Unsupervised Adaptation of Spiking Networks in a
Gradual Changing Environment

Zaidao Mei
Department of EECS
Syracuse University
Syracuse, New York, USA
zmei05 @syr.edu

Abstract—Spiking neural networks(SNNs) have drawn broad
research interests in recent years due to their high energy
efficiency and biologically-plausibility. They have proven to be
competitive in many machine learning tasks. Similar to all
Artificial Neural Network(ANNs) machine learning models, the
SNNs rely on the assumption that the training and testing
data are drawn from the same distribution. As the environment
changes gradually, the input distribution will shift over time,
and the performance of SNNs turns out to be brittle. To this
end, we propose a unified framework that can adapt non-
stationary streaming data by exploiting unlabeled intermediate
domain, and fits with the in-hardware SNN learning algorithm
Error-modulated STDP. Specifically, we propose a unique self-
training framework to generate pseudo labels to retrain the model
for intermediate and target domains. In addition, we develop
an online-normalization method with an auxiliary neuron to
normalize the output of the hidden layers. By combining the
normalization with self-training, our approach gains average
classification improvements over 10% on MNIST, NMINST, and
two other datasets.

Index Terms—Spiking Neural Networks, in-hardware learning,
domain adaptation

I. INTRODUCTION

Spiking neural networks(SNNs) on neuromorphic hardware
has become a promising machine learning technique as it
mimics the behavior of the human’s biological neural systems
[1] in both spatial and temporal dynamics. Due to the sparse
activities and event driven operation, SNNs is highly energy
efficient when implemented in hardware. In recent studies,
SNNs on neuromorphic hardware have made considerable
progress in general machine learning tasks such as computer
vision [2], object detection [3] and speech recognition [1].

In dynamically changing and non-stationary environments,
distribution shift is an inevitable problem [4]. Such shift can
be found in the operations of many autonomous edge devices
that interact with physical world through sensors, where the
input data distribution may alter slowly due to changes in the
physical environment and sensor conditions, such as the sensor
angle change or pixel damage due to aging. The shift of input
distribution violates the condition of proper function of neural
network models, which requires the testing and training data
drawn from the same distribution, and will seriously degrade
the model performance.

Mark Barnell
Air Force Research Laboratory
Information Directorate
Rome, New York, USA
mark.barnell.1 @us.af.mil

Qinru Qiu
Department of EECS
Syracuse University
Syracuse, New York, USA
qiqiu@syr.edu

Some existing works mitigate the performance degradation
using supervised training [5] [6] [7], by augmenting the
training set with sufficient amount of data that cover all
possible variations of testing domains. This usually associates
with a high cost and unpredictable results as the actual testing
environment is hard to anticipate, and annotated data in real-
world settings is hard to obtain. Gradual domain adaptation, on
the other hand, aims at unsupervised/semi-supervised model
adaptation and self-calibration. It takes the advantage of the
fact that the domain shift is a slow process. By leveraging
unlabeled intermediate domains where subtle changes take
place, it incrementally adapts the target model. In particular,
given a model trained on limited data from the source domain
Dy, and unlabeled data drawn from the intermediate domain’s
D;, (1 <i < N —1), where ¢ indicates their sequential order
of occurrence. Gradual domain adaptation aims to assist the
generalization of the pre-trained model when tested on target
domain Dy . Although the target domain is significantly differ-
ent from the source domain, the shift takes place gradually, i.e.,
D(D;-1, D))< €,1<i< N-—1,D(-), measures the distance
between two distributions and € is a very small number.

While Domain shift and adaptation is a concern for both
ANN and SNN, almost all of the existing works in this
area targets at ANN [6] [8] [9]. Adaptation of SNNs has
its own challenges and considerations. This work discusses
unsupervised gradual domain adaption of SNN models. To
make sure that the proposed framework supports truly online
in-situ adaptation, we build it on top of Error-Mouldated Spike
Timing Dependent plasticity [10](EMSTDP). EMSTDP is an
SNN learning rule that incorporates the idea of difference
target propagation [11]. It updates the local weight with
the difference between “target spikes” and the “propagated
spikes”. The simple weight update rule enables EMSTDP to
be implemented on low power neuromorphic hardware such
as Loihi [12].

We present a self-supervised framework. Our framework
consists of a feature extractor that is trained on the source
domain Dy, and two “swapping” classifiers with different
architecture, one of them will serve as the ”teacher” model to
generate pseudo labels, and the other serves as the “student”
model trained with unlabeled input data and their corre-
sponding pseudo labels in every self-training episode. The

classifiers will exchange their roles once finishing a self-
training episode. Although domain adaptation using teacher-
student models has been studied for ANNs in [13], the spiking
domain inference and online learning impose extra challenges.
This paper discusses techniques that are necessary to mitigate
those challenges, such as “swapping” teacher and student
models, new label calibration algorithm and novel neuron
circuits for online normalization, etc. Our contributions are
summarized as follows:

o We present a self-training framework based on EMSTDP
learning for Spiking Neural Networks to realize gradual
domain generalization.

e We have demonstrated that techniques such as label
calibration, online neuron normalization are necessary
to regularize the firing activities of neurons for better
adaptation.

o We test our approach on 4 different datasets. The results
show that the gradual domain adaptation can enhance
the robustness of the SNN model and improve the
classification accuracy by over 10% on average.

II. BACKGROUNDS
A. Spiking neurons and Error-modulated STDP learning

Different learning algorithms of SNNs have been ex-
plored. The majority of them are based on Backpropagation-
Through-Time(BPTT) [14] [15], they adopt similar neural net-
work topology as traditional artificial neural networks(ANNs),
but use surrogate activation functions to replace the non-
differentiable spike function. Another class of SNN learn-
ing algorithms are based on spike-timing-dependent plasticity
(STDP) [16] [17], which is a local learning rule. According to
the STDP rule, the change of the synaptic weight is determined
by the timing of pre-synaptic and post-synaptic spikes, both
of which can be obtained in a single neuron locally.

We use Error-modulated STDP (EMSTDP) [10] as our
learning rule. The neurons adopt integrate and fire model
specified by the following equations:

ul(t) :Zwﬁ-séfl(t)—i—ué(t—l)—i—bé (1)
J

el
l(t) _ {1, if ui(t) > Vin)

0, otherwi

where u!(t) denotes the membrane potential of the ith neuron
in layer [at time ¢, 5371 (t) is input at time ¢, wj;, is the synaptic
weight between the pre-synaptic neuron j in layer [— 1, and
the post-synaptic neuron i in layer I, b} here denotes the bias.
Equation 2 gives the Heaviside step activation functions. A
spike will be generated once the membrane potential wul(t)
exceeds the threshold V.

An SNN with EMSTDP learning consists of two networks,
a feedforward network that performs the inference and

learning, and a feedback network that propagate back errors
(i.e., gradients). Feedback alignment is adopted, such that the
two networks do not need to keep the same copy of weights.
A set of random weight, B, is used in the feedback network.
The error propagated in the feedback network is calculated as
the following: e} = " /"' B; ;h;(ul) where ;™" is the error
of neuron j in layer I + 1 and h;(ul) is the derivative of the
output activation function of neuron ¢ in layer . The Heaviside
step activation is not differentiable, gradient surrogation has
to be adopted. Given that the relationship between the number
of output spikes and neuron’s accumulated sub-membrane
potential can be approximated as a shifted ReLU function,
h(u;) = max(5: — 1,0), EMSTDP replaces h; using the
following equation:

h/(ul) _ 1, ui(t) > Vi
! 0, otherwise

3)

The EMSTDP operates in two phases, free running phase
and error correction phase. In the free running phase, the feed-
forward network makes prediction,hé,based on the received
input. In the error correction phase, the prediction is compared
with the target and the feedback network calculates errors for
each layer. The error is then sent to the feedforward network
to correct the prediction and generate the new prediction hl,

5 l 3 i : :
where hl! — h! et hi = |,], the weight update is

calculated as Awj; = n(i;i — hﬁ)héfl.

B. Gradual domain adaptation

The preliminary of gradual domain adaptation is that one
has access to the source domain Dy := {Xo, Yo} with
input X and its label y,, where xo € Xq,y, € Yo. The
knowledge learned from the source domain must be applied
to the target domain Dy, which is notably different from the
source domain, i.e., D(Dy, Do) > €, where € is a very small
number. Due to the discrepancy between source and target
domain, applying the model trained on source domain to target
domain can cause severe accuracy degradation. The transition
from the source domain to the target domain is gradual. A
sequence of intermediate domains, D; := {X;},1 <i < N,
can be obtained from the slow transition process, such that
D(D;-1,D;) < ¢,1 <i < N. Both the intermediate domains
and the target domain are unlabeled. Our goal is to adapt the
knowledge learned in the source domain and apply it to the
target domain during testing time by utilizing the unlabeled
intermediate domains from the slow transition process. To
address above issues, several ANN works investigate gradual
domain adaptation [8] [18] [9]. The most relevant existing
work in spiking domain is [7], which deploys transfer learning
to SNN. However, [7] requires labeled training data from the
target domain, while we consider more realistic case where
both target and intermediate domains are unlabeled.

III. METHODS

We propose a self-training framework for gradual domain
adaptation with a focus on its unique characteristics designed

L ~
Xn (Yn, X,) Xn+1 (Yns1, Xns1)
v i ‘ g
L " - = Bla
Pors fa()
0] 50) §0) 50)
freeze freeze update freeze freeze update
L J L J | J
Pretrained feature extractor Pretrained head l—'1'—JI T T T
teacher student teacher student
Intermediate domain n Intermediate domain n+1
t

Fig. 1: Self-training framework for gradual domain adaptation

for SNN and EMSTDP learning.

A. Self-Training framework for EMSTDP learning

Self-training has been widely used for semi-supervised
learning. It improves the performance of the model by retrain-
ing the model with self-generated pseudo labels derived from
unlabeled data. In this work, we implement a teacher-student
pipeline to produce the pseudo labels for the subsequent data.
Specifically, given a teacher model f(-;6;) trained with data
from domains Dy, D1, ..., Dy, for intermediate domain Dy 1,
the pseudo label ¢, is generated using the teacher model
Jt+1 = f(ze41;01), Gp41 is further used to train the student
model f(;6;+1); by minimizing the cost function £, such that

Orv1 = arg min L(f (zt41;0¢41), Je1)-
t4+1
In most ANN self-training frameworks, the same network

f(z;0) is used as both teacher and student models in every
self-training iteration, and the student model is adapted di-
rectly from the teacher model. However, the same strategy
gives poorl results in SNN based implementation. Due to the
similarity between the adjacent intermediate domains, each
pair of teacher and student models are very similar. Which
means the learning process operates on small error signals
and low gradients all the time. With spike domain learning, the
error signals e and the learning gradients must be represented
using spiking activities, hence are highly quantized. When
the values of error signal and gradients are too low, the
rounding error will be more significant than the signal itself
and cause the model to update inaccurately. In contrast to
the conventional approach, we utilize networks with slightly
different architectures as teacher and student models, and swap
them for different intermediate domains, so that we can get
sufficiently large error and gradient to keep the learning going
on.

Specifically, our self-training framework consists of a con-
volutional spiking neural network G-; ®), which serves as a
feature extractor and two 3-layer EMSTDP classifiers f,(+; ;)

and fp(-;w;), where i is the self-training episode index . The
feature extractor G-; ®) and the first classifier f,(-; 6) are pre-
trained on source domain. The feature extractor G(-; ®) will
remain fixed during self-training. As shown in figure 1, the two
classifiers serve the role as teacher and student alternatively in
different intermediate domains. For example, for intermediate
domain n where D,, = {X,,}, the classifier f,(-;6,_1) serves
as the teacher model to generate pseudo label {YZ} The
student model fy(;wy,) is retrained with data and pseudo
labels {X,,, Y, }. When we moved to domain n+1, to obtain a
set of updated parameters 6,, 11, the updated classifier f;(-; wy,)
serves as the teacher model to generate pseudo labels ¥, 1,
and f,(-;6,_1) becomes the student model, and a new set of
parameters 6,41 is obtained.

By utilizing different classifiers during self-training, the
testing accuracy gains significant improvements as shown in
experimental results.

B. Label calibration and Sharpening

The motivation behind label filtering is to filter noisy labels
based on the confidence score [9, 26]. The confidence score
is defined as the entropy of the classification output and is
specified by (5), where h; denotes the spike count of the
output neuron corresponding to output layer, and NV is the
size of output layer. A high enytropy means high uncertainty
and low confidence. The label and its associated input will be
discarded if the confidence score exceeds the threshold. We
set the entropy threshold to 0.7 in this paper.

Instead of directly using the output of the teacher model
as the target, we perform label sharpening to amplify er-
ror(gradient) for learning. Given the pseudo label ¢
arg max; h;, the target sequence of output neuron ¢ is a spiking
sequence with rate 1 and the target of all other neurons is
expected to have no spikes. We further reduce the spiking
threshold of error neurons in the feedback path to make them

Algorithm 1 Self-training framework

Require: Pre-trained classifier f,(-,6,), untrained
classifier f,(-,w), unlabeled intermediate domain data
{D1,...,Dn_1} , pre-trained feature extractor G(-, @)

0: 240

0: while i # N do
for z; € D; do

7 <— g(l'j, (I))
if 7 is odd then
U < H(zw)
9; < Entropy filtering(y;)
if {g x;} is not filtered then
Sharpen(y;)
train fo(;0) with {g;,2;}
end if
else if ¢ is even then
ij — fa (Z; 0)
Entropy filtering(y;)
if §;, z; is not filtered then
Sharpen(7;)
train f,(-;w) with {g;,z;}
end if
end if
end for
1 1+1
end while=0

more sensitive to the error signals. The overall flow of the
self-training is given in Algorithm 1.

softmax(h;)
P Zilio softmazx(hi) @
S==> pilogp %)
)

Original output layer Sharpened Label

Fig. 2: label sharpening

C. Online Normalization for EMSTDP

Batch normalization is a go-to tool for training traditional
ANNs and it mitigates covariance shifts of the inputs. As
stated in [8] the batch normalization also improves the per-
formance of gradual domain adaptation. Several spiking-based
batch normalization methods have been proposed recently, for
example, [19] applies temporal Batch Normalization Through

Dataset Different Classifiers | Single Classifier
Rotated-MNIST 90.7 % 79.1%
Cropped-MNIST 92.8% 89.5%
Portraits 81.7% 78.4%
Rotated-NMNIST 84.0% 70.8%
Rotated-Fashion MNIST 49.7% 33.3%

TABLE I: Classification accuracy of Different classifiers and
Single classifier

Time (BNTT) to every convolutional layer along the time
axis with a given batch. More specifically, BNTT directly
normalizes > ; Wij 33» in every time step within a batch. How-
ever, batch normalization is hardware expensive as it requires
extra memories to store neuron’s activities for the entire batch.
Furthermore, it is not compatible with online learning , where
batch size is set to 1. To solve this problem, we propose an
online normalization technique that whitens the firing rates of
a given layer for EMTDP.

The proposed online normalization has an auxiliary neuron-
based normalization is inspired by NeuNorm network [20].
The dynamics of the auxiliary neuron is stated in Eq.6, where
xt*1m is the membrane potential of the auxiliary neuron x
at time step ¢t 4+ 1 for layer n, « is the hyper coefficient
of time constant, H is the number of neurons in layer n
and sz-“’” is the output spike at time ¢ 4 1 in layer n. In
short, the membrane potential 2T is a leaky integration of
all the spiking activities of layer n. Eq.7 describes how the
auxiliary neuron affects the neurons in the subsequent layer,
where U/ +1% is the membrane potential of the ¢th neuron
in the (n + 1)th layer, g(-) is the Heaviside step function,
which transforms auxiliary neuron’s membrane potential to
discrete spikes. C; is a trainable negative parameter. Intuitively,
the auxiliary neuron can be regarded as a dynamic bias that
regulates the spiking dynamics from the previous layer to the
next layer. If the firing rate of the previous layer is too high,
then the auxiliary neuron will assist to decrease the membrane
potential and vice versa. Consequently, the auxiliary neuron
normalizes the firing activity of the next layer by using the
feature-wise statistics.

— St_+1,n (6)

H &~
J

U?+1’t+1 == UZhLLt + Cig(l‘t+1’n) + Zwi’jS;Jrl,n (7)

1
mt+1,n — (Xl‘t’n +

J
IV. EXPERIMENT SETTINGS

We tested the proposed framework on both neuromorphic
datasets (neuromorphic MNIST) and static datasets (MNIST,
Potraits, and Fashion MNIST). For each dataset, parametric
non-linear transformation is applied to the data to emulate do-
main shifting. By controlling the parameters in transformation,
we generate different intermediate and target domains.

A. MNIST dataset

MNIST [21] is a popular dataset for classification task,
it consists of handwritten digits from zero to nine. Two

variations of MNIST dataset are generated to represent
different domain shifts.

1) Rotated MNIST: Rotated MNIST consists of images
that are manually rotated by up to 30 degrees. The first
10000 training samples are unrotated and used as the source
domain. The next 50000 samples are used to generate data
from intermediate domains. Those 50000 samples are rotated
gradually from 0 to 30 degrees. All intermediate domain
samples are unlabeled. The images are evenly distributed
over all degrees of rotations to feature a steady change of
environment. Those 5 intermediate domains are split into 5
intermediate domains; each domain has 10000 samples. The
target domain has 10000 testing images that are rotated by 30
degrees.

2) Cropped MNIST: In cropped MNIST dataset, we ran-
domly set the pixels of images to O to emulate inputs from
an aging camera with dead pixels. The partition of the source,
intermediate, and target domains is the same as the Rotated
MNST. The intermediate domains contain images with the
ratio of dead pixels increasing from 0% to 60%. The target
domain consists of images that have 60% dead pixels.

B. Fashion MNIST

Fashion MNIST [22] is a more complex dataset comprising
of 28 x 28 grayscale images of 70, 000 fashion products from
10 categories. We further generate rotated version where the
setting is similar to Rotated MNIST, 20000 samples are chosen
as the source domain, 50000 samples as the intermediate
domains, which are also split into 5 runs. The target domain
consists of 10000 30-degree rotated samples.

C. N-MNIST dataset

The Neuromorphic-MNIST(N-MNIST) [23] converts static
MNIST images to 3 saccades by using the DVS camera. The
first saccade starts from the first 105 ms (0-105 ms), the
second saccade in the next 105 ms (105-210 ms), and the
third saccade in the subsequent 105ms. To process this event-
based data, we rotate the sampled frames up to 30 degrees.
The domain settings of Rotated N-MNIST are the same as
Rotated MNIST, and the event based data transformation is
the same as Rotated MNIST.

D. Potraits

The portraits dataset [24] consists of photos of high school
students with different haircuts and facial features across
decades. The hair cut and facial features of those people varies
from time. For this dataset, we adopt settings from [8], where
they build a binary classifier to classify genders of given
images across ages. The source and target domains consist
of 2000 images while the intermediate domains have 14000
images that are split into 5 runs.

V. EXPERIMENTAL RESULT
A. Training Details

The network comprises of 3 spiking convolutional layers
[25] for feature extraction and two fully connected layers for

Dataset Gradual No Adaptation Target Oracle
Adapta- Adapta-
tion tion
Rot MNIST 90.7 % 70.7% 73.8% 93.5%
Crop MNIST ~ 92.8% 87.1% 88.8% 94.9%
Portraits 81.7% 76.4% 76.2% 83.0%
Rot NMNIST 84.0% 69.9% 63.3% 92.6%
Rot F-MNIST 49.7% 31.3% 33.0% 49.3%

TABLE II: Classification Accuracy of Different Training

Methods
Dataset with Normalization | w/o Normalization
Rotated MNIST 90.7% 88.8%
Cropped MNIST 92.8% 92.8%
Portraits 81.7% 80.9%
Rotated NMNIST 84.0% 83.2%
Rotated Fashion MNIST 49.7% 45.3%

TABLE III: Ablation Study of Online Normalization

image classification. Specifically, for all datasets, the filter size
is 32, kernel size is 5. and the stride is 2 the padding of
these three convolutional layers are 2. The feature extractor is
pre-trained on the source domain and is not adaptable during
self-training. To differentiate student and teacher models, two
2-layer fully connected networks with different architectures
are used for classification. One of them has 512 and 200 in the
hidden layers, and the other has 512 and 100 neurons during
self-training. The fully connected layers are adaptable during
self-training.

B. Results Analysis

we compare the classifiers with gradual domain adaptation
to models without domain adaptation. We also compare grad-
val domain adaptation with target domain adaptation where
model directly retrains on the target domain. Finally, we also
list the accuracy of a model that is trained on the target
domain with labels which is referred as oracle. Obviously,
the oracle sets the upper bound of the accuracy of the domain
adaptation. Table II lists the accuracy of the gradual domain
adaptation and three baseline models for the 5 datasets. We
can see that our self-trained gradual domain adaptation model
outperforms both the baseline models on all datasets. For
Rotated MNIST dataset, it boosts accuracy for over 10%.
Compared to the model without adaptation, the self-training
with gradual domain adaptation improves the accuracy by
more than 5% on every dataset. The result also indicates that
our self-training approach can achieve competitive accuracy
as the oracle model, which is trained supervisly on the target
domain. The results in Table II demonstrate that the model
is able to adapt to the shifted data distribution in the target
domain.

C. Ablation study

We further evaluate the impact of different enhancement
techniques on the self-trained gradual domain adaptation.

Table I shows the impact of using different teacher and
student models. As we can see, compared to the baseline

Dataset with Filtering | w/o Filtering
Rotated MNIST 90.7% 80.5%
Cropped MNIST 92.8% 87.6%
Portraits 81.7% 79.5%
Rotated NMNIST 84.0% 78.5%
Rotated Fashion MNIST 49.7% 35.3%

TABLE IV: Ablation Study of Entropy Filtering

0.90 -

0.88

e

@

=l
L

0.855)

0.84

Classification Accuracy

0.82 -

0.80

5 10 15 20
Number of intermediate domains

Fig. 3: Rotated MNIST results for different number of inter-
mediate domains

where the same SNN architecture is used for both teacher and
student, our approach improves accuracy by 3.3% to 16.3%
Table III compares the accuracy of self-training with and
without online normalization. As we can see, using online
normalization improves the accuracy by 1.47% on average
over 5 datasets. Table IV compares the performance of self-
training with and without entropy filtering. As we can see,
entropy filtering plays a crucial role in self-training framework,
as it directly determines the quality of pseudo labels. The
average accuracy improvements on 5 datasets is 10.13%. We
further investigate how the granularity of the intermediate
domain affects the quality of domains adaptation. We vary
the number of the intermediate domains on Rotated MNIST
dataset and collect the classification accuracy of he adapted
model on the target domain. As shown in Figure 3, the size of
the intermediate domain plays an important role in determining
the performance of self-adaptation. Too many intermediate
domains or too few intermediate domains lead to poor results.
On one hand, a very low number of intermediate domains
means that its data distribution shifts more significantly from
the domain where the teacher model is trained. Hence the
teacher model is not able to generate correct pseudo labels for
the self-training. On the other hand, a very high number of the
intermediate domains means that each one of them contains
small number of samples. Hence, the training of the student
model is likely to have over-fitting. In real application, the
indication that we have reach the boundary of the existing
intermediate domain is when the confidence of the teacher

model drops significantly while the performance of the student
model starts to picking up. It is also when we should swap
the role of student and teacher models.

VI. CONCLUSION

In this paper, we present a self-training framework to adapt
SNN based classifiers to the gradually shifted input domain.
The adaptation is built on top of online in-hardware learning
algorithm, EMTSDP, so that it can be realized on edge devices.
We show that, to support online in hardware adaptation,
special considerations need to be placed on model architecture
selection and regularization techniques. Experimental results
show that the classifier with self-adaptation improves accuracy
by 5%-20%.

VII. ACKNOWLEDGEMENT

This work is received and approved for public release by
the Air Force Research Laboratory (AFRL) on 16 Aug 2022,
case number AFRL-2022-3919. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors, and do not necessarily reflect the views of
AFRL or its contractors. The project was partially supported
by NSF I/UCRC ASIC Center (CNS-1822165) and AFRL’s
NOCAL contract.

REFERENCES

[1] J. P. Dominguez-Morales, Q. Liu, R. James, D. Gutierrez-Galan,
A. Jimenez-Fernandez, S. Davidson, and S. Furber, “Deep spiking neural
network model for time-variant signals classification: a real-time speech
recognition approach,” in 2018 International Joint Conference on Neural
Networks (IJCNN). 1EEE, 2018, pp. 1-8.

[2] L. Zhu, X. Wang, Y. Chang, J. Li, T. Huang, and Y. Tian, “Event-based
video reconstruction via potential-assisted spiking neural network,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 3594-3604.

[3] Y. Wang, Y. Xu, R. Yan, and H. Tang, “Deep spiking neural networks
with binary weights for object recognition,” IEEE Transactions on
Cognitive and Developmental Systems, vol. 13, no. 3, pp. 514-523, 2020.

[4] J. a. Gama, L Zliobaitundeﬁned, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM
Comput. Surv., vol. 46, no. 4, mar 2014. [Online]. Available:
https://doi.org/10.1145/2523813

[5] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous
deep transfer across domains and tasks,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 4068-4076.

[6] P. Koniusz, Y. Tas, and F. Porikli, “Domain adaptation by mixture of
alignments of second-or higher-order scatter tensors,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2017,
pp. 4478-4487.

[71 Q. Zhan, G. Liu, X. Xie, G. Sun, and H. Tang, “Effective transfer
learning algorithm in spiking neural networks,” IEEE Transactions on
Cybernetics, pp. 1-13, 2021.

[8] A. Kumar, T. Ma, and P. Liang, “Understanding self-training for
gradual domain adaptation,” in Proceedings of the 37th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, H. D. III and A. Singh, Eds., vol. 119.
PMLR, 13-18 Jul 2020, pp. 5468-5479. [Online]. Available:
https://proceedings.mlr.press/v119/kumar20c.html

[9] J. Hoffman, T. Darrell, and K. Saenko, “Continuous manifold based

adaptation for evolving visual domains,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 867—

874.

A. Shrestha, H. Fang, Q. Wu, and Q. Qiu, “Approximating back-

propagation for a biologically plausible local learning rule in spiking

neural networks,” in Proceedings of the International Conference on

Neuromorphic Systems, 2019, pp. 1-8.

[10]

[11] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio, “Difference target
propagation,” 2014. [Online]. Available: https://arxiv.org/abs/1412.7525

[12] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82-99, 2018.

[13] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning.
2006,” Cambridge, Massachusettes: The MIT Press View Article, vol. 2,
2006.

[14] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error
reassignment in time,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018. [Online]. Available:
https://proceedings.neurips.cc/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-
Paper.pdf

[15] W. Zhang and P. Li, “Temporal spike sequence learning via backpropaga-
tion for deep spiking neural networks,” Advances in Neural Information
Processing Systems, vol. 33, pp. 12022-12 033, 2020.

[16] F. Ponulak and A. Kasinski, “Supervised learning in spiking neural
networks with resume: sequence learning, classification, and spike
shifting,” Neural computation, vol. 22, no. 2, pp. 467-510, 2010.

[17] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learn-
ing through spike-timing-dependent synaptic plasticity,” Nature neuro-
science, vol. 3, no. 9, pp. 919-926, 2000.

[18] H. Wang, H. He, and D. Katabi, “Continuously indexed
domain adaptation,” in Proceedings of the 37th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, H. D. III and A. Singh, Eds., vol. 119.
PMLR, 13-18 Jul 2020, pp. 9898-9907. [Online]. Available:
https://proceedings.mlr.press/v119/wang20h.html

[19] Y. Kim and P. Panda, “Revisiting batch normalization for
training low-latency deep spiking neural networks from scratch,”
Frontiers in Neuroscience, vol. 15, 2021. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2021.773954

[20] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training
for spiking neural networks: Faster, larger, better,” in Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence and
Thirty-First Innovative Applications of Artificial Intelligence Conference
and Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, ser. AAAI'19/IAAI'19/EAAI'19. AAAI Press, 2019.
[Online]. Available: https://doi.org/10.1609/aaai.v33i01.33011311

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

[22] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[23] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting
static image datasets to spiking neuromorphic datasets using
saccades,” Frontiers in Neuroscience, vol. 9, 2015. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2015.00437

[24] S. Ginosar, K. Rakelly, S. Sachs, B. Yin, and A. A. Efros, “A century of
portraits: A visual historical record of american high school yearbooks,”
in Proceedings of the IEEE International Conference on Computer
Vision Workshops, 2015, pp. 1-7.

[25] H. Fang, A. Shrestha, Z. Zhao, and Q. Qiu, “Exploiting neuron and
synapse filter dynamics in spatial temporal learning of deep spiking
neural network,” in Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, 1JCAI-20, C. Bessiere, Ed.
International Joint Conferences on Artificial Intelligence Organization,
7 2020, pp. 2799-2806, main track.

