is robust for all 25 input points.

HSCC 23, May 09-12, 2023, San Antonio, TX, USA

Tran et al.

Tmax =5 Tmax = 10 Tmax = 15 Tmax = 20

x RS VI N CE|RS VI N CE|RS VT N CE | RS VT N CE
X1 1 001 2 0 1 005 4 0 1 0.17 12 0 0 0.62 40 8
xg |1 001 1 0 0 0.02 1 1 1 0.02 1 0 1 0.02 1 0
x3 |1 0.00 1 0 1 000 1 0 1 0.01 1 0 1 0.01 1 0
x4 |0 0.03 2 2 0 024 14 8 0 2.59 101 57 |0 32.74 784 514
x5 |1 002 1 0 1 0.02 1 0 1 0.02 1 0 1 0.02 1 0
x6 |0 0.01 1 1 0 005 4 1 0 0.17 12 4 0 0.63 32 24
x7 |1 001 2 0 1 005 4 0 1 0.19 12 0 0 0.91 48 8
xg |0 0.06 8 4 1 022 14 0 1 0.23 14 0 1 0.29 14 0
x9 |1 0.00 1 0 1 000 1 0 1 0.01 1 0 1 0.01 1 0
x10 | 1 003 4 0 0 039 32 32 |0 1.27 128 16 |0 22.43 1024 1024
x11 | 1 002 1 0 1 0.01 1 0 1 0.01 1 0 1 0.02 1 0
x12 | 1 001 2 0 1 002 2 0 1 0.02 2 0 1 0.03 2 0
x13 | 1 0.00 1 O 1 001 1 0 1 0.01 1 0 1 0.02 1 0
x14 | 1 001 1 0 0 0.02 1 1 1 0.02 1 0 0 0.03 1 1
x15 | 1 001 1 0 0 0.02 1 1 1 0.02 1 0 0 0.03 1 1
x16 | 1 0.00 1 O 1 001 2 0 1 0.06 6 0 1 0.20 20 0
x17 | 1 001 2 0 1 005 6 0 1 0.19 16 0 1 0.47 36 0
x18 | 1 0.00 1 0 1 001 1 0 1 0.01 1 0 1 0.01 1 0
x19 | 1 0.00 1 O 1 000 1 0 1 0.01 1 0 1 0.01 1 0
x20 | 1 001 2 0 1 006 4 0 1 024 16 0 0 1.18 56 20
x21 | 1 002 2 0 0 039 26 20 |0 6.73 288 220 |0 161.90 3194 2440
x22 | 1 0.04 4 O 0 033 32 32 |0 1.43 128 1 0 20.21 1024 1024
x23 | 1 001 1 0 1 002 4 0 1 0.06 8 0 0 0.18 12 12
Xx24 | O 0.05 3 3 0 1.21 34 34 |0 19.17 377 377 | 0 377.53 4181 4181
x25 | 1 001 2 O 1 001 2 0 1 0.02 2 0 1 0.02 2 0

Table 1: Exact verification results for the small RNN in which RS is the verification result (RS = 1 — ROBUST, RS = 0 —
NOT_ROBUST), VT is the verification time in seconds, N is the number of star sets in the output reachable set, and CE is the
number of counterexample sets. Verification performance varies significantly for different input points.

3 T T T
‘ Ground-truth Output Range ‘ ‘ Counter Output Range ‘
el j%/,', ,,,,,,,,,,]
T I
oI I
! I
8 I
o ol T]
S T
o
I x
Al I []
=
L1
2 L I I 4
-3 L L L
1 10 20

Output
Figure 4: The figure shows the ranges of all outputs in the
first output set in 8 counter output sets for x; with T4y = 20
(Table 1). There is the case that the output label is 10 while it
is expected to be 1.

5.2 Approximate Verification

The verification results using the approximate scheme, and
RnnVerify are presented in Table 2. Full results can be found in the
Appendix.

Conservativeness Improvement. We compare the number of
provable cases over 25 input points between RnnVerify and our

approximate verification scheme. For the small networks, i.e., N2
and N2, RnnVerify can prove that for all Trpax, 2 < Tnax < 20,
the network is robust for all input points. However, this is not the
case in our results. There are some cases in which our method
returns UNKNOWN results. For example, with the approximate
reachability, we can prove that the network Ny g is robust only for
23 cases (over 25) at Typqx = 20.

For larger networks (N0, Na,2, N4 4 and Ng), our approximate
verification outperforms RnnVerify in the number of provable
cases when dealing with large Tpax. For example, for Ny, at
Tinax = 20, the approximate verification can prove the robustness
of the network for 24 input points even using full relaxation, i.e.,
RF = 1. (see Table 2) while RnnVerify proves only 12 cases. Even
there are some concerns about RnnVerify results, we still want
to know how much improvement in terms of conservativeness
can be done by our approach compared with RnnVerify. To do
that, we compute the total number of cases that can be proved
by RnnVerify and our approach for 6 networks with 25 points for
each (total number of queries is 6 X 25 X 19 = 2850). From the
full verification results (presented in the Appendix), RnnVerify
can prove a total of 2191 cases while our approximate verification
can prove 2463 cases without relaxation (~ 12.5% improvement)
and 1978 cases with full relaxation (~ —9.7% improvement). If we
consider only 4 largest networks, RNNVerify can prove a total
of 1241 cases while our approach can prove 1672 cases without
relaxation (= 35% improvement) and 1277 cases with full relaxation
(= 3% improvement).

Short Title

HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

N | Toue RonVerify relax-star-RF=0 relax-star-RF=0.5 relax-star-RF=1
Ny VT Np re VT Tt Np e VT Tt Np e VT rs
5 25 313 |25 0 002 1733x |25 0 0.01 241.0x |23 —2 001 300.3X
Noo | 10 25 408 |25 0 003 1424x |25 0 0.03 150.9x |24 -1 0.02 195.9%
20 | 15 25 461 |24 -1 005 923x |24 -1 005 992X |23 -2 004 130.7X
20 25 498 |23 -2 008 657x |23 -2 007 715X |23 -2 0.05 94.5%
5 25 1672 | 23 -2 0.04 469.2x |23 -2 0.03 545.8x |21 —4 001 12163%
Ny | 10 25 574 |21 -4 052 111x |21 -4 045 128x |13 —12 0.04 142.1X
22 | 15 25 640 |10 -15 12.69 0.5 10 -15 1531 0.4x 8 —-17 0.11 59.3x
20 25 831 |9 —16 91.68 0.1x 8 —17 109.67 0.1x 6 -19 028 29.9x
5 25 1339 |24 -1 001 898.4x |24 -1 001 9277x |23 -2 001 1304.9%
Neo | 10 14 4553 |24 10 004 1069.2x | 24 10 0.04 1128.6x | 22 8 0.02 2097.1%
401 5 12 17654 | 24 12 0.08 2258.8x |24 12 0.07 2450.6X | 24 12 0.04 4884.5X
20 1215075 | 25 13 0.3 1119.9x | 25 13 012 1216.9x | 24 12 0.05 2834.8X
5 19 3293 |22 3 0.08 4142x |22 3 007 4706x |16 -3 002 1837.0x
Neo | 10 16 144.69 | 20 4 046 317.8x |19 3 041 353.6x |15 -1 0.04 3498.9x
42 | 15 16 11.01 |18 2 278 4.0 18 2 230 4.8% 15 -1 011 100.0x
20 15 1407 |18 3 1428 1.0 18 3 1041 1.4x 15 0 0.33 42.3x
5 25 605 |25 0 007 891X |25 0 006 1009X |22 -3 002 271.7x
Nea | 10 8 116 |25 17 417 03X 23 15 658 0.2x 14 6 0.05 24.1x
44| 15 8 181 |25 17 69.82 0.0x 17 9 113.62 0.0x 13 5 0.14 13.3%
20 8§ 261 |21 13 509.02 0.0 15 7 436.16 0.0x 12 043 6.0
5 2 254 |22 20 010 244x |22 20 0.06 443x |13 11 001 214.8x
Moo | 10 2 644 |17 15 081 8.0x 17 15 1.08 6.0 8 6 0.02 260.6x
80 | 15 2 1082 |20 18 5.03 2.2x 20 18 521 21X 1210 0.04 255.1x
20 2 1437 |17 15 10.60 1.4x 17 15 1263 1.1x 9 7 0.07 220.7%

Table 2: Verification results for the RNN using the approximate and relaxed reachability. N, is the number of provably robust
cases (over 25 input points), VT is the verification time in seconds, r¢ is the improvement in the provable number of cases
(conservativeness improvement), and r; is the improvement in the average verification time (time improvement).

25 T T 3
—>—RF=0
—Fk—RF=025
RF=0.5
25
20 - —&—RF=075
RF =1
RnnVerify oPs,t
ol
2
15
[} () /
4 E 7/
[= /
‘g‘, c 15)
2 £
10 - .S
5 4
2 1
5L
05
0 —— 0
0 0.02 0.04 0.06 0
€ €

Figure 5: Verification performance with different attack
bounds ¢ on network ANg(. Our approach using relaxed
reachability significantly outperforms the RnnVerify in
both number of provable cases and verification time. Our
verification time increases along with € except for using full
relaxation, i.e., RF = 1. The number of provable cases reduces
when we increase the relaxation factor (RF).

Timing Improvement. From the full verification results, one can
see that our approximate verification approach is much faster than
RnnVerify approach in most of the cases except for N3 2 and Ny 4
for large Tnax, i€, Tmax = 10. Impressively, our approach can
achieve up to 2407.6X faster without relaxation (network Ny for

Tmax = 19). Our verification with full relaxation is always very
fast for all networks. It can even be more than 5000% faster than
RnnVerify as in case of Ny with Tinax = 15.

Relaxation Factor and disturbance bound effects. The timing
performance of approximate verification without relaxation
depends significantly on the size of the attack, i.g., the disturbance
bound. As seen in Figure 5, increasing the disturbance bound € or
decreasing the relaxation factor RF increase the number of cases to
be verified but reduces the verification time. With full relaxation, the
time remains unchanged. This occurs as no optimization problems
are solved for constructing the reachable set and verifying the
robustness of the network.

6 RELATED WORK

Deep Neural Network Verification. Numerous techniques and
tools have been proposed recently [10, 11, 17, 31]. These techniques
can be categorized into sound and complete methods or only sound
methods. Typical representatives of sound and complete methods
include the Satisfiability Modulo Theory (SMT) [13, 14], Mixed-
Integer Linear Program (MILP) [19], reachability analysis [3, 28, 34].
As verifying DNNs is an NP-hard problem [13], sound and complete
methods have limited scalability to deal with very large networks.
To improve the scalability of DNNs Verification, overapproximation
methods have been extensively explored. Various techniques
have been developed for verifying nonlinear systems including
optimization-based approaches [7], semidefinite programming [8],
abstract interpretation [22, 25], relaxed convex programs [15], and
overapproximate and relaxed star reachability [26, 28, 30].

HSCC 23, May 09-12, 2023, San Antonio, TX, USA

RNN Verification. Our research in this paper is mainly inspired by
the works done in RnnVerify [12] and RNSVerify [1]. In RNSVerify,
the authors propose an unrolling method to unroll an RNN to
an equivalent large FFNN whose verification problem can be
encoded as a big MILP, which can be solved by the authors’
previous proposed approach [19]. The unrolling technique is
sound and complete but has a scalability issue because verifying
a bounded n-steps RNN is equivalent to verifying (n + 1)-layers
FFNN, where n is the length of a sequence of inputs. When
the length of the sequence inputs increases, the unrolled FFNN
network becomes very large and cannot be verified. Our exact
verification (using exact reachability) is also sound and complete.
However, we do not need to unroll the network when computing the
exact reachable set. Instead, the influence of the previous hidden
states is added directly into the current hidden state reachable
sets by the Minkowski sum of star sets. In RnnVerify, [12], the
authors verify RNNs using invariant inference without unrolling.
Specifically, an FFNN with the same size as an RNN is created to
over-approximate the RNN. Then, the RNN’s properties are verified
over this over-approximation using the SMT-based technique for
FFNN verification [13, 14]. The authors leverage the well-studied
notion of “inductive invariant” for constructing FFNN that encodes
time-invariant properties of the RNN (i.e., input, hidden states,
and outputs) in such a way that does not increase the size of
the network as the unrolling method. Although the size of the
FFNN is independent of the length of a sequence of inputs, its
associating invariant needs to be refined when a new input comes
to verify a property if the over-approximation is too coarse. Our
approximate verification method constructs the invariant set of
an RNN over finite time steps using approximate star reachability.
However, unlike RnnVerify, which generates invariants that bound
the values of all states in an RNN as functions of time, our invariant
is a set of constraints representing the dependency between current
states (i.e., hidden states or outputs) and previous states and inputs.
New constraints between a new state (in a new time step) and
the previous states (in the past) are added up to construct a new
invariant via the Minkowski sum operation.

7 CONCLUSION

In this work, we present a complementary method for verifying
recurrent neural networks based on extending the recent star set
reachability. The algorithms have been implemented and made
readily available through the NNV tool for the verification of neural
networks. We demonstrate through experimental evaluation that
the proposed approach is significantly faster and more capable
than the state-of-the-art methods in RNN verification. As future
work, we will extend our approach to LSTM and GRU recurrent
networks inspired by the work done in [23]. We will also consider
the verification problem of RNNs with respect to safety properties
with temporal characteristics.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation
(NSF) under grant NSF-CCF-2220418 and the NSF Nebraska EPSCoR
under grant OIA-2044049.

Tran et al.

REFERENCES

[1] Michael E Akintunde, Andreea Kevorchian, Alessio Lomuscio, and Edoardo
Pirovano. 2019. Verification of RNN-based neural agent-environment systems. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 6006-6013.
Stanley Bak and Parasara Sridhar Duggirala. 2017. Simulation-equivalent
reachability of large linear systems with inputs. In International Conference on
Computer Aided Verification. Springer, 401-420.

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. 2020.

Improved Geometric Path Enumeration for Verifying ReLU Neural Networks. In

32nd International Conference on Computer Aided Verification. Springer.

[4] Xie Chen, Xunying Liu, Yongqiang Wang, Mark JF Gales, and Philip C Woodland.
2016. Efficient training and evaluation of recurrent neural network language
models for automatic speech recognition. IEEE/ACM Transactions on Audio,
Speech, and Language Processing 24, 11 (2016), 2146-2157.

[5] Dong Dong, Xiao-Yang Li, and Fu-Qiang Sun. 2017. Life prediction of jet engines

based on LSTM-recurrent neural networks. In 2017 Prognostics and system health

management conference (PHM-Harbin). IEEE, 1-6.

Parasara Sridhar Duggirala and Mahesh Viswanathan. 2016. Parsimonious,

simulation based verification of linear systems. In International Conference on

Computer Aided Verification. Springer, 477-494.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. 2018.

Output range analysis for deep feedforward neural networks. In NASA Formal

Methods Symposium. Springer, 121-138.

[8] Mahyar Fazlyab, Manfred Morari, and George J Pappas. 2020. Safety verification
and robustness analysis of neural networks via quadratic constraints and
semidefinite programming. IEEE Trans. Automat. Control (2020).

[9] Yoav Goldberg. 2017. Neural network methods for natural language processing.
Synthesis lectures on human language technologies 10, 1 (2017), 1-309.

[10] Navid Hashemi, Bardh Hoxha, Tomoya Yamaguchi, Danil Prokhorov, Geogios

Fainekos, and Jyotirmoy Deshmukh. 2023. A Neurosymbolic Approach to the

Verification of Temporal Logic Properties of Learning enabled Control Systems.

arXiv preprint arXiv:2303.05394 (2023).

Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,

Emese Thamo, Min Wu, and Xinping Yi. 2020. A survey of safety and

trustworthiness of deep neural networks: Verification, testing, adversarial attack

and defence, and interpretability. Computer Science Review 37 (2020), 100270.

Yuval Jacoby, Clark Barrett, and Guy Katz. 2020. Verifying recurrent neural

networks using invariant inference. In International Symposium on Automated

Technology for Verification and Analysis. Springer, 57-74.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In

International Conference on Computer Aided Verification. Springer, 97-117.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,

Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zelji¢, et al.

2019. The marabou framework for verification and analysis of deep neural

networks. In International Conference on Computer Aided Verification. Springer.

Haitham Khedr, James Ferlez, and Yasser Shoukry. 2021. Peregrinn: Penalized-

relaxation greedy neural network verifier. In International Conference on Computer

Aided Verification. Springer, 287-300.

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca Daniel, Ngai Wong, and Dahua

Lin. 2019. POPQORN: Quantifying robustness of recurrent neural networks. In

International Conference on Machine Learning. PMLR, 3468-3477.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark

Barrett, and Mykel J Kochenderfer. 2021. Algorithms for Verifying Deep Neural

Networks. Foundations and Trends® in Optimization 4, 3-4 (2021), 244-404.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent neural network

for text classification with multi-task learning. In Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence. 2873-2879.

Alessio Lomuscio and Lalit Maganti. 2017. An approach to reachability analysis

for feed-forward relu neural networks. arXiv preprint arXiv:1706.07351 (2017).

Larry R Medsker and LC Jain. 2001. Recurrent neural networks. Design and

Applications 5 (2001), 64-67.

Oliver Obst. 2014. Distributed fault detection in sensor networks using a recurrent

neural network. Neural processing letters 40, 3 (2014), 261-273.

[22] Pavithra Prabhakar and Zahra Rahimi Afzal. 2019. Abstraction based output

range analysis for neural networks. Advances in Neural Information Processing

Systems 32 (2019).

Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Marian

Dan, and Martin T Vechev. 2020. Fast and effective robustness certification for

recurrent neural networks. CoRR abs/2005.13300 (2020).

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin

Vechev. 2018. Fast and effective robustness certification. In Advances in Neural

Information Processing Systems. 10825-10836.

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019. An

abstract domain for certifying neural networks. Proceedings of the ACM on

Programming Languages 3, POPL (2019), 41.

Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. 2020.

Verification of Deep Convolutional Neural Networks Using ImageStars. In 32nd

International Conference on Computer-Aided Verification (CAV). Springer.

[2

[3

G

[7

[11

[12

[13

[14

[15

(16

[17

(18

=
2

[20

[21

[23

[24

[25

[26

Short Title

[27] Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang,
Luan Viet Nguyen, Weiming Xiang, and Taylor T Johnson. 2019. Parallelizable
reachability analysis algorithms for feed-forward neural networks. In 2019
IEEE/ACM 7th International Conference on Formal Methods in Software Engineering
(FormaliSE). IEEE, 51-60.

[28] Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang,
Luan Viet Nguyen, Weiming Xiang, and Taylor T. Johnson. 2019. Star-
Based Reachability Analsysis for Deep Neural Networks. In 23rd International
Symposisum on Formal Methods (FM’19). Springer International Publishing.

[29] Hoang-Dung Tran, Neelanjana Pal, Diego Manzanas Lopez, Patrick Musau,
Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T
Johnson. 2021. Verification of piecewise deep neural networks: a star set approach
with zonotope pre-filter. Formal Aspects of Computing 33, 4 (2021), 519-545.

[30] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Diego Manzanas Lopez,
Nathaniel Hamilton, Xiaodong Yang, Stanley Bak, and Taylor T Johnson. 2021.
Robustness verification of semantic segmentation neural networks using relaxed
reachability. In International Conference on Computer Aided Verification. Springer.

(31

[32

[33

HSCC 23, May 09-12, 2023, San Antonio, TX, USA

Hoang-Dung Tran, Weiming Xiang, and Taylor T Johnson. 2020. Verification
approaches for learning-enabled autonomous cyber-physical systems. IEEE
Design & Test (2020).

Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T Johnson. 2020.
NNV: the neural network verification tool for deep neural networks and learning-
enabled cyber-physical systems. In Computer Aided Verification: 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020. Springer, 3-17.
Weiming Xiang, Patrick Musau, Ayana A Wild, Diego Manzanas Lopez,
Nathaniel Hamilton, Xiaodong Yang, Joel Rosenfeld, and Taylor T Johnson. 2018.
Verification for machine learning, autonomy, and neural networks survey. arXiv
preprint arXiv:1810.01989 (2018).

Xiaodong Yang, Taylor T Johnson, Hoang-Dung Tran, Tomoya Yamaguchi, Bardh
Hoxha, and Danil V Prokhorov. 2021. Reachability analysis of deep ReLU neural
networks using facet-vertex incidence.. In HSCC. 18-1.

Hongce Zhang, Maxwell Shinn, Aarti Gupta, Arie Gurfinkel, Nham Le, and Nina
Narodytska. 2020. Verification of recurrent neural networks for cognitive tasks
via reachability analysis. In ECAI 2020. I0S Press, 1690-1697.

HSCC 23, May 09-12, 2023, San Antonio, TX, USA

APPENDIX
N | Toux RnnVerify relax-star-RF=0 relax-star-RF=0.5 relax-star-RF=1
Np VT Np re VT Iy Np re VT re Np re VI ry
2 25 0.18 25 0 0.01 21.4x 25 0 0.01 30.4X 24 -1 0.00 37.5X%
IV 3 25 2.23 25 0 0.01 280.8% 25 0 0.01 297.8X 25 0 0.01 350.6%
2014 25 2.82 25 0 0.01 289.9% 25 0 0.01 292.0x 24 -1 0.01 332.9%
5 25 313 25 0 0.02 203.5% 25 0 0.01 231.5%X 23 =2 0.01 290.6Xx
6 25 3.39 25 0 0.02 217.3X 25 0 0.02 220.4% 25 0 0.01 259.7X
7 25 3.61 24 -1 0.02 189.0% 24 -1 0.02 192.5% 24 -1 0.02 234.1X
8 25 374 22 =3 0.02 162.1X 22 =3 0.02 163.9% 22 =3 0.02 207.0x
9 25 3.93 24 -1 0.03 148.7X 24 -1 0.03 151.6X 23 =2 0.02 188.9x
10 25 4.08 25 0 0.03 1333x |25 0 0.03 136.1x |24 -1 0.02 174.8X
11 25 4.21 24 -1 0.04 118.2X 24 -1 0.03 121.8% 24 -1 0.03 160.3%x
12 25 4.26 24 -1 0.04 108.9x 24 -1 0.04 114.6X 24 -1 0.03 145.3X
13 25 441 23 -2 0.04 101.3% 23 =2 0.04 106.0x 22 =3 0.03 132.7X
14 25 4.53 24 -1 0.05 93.9% 24 -1 0.05 97.7X 24 -1 0.04 120.7X
15 25 4.1 24 -1 0.05 86.6X 24 -1 0.05 90.0x 23 =2 0.04 112.5X
16 25 471 24 -1 0.06 79.1X 24 -1 0.06 83.8% 24 -1 0.04 104.7X
17 25 479 23 =2 0.06 73.7X 23 =2 0.06 77.6X 22 =3 0.05 96.8%
18 25 4.1 25 0 0.07 68.7X 25 0 0.07 71.6X 24 -1 0.05 91.8x
19 25 4.86 25 0 0.08 64.6X 25 0 0.07 67.1X 24 -1 0.06 86.3%
20 25 498 23 -2 0.08 60.9%X 23 -2 0.08 63.9% 23 -2 0.06 82.8X
2 25 0.28 25 0 0.01 28.8% 25 0 0.01 43.6X 25 0 0.01 54.9x
Iy 3 25 9.34 25 0 0.01 1109.0x | 25 0 0.01 1163.5x | 25 0 0.01 1411.9%x
401y 25 14.87 23 -2 0.01 1177.7x | 23 -2 0.01 1230.0x | 23 -2 0.01 1655.8X
5 25 13.39 24 -1 0.02 814.8X 24 -1 0.02 857.6X 23 =2 0.01 1203.1x
6 25 26.75 24 -1 0.03 1011.3x | 24 -1 0.02 1299.8x | 22 -3 0.01 2020.4X
7 25 35.27 25 0 0.03 12935x | 25 0 0.03 1346.8x | 22 -3 0.02 2229.2X
8 25 26.95 24 -1 0.04 758.5% 24 -1 0.03 791.9%x 21 —4 0.02 1466.9x
9 23 47.98 25 2 0.04 1168.3X | 25 2 0.04 1245.5x | 22 -1 0.02 2288.7X
10 14 45.53 24 10 0.05 986.9% 24 10 0.04 1041.9x | 22 8 0.02 1911.7X
11 14 48.78 25 11 0.05 924.9% 25 11 0.05 987.7X 23 9 0.03 1836.8%x
12 14 33.55 25 11 0.06 545.2X 25 11 0.06 583.2% 23 9 0.03 1135.0x
13 13 127.67 | 25 12 0.07 1830.6x | 25 12 0.06 1985.5x | 24 11 0.03 3862.7X
14 12 105.00 | 25 13 0.08 1361.3x | 25 13 0.07 1481.5x | 24 12 0.04 2901.7Xx
15 12 176.54 | 24 12 0.08 2096.7x | 24 12 0.08 2274.3X | 24 12 0.04 4464.5X
16 12 181.04 | 24 12 0.09 1954.9x | 24 12 0.08 2153.3x | 24 12 0.04 4220.7X
17 12 13032 | 25 13 0.10 1321.3x | 25 13 0.09 1454.8x | 25 13 0.05 2794.8X
18 12 20455 (25 13 0.10 1951.9x | 25 13 0.10 2139.1x | 25 13 0.05 4039.7X
19 12 271.00 | 24 12 0.12 2177.5x | 24 12 0.12 2311.0x | 23 11 0.05 4981.4X
20 12 150.75 | 25 13 0.14 1055.7x | 25 13 0.13 1144.8x | 24 12 0.06 2604.5X
2 25 0.34 23 -2 0.02 19.5%x 23 =2 0.01 27.7X 20 =5 0.01 39.7x
N 3 25 2351 21 -4 0.02 1465.2X | 21 -4 0.01 1664.4x | 21 -4 0.01 3210.6X
42y 23 4902 |20 -3 0.03 1853.9x | 20 -3 0.02 2023.1x | 17 -6 0.01 4875.3X
5 19 3293 22 3 0.07 461.5X 22 3 0.07 493.5x 16 -3 0.01 2405.2X
6 17 46.90 21 4 0.10 454.7X 21 4 0.10 485.2X 16 -1 0.02 2644.0X
7 17 3989 |22 5 0.15 272.6x | 22 5 0.14 292.2x |20 3 0.02 1760.4%x
8 16 57.42 20 4 0.22 266.9% 20 4 0.20 284.3X 15 -1 0.03 2071.1X
9 16 87.27 20 4 0.31 277.2X 20 4 0.28 306.6X 16 0 0.03 2564.1x
10 16 144.69 | 20 4 0.45 323.9x 19 3 0.40 361.2x | 15 -1 0.04 3493.5X
11 16 87.08 18 2 0.64 136.7X 18 2 0.57 151.8% 16 0 0.05 1724.2x
12 16 894 20 4 0.93 9.6X 20 4 0.82 10.9x 14 -2 0.06 145.8X
13 16 9.80 21 5 1.35 7.3% 21 5 1.15 8.5% 14 -2 0.07 131.2x
14 16 10.07 20 4 1.93 5.2X 19 3 1.61 6.3% 15 -1 0.09 110.8x
15 16 11.01 18 2 2.74 4.0X 18 2 2.28 4.8X 15 -1 011 99.9%x

Tran et al.

Short Title HSCC ’23, May 09-12, 2023, San Antonio, TX, USA

16 16 11.36 18 2 3.89 2.9%x 18 2 3.17 3.6X 15 -1 0.13 84.6X
17 15 12.09 18 3 5.47 2.2X 18 3 4.40 2.7x 15 0 0.16 74.1x
18 15 13.05 18 3 7.52 1.7X 18 3 5.92 2.2X 15 0 0.20 64.9x
19 15 13.23 16 1 10.38 1.3x 16 1 7.86 1.7x 14 -1 0.26 51.2X
20 15 14.07 18 3 14.23 1.0x 18 3 10.34 1.4x 15 0 0.33 42.8Xx
2 25 047 25 0 0.01 46.0X 25 0 0.01 65.1% 25 0 0.01 32.2x
N 3 25 11.97 25 0 0.02 741.4% 25 0 0.02 783.7X 24 -1 0.01 1546.1X
4y 25 2344 |25 O 0.03 682.4X 25 0 0.03 738.5X 22 =3 0.01 2264.3X
5 25 6.05 25 0 0.07 91.8% 25 0 0.06 103.7X 22 =3 0.01 425.6X
6 25 213 25 0 0.22 9.6X 25 0 0.24 8.8X 19 -6 0.02 112.8X
7 8 0.87 24 16 0.43 2.0X 24 16 0.48 1.8X 14 6 0.02 36.3x
8 8 0.93 25 17 0.86 1.1X 24 16 145 0.6x 16 8 0.03 31.4x
9 8 1.02 25 17 231 0.4Xx 24 16 3.56 0.3x 14 6 0.04 27.6X
10 8 1.16 25 17 4.5 0.3X 23 15 6.59 0.2x 14 6 0.05 24.8x
11 8 1.28 25 17 7.95 0.2% 21 13 14.52 0.1x 13 5 0.06 21.9x
12 8 1.39 25 17 1458 0.1X 20 12 29.56 0.0 13 5 0.07 19.3x
13 8 1.47 24 16 2538 0.1X 18 10 48.97 0.0x 12 4 0.09 16.4x
14 8 1.61 25 17 4380 0.0X 19 11 7446 0.0Xx 14 6 0.11 14.7Xx
15 8 1.81 25 17 69.06 0.0x 17 9 114.09 0.0x 13 5 0.14 13.4x
16 8 2.03 24 16 111.60 0.0X 17 9 162.07 0.0Xx 12 4 0.18 11.3x
17 8 2.08 23 15 168.53 0.0X 16 8 215.15 0.0x 13 5 0.21 9.7x
18 8 2.32 23 15 249.99 0.0x 16 8 277.70 0.0X 12 4 0.28 8.4X
19 8 2.62 23 15 360.54 0.0X 16 8 353.41 0.0x 14 6 0.34 7.6X
20 8 2.61 21 13 509.02 0.0% 15 7 436.16 0.0Xx 12 4 0.43 6.0x
2 25 0.61 24 -1 0.01 78.8X 24 -1 0.01 83.8X 23 =2 0.00 133.0x
IV 3 5 15.10 23 18 0.02 941.4x 23 18 0.02 982.3%x 15 10 0.01 2505.7X
801 4 2 1.81 22 20 0.03 57.6X 22 20 0.03 61.5X 13 11 0.01 218.3X
5 2 2.54 22 20 0.06 44.0x 22 20 0.06 45.9% 13 11 0.01 241.6X
6 2 3.29 21 19 0.10 31.9% 21 19 0.12 26.3X 10 8 0.01 256.3%
7 2 4.15 16 14 0.20 21.1x 16 14 0.24 17.6X 7 5 0.02 270.7X
8 2 5.00 19 17 0.29 17.0X 19 17 040 12.5X 7 5 0.02 279.1X
9 2 5.52 19 17 0.47 11.6X 17 15 0.61 9.0x 9 7 0.02 266.6X
10 2 6.44 17 15 0.80 8.1X 17 15 1.07 6.0X 8 6 0.02 273.5X
11 2 7.15 20 18 1.17 6.1X 20 18 1.46 4.9% 10 8 0.03 269.1X
12 2 8.55 20 18 1.71 5.0X 20 18 211 4.0x 1 9 0.03 287.3%x
13 2 8.89 20 18 2.45 3.6X 20 18 2.87 3.1x 9 7 0.03 265.2%
14 2 9.97 19 17 3.67 2.7X 18 16 3.74 2.7X 9 7 0.04 269.2X
15 2 10.82 20 18 5.00 2.2X 20 18 5.17 2.1x 12 10 0.04 262.6x
16 2 11.42 18 16 6.48 1.8% 18 16 6.49 1.8% 9 7 0.04 254.1X
17 2 12.33 17 15 7.85 1.6X 17 15 38.14 1.5 1 9 0.05 250.9x
18 2 12.94 15 13 8.97 1.4% 15 13 9.86 1.3% 10 8 0.05 244.0x
19 2 14.20 15 13 9.78 1.5X 15 13 11.02 1.3X 1 9 0.06 249.7X
20 2 14.37 17 15 10.53 1.4x 17 15 12.54 1.1x 9 7 0.06 233.8x

Table 3: Full verification results. N, is the number of provably robust cases (over 25 input points), VT is the verification time in
seconds, r. is the improvement in the provable number of cases (conservativeness improvement), and r; is the improvement in
the average verification time (time improvement).

	Abstract
	1 Introduction
	2 Background
	2.1 Recurrent Neural Networks
	2.2 Star Set Representation

	3 Reachability Analysis of an RNN
	3.1 Exact Reachability
	3.2 Overapproximation Method

	4 Verification of RNNs
	5 Evaluation
	5.1 Exact Verification
	5.2 Approximate Verification

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

