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ABSTRACT

While classroom video data are detailed sources for mining student
learning insights, their complex and unstructured nature makes
them less than straightforward for researchers to analyze. In this
paper, we compared the differences between the processes of expert-
informed manual feature engineering and automated feature engi-
neering using positional data for predicting student group interac-
tion in four middle school and high school mathematics classroom
videos. Our results highlighted notable differences, including im-
proved model accuracy for the combined (manual features + au-
tomated features) models compared to the only-manual-features
models (mean AUC =.778 vs..706) at the cost of feature interpretabil-
ity, increased number of features for automated feature engineering
(1523 vs. 178), and engineering approach (domain-agnostic in au-
tomated vs. domain-knowledge-informed in manual). We carried
out feature importance analyses and discuss the implications of the
results for potentially augmenting human perspectives about quali-
tatively coding classroom video data by confirming and expanding
views on which body areas and characteristics may be relevant
to the target interaction behavior. Lastly, we discuss our study’s
limitations and future work.
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1 INTRODUCTION

Feature engineering is a crucial step in machine learning which
involves brainstorming and transforming raw data to create rele-
vant predictor variables for the target variable. It is often a manual
process in the case of expert-informed feature engineering, and
benefits from subjective human perspectives and intuition from
domain knowledge in order to attain good data representation [13].
Extensive domain expertise alone, however, may not directly trans-
late to effective feature engineering. The most relevant qualitative
characteristics related to the target variable may either be too diffi-
cult to quantify, calculate, or operationalize, or the data needed for
the feature may not exist. Automated feature engineering methods
could perhaps be used to aid this gap. Tools such as FeatureTools
[22], TSFRESH [9], or AutoFeat [17] do not utilize domain knowl-
edge to create features, but instead consider the nature of data (e.g.,
column data type, recognizing value patterns such as time or dates,
etc.) and apply appropriate transformations based on hierarchical
relationships to rapidly generate a large number of features. By
examining the similarities and differences between models using
manually created features and automated features, there is potential
for human perspectives to be guided on the characteristics which
are overlooked, yet meaningful to the target variable.

Both quantitative and qualitative education researchers have
closely examined classroom video data. Within learning analytics,
researchers have used video data to manually label student behav-
iors for building predictive models for characteristics related to
successful learning [5, 19, 30]. In qualitative education research,
the complex, unstructured nature of video data allows for deep
qualitative analyses of students’ behaviors and perspectives in
ways which may not be possible with quantitative methods [3].
In order to organize the complexity of video data, researchers com-
monly rely on qualitative coding to categorize information, find
patterns, and extract meaning. Classroom videos have been used
to inform pedagogical theories through analyzing teacher—student
interactions and dialogue [2], study students’ spatial reasoning and
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sensemaking [38], and support teacher professional development
through self-reflective practice [10, 29], to name a few examples.

Despite the prevalence of qualitative labeling and coding of
video data in education research, it is often a laborious and time-
consuming process. The process entails determining the appro-
priate target behaviors based on the available data, behaviors to
be defined, coders to be trained in order to align subjective per-
spectives, and obtain a reasonable degree of inter-rater agreement
[16]. Furthermore, due to its manual nature, the amount of effort
scales linearly with the amount of data. Recent advancements in
machine learning methods and computer vision software have the
potential to augment the qualitative coding process. Off-the-shelf
automatic video analysis methods such as OpenPose [8] or Medi-
aPipe [27] can be used to collect positional data of students in the
classroom video (i.e., x and y coordinates), and when combined
with available post-processing methods [1, 18], it is possible to track
students’ movements. The resulting data could be used to build
machine learning models that predict student learning behaviors
across class periods, for example.

1.1 Contribution

In this paper, we explore how automated feature engineering meth-
ods could inform expert feature engineering processes using indi-
viduals’ positional data for predicting classroom video behaviors.
We compare the differences between a machine learning model
built from a expert-informed manual feature set to a model that
used a larger feature set combining both manual features and auto-
matically generated features. We aim to explore whether automated
feature engineering methods—in particular, FeatureTools—could be
used in tandem with manual feature engineering methods to bal-
ance human perspectives and computational perspectives. Human
perspectives typically inform the creation of new computational
methods or tools; here, we are motivated to explore the reverse: how
computational methods could inform human perspectives around
qualitative classroom video analyses.
Our paper was guided by the following research questions:

e RQ1 What are the differences between manual vs. automated
feature engineering methods for creating features related to
predicting student interactions with others?

e RQ2 In what ways can automated feature engineering meth-
ods inform manual feature engineering methods for pre-
dicting student interactions with others, and what are the
implications for coding qualitative video data?

Next, we briefly outline related work before describing the meth-
ods, results, and implications of these research questions.

2 RELATED WORK

In the related work section, we discuss how education researchers
have used physical positioning information from video data to study
classroom learning, and how domain expertise has been used to
create effective features for predictive models.

Trovato et al.

2.1 Studying the role of physical positioning in
learning

The current state of research on examining the role of student and
teacher physical positioning shows that it closely relates to the so-
cial dynamics around interpersonal ties [11, 36] and power [14, 25],
which has implications for pedagogical effectiveness [26, 35] and
collaborative learning [7, 32]. There is a breadth of learning analyt-
ics work on predicting the emotional, behavioral, and cognitive be-
haviors of students in the classroom using multi-modal approaches,
including positioning data, through position sensors and computer
vision tools [1, 12, 28]. In more qualitatively oriented studies, quali-
tative coding of positional information from video data along with
surveys, interviews, field notes, and other learning artifacts have
been used to study student engagement and the evolution of student
knowledge-building strategies [14, 23]. Our paper closely relates to
the aforementioned areas of study by providing potential avenues
for augmenting researchers’ perspectives around interpreting stu-
dent positional information.

2.2 Expert-informed feature engineering

Human perspectives informed by domain expertise have been lever-
aged to create effective features for predicting the target label in a
wide variety of classification tasks, such as diagnosing heart disor-
ders [20], phenotyping genome data [37], and detecting emotions
during learning [21, 34]. In these studies, experts utilized their
understanding of the theoretical underpinnings and empirical ob-
servations to create features. Therefore, for the manual feature
engineering of student positional data extracted from classroom
video data, education researchers’ domain expertise and video obser-
vation notes could perhaps be leveraged to create effective features
related to predicting student group interaction.

3 METHODS

In this section, we discuss target behavior and data selection, Open-
Pose video processing, qualitative coding, manual and automated
feature engineering, as well as model building.

3.1 Video data and target student behavior

The video data used for this research were classroom videos previ-
ously collected for a qualitative research project exploring various
middle school and high school mathematics teachers’ responsive
teaching practices. Cameras positioned at the corners of classrooms
were used to capture students seated in small groups and the teacher
at 1080p (1920x1080 pixels) resolution at 30 frames per second with
120 or 130-degree fields of view. Based on our observations of watch-
ing the various classroom videos, we decided to qualitatively code
for the presence or absence of student group interaction as it relates
closely to collaborative learning [24]. Students are able to develop
higher level thinking skills by working together through sharing,
discussing ideas, and receiving peer feedback [33]. Interaction (i) vs.
No interaction (n) would be sufficiently low-level to code for a large
number of occurrences, while being high-level to be a relevant be-
havior for qualitative education video research. Prior to the coding
process, we defined code definitions and examples activities which
are presented in Table 1.
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Table 1: Interaction (i) vs. No interaction (n) code definitions.

Code Definition

Examples

Interaction (i)

One or more students in the group are in- Talking, actively listening, gesturing

teracting with other students or the teacher

No interaction (n)

No students in the group are interacting Writing/working individually, looking
with other students or the teacher

down (no one speaking toward them)

Figure 1: Video frames from each class period from left to right: CLass A, Crass B, Crass C, and Crass D. Target student groups

are indicated in green.

We selected four different videos of ~90-minute class periods
(two high school, two middle school), and selected one target stu-
dent group to code from each video. We focused on selecting diverse
learning environments and target student group location—Crass A,
Crass B, Crass C, Crass D are shown in Figure 1. Then, from each
video, we trimmed one continuous 9-minute segment of individual
work (e.g., teacher announces to the class that students will be
working to solve a problem independently) and one continuous
9-minute segment of small group work (e.g., teacher announces to
the class that students should work and discuss their work in their
small groups), for a total of 18 minutes per video. Trials of different
coding clip lengths (i.e., 5, 10, 15, and 30 seconds) revealed that
10-second coding clip lengths balanced brief interactions without
including multiple interaction codes, while still providing enough
context to code longer interactions. Thus, every minute of video
had 6 codes (i or n) for a total of 108 codes per class session.

Two trained coders independently coded one set of videos (two
9-minute segments) in order to establish inter-coder agreement.
The coders agreed on 93.5% (101 out of 108, kappa = 0.87) of the
labels. After establishing this agreement, the rest of the videos were
coded separately. Each coder kept notes on how they determined
the codes, and listed characteristics which helped them to determine
whether or not interaction was occurring.

3.2 Video processing and student positional
data

We used the computer vision tool OpenPose [8] to process and
extract positional data from the videos by identifying individuals’
body parts as ordered keypoints. For our analysis, we used Open-
Pose’s 25-keypoint body configuration, such that each individual
of each frame of video has a maximum of 25 keypoints. The output
file formats individuals’ keypoint data as x and y coordinate values
in terms of the video’s resolution (i.e., 1920x1080 in this case). We
processed each video through OpenPose, and post-processed the
output files to track individuals’ movements over time using an
open-source OpenPose data tracking method [18] and restricted the
tracking calculation to the target student group region in the video
(groups indicated in green in Figure 1). This allowed us to obtain
relationships in the data by assigning person IDs to individuals by

determining Euclidean distances of available respective keypoints
and connecting the closest matches between frames to the person
ID. The process outputted a CSV file where each row represents a
person detected per frame with the following information: person
ID, frame number, whether each keypoint was detected, as well as
x and y coordinate information for each of the 25 keypoints.

3.3 Manual and automated feature engineering

We brainstormed features using the notes that trained video coders
had taken to determine the group interaction coding labels (sum-
marized in Table 2). Coders had primarily noticed that group inter-
actions were typically indicated by increased movement: frequent
gesturing, heads moving while lips also moved when speaking and
exchanging objects or learning material. On the other hand, a lack of
interaction was indicated by reduced movement and less visibility of
group members due to leaning down toward their desks and work-
ing separately. We aligned codes to the frame-level tracked Open-
Pose output data, and created 178 primarily movement-focused
features, each created at the clip-level. Features were separately cal-
culated for each of the four class periods, as different camera angles
meant that the each video’s positional data were scaled differently.
We calculated such features as: clip-level (10 second) maximums
and means of individuals’ keypoint x and y coordinate movement
magnitudes (related to coders’ observations of shifts in vertical
positions of heads, occurrences of horizontal movements of hands
and wrist when writing, etc.), clip-level means of Euclidean dis-
tances of each keypoint (relating to shifts in groups’ total amount of
movement), clip-level means of total number of keypoints detected
per frame (relating to students opening up their body more/less
when interacting/not interacting, leading to potentially increased
keypoints being detected), and clip-level means of total number of
people detected per frame (relating to teacher more/less likely to
walk around during interaction/no-interaction).

For automated feature engineering, we used FeatureTools [22],
which combines and calculates new data values based on a relational
hierarchy defined by the user. FeatureTools’ calculation functions
are called primitives, and allows a depth value to be set which en-
ables primitives to be increasingly stacked on top of each other to
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Table 2: Summary of trained coders’ notes about characteristics they noticed to determine each label.

Code Characteristics noticed

Interaction (i)

Talking with head facing towards someone in group and lips moving,

Two people looking at each other actively (e.g., nodding, moving head as they speak),
Sharing a worksheet, clearly working from the same document or item,
Teacher more frequently walking around/nearby,

Exchanging objects,

Gesturing towards each other (e.g., pointing, waving)

No interaction (n)

Everyone relatively still and looking down at their work,
More writing/scribbling movement,

Working individually on separate things,

Not looking towards any other student group member,

Looking away from the group (e.g., at the board or around the class),

Overall reduced visibility and lower heads of group members (e.g., leaning down into desk)

create larger feature sets. We used the default set of aggregation-
type primitives (count, min, max, mean, skew, standard deviation,
sum) along with one transformation-type primitive (percentile),
set to a depth of 3, to generate 1,523 features at the clip level (10
seconds). As was the case with manually calculated features, fea-
tures were individually calculated for each of the four class periods.
Some example features generated by FeatureTools were: clip-level
minimums of each keypoint’s y values, clip-level standard deviation
of each keypoint’s x values, and clip percentile of the sum of each
keypoint’s y values.

3.4 Model building

Using the scikit-learn Python library [31], we trained a random
forest classifier from each of the manual feature sets of the four
class periods. We chose random forest due to its suitability in high-
dimensional feature spaces without overfitting [6, 15], a key concern
with the large number of features considered in this study. We also
combined manual features with the automated features and trained
additional random forest classifiers from the combined feature set.
Feature data had been preprocessed to remove low quality features
(invalid values > 5%), which reduced the size of feature sets by
6% to 31% depending on the feature set. We expected automatic
features would be difficult to interpret [4], and would likely have
led to modest implications for qualitative video coding; thus, we did
not create automated features-only classifiers. Models were cross-
validated using leave-one-out, where each of the 108 observations
were used as the testing set once. Furthermore, the max_depth
hyperparameter was tuned for each model by changing values 1 to
10 and plotting by accuracy on a validation curve.

4 RESULTS

Here, we discuss the results of the models, including model perfor-
mance and feature importance analyses.

4.1 Model accuracy

Across the four different class periods, the manual models’ accura-
cies were improved in the combined models (mean manual AUC
=.706, mean manual + automated AUC = .778) models. While the
base rate of the interaction code was not perfectly balanced with
the no interaction code (except Crass A), choosing two equal-length
classroom video segments of independent work and small group

work led to the labels being relatively balanced. The mean Cohen’s
k value in the manual feature models was .453 and combined feature
models’ mean k was .555. Model accuracy are compared in Table 3.

4.2 Feature importance analysis

We compared feature importance between the respective manual
and combined models. Preprocessing the feature sets in the models
variably affected the number of features inputted during model
building. For example, CLAss A had a manual feature set length of
151 and combined feature set length of 1,330, while CLass B had
178 and 1,469, respectively. Due to the method in which scikit-learn
calculates feature importances—in which all the feature importance
values sum to 1—we did not directly compare the feature importance
values to each other across models. Instead, we compared the top
10% most important features from the folds of each manual models
to the top 10% from the folds of the respective combined model.

Results showed that many features important in the manual
features model were also important in the combined model, as
summarized in Table 4. As high as 90.1% of the most important
features from the manual model were found among the important
features in the combined model, with a mean of 72.4%. Furthermore,
we determined the most frequent keypoints from which models’
important features were created, and found that a mean of 5 (50%)
of the top 10 (out of 25 total keypoints) most important keypoints
overlapped between models. When comparing non-overlapping
important keypoints between the models, we found that there was
at least one unique body area of features which was important in
the combined model but not the manual model. In Crass A, these
areas were the nose, elbows, and eyes; CLass B, neck and wrists;
Ciass C, elbows and shoulders; and in Crass D, eyes.

5 DISCUSSION

In the section below, we review our results and discuss them, in-
cluding potential implications for qualitative coding research.

5.1 Differences in manual vs. automated feature
engineering processes

Both manual and combined models had reasonably high accuracy
across the respective class periods despite differences in student
group location, composition, and orientation. For our first research
question, however, we were more interested in examining the dif-
ferences in the processes of creating manual vs. automated features
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Table 3: Accuracy comparison of manual features vs combined (manual + automated) features models.

Video Interaction base rate « (manual) « (combined) AUC (manual) AUC (combined)
Class A .500 .352 444 .676 722
Class B 528 444 574 722 .788
Class C 472 441 499 720 750
Class D 491 574 704 704 .852

Table 4: Metrics for feature importance comparison. The top 10% most important features from the manual models were
compared to the top 10% from the combined models.

Combined model

Number of

Manual features in

Top 10 key- Body area notin

features important features points overlap manual features
Crass A 1330 87.5% 40% Nose, elbows, eyes
Crass B 1469 66.3% 50% Neck, wrists
Crass C 1250 90.1% 60% Elbows, shoulders
Crass D 1112 45.8% 50% Eyes

related to predicting group interaction. When creating manual
features, we were cognizant of the coders’ noted characteristics
(Table 2). A majority of the manual features were based on val-
ues related to shifts in group movement, but other characteristics
could not be made into manual features. For example, it was not
straightforward to create features around sharing or exchanging
objects (e.g., worksheets, book, pencil) because those objects were
not detected in the person position data. While our features for
movement in the arm keypoints could be one possible proxy for
those situations, it was not possible to create a direct feature. Lips
moving, or talking, was arguably the most frequent and defining
characteristic of interaction, but those keypoint values were not
available in our data. Despite these limitations, the model created
from manual features worked well.

The time and effort to create automated feature engineering
process using FeatureTools was notably less than the manual pro-
cess. FeatureTools was able to generate 1,523 features with little
researcher time. The resulting feature names, however, were often
difficult to interpret, since FeatureTools combined column names
with the raw calculations carried out on the data. In many cases,
features created by FeatureTools were nonsensical, such as apply-
ing percentile calculations to the rows of binary column data (e.g.,
keypoint detected or not detected), or the counts of the sums of
keypoint y values. The model built from the combined feature set
had improved accuracy compared to the manual model, perhaps
due to FeatureTools’ features being able to capture and represent
trends in the data overlooked by our manual features. Automated
feature engineering tools’ tendency to create models of high accu-
racy but lowered interpretability of features has been previously
explored [4], and our study mirrors those findings.

5.2 Automated methods for informing manual
feature engineering

Our second research question was concerned with how automated

feature engineering methods might inform manual feature engi-

neering methods. Feature importance comparisons between the
models showed that in all class sessions, manual features were

consistently included among the most important features in the
combined model. When understood together with the high accu-
racy of manual feature models, this may show that the largely
group-movement-based manual features were more parsimonious
in effectively capturing characteristics related to group interaction
despite having a comparatively smaller number of features.

We also found that there were overlaps between the top 10 most
important keypoints for predicting group interaction between the
two models. This meant that many of the same keypoint values
among 25 were used to create important features in each model.
The overlaps may be unsurprising as both models were likely able
to find that interactions were largely characterized by changes in
specific areas of the body. These overlapping keypoints in the two
models, however, could be used to ascertain the relative usefulness
of certain keypoints over others. This information could be used
to help the researcher strategize which keypoint data should be
perhaps receive more attention when manually creating features.
Similarly, the important features and body areas found exclusively
in the combined models’ set of important features may have poten-
tial value for manual feature engineering. Across the four classroom
sessions, the combined model found keypoints from unique upper
body areas (i.e., areas not found among important body areas in
the manual model) to be important for predicting student group
interaction. Manual features could then be designed with this in-
formation (Table 4), such as brainstorming and creating specific
features related to the nose, elbow, and eye for CLass A’s model.
This could result in a more comprehensive feature set that attempts
to integrate the potentially less noticeable constructs related to
group interaction for that particular video data.

5.3 Implications for qualitative video coding

Feature importance analyses such as those in our study could be
carried out as a preliminary pilot study to allow qualitative coders
to confirm and expand their observations of relevant behavior char-
acteristics for code definitions before coding a larger set of data.
In our study, qualitative coders had noted that group interactions
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were largely characterized by changes in movement, such as mov-
ing lips or making gestures. Our results showed that primarily
movement-based features in the manual feature set were effective
in predicting group interaction. The presence of important manual
features among the important features in combined models could
perhaps be used by researchers who are coding for group interac-
tion to strongly confirm the importance of movement as relating
to group interaction. Additionally, based on how the respective
combined models’ accuracy were even further improved from the
manual models, the added meaning captured by the automated
features could inform qualitative video coders about potentially
unexpected, yet relevant body areas to group interaction. For exam-
ple, by considering such information in the last column of Table 4,
coders can be informed to more closely examine the nose, elbows,
and eyes of participants in CLass A if they were not already doing
S0.

6 CONCLUSION AND FUTURE WORK

In this paper, we were motivated to explore how automated meth-
ods could inform human perspectives around analyzing qualitative
classroom video data. Based on our observations of four middle
school and high school mathematics class video data, we labeled
group interaction codes, and carried out expert-informed manual
feature engineering and automated feature engineering (using Fea-
tureTools) from tracked positional data. Our results highlighted
differences in the modeling processes, such as improved model ac-
curacy when adding automated approaches (mean manual models
AUC =.706, mean combined models AUC = .778) despite a decrease
in overall feature interpretability, more directed feature brainstorm-
ing in manual feature engineering, and shortened process time and
increased number of automated features (1,523 vs. 178). A large
proportion of important features from manual feature set models
were also important in combined feature set models (mean = 72.4%).
We also discussed our methods and results in terms of how qualita-
tive video researchers may use similar approaches to inform their
qualitative video coding processes.

In terms of limitations, our study used just four classroom videos
to explore our approach as we wanted to observe substantial ses-
sions of continuous small group work and individual work for each
class session. Thus, were not able to reach a large number of group
interaction labels with 104 labels coded at 10-second clips, for a
total of 416 labels. This most likely reduced observations of unique
student interactions, and our results may not be representative
of general small group interactions. Future work could determine
the suitability of integrating the unique body areas found to be
important by the combined models for informing qualitative cod-
ing researchers, exploring a wider variety of student classroom
interactions beyond small group interaction, such as constructs
around teacher—student interactions, and explore additional auto-
mated feature engineering tools. We are currently investigating
some practical applications of this work, such as how qualitative
video analysts would perceive and utilize automatically-filtered
video clips from a class period. Classroom video data are rich and
detailed sources for mining insights about student learning. Our
paper highlights how automated methods may have the potential
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to augment researchers’ perspectives on making sense of complex,
unstructured classroom video data.
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