
FormaliSE

Evaluation
Artifact

2022
Accepted

2023

Verifying Binary Neural Networks on Continuous
Input Space using Star Reachability

Mykhailo Ivashchenko
School of Computing
University of Nebraska

Lincoln, NE, United States
mivashchenko2@huskers.unl.edu

Sung Woo Choi
School of Computing
University of Nebraska

Lincoln, NE, United States
csw94056@gmail.com

Luan Viet Nguyen
Department of Computer Science

University of Dayton
Dayton, OH, United States

lnguyen1@udayton.edu

Hoang-Dung Tran
School of Computing
University of Nebraska

Lincoln, NE, United States
trhoangdung@gmail.com

Abstract—Deep Neural Networks (DNNs) have become a pop-
ular instrument for solving various real-world problems. DNNs’
sophisticated structure allows them to learn complex represen-
tations and features. For this reason, Binary Neural Networks
(BNNs) are widely used on edge devices, such as microcomputers.
However, architecture specifics and floating-point number usage
result in an increased computational operations complexity. Like
other DNNs, BNNs are vulnerable to adversarial attacks; even a
small perturbation to the input set may lead to an errant output.
Unfortunately, only a few approaches have been proposed for
verifying BNNs.

This paper proposes an approach to verify BNNs on continuous
input space using star reachability analysis. Our approach can
compute both exact and overapproximate reachable sets of BNNs
with Sign activation functions and use them for verification. The
proposed approach is also efficient in constructing a complete
set of counterexamples in case a network is unsafe. We imple-
mented our approach in NNV, a neural network verification
tool for DNNs and learning-enabled Cyber-Physical Systems.
The experimental results show that our star-based approach is
less conservative, more efficient, and scalable than the recent
SMT-based method implemented in Marabou. We also provide
a comparison with a quantization-based tool EEVBNN.

I. INTRODUCTION

Deep neural networks (DNNs) have become a popular
technique for complex problems in various areas such as
computer vision [1], and natural language processing [2].
However, real-world DNNs consist of large-size architecture
with numerous parameters in a floating-point arithmetic format
that complicates the deployment of DNNs on edge devices
due to limited computation power and memory resources. To
overcome this issue, simplified architectures, such as binary
neural networks (BNNs) [3], [4] have been proposed. Un-
like other DNNs, BNNs use only linear and Sign activation
functions to reduce the number of floating-point arithmetic
computations, which increases performance. Similar to DNNs,
BNNs are vulnerable to adversarial attacks [5], [6] in which
slightly changing the inputs can completely fool a well-trained
and highly accurate network.

While being efficient and easy to deploy, BNNs are gen-
erally more challenging to train and verify because of a
performance-accuracy trade-off [7]. Only a few verification
methods have been proposed to deal with BNNs, and most of
them require input quantization which omits an infinite number
of possible input states. For instance, the BDD-based methods

[8] perform quantitative robustness analysis of BNNs based
on constructing equivalent binary decision diagrams from
the networks with quantized input data. The EEVBNN tool
[9] can perform exact verification for BNNs with quantized
input space by converting the networks into SAT problems.
It is important to emphasize that input quantization is an
extra man-made step to ease neural network verification.
By reducing an input space to a discrete set, quantization
makes the verification process more efficient with respect to
computational time and resources. However, input quantization
causes a decrease in the accuracy of neural networks after
training, especially in those used for control purposes [10],
[11], because originally, the networks were trained to work on
continuous input space. Verifying BNNs on continuous input
space allows accounting for all possible input states, increasing
the certainty of the performed verification. The SAT/SMT-
based verification methods proposed in [12], [13] can verify
BNNs on continuous input space, but they are not scalable.

This paper proposes a complementary approach for verify-
ing BNNs without input quantization using star reachability
[14], [15], i.e., directly dealing with continuous input space
and the original BNNs. We extend the star set approach
to perform exact and overapproximate analysis of Sign ac-
tivation functions in BNNs. It is done by introducing a
new stepSign operation for both exact and overapproximate
analysis algorithms. We perform the exact analysis by applying
the Sign operation to each neuron individually, while the
overapproximate analysis uses an n-dimensional box as an
approximation. Verification using exact reachability is sound
and complete but computationally expensive. Meanwhile, ver-
ification with overapproximate reachability usually guarantees
only the soundness of the results, but it is much less expen-
sive in computation and offers better scalability. Interestingly,
both soundness and completeness can be achievable using
overapproximate reachability in many cases, with our new
method performing backward counterexamples localization
and random sampling. Extending from the original Star and
ImageStar-based verification [14], [16], our proposed approach
can verify both binary feedforward neural networks (BFFNNs)
and binary convolutional neural networks (BCNNs) and is
fully parallelizable to improve scalability.

We implemented the proposed approach in NNV, a veri-

7

2023 IEEE/ACM 11th International Conference on Formal Methods in Software Engineering (FormaliSE)

979-8-3503-1263-8/23/$31.00 ©2023 IEEE
DOI 10.1109/FormaliSE58978.2023.00009

20
23

 IE
EE

/A
C

M
 1

1t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 F

or
m

al
 M

et
ho

ds
 in

 S
of

tw
ar

e
En

gi
ne

er
in

g
(F

or
m

al
iS

E)
 |

97
9-

8-
35

03
-1

26
3-

8/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
Fo

rm
al

iS
E5

89
78

.2
02

3.
00

00
9

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

fication tool for DNNs and learning-enabled Cyber-Physical
Systems [17]. We evaluate our approach in comparison with:
the SMT-based [12] method implemented in Marabou [18] for
BNNs with continuous input space, and the SAT-based method
implemented in EEVBNN [9] with quantized input space.
The experiments show that our approach is significantly faster
than Marabou on their proposed benchmarks. For instance,
the exact and overapproximate verification can be 3600× and
5700× faster than Marabou on a small network with 220
neurons. Additionally, our approach is also less conservative
and more efficient than Marabou when dealing with severe L∞
norm attacks, i.e., attacks with large disturbance bound δ. For
example, Marabou reaches a timeout of 5,000 seconds when
verifying the small network with δ > 1 while our approach
can prove the robustness of the network within 1 second.
We note that our approach is more scalable than Marabou
as it can verify larger networks that Marabou cannot verify.
However, Star-based verification performs worse compared to
the SAT-based method implemented in EEVBNN [9] on the
given benchmarks. This result is understandable as EEVBNN
quantizes the input space, while Star-based reachability is
designed to operate with continuous input space. In sum, the
main contributions of this paper are:
• The extension of the star reachability algorithms for

verifying BNNs on continuous input space.
• The implementation of exact and overapproximate reach-

ability algorithms in NNV that are publicly available for
further evaluation and comparison [19].

• A thorough evaluation of the proposed approach in com-
parison with the existing ones on a set of benchmarks.

II. BACKGROUND

A. Binary Neural Networks

A k-layer binary neural network consists of an input layer,
k−1 hidden layers, and an output layer. A BNN may include
fully-connected, batch normalization, convolutional, pooling,
and flatten layers. These layers can be combined with a Sign
layer (performing sign operation defined in the following) to
form a binary block. In this paper, we are interested in two
types of binary blocks: the feedforward binary block and the
convolutional binary block depicted in Figure 1. These blocks
form a BFFNN and BCNN, respectively.

Definition II.1 (Sign function). Let x be an input, σ be the
activation function, y be the result of application σ to x. For
σ(·) = Sign(·):

y = σ(x) →
{
1, x ≥ 0;

−1, x < 0.

Definition II.2 (Execution of a BNN). Given a BNN of k
layers {L1, . . . , Lk}, execution of the network computes an
output y corresponding to an input vector x as follows:

y = fk(fk−1(. . . (f1(x)))), (1)

(a) Feedforward binary block.

(b) Convolutional binary block.

Fig. 1: Binary blocks.

where fi is the operation executed by the ith layer. This
operation is either affine mapping, sign activating, average
pooling, or convolution.

Definition II.3 (Reachable Set of a BNN). The output (reach-
able set) RN of a BNN N = {Li}, i = 1, 2, ..., k correspond-
ing to a convex set I is defined incrementally as:

R1 ! {y[1] | y[1] = f1(x), x ∈ I},
R2 ! {y[2] | y[2] = f2(y

[1]), y[1] ∈ R1},
...

RN = Rk ! {y[k] | y[k] = fk(y
[k−1]), y[k−1] ∈ Rk−1},

where fi(·) is a function representing the operation of the ith

layer.

B. Set Representation
This section reviews the definitions of star [14], and Im-

ageStar [17] set representation and their basic properties that
are used to compute the reachable set of BNNs.

Definition II.4 (Generalized Star Set [14]). A generalized star
set (or simply star) Θ is a tuple 〈c, V, P 〉 created based on
input vector x ∈ Rn, where c ∈ Rn is a center vector, V =
[v1, v2, · · · , vm] consists a set of m basis vectors v ∈ Rn, and
predicate P : Rm → {(,⊥} bounds. P (α) ! Cα ≤ d is a
conjunction of p linear constraints, where C ∈ Rp×m, d ∈
Rp,α is an unknown column vector with m entries. The set
of states can be represented as:

!Θ" =
{
x |x = c+

m∑

i=1

αivi such that P (α) = (
}

(2)

Remark II.1. A star is an empty set, i.e., Θ = ∅ if and only
if the predicate P (α) is infeasible. Sometimes we will refer to
both the tuple Θ and the set of states !Θ" as Θ in the rest of
this paper.

Proposition II.1 (Affine Mapping of a Star). Given a star
set Θ = 〈c, V, P 〉, an affine mapping of the star Θ with

8

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

the affine mapping matrix W and offset vector b defined by
Θ̄ = {y | y = Wx + b, x ∈ Θ} is another star with the
following characteristics: Θ̄ = 〈c̄, V̄ , P̄ 〉, c̄ = Wc + b, v̄ =
{Wv1,Wv2, · · · ,Wvm}, P̄ ≡ P .

Figure 2 presents a toy example of the affine mapping
operation over a 2D Star.

Fig. 2: A toy example of an Affine Mapping operation applied
to a 2D Star. Star S is the input set, Star S̄ is the output set,
AM is the Affine Mapping operation with a 2 × 2 weight
matrix and no bias.

Proposition II.2 (Star and Half-space Intersection). The in-
tersection of a star Θ ! 〈c, V, P 〉 and a half-space H !
{x | Hx ≤ g} is another star with following characteristics.

Θ̄ = Θ ∩H = 〈c̄, V̄ , P̄ 〉, c̄ = c, V̄ = V, P̄ = P ∧ P ′,

P ′(α) ! (H × Vm)α ≤ g −H × c, Vm = [v1 v2 · · · vm].

Proposition II.3 (Exact Range). Given a star set Θ =
〈c, V, P 〉, the range of the ith state x[i] of the star set
can be found by solving the following linear programming
optimization problems:

x[i]min = min(c[i] + Σm
j=1vj [i]αj), s.t. P (α) ! Cα ≤ d,

x[i]max = max(c[i] + Σm
j=1vj [i]αj), s.t. P (α) ! Cα ≤ d.

Proposition II.4 (Estimated Range). Given a star set Θ =
〈c, V, P 〉, let l and u be the lower and upper bound vectors of
the predicate variables, the range of the ith state x[i] of the
star set can be estimated quickly without solving the linear
programming optimization problems as follows:

x[i]estmin = c[i] +
m∑

j=1
vj [i]≥0

l[i]vj [i] +
m∑

k=1
vk[i]≤0

u[i]vk[i],

x[i]estmax = c[i] +
m∑

j=1
vj [i]≥0

u[i]vj [i] +
m∑

k=1
vk[i]≤0

l[i]vk[i].

Reachability analysis of BNNs involves convolution and
batch normalization operations that can be done efficiently
using ImageStar [16]. Therefore, in this paper, we switch
between ImageStar and Star representations when computing
the reachable set of BNNs.

Definition II.5 (ImageStar [16]). An ImageStar ΘIS is a
tuple 〈c, V, P 〉, where c ∈ Rh×w×nc is the anchor image,
V = v1, v2, · · · , vm is a set of m images in Rh×w×nc called
generator images, P : R → {(,⊥

}
is a predicate, and

h,w, nc are the height, width and the number of channels of
the images respectively. The generator images are arranged
to form the ImageStar’s h×w× nc×m basis array. The set
of images represented by the ImageStar is given as follows:

!ΘIS" =
{
x |x = c+

m∑

i=1

αivi such that P (α) = (} (3)

Definition II.6 (ImageStar to Star). Let ΘIS = 〈c, V, P 〉 be
an ImageStar, where c ∈ Rh×w×nc, V = v1, v2, · · · , vm
in Rh×w×nc are generator images, P : R → {(,⊥

}
is a

predicate. There exists a sound conversion from ΘIS to a Star
Θ̄ = 〈c̄, V̄ , P̄ 〉, where:

c̄ = reshape(c, (h · w · nc, 1)) ∈ R(h·w·nc)×1,

V̄ = [v̄1, v̄2, · · · , v̄m], v̄i = reshape(vi, (h · w · nc, 1)),
P̄ = P.

Remark II.2. A backward conversion from Θ̄ to ΘIS can be
performed similarly and is also sound.

III. REACHABILITY ANALYSIS OF BNNS

This section extends the reachability analysis methods of
ReLU networks [14] to BNNs. Given a star input set, we
compute the output set of a BNN layer-by-layer. We switch
between ImageStar (Definition II.5) and Star set represen-
tations (Definitions II.4, II.6) to compute the reachable set
of fully-connected, convolutional, max-pooling, and batch
normalization layers. The reachability analysis of these layers
can be found in [16]. In this paper, we focus on the reachability
of a Sign layer with a star input set.

A. Exact Reachability
Similar to ReLU networks, we can compute the exact

reachable set of a Sign layer with a star input set by applying
a sequence of stepSign operations. Let Signi be the stepSign
operation applied to the ith neuron. Then the reachable set of
a Sign layer L with n-neurons and a star input set Θ can be
computed precisely as:

RL = Signn(Signn−1(. . . (Sign1(Θ)))).

The stepSign operation computes intermediate reachable sets
of a Sign layer by applying the Sign activation function
(Definition II.1) to a specific neuron. Depending on the sign
of that neuron, the output can be 1 or -1. Given a star input
set Θ, the range of the input xi to the ith neuron can be
computed exactly using Proposition II.3 or overapproximately

9

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

estimated by Proposition II.4. Using the exact or estimated
range, we can determine the sign of the neuron input. The
following proposition describes the stepSign operation at ith
neuron given a star input set Θ.

Proposition III.1 (exact stepSign operation). Given a star
input set Θ = 〈c, V, P 〉, let li and ui be the lower bound and
upper bound of the ith input, the stepSign operation at the ith

neuron produces an intermediate reachable set as follows:
• If 0 ≤ li ≤ xi, then Signi(Θ) = Θ̄ = 〈c̄, V̄ , P 〉, c̄ =

c, c̄(i) = 1, V̄ = V, V̄ (i, :) = 0.
• If xi ≤ ui < 0, then Signi(Θ) = Θ̄ = 〈c̄, V̄ , P 〉, c̄ =

c, c̄(i) = −1, V̄ = V, V̄ (i, :) = 0.
• If li ≤ xi ≤ ui, li < 0 and ui ≥ 0, then Signi(Θ) =

[Θ̄1, Θ̄2], in which Θ̄1 = 〈c̄1, V̄1, P ∧ xi ≥ 0〉, c̄1 =
c, c̄1(i) = 1, V̄1 = V, V̄1(i, :) = 0, and Θ̄2 = 〈c̄2, V̄2, P ∧
xi < 0〉, c̄2 = c, c̄2(i) = −1, V̄2 = V, V̄2(i, :) = 0.

Proof. ∀x = [x1, x2, . . . , xi, . . . , xn]T ∈ Θ, the stepSign
operation at the ith neuron applies the Sign activation function
only on xi and keeps other inputs the same. Depending on the
sign of xi, its corresponding output can be 1 or -1. Therefore,
if 0 ≤ li ≤ xi, applying the sign activation function at xi

maps its value to yi = 1. The corresponding output vector is
y = [x1, x2, . . . , yi = 1, . . . , xn]T ∈ Θ̄ defined above. Similar
derivation applies for xi ≤ ui < 0. The most interesting case
is when li ≤ xi ≤ ui, li < 0, and ui ≥ 0, i.e., xi is either
negative or positive. The stepSign operation splits this into two
sub-cases xi ≥ 0 and xi < 0 and processes as normal. This
results in two new star sets in the intermediate reachable set
defined above.

Figure 3 presents a toy example of the exact stepSign
operation applied to a 2D Star.

Lemma III.1. The number of star sets in the exact reachability
of a Sign layer grows exponentially in the worst case.

Proof. Let n be the dimension of the star input set to a
Sign layer. Applying exact reachability on this input set may
produce 2n new star sets in the worst case if splitting happens
at all individual inputs.

B. Overapproximate Reachability
The exact reachability suffers from the explosion in the

number of star sets, which leads to large memory consumption,
more computation time, and limited scalability. Overapprox-
imate reachability can overcome this challenge. The idea is
to overapproximate the sign activation function to neurons
where splitting occurs, i.e., we overapproximate two new
star sets Θ̄1 and Θ̄2 in Proposition III.1 by a single star
set Θ̄. This can be done by introducing a new predicate
variable αm+1 to represent the output yi (can be -1 or 1 in
this case). We overapproximate yi by adding new constraints
−1 ≤ αm+1 ≤ 1, i.e., overapproximate two points -1 and
1 by a segment [−1, 1]. The following proposition describes
how an overapproximate stepSign operation works.

Fig. 3: A toy example of the exact analysis stepSign operation
performed on a 2D Star set. Sign(x1) applies the sign
operation over the x1 axis. Sign(x2) applies the sign operation
over the x2 axis. stepSign(S) = {S21, S22, S23, S24}.

Proposition III.2 (overapproximate stepSign operation).
Given a star input set Θ = 〈c, V, P 〉, let li and ui be the lower
bound and upper bound of the ith input, the overapproximate
stepSign operation at the ith neuron produces an intermediate
reachable set as follows:
• If 0 ≤ li ≤ xi, then Signi(Θ) = Θ̄ = 〈c̄, V̄ , P 〉, c̄ =

c, c̄(i) = 1, V̄ = V, V̄ (i, :) = 0.
• If xi ≤ ui < 0, then Signi(Θ) = Θ̄ = 〈c̄, V̄ , P 〉, c̄ =

c, c̄(i) = −1, V̄ = V, V̄ (i, :) = 0.
• If li ≤ xi ≤ ui, li < 0 and ui ≥ 0, then Signi(Θ) ⊂

Θ̄ = 〈c̄, V̄ , P̄ 〉, in which: c̄ = c, c̄(i) = 0, V̄ =
[V vm+1], vm+1 = ei, V̄ (i, 1 : m) = 0, P̄ = P ∧ −1 ≤
αm+1 ≤ 1.

Proof. ∀x = [x1, x2, . . . , xi, . . . , xn]T ∈ Θ, xi = c(i) +
Σm

i=1αjvj(i). When li ≥ 0 or ui < 0, exact reachability
produces only a single star set. Thus, no overapproximation
is needed. When li ≤ xi ≤ ui, li < 0, and ui ≥ 0, i.e.,
xi is either negative or positive. The corresponding output yi
is either -1 or 1. This can be overapproximated by a single
set yi ⊂ Y = {ỹi = αm+1| − 1 ≤ αm+1 ≤ 1}. The
overapproximate output can be represented in a star form as
ỹi = 0 + Σm

i=10× αj + αm+1ei, where ei is the ith standard
basis vector of the Rn space. Note that other individual outputs
are the same as their corresponding inputs. Consequently,

10

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

a single star set Θ̄ defined above can be constructed to
overapproximate the ith output set in this case. Figure 4
presents a toy example of the approximate stepSign operation
applied to a 2D Star.

Remark III.1. The number of new predicate variables and
their associated constraints grows linearly in overapproximate
reachability of a Sign layer.

Fig. 4: A toy example of the overapproximate analysis step-
Sign operation performed on a 2D Star set. The input Star S
is overapproximated with a 2D box, where x1 ∈ [−1, 1], x2 ∈
[−1, 1]. stepSign(S) = SO.

C. Reachability Algorithm
Algorithm 1 summarizes the reachability analysis of a BNN

N with k layers. We compute the reachable set layer-by-layer.
The last layer’s reachable set is returned as the output set
of the network. We note that reachability analyses of fully-
connected, batch normalization, and convolutional layers are
done exactly regardless of reachability methods, i.e., exact
or overapproximate [16]. This means the reachability method
selection only applies to max-pooling and sign layers.

Algorithm 1 Reachability of BNN
1: procedure REACH(N ,Θ,method) % Network, star input

set, reachability method
2: R ← Θ
3: for <i = 1 to k> do
4: Li ← N .Layers(i)
5: R ← Li.reach(R,method) % Reachability of an

individual layer
6: return R % The network’s reachable set

Implementation Highlight. In the exact analysis, a max-
pooling or a Sign layer may produce multiple output sets from
an input set. Therefore, we exploit the power of parallel com-
puting to process multiple inputs simultaneously at a specific
layer to speed up the verification. In addition, we usually use
estimated ranges to determine the sign of individual inputs
in the reachability of a Sign layer to minimize unnecessary
optimization time in the analysis. For example, if we know the
estimated lower bound of xi is l̃i ≥ 0, then we do not need
to find its exact lower bound li for the analysis as it is always
non-negative xi ≥ li ≥ l̃i ≥ 0. Finally, we note that if a BNN
is a BFFNN, a more efficient implementation using Depth First

Search (DFS) with exact reachability [15] can be used to verify
the network. Compared to the Breadth-First Search (BFS)
implementation in this paper to handle both BFFNNs and
BCNNs, DFS is faster and more memory-efficient in searching
a counterexample when verifying the network. The algorithm
will stop immediately once a counterexample is found.

IV. VERIFICATION

Using the reachable set computed in the previous section,
verifying the safety of BNNs defined in the following is
straightforward.

Definition IV.1 (Safety Verification of a BNN). Given a
binary neural network N , and an unsafe specification U
defined by a set of linear constraints on the network’s outputs
U ! {y |Cy ≤ d}, the network is called to be safe corre-
sponding to the input set Θ, if and only if R ∩ U = ∅, where
R is the network’s reachable set, i.e., R = N (Θ). Otherwise,
the neural network is unsafe.

Counterexamples Construction. Similar to verification of
ReLU networks [14], we can construct a complete set of coun-
terexamples that makes a BNN unsafe if the exact reachability
method is used. This is described in the following lemma.

Lemma IV.1. Let R = [Θ1,Θ2, . . . ,ΘN] be the exact reach-
able set of a BNN N with a star input set Θ = 〈c, V, P 〉, i.e.,
R = N (Θ), and U ! {y |Cy ≤ d} be the unsafe specification
of the network. If the network is unsafe, i.e., R∩U 2= ∅, then
a complete set of counterexample inputs C is computed as
follows:
• ∀k = 1, 2, . . . , N, Θk ∩ U = Θ′

k = 〈c′k, V ′
k, P

′
k〉 2=

∅ (Proposition II.2)
• Ck = 〈Θ.c,Θ.V, P ′

k〉, C ← Ck.

Proof. In the exact reachability of a BNN, the input set and
output set are defined based on the same set of predicate
variables unchanged in the computation. When splitting oc-
curs, new constraints on the predicate variables are added
(for example, Proposition III.1 for a Sign layer). Therefore, a
star set in the network’s reachable set contains all constraints
appearing in the input set, i.e., Θk.Pk ⊆ Θ.P . When a
star set Θk in the network’s reachable set intersects with
the unsafe region U , the intersection is an unsafe output set
of the network, which is also a star set Θ′

k = 〈c′k, V ′
k, P

′
k〉

(Proposition II.2). Importantly, we have P ′
k ⊆ Pk ⊆ P .

Therefore, any input vectors corresponding to any predicate
vectors α = [α1, . . . ,αm]T ∈ P ′

k cause the network to be
unsafe. In other words, the star Ck = 〈Θ.c,Θ.V, P ′

k〉 is a set of
counterexamples of the network. We can construct a complete
set of counterexamples by checking the intersection of all Star
sets in the reachable set with the unsafe region U .

Finding counterexamples with overapproximate reachabil-
ity. As the exact reachability of a BNN is expensive, the over-
approximate reachability is usually used to verify the safety of
a large network. It produces a single star set R = 〈c′, V ′, P ′〉,
which is an overapproximation of the exact reachable set of

11

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

the network. If the overapproximate reachable set R intersects
with the unsafe region U , it creates a potentially unsafe output
set Runsafe = 〈c′, V ′, Punsafe〉 (Proposition II.2). However,
the actual outputs of the network are not necessarily in this
potentially unsafe output set due to the overapproximation
error. Therefore, to prove that the network is unsafe, we need
to find a single actual output yactual that relies upon the
potentially unsafe output set, i.e., yactual ∈ Runsafe. To do
that, we randomly sample the Punsafe to create a collection
of predicate vectors α′ = [α1,α2, . . . ,αm,αm+1, . . . ,αM]T .
Here we assume that (M − m) new predicate variables are
introduced in the overapproximate reachability process. We
take the first part of α′ to form a collection of predicate
vectors of the input set α = [α1,α2, . . . ,αm]. From these
predicate vectors, we construct a collection of input vectors
x = c+Σm

i=1αivi. We execute the network to find the outputs
corresponding to these input vectors. Finally, we check if there
is an obtained output that relies upon the potentially unsafe
output set R. If yes, then the network is unsafe. If not, then
the network’s safety is unknown. The number of sampling
iterations we perform per example equals 50.
Soundness and Completeness. The soundness and complete-
ness of our verification approach using star reachability are
given in the following lemma.

Lemma IV.2. Verification of BNNs is sound and complete if
the exact reachability method is used. Otherwise, it is sound
but may or may not be complete.

Proof. Using the exact reachability, we can always prove if the
network is safe or construct a complete set of counterexamples
when the network is unsafe (Lemma IV.1). Therefore, the
verification of BNNs is sound and complete in this case.
When the overapproximate reachability method is used, we
may prove the network is safe using the overapproximate
reachable set. However, when the overapproximate reachable
set intersects with the unsafe region, we may or may not find
counterexamples (the method is discussed above). Therefore,
the verification is sound but may or may not be complete when
using the overapproximate reachability.

V. EVALUATION

The proposed verification approach is implemented in NNV
[17], a verification tool for deep neural networks and learning-
enabled cyber-physical systems. It is evaluated and compared
with the SMT-based approach [12] implemented in Marabou
[18] on a set of benchmarks. The experiments were performed
on a computer with the following configurations: Intel®
Core™ i7-6950X CPU @ 3.00GHz × 20 processors, 62.7
GiB memory, 64-bit Ubuntu 18.04.6 LTS OS. Note that we
did not use parallel computing to speed up our method when
comparing it to Marabou and EEVBNN.

A. Star Reachability vs. Marabou SAT-based Method
Experiment Set Up. The SMT-based method [12] imple-

mented in Marabou [18] presents verification results for two
neural networks: a BFFN (MLP0) and a BCNN (XNOR0).

MLP0 is trained to classify images from the MNIST dataset
[20]. MNIST consists of 28× 28 handwritten images from 0
to 9. XNOR0 is trained to classify images from the FMNIST
[21] dataset. FMNIST consists of 28 × 28 images of clothes
from ten different classes (each class is assigned an index from
0 to 9). The MLP experiment includes 500 examples of L∞
norm attack for 10 disturbance values (50 examples per value):
δ = {0.1, 0.15, 0.2, 0.3, 0.5, 1, 3, 5, 10, 15}, i.e., ‖x′ − x‖ ≤ δ,
where x and x′ are the original and the adversarial images,
respectively. The XNOR experiment includes 300 examples
of L∞ norm attack for 6 disturbance values (50 examples
per value): δ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The presented
experiments for MLP0 and XNOR0 use the same examples
provided by the Marabou paper [12]. Note that for the MLP0
experiment, we omit some examples as their classification
labels do not correspond to respective ground-truth labels.
To evaluate the scalability of the proposed approach, we
trained 4 additional models for the experiment. The networks’
information is presented in Table I. Note that we use the same
Marabou configuration as the original paper: weighted sum
layer elimination and polarity-based splitting are turned on,
and symbolic bound tightening and LP relaxation are turned
off. Note that the first binary block in every model omits the
Sign layer to improve verification.

Network Architecture Accuracy Type
MLP0 (50× 4) : (10× 2) 90% BFFNN

XNOR0 3CB:1FB 75% BCNN
MLP1 (200× 2) : (100× 2) : (50× 2) : (10× 2) 96% BFFNN
MLP2 (200× 3) : (100× 2) : (50× 2) : (10× 2) 96% BFFNN
MLP3 (200× 3) : (100× 3) : (50× 2) : (10× 2) 96% BFFNN
MLP4 (200× 4) : (100× 3) : (50× 2) : (10× 2) 96% BFFNN

b

TABLE I: The architectures of MLP networks. MLP0, XNOR0
are the networks proposed by [12]. MLP1-4 are the addition-
ally trained networks. “CB” is a convolutional binary block.
“FB” is a feedfoward binary block.

Verification Results. The verification results of the SMT-
based method’s proposed benchmarks (the Marabou method),
MLP0 and XNOR0, are presented in Tables II and IV.
We note that on the given examples, the exact reachability
algorithm does not run into an exponential explosion. For
this reason, the number of solved examples for the exact and
overapproximate algorithms is the same. The same analysis
for additionally trained networks MLP1-4 is given in Table
III. A mismatch between the star reachability (NNV) and the
SMT-based (Marabou) approaches and a potential soundness
bug are illustrated in Figure 5.

Timing Performance. Our thorough experiments show that
the proposed verification approach using star reachability
outperforms the SMT-based method on all benchmarks. The
exact Star method is significantly faster than the SMT-based
approach when verifying BFFNN networks. For example,
on the MLP0 network of 220 neurons (Table II), the exact
star method is 2261× and 2888× faster than Marabou when
proving UNSAT (robust or safe) and SAT (not robust or not
safe) examples with the disturbance bound δ = 1. Importantly,

12

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

δ
Marabou Exact-Star Approx-Star

Time(s) #Sol Time(s) #Sol Time(s) #Sol
UN S UN S UK UN S UN S UN S UN S

0.1 7.42 68 47 1 0 0.8 0.8 48 0 0.5 0.5 48 0
0.15 13.9 16 40 2 0 0.9 0.9 41 1 0.5 0.5 41 1
0.2 13.06 115 43 1 0 0.9 0.9 44 0 0.5 0.5 44 0
0.3 69.69 128 40 3 0 0.9 0.9 42 1 0.5 0.5 42 1
0.5 457.29 314 33 9 0 0.9 0.9 41 1 0.5 0.5 41 1
1 1809.09 2889 25 13 8 0.8 0.8 42 4 0.5 0.5 42 4
3 TO 2432 0 25 14 0.8 0.8 36 3 0.5 0.5 36 3
5 TO 702 0 43 0 0.8 0.8 25 18 0.5 0.5 25 18
10 TO 441 0 40 0 0.8 0.8 18 22 0.5 0.5 18 22
15 TO 528 0 49 0 0.8 0.8 20 29 0.5 0.5 20 29

TABLE II: Verification results of MLP0 network. Notation: δ represents disturbance bound values, Time(s) represents average
computation time for each value of δ, ’#Sol’ is the number of solved examples, UN = UNSAT indicates that the network is
robust (safe) under the attack, S = SAT indicates that the network is not robust (unsafe), UK = UNKNOWN indicates that the
example wasn’t solved in the given time, TO = Timeout set as 5000 seconds. The red color is used to highlight the difference
in the number of verified examples. The blue color is used to highlight the difference in verification time.

a large disturbance bound δ does not affect much the timing
performance of the exact star method while significantly
damaging the performance of Marabou. For example, with
δ = 10, the exact star method can still prove the robustness
of the MLP0 network for all examples within 1 second while
Marabou reaches a timeout set as 5000 seconds for all δ ≥ 3.
Impressively, with a large network MLP4 of 1220 neurons
(Table I) and a large disturbance bound δ = 15, our exact
verification approach can still prove the robustness of the
network for all 50 examples with an average time of ≈ 3.2
seconds for each example (Table III). Note that Marabou
reaches timeout set as 5000 seconds for all newly trained
networks even with a small disturbance bound, e.g., MLP1
with δ = 0.1. We want to emphasize that the exact verification
approach does not perform well with BCNNs. The main reason
is many splittings occur at max-pooling layers, which leads to
the explosion in time and memory consumption in reachable
set computation [16].

The overapproximate star reachability is faster than the
exact one. More importantly, it performs well for both BFFNN
and BCNN networks. For MLP0 BFFNN network (Table II),
when δ = 1, the overapproximate star method is 3618× and
5778× faster than Marabou on proving UNSAT and SAT
examples. On XNOR0 BCNN network (Table IV), the over-
approximate star method is 44.6× and 3877.25× faster than
Marabou on proving UNSAT and SAT examples. Similar to the
exact approach, large disturbance bounds do not affect much
the timing performance of the overapproximate verification
method.

Conservativeness. The conservativeness of a method can
be quantified as the percentage of the provable cases (UNSAT
+ SAT) over the total number of examples (UNSAT + SAT
+ UNKNOWN). The smaller the resulting value, the more
conservative the method is. On small networks, i.e., MLP0
(Table II) and XNOR0 (Table IV), our approach is less
conservative than Marabou especially when dealing with a
large disturbance bound δ. For example, on the MLP0 BFFNN
network, for δ = 1, Marabou proves (25+13)/46 ≈ 82.6% of

the cases while our approach (both exact and overapproximate)
proves 100% of the cases. On the XNOR0 BCNN network,
for δ = 0.3, Marabou proves only (20 + 7)/50 = 54% while
ours is (30 + 12)/50 = 84%. Importantly, on large networks,
i.e., MLP1-4 (Table III), Marabou cannot prove any cases, i.e.,
0%, while our exact method proves 100% cases for MLP1-4
and the overapproximate one also proves ≥ 96% cases for
MLP1-4.

Scalability. The experiments show that our verification
approach is more scalable than Marabou, especially when
dealing with large disturbance bound. The exact verification
method can handle a large BFFNN network of 1220 neurons
(MLP4 in Table III) while Marabou can verify a small network
of 220 neurons (MLP0) with small disturbance bound δ ≤ 1
(Table II) in the set timeout. The overapproximate verification
method is more scalable than Marabou when dealing with
both BFFNNs and BCNNs. It can handle large networks while
Marabou cannot (Table III).

Inconsistency. When comparing the results with Marabou,
we discovered that certain examples were classified as SAT
even though the network was robust on given examples. For
instance, when verifying the MLP0 network with a disturbance
bound δ = 0.1 (Table II), our verification approach proves
that the network is robust (UNSAT) for all 48 examples.
However, Marabou returns 47 UNSAT results and 1 SAT
without generating a specific counterexample for this case.
We have plotted the ranges of all outputs of the network
(Figure 5) to intuitively justify the robustness in this case. The
figure clearly shows that the network is robust as the output
corresponding to digit 0 is still the maximum output range
among others. Therefore, digit 0 is still classified correctly
in this case. We have contacted Marabou’s authors to query
this mismatch, as there is no counterexample generated from
Marabou for this case. However, we could not find out the
reason when this paper was submitted. We also have expe-
rienced an unexpected behavior of Marabou when verifying
MLP0 with large disturbance bound δ ≥ 5. Marabou reaches
a timeout and returns all SAT results, which is very unexpected

13

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

Network δ
Marabou Exact-Star Approx-Star

Times #Sol Time(s) #Sol Time(s) #Sol
UN S UK UN S UN S UN S UN S UK

MLP1

0.1 TO 0 0 50 2.6 - 50 0 1.6 - 50 0 0
0.15 TO 0 0 50 2.6 2.78 49 1 1.59 1.56 49 1 0
0.2 TO 0 0 50 2.68 - 50 0 1.58 - 50 0 0
0.3 TO 0 0 50 2.52 2.58 46 4 1.6 1.6 46 3 1
0.5 TO 0 0 50 2.51 2.46 49 1 1.6 1.6 49 0 1
1 TO 0 0 50 2.55 2.57 49 1 1.56 1.57 49 1 0
3 TO 0 0 50 2.8 3.03 48 2 1.66 1.66 48 2 0
5 TO 0 0 50 3.25 3.14 46 4 1.68 1.7 46 4 0
10 TO 0 0 50 3.07 3.53 35 15 1.68 1.66 35 15 0
15 TO 0 0 50 2.77 2.8 31 19 1.67 1.67 31 19 0

MLP2

0.1 TO 0 0 50 3.46 - 50 0 1.98 - 50 0 0
0.15 TO 0 0 50 3.39 - 50 0 1.93 - 50 0 0
0.2 TO 0 0 50 3.51 - 50 0 2.01 - 50 0 0
0.3 TO 0 0 50 3.46 3.3 49 1 2.09 2.2 49 0 1
0.5 TO 0 0 50 3.44 4.89 49 1 2.1 2.4 49 0 1
1 TO 0 0 50 4.3 5.38 49 1 2.3 2.4 49 0 1
3 TO 0 0 50 4.19 3.48 48 2 2.15 2.05 48 2 0
5 TO 0 0 50 3.4 3.54 46 4 2.13 2.13 46 4 0
10 TO 0 0 50 2.94 2.93 39 11 2.16 2.15 39 11 0
15 TO 0 0 50 3.03 3.02 32 18 2.2 2.2 32 17 0

MLP3

0.1 TO 0 0 50 3.51 - 50 0 3.9 - 50 0 0
0.15 TO 0 0 50 3.42 - 50 0 3.8 - 50 0 0
0.2 TO 0 0 50 3.45 4.48 48 2 3.5 3.3 48 2 0
0.3 TO 0 0 50 3.44 3.27 49 1 3.5 3.2 49 1 0
0.5 TO 0 0 50 3.6 3.51 47 3 3.6 3.3 47 1 2
1 TO 0 0 50 4.36 4.71 48 2 3.8 3.5 48 1 1
3 TO 0 0 50 4.09 6.03 48 2 3.8 3.5 48 2 0
5 TO 0 0 50 3.5 3.04 47 3 3.6 3.6 47 3 0
10 TO 0 0 50 3.03 3.02 38 12 3.7 3.9 38 12 0
15 TO 0 0 50 3.03 3.14 26 24 3.6 3.8 26 24 0

MLP4

0.1 TO 0 0 50 4.21 - 50 0 3.3 - 50 0 0
0.15 TO 0 0 50 4.23 4.08 49 1 3.2 3.3 49 0 1
0.2 TO 0 0 50 4.17 4.1 49 1 3.2 3.3 49 0 1
0.3 TO 0 0 50 4.13 4.52 47 3 3.1 3.2 47 1 2
0.5 TO 0 0 50 5.09 - 50 0 3.2 - 50 0 0
1 TO 0 0 50 4.9 5.06 48 2 3.6 3.6 48 0 2
3 TO 0 0 50 3.89 3.64 49 1 3.6 3.6 49 1 0
5 TO 0 0 50 3.63 3.59 46 4 3.6 3.7 46 3 1
10 TO 0 0 50 3.43 3.26 42 8 3.5 3.7 42 7 1
15 TO 0 0 50 3.15 3.14 35 15 1.16 1.17 35 15 0

TABLE III: Verification results for MLP1-4. Notations are the same with that of Table II
..

δ
Marabou Approx-Star

Time(s) # Sol Time(s) # Sol
UN S UN S UK UN S UN S UK

0.05 4.96 909.1 23 15 12 0.4 0.4 39 7 4
0.1 12.15 1,627.6 20 15 15 0.4 0.5 36 9 5
0.15 5 1,113.3 29 9 12 0.4 0.4 35 11 4
0.2 4.96 1,387.7 24 10 16 0.5 0.4 34 8 8
0.25 4.91 1,426 22 9 19 0.5 0.4 29 14 7
0.3 26.75 1,550.9 20 7 23 0.6 0.4 30 13 7

TABLE IV: Verification results of XNOR0 network. Notation:
δ represents disturbance bound values, Time(s) represents
average computation time for each value of δ, ’#Sol’ is the
number of solved examples, UN = UNSAT indicates that the
network is robust (safe) under the attack, S = SAT indicates
that the network is not robust (unsafe), UK = UNKNOWN
indicates that the example wasn’t solved in the given time.

behavior. For example, for δ = 10, Marabou reaches timeout
and returns 40 SAT results. However, in this case, we prove
that 18 cases are UNSAT, and 22 cases are SAT.

Fig. 5: MLP0 verification mismatch for δ = 0.1. On this
example, the network is correctly verified by Star (UNSAT)
and is falsely verified by Marabou (SAT). The right plot
presents the ranges of the output Star (lower and upper
bounds).

B. Star Reachability vs. EEVBNN SAT-based Method

Experiment Set Up. The SAT-based method implemented
in EEVBNN [9] presents results for four binary convolu-
tional neural networks. They include two networks trained

14

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

using MNIST (mnist-small - 2 convolutional binary blocks
and 2 feedforward binary blocks, mnist-large - 4 convolu-
tional binary blocks and 3 feedforward binary blocks) and
two networks trained using CIFAR10 [22] (cifar10-small
and cifar10-large with similar architectures respectively). CI-
FAR10 consists of 60,000 32× 32 color images in 10 classes,
with 6,000 images per class.

The comparative experiments were conducted on 500
MNIST images for the MNIST-trained networks using the
L∞ norm attack for 2 disturbance values: δ = {0.1, 0.3},
and on 500 CIFAR10 images for the CIFAR10-trained net-
works using the L∞ norm attack for 2 disturbance values:
δ = {2/255, 8/255}. The details of the networks’ architecture
are presented in Table V.

Network Architecture
mnist-small, cifar10-small 2CB:2FB
mnist-large, cifar10-small 4CB:3FB

TABLE V: The architectures of EEVBNN [9] networks. “CB”
is a convolutional binary block. “FB” is a feedfoward binary
block. Note that the given BCNNs do not include any pooling
layers.

Verification Results. Note that on the given examples, the
Star-based exact verification approach runs out of time and
memory. For this reason, we only present the comparison
with the overapproximate analysis algorithm. The verification
results of the EEVBNN method’s proposed benchmarks are
presented in Table VI. Compared to EEVBNN, Star underper-
forms both with regard to the timing and the number of solved
examples.
Timing Performance. The experiments show that EEVBNN
can be from 4× to 30× faster than Star, depending on a
model’s size and the used disturbance value. For example,
EEVBNN verifies all 500 examples for cifar10-small 6×
faster than Star. This happens because Star reachability is
aimed at handling continuous input while EEVBNN works
with the quantized one. Star’s ability to operate in continuous
space introduces a trade-off as its computational operations
are more complex. In addition, EEVBNN tests its approach on
’solver-friendly’ networks that contain high-sparsity weights.
Conservativeness. According to the experiments, EEVBNN
solves all the examples, while Star is only able to solve
≈ 14% for the MNIST-trained models and ≈ 88% for
CIFAR10-trained models. This indicates that EEVBNN is less
conservative compared to the Star-based reachability method.

Drawbacks of the Proposed Approach. Although our ap-
proach is efficient and scalable for BFFNNs, it is not scalable
for BCNNs with max-pooling layers. As analyzed in [16],
when dealing with large disturbance bounds, more predicate
variables and their associated generators are introduced in the
reachability of a max-pooling layer. This causes an explosion
in memory and computation time. It is worth emphasizing that
BCNNs using average pooling can achieve the same (or even
better) accuracy and are amenable to our verification approach

[23]. We have tried analyzing BCNNs with average pooling
using our approach. However, we could not compare with
Marabou on these networks as Marabou does not currently
support average pooling.

In addition, the given representation of Star cannot be
efficiently used with quantized input space. For this reason, the
method implemented in EEVBNN outperforms Star in terms
of timing and conservativeness. However, we emphasize that
Star reachability algorithms have been designed to work with
continuous input space. While it requires the operations to be
more computationally expensive, it allows Star to generalize
better as it deals with continuous (infinite but bounded) input
space instead of quantized input space with finite states like
EEVBNN. In addition, quantization introduces various sources
of errors (rounding, computational noise, etc.). All of this
may not have an effect when verifying “basic” benchmarks
like MNIST or CIFAR10 but could have a huge impact
in real-world tasks. Note that EEVBNN also uses “solver-
friendly BNNs”. These BNNs’ weights sparsity is artificially
increased during the training process. Such an approach may
also increase error accumulation. Thus, we believe that Star
reachability is a good complementary approach when input
quantization is not an option.

VI. RELATED WORK

DNN verification. DNN verification approaches can be
categorized into four main classes: SAT/SMT-based method
[24], [25], optimization [26], [27], reachability analysis [14],
[16], and abstraction [28], [29]. Reluplex [24] and Planet [30]
are pioneers in the SMT-based approach. Based on Reluplex,
the Marabou framework is developed to exploit the power
of parallel computing in verification [25]. The SMT-based
method has been extended to handle different types of neural
networks recently, e.g., BNNs [12] considered in this paper.
DNN verification can be converted into optimization problems.
A notable technique is the mixed-integer linear programming
(MILP) encoding for verifying ReLU networks [26], [27],
[31]. An example of such conversion is presented in the
EEVBNN framework [9]. It converts the verification problem
into an SAT problem using the quantized input to boost the
performance. DNN verification can also be transformed into a
reachability analysis problem. Different abstract interpretation
approaches have been proposed to construct the reachable
set of a neural network and use it for verification. Typical
representatives are polytope [32], [33], zonotope [29], relaxed-
polytope [34]–[36], interval [37], [38], star [14], and imagestar
[16]. Our approach proposed in this paper is an extension of
the star set reachability [14] in combination with the ImageStar
method [16] to verify BNNs.
BNN verification. BNNs are a sub-class of DNNs that has
received some attention in the verification community recently.
Recent works on BNN verification include both qualitative and
quantitative analysis approaches. Quantitative verification fo-
cuses on how often the network’s output satisfies or violates a
pre-defined safety property. In contrast, the qualitative analysis

15

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

Network δ
EEVBNN Approx-Star

Time(s) #Sol Time(s) #Sol
UN S UN S UN S UK UN S UK

mnist-small 0.1 0.021 0.022 436 64 0.09 0.079 0.078 42 19 439
mnist-large 0.1 0.164 0.177 454 46 1.191 0.881 0.97 42 10 448
mnist-small 0.3 0.027 0.029 312 188 0.103 0.088 0.09 42 31 427
mnist-large 0.3 0.169 0.171 379 121 1.915 1.634 1.55 42 21 437
cifar10-small 2/255 0.046 0.047 128 372 0.273 0.267 0.27 57 228 215
cifar10-large 2/255 0.304 0.341 147 353 3.032 3.04 3.049 57 226 217
cifar10-small 8/255 0.064 0.068 94 406 1.131 1.152 1.174 57 270 173
cifar10-large 8/255 0.342 0.372 123 377 9.589 9.721 9.665 57 272 171

TABLE VI: Verification results for the networks presented by EEVBNN [9].

focuses on whether there exists an input that violates a pre-
defined safety property which is the main focus of this paper.
They include the SAT/SMT-based approaches that verify the
two-valued BNNs that use a binary quantifying model {-1, 1}
[13], [39]. We do not provide the comparison with the given
approaches as we have not been able to obtain respective NN
models for evaluation. Moreover, there are approaches that use
quantized DNNs with multiple bits [40], [41].

Another type of quantitative verification approaches utilizes
binary decision diagram (BDD) construction from the given
BNNs [8], [42]. BDD4BNN [8] is one of the latest novel
approaches that use quantization and BDDs to certify the
network’s robustness. BDD4BNN encodes the input using
cardinality constraints into a binary representation {0, 1}
and further quantizes it into {-1, 1}. In addition, all neu-
ral networks’ weights and biases are also quantized, which
means that BDD4BNN uses only strictly binarized networks.
Another tool that uses quantized input space is EEVBNN
[9]. EEVBNN performs exact verification by converting the
given BNNs into SAT problems. Quantization converts a
continuous input space into a discrete input space and makes
neural network verification much more efficient. However,
input quantization is an extra man-made step that can cause
a decrease in the accuracy performance of neural networks
after training, especially for those used for control purposes,
because originally, the networks were trained to work on
continuous input space. Unlike EEVBNN and BDD4BNN, our
star-based approach aims at verifying original neural networks
under continuous input space without requiring the extra input
quantization step. Therefore, our evaluation focuses on com-
paring the star-set approach and the SMT-based approach [12]
implemented in Marabou, which was also developed to deal
with continuous input space. We also provide a comparison
with EEVBNN, which shows the limited performance of our
approach when dealing with quantized input spaces.

VII. CONCLUSION

In this paper, we have extended the star reachability al-
gorithms for verifying BNNs with continuous input space.
The experiments showed that the proposed method is more
efficient and scalable than the SMT-based approach imple-
mented in Marabou. Our approach underperforms compared to
the quantization-based technique proposed in EEVBNN. We
emphasize that the current Star representation is not designed

to handle quantized input space. However, we still include
the comparison with EEVBNN to give a more complete
picture of our approach. In future work, we will address
the star set approach’s drawbacks in dealing with the max-
pooling layer, which requires a new, memory-efficient data
structure for reachability analysis, e.g., sparse ImageStar. We
will also work on designing a representation that would allow
Star-based algorithms to be more efficient when operating in
the quantized space. Additionally, the overapproximation of
the Sign activation function will be improved to reduce the
overapproximation error. Last but not least, as our method is
efficient in constructing a complete set of counterexamples in
case a network is unsafe, we will leverage it to develop a new
repairing method for BNNs.

ACKNOWLEDGEMENTS

We appreciate Mr. Guy Amir from Hebrew University of
Jerusalem for his help on explaining the BNN verification al-
gorithm implemented in Marabou. We also appreciate Dr. Yedi
Zhang from Shanghai Tech University for her explanation of
the principles and implementation of the BDD4BNN approach.
We also thank Mr. Kai Jia for providing us with expertise
on the models that were used for evaluating the SAT-based
method implemented in EEVBNN.

REFERENCES

[1] J. Watson, M. Firman, A. Monszpart, and G. J. Brostow, “Footprints
and free space from a single color image,” 2020.

[2] N. Babanejad, A. Agrawal, A. An, and M. Papagelis, “A comprehensive
analysis of preprocessing for word representation learning in
affective tasks,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association
for Computational Linguistics, Jul. 2020, pp. 5799–5810. [Online].
Available: https://aclanthology.org/2020.acl-main.514

[3] D. Shriver, S. Elbaum, and M. B. Dwyer, “Reducing dnn properties to
enable falsification with adversarial attacks,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
275–287.

[4] A. Bulat, B. Martinez, and G. Tzimiropoulos, “High-capacity expert
binary networks,” 2021.

[5] J. Chen, X. Wu, V. Rastogi, Y. Liang, and S. Jha, “Towards understand-
ing limitations of pixel discretization against adversarial attacks,” 2019.

[6] G. Liu, I. Khalil, A. Khreishah, and N. Phan, “A synergetic attack
against neural network classifiers combining backdoor and adversarial
examples,” 2021.

[7] N. Narodytska, H. Zhang, A. Gupta, and T. Walsh, “In search for
a sat-friendly binarized neural network architecture,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=SJx-j64FDr

16

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

[8] Y. Zhang, Z. Zhao, G. Chen, F. Song, and T. Chen, “BDD4BNN: a BDD-
based quantitative analysis framework for binarized neural networks,”
in International Conference on Computer Aided Verification. Springer,
2021, pp. 175–200.

[9] K. Jia and M. Rinard, “Efficient exact verification of binarized neural
networks,” 2020. [Online]. Available: https://arxiv.org/abs/2005.03597

[10] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao, “Performance guaranteed
network acceleration via high-order residual quantization,” in Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV),
Oct 2017.

[11] S. Cao, L. Ma, W. Xiao, C. Zhang, Y. Liu, L. Zhang, L. Nie, and
Z. Yang, “Seernet: Predicting convolutional neural network feature-map
sparsity through low-bit quantization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[12] G. Amir, H. Wu, C. Barrett, and G. Katz, “An SMT-based approach for
verifying binarized neural networks,” 2021.

[13] N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and
T. Walsh, “Verifying properties of binarized deep neural networks,”
2018.

[14] H.-D. Tran, D. Manzanas Lopez, P. Musau, X. Yang, L. V. Nguyen,
W. Xiang, and T. T. Johnson, “Star-based reachability analysis of deep
neural networks,” in Formal Methods – The Next 30 Years, M. H. ter
Beek, A. McIver, and J. N. Oliveira, Eds. Cham: Springer International
Publishing, 2019, pp. 670–686.

[15] S. Bak, H.-D. Tran, K. Hobbs, and T. T. Johnson, “Improved geometric
path enumeration for verifying relu neural networks,” in Proceedings
of the 32nd International Conference on Computer Aided Verification.
Springer, 2020.

[16] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of
deep convolutional neural networks using imagestars,” in Proceedings
of the 32nd International Conference on Computer Aided Verification.
Springer, 2020.

[17] H.-D. Tran, X. Yang, D. Manzanas, P. Musau, L. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “Nnv: The neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems,”
in Proceedings of the 32nd International Conference on Computer Aided
Verification. Springer, 2020.

[18] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. L. Dill, M. J. Kochenderfer, and
C. Barrett, “The Marabou framework for verification and analysis of
deep neural networks,” in Computer Aided Verification, I. Dillig and
S. Tasiran, Eds. Cham: Springer International Publishing, 2019, pp.
443–452.

[19] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “NNV: The neural network
verification tool for deep neural networks and learning-enabled cyber-
physical systems,” in Computer Aided Verification, S. K. Lahiri and
C. Wang, Eds. Cham: Springer International Publishing, 2020, pp.
3–17.

[20] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[21] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” 2017.

[22] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian
institute for advanced research),” 2014. [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

[23] H.-D. Tran, N. Pal, P. Musau, X. Yang, N. P. Hamilton, D. M. Lopez,
S. Bak, and T. T. Johnson, “Robustness verification of semantic segmen-
tation neural networks using relaxed reachability,” in 33rd International
Conference on Computer-Aided Verification (CAV). Springer, July 2021.

[24] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex:
An efficient smt solver for verifying deep neural networks,” 2017.

[25] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. L. Dill, M. J. Kochenderfer, and
C. Barrett, “The marabou framework for verification and analysis of
deep neural networks,” in Computer Aided Verification, I. Dillig and
S. Tasiran, Eds. Cham: Springer International Publishing, 2019, pp.
443–452.

[26] A. Lomuscio and L. Maganti, “An approach to reachability analysis for
feed-forward relu neural networks,” 2017.

[27] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NASA Formal Meth-
ods Symposium. Springer, 2018, pp. 121–138.

[28] P. Prabhakar and Z. Rahimi Afzal, “Abstraction based output range anal-
ysis for neural networks,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[29] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev,
“Fast and effective robustness certification,” in Advances in
Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds., vol. 31. Curran Associates, Inc., 2018. [Online]. Available:
https://proceedings.neurips.cc/paper/2018/file/f2f446980d8e971ef3da97af089481c3-
Paper.pdf

[30] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” 2017.

[31] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” 2019.

[32] W. Xiang, H. Tran, and T. T. Johnson, “Reachable set
computation and safety verification for neural networks with relu
activations,” CoRR, vol. abs/1712.08163, 2017. [Online]. Available:
http://arxiv.org/abs/1712.08163

[33] H.-D. Tran, P. Musau, D. Manzanas Lopez, X. Yang, L. V. Nguyen,
W. Xiang, and T. T. Johnson, “Parallelizable reachability analysis
algorithms for feed-forward neural networks,” in 2019 IEEE/ACM 7th
International Conference on Formal Methods in Software Engineering
(FormaliSE), 2019, pp. 51–60.

[34] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain
for certifying neural networks,” Proc. ACM Program. Lang., vol. 3, no.
POPL, Jan. 2019. [Online]. Available: https://doi.org/10.1145/3290354

[35] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Ef-
ficient neural network robustness certification with general activation
functions,” 2018.

[36] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S.
Dhillon, and L. Daniel, “Towards fast computation of certified robustness
for relu networks,” 2018.

[37] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal
security analysis of neural networks using symbolic intervals,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 1599–1614. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-
shiqi

[38] W. Xiang, H. Tran, and T. T. Johnson, “Specification-guided safety ver-
ification for feedforward neural networks,” CoRR, vol. abs/1812.06161,
2018. [Online]. Available: http://arxiv.org/abs/1812.06161

[39] N. Narodytska, “Formal analysis of deep binarized neural networks,” in
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18. International Joint Conferences on
Artificial Intelligence Organization, 7 2018, pp. 5692–5696. [Online].
Available: https://doi.org/10.24963/ijcai.2018/811

[40] M. Baranowski, S. He, M. Lechner, T. S. Nguyen, and Z. Raka-
maric, “An smt theory of fixed-point arithmetic,” in Proceedings of the
10th International Joint Conference on Automated Reasoning (IJCAR),
ser. Lecture Notes in Computer Science, N. Peltier and V. Sofronie-
Stokkermans, Eds., vol. 12166. Springer, 2020, pp. 13–31.

[41] T. A. Henzinger, M. Lechner, and ore Žikelić, “Scalable verification of
quantized neural networks (technical report),” 2020.

[42] A. Shih, A. Darwiche, and A. Choi, “Verifying binarized neural
networks by angluin-style learning.” in SAT, 2019, pp. 354–370.
[Online]. Available: https://doi.org/10.1007/978-3-030-24258-9 25

17

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on August 31,2023 at 15:28:01 UTC from IEEE Xplore. Restrictions apply.

