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Abstract

Improving the homelessness system and evaluating the effectiveness
of delivered services are critical to achieve optimal usage of limited
social resources as well as to improve the outcomes of the home-
lessness system. In this context, an increasing number of data sci-
ence and machine learning methods has been recently applied to the
domain of homeless service provision. Given the societal impact of
this domain, it is critical to understand the limitations of such meth-
ods. However, the performance of algorithmic intervention methods
is typically evaluated using abstract metrics that have little meaning
for the homeless service allocation domain. We show that domain–
agnostic measures are insufficient, and propose a set of new, domain–
specific evaluation metrics based on hypothetical, yet realistic “what–if”
scenarios. Our empirical analysis demonstrates the value of the pro-
posed measures in understanding the outputs of predictive models and
the effect of algorithmic interventions for homeless service provision.

Keywords: complex systems, counterfactual evaluation, fairness, socially
important data science
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1 Introduction

The general definition of homelessness refers to lack of stable and permanent
accommodations, living in shelters or on the street [1–3]. According to a recent
global survey of population estimation, more than 1.5% of the global popula-
tion lacks basic stable and secure accommodations [4]. In the United States
alone, homelessness has increased for four consecutive years since 2016, with
580,000 people experiencing homelessness on a single night in 2020 [3].

Factors leading to homelessness are numerous and complex, including but
not limited to, poverty, eroding work opportunities, mental illness [5], as well
as lack of affordable housing. Communities across the U.S. offer a plethora of
homelessness services, many of which are funded by the U.S. Department of
Housing and Urban Development. Such services include but are not limited
to Emergency shelter, Transitional Housing, Permanent Supporting Housing,
Day Shelter, and Street Outreach1. Given the scarcity of housing resources
and the variety of housing assistance services, it is critical to allocate housing
services appropriately and efficiently [6, 7]. Despite risk assessment assistance
provided by federal government to help local service assess the eligibility of
individuals in need of homelessness service, homeless rates remain high in the
United States [7]. Possible reasons include: (i) less available evidence towards
homeless characteristics to assist the service provider allocate services, and
(ii) inability to assess service matching efficiency based on reducing reentries
[7]. With respect to the first concern, Artificial Intelligence (AI) solutions for
optimal homeless service allocation have been proposed recently. For example,
[8] explored AI’s potential to improve the housing system for homeless youth,
whereas [7] proposed an optimal service allocation method. [9, 10] explored
the feasibility of using Machine Learning (ML) methods to allocate services.

Evaluating the efficiency and fairness of assigned services from algorith-
mic homelessness service allocation is a critical step to minimize the number
of homeless individuals, which is the second concern mentioned above. Cur-
rent service evaluation methods focus on individual–level or household–level
data, including but not limited to, site visits, focus groups, and self–sufficiency
assessments [11]. However, such methods require long–term follow up and
human resources (e.g., interviewers) [12]. Reentry, a metric widely used in
quantitatively evaluating service allocation without the hustle of long–term fol-
low up, refers to individuals experiencing repeated episodes of being homeless
[7, 13, 14]. We argue that reentry alone is insufficient to evaluate algorithmic
models for homelessness services. Specifically, reentry cannot evaluate systemic
fairness (i.e., group–level fairness) as it focuses on individuals. For example,
suppose that the reentry rate of certain homeless service (e.g., permanent sup-
porting housing) is 0.01, which means only 1% of homeless people assigned to
this service eventually return to homelessness. From the perspective of reentry,
the allocation is quite successful (i.e., probability of reentry is low). However,
if 90% of the returning individuals (i.e., 1% of homeless people) are female

1The abbreviations used in this article are summarized in Table 1.
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and assuming an approximately equal ratio of females and males entering the
homeless system initially, then the allocation system is biased towards gender
despite its low reentry rate. Similarly, accuracy alone is inadequate as an eval-
uation criterion of the optimality of algorithmic derived policies for homeless
service provision. This is because high accuracy largely quantifies the ability
of an algorithmic model to learn to replicate the existing allocation system.

In this article, we address the problem of evaluating (and comparing) algo-
rithmic homeless service provision methods along dimensions that go beyond
accuracy, and explore in/dependence, accuracy, fairness, and cost. In summary,
the main contributions of this article are:

• Proposing novel domain–specific measures to facilitate a fair and meaningful
comparison of existing and future algorithmic homeless service provision
methods. For completeness, existing measures from the literature are also
included.

• The utility of the proposed measures, both for specific features of interest,
as well as for arbitrary feature combinations is discussed.

• The usefulness of the proposed measures is demonstrated by evaluating
several data science solutions for homeless services allocation in a unique
dataset of homeless services administrative records.

The remainder of the article is outlined as follows. Section 2 discusses
recent works related to assistance services, allocation systems, and services
evaluation methods. Section 3 describes the notation and problem statement.
Section 4 introduces the proposed domain–specfic evaluation metrics. Section
5 describes recent algorithmic methods for services provision. Section 6 sum-
maries the experimental setup, whereas, Section 7 presents the experimental
results. Finally, Section 8 concludes this article with key takeaways, limitations
and future works ideas.

2 Related Work

Recently, machine learning methods have been employed in human–related
decision making domains, raising algorithmic fairness concerns. For instance,
Asplund et al. [15] showed that sock–puppet browsing is biased to a spe-
cific group of users in online housing markets. Public employment services
(PES) leverage AI–based methods to assign limited resources to “vulnera-
ble” job seekers [16]. However, in contrast to traditional policy–based manual
assignments, AI–based methods can be discriminatory because of correla-
tions between features, even if sensitive features are themselves excluded from
the training process. An algorithmic model used in predicting recidivism has
been shown to be biased against Afro–American [17]. Reasons for algorithmic
decision–making models to introduce biases in the decision making process
include biases inside the training set [18] (e.g., missing data, data imbalance,
erroneous data), as well as naive use of application–agnostic evaluation metrics
(e.g., accuracy), which although emphasize on the predictive power of machine
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Table 1 Abbreviations and their corresponding description.

Abbreviation Description

CoC Continuum of Care
ES Emergency Shelter
HMIS Homeless Management Information System
HUD U.S. Department of Housing and Urban Development
PSH Permanent Supportive Housing
RRH Rapid Rehousing
HP Homeless Prevention
SNAP Food Stamp Program
SFaMP Staying Family Member’s Place
SFrMP Staying Friend Member’s Place
PNH Place Not for Habitation
RCS Rental by Client with Subsidy
OCS Owned by Client with Subsidy
SSI Supplemental Security Income
MI Monthly Income
SSDI Social Security Disability Insurance
TH Transitional Housing
LS Living Situation
THPTY Times Homeless Past Three Years
DC Disabling Condition
PD Physical Disability
AI Artificial Intelligence
ML Machine Learning

learning models cannot be used to evaluate their real–life prediction outcomes.
The main focus of this article is how to better evaluate algorithmic decision
making models.

Specific to homeless services provision, several works have applied machine
learning related methods, including but not limited to, allocating homeless-
ness service [19], assessing the impact of homelessness service allocation with
respect to reentries [14] and prioritizing services allocation based on risk assess-
ment or optimizing allocation based on algorithmic matching outcomes [20].
Specifically, Gurobi optimization has been used to predict bed occupation in a
shelter for any given night by tracing the individual trajectories of getting into
and out of the shelter [7]. Random Forest, Decision Tree, and Logistic Regres-
sion models have been used recently for reentry prediction, with Random
Forest achieving the best performance [9]. [8] used the Next Step Tool (NST)2

to train logistic regression and decision trees for predicting youth’s homeless-
ness status after receiving housing assistance based on the youth background
and current living states. In practise, homeless services rely primarily on man-
ual evaluation [7]. We consider state–of–art methods for services allocation
(i.e., Random Forest [9] and Gurobi [7]), as well as other popular algorithmic
models (e.g., Adaboost and K Nearest Neighbors).

2NST is a set of multiple–choice and frequency–type questions, which are designed to mea-
sure the vulnerability of youth based on their previous history (e.g., socialization, daily function,
homelessness experience).
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Performance evaluation of automated service allocation system often
involves a single dimension (i.e., similarity between automatic allocation and
the actual manual allocation results), which although may be used to com-
pare against baselines, may not necessarily probe all aspects of a method’s
performance in this socially important domain. [21] used domain–agnostic eval-
uation metrics, including precision, recall, F1–score, and accuracy to evaluate
the learning process itself rather than the application of the model. However,
high evaluation scores of such domain–agnostic evaluation metrics (e.g., accu-
racy, precision) only prove that the automatic allocation system can efficiently
mimic the manual allocation process, rather than justify the effectiveness of
the automatic allocation system itself. To evaluate the potential impact of ser-
vice allocation, [7] used reentry to measure the effectiveness of the delivered
services, and quantify the scale changing degree of three–groups, namely, those
that were harmed or benefited by automated service allocation and those that
remained unaffected by it. However, [7] only presented statistical results such
as the total number of benefited individuals. Deeper relationships between the
group compared to the overall population is unclear. In addition, [7] ignores
the fact that we wish to maximize the number of individuals non–reentering
the homelessness system, while minimizing the number of individuals that do
reenter. We propose domain–specific evaluation metrics to quantify the allo-
cation results and separate unaffected groups into two subgroups based on
reentry and non–reentry, then evaluate them separately.

3 Algorithmic Homeless Service Allocation

Consider a collection of N records Oi = (xi, yi, ri), 1 ≤ i ≤ N , where xi is
represented by feature vector xi = [xi1, ..., xiM ]T , and M denotes the total
number of features. yi represents the allocated service in reality and ri ∈ {0, 1}
with ri = 1 denoting that the individual has entered the homeless service sys-
tem multiple times, otherwise entered only once. For consistency with prior
art and fair comparison between candidate algorithmic methods, each record
is additionally associated with a label of four homeless assistance service,
namely, ES, RRH, TH and HP. The service proposed by algorithmic model
J is denoted as y′i, and its corresponding reentry outcome is denoted as r′i.
The anticipated reentry outcome r′i is estimated by a counterfactual model
B. Existing counterfactual models (e.g., DICE [22], AR[23], and CEM[24])
can be used to provide counterfactual feature vectors with respect to certain
algorithmic model output, but are unsuitable for the task we explore in this
study. Because in such counterfactual methods, the counterfactual feature vec-
tor involves all the features (i.e., all M features can be perturbed). However, in
our problem setting, the only allowed to perturb “feature” is service (i.e., yi),
and xi remains unchanged in the counterfactual model. For this reason, we use
BART (Bayesian Additive Regression Tree) [25] to predict reentry using coun-
terfactual allocations, as it has been shown to provide coherent probabilistic
estimation of heterogeneous treatment effects [7].
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elder) and mainly evaluate whether the algorithmic decision–making system
is biased or harmful to that protected group.
Efficiency. Beyond fairness, the efficiency of an algorithmic decision–making
system for homeless service allocation is often measured in its ability to
reduce their chance of re–entering the homelessness system in the future, after
receiving services. Unfortunately, application independent fairness evaluation
metrics cannot quantify allocation efficiency. The evaluation metrics proposed
in this work are able to measure both fairness and allocation efficiency, as
discussed in Section 4.3.1.
Cost. Developing an algorithmic decision–making system for homeless service
allocation has an associated cost, measurable in terms of effort and time for
data collection, as well as computational power consumed for model train-
ing. Improving the accuracy of an algorithmic system may be impractical
for example if more training data cannot be collected3, or if the quality of
(often self–reported) data is questionable4. Similarly, compute costs may be
considerable if third–party compute resources (e.g., Google Cloud) are used,
even if a trained model can be reused over time. Modern deep neural net-
work architectures, for instance, are notorious for their large carbon footprint
[31, 32]. At the same time, maintaining and updating trained algorithmic mod-
els requires a dedicated trained computer or data scientist, a resource which
is often unavailable to homeless serving organizations.

4.2 Application Independent Metrics

Widely used evaluation metrics include but are limited to accuracy, preci-
sion, recall, and F1–score [33]. Specifically, the predicted labels of the learning
model fall into one of four categories, namely, true positive (TP ), true nega-
tive (TN), false positive (FP ), or false negative (FN). Accuracy is defined as
the percentage of correctly classified data over the total number of data, and
is calculated by Equation 1. Precision (see Equation 2) refers to the number of
data classified correctly within a specific label over the total number of data
classified to that label. Recall points to the number of data classified correctly
within a specific label over the total number of data that belongs to that label,
and is calculated by Equation 3. The F1–score combines recall and precision
into a single metric as shown in Equation 4.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

3Collecting necessary data for training an algorithmic model requires human effort.
4Even though methods to address the problem of training algorithmic decision–making systems

in the presence of untrustworthy training data has recently been explored (e.g., [30]), it remains
a challenging open problem.
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Table 2 Selected features, grouped into four categories.

Category Feature Feature Val-
ues

Explanation

Basic Information Age Age 0-20 Age between 0 to 20
Age 20-40 Age between 20 to 40
Age 40-60 Age between 20 to 40
Age 60 up Age elder than 60

Race Asian
White
AI&AN American Indian or Alaska Native
B&AA Black or African American
NH&PI Native Hawaiian or Other Pacific Islander
Race other

Gender Female
Male
Gender other

Living Situation Times
Homeless
Past Three
Years

THTPY 1 Once

THTPY 2 Twice
THTPY 3 Three times
THTPY 4 Four times or more
THTPY other

Living Situa-
tion

LS Friend Staying or living in a friend’s place

LS Family Staying or living in a family’s place
LS Jail Jail, prison or juvenile detention facility
LS ES Emergency shelter, including hotel or motel paid for with emergency shelter voucher
LS NH Place not meant for habitation
LS Rental Rental by client, with other ongoing housing subsidy
LS Owned Owned by client, with ongoing housing subsidy
LS other

Financial Situation Monthly
Income

MI None Monthly income is $0

MI 1000 Monthly income less than $1,000
MI 1000 2000 Monthly income between$1,000 to $2,000
MI 2000 Monthly income more than $2,000

Earned Earned No No employment Income
Earned Yes Has employment Income

Health Situation Disability Disability No
Disability Yes
Disability other

Physical Dis-
ability

PD No

PD Yes

F1 score =
2× precision× recall

precision+ recall
(4)

Such domain–agnostic evaluation metrics are not suitable for homelessness
services allocation evaluation, as they can not quantify effectiveness or fairness.
Effectiveness means whether the delivered service can assist people in getting
out of homelessness or improving their overall quality of life. Fairness refers to
the ability of an allocation scheme to operate without incurring bias towards
different groups (e.g., female vs male, elderly vs younger).
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4.3 Application Specific Metrics

Fairness is a critical issue, particularly when involving algorithmic models in
the decision–making process [34, 35]. Provided with biased data algorithmic
model can learn to reproduce systemic biases with potentially detrimental
effects [36]. For example, algorithms used for predicting recidivism has a much
higher false–positive rate for black people than white people [37]. In another
scenario, algorithmic model used to automatically rank job candidates has
shown to be biased against female [26]. To evaluate possible algorithmic biases
induced by algorithmic models [38] as well as biases in the data used to train
them, domain–specific metrics are necessary.

As mentioned in Section 1, reentry is widely adopted as a criterion to
reflect the effectiveness of the delivered homeless assistance services [7, 14, 39].
Specifically, if the homeless people experience repeated episodes of homeless-
ness (i.e., reentry), the initial or previous delivered assistance services are
not considered optimal or effective. In our study, we follow the same idea to
quantify the effectiveness of allocated services. Besides, even with a desirable
outcome, how do we know the current delivered service is optimal? In other
words, what would the outcome be if an individual was pretended with an
alternate outcome of assistance service? To compare the current allocated ser-
vice with other services, we rely on counterfactuals [7]. Specifically, we leverage
BART as a counterfactual model to predict reentry. BART is a variant of the
Bayesian regression algorithm, which is based on a “sum of trees” model. Each
tree is restrained by regularization prior, and BART draws samples from the
posterior distribution by the Bayesian back–fitting markov chain monte carlo
(MCMC) algorithm [40]. In our study, BART generates posteriors for each
individual in the dataset, allowing precise inference for both population–wide
level and individual–specific levels. In summary, we use a counterfactual model
to predict reentry with allocated service by algorithmic models and compare
with the reentry outcome of the actual delivered service to see whether the
delivered service is an optimal choice.

4.3.1 Fairness Consideration and Evaluation Metrics

To ensure that allocation outcomes do not disproportionately harm people
with certain sensitive characteristics (e.g., age, gender), and inspired by [7], we
compare the algorithmic allocated reentry outcome r′ with the actual reentry
r, across three groups, defined as follows:

• Group of individuals that benefited (Gb) from algorithmic service
allocation: the set of people predicted not to return to homelessness after
being assigned to a service by model J , even though in reality they reenter
(i.e., r = 1, r′ = 0).

• Group of individuals that were harmed (Gh) from algorithmic ser-
vice allocation: the set of people predicted to return to homelessness after
being assigned to a service by model J , even though in reality they not
reenter (i.e., r = 0, r′ = 1).
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and do not reenter the homeless system respectively with certain feature value
of fm.

Intuitively, we wish algorithmic models to avoid favoring certain popula-
tions (i.e., Gb) or hurting others (i.e., Gh). Therefore, we define the following
domain–specific metrics:

∆N(fm
k ) = Gb(f

m
k )−Gh(f

m
k ), (8)

∆T (fm
k ) = ∆N(fm

k )

∑N

i=1 1(xim = fm
k )

N
, (9)

Specifically, Equation 8 measures the difference in group size between Gb and
Gh for a certain feature value fm

k . Thus, ∆N(fm
k ) measures the relative benefi-

cial degree on group–population (Gfm

k
) (i.e., ∀xi ∈ Gfm

k
, xim = fm

k ). Equation
9 normalizes ∆N(fm

k ) with the percent of the individuals whose feature value
fm is k. Therefore, ∆T (fm

k ) quantifies the relative beneficial degree (i.e., the
difference between Gb and Gh) on overall population. Note that ∆N(fm

k ) and
∆T (fm

k ) always have the same sign. There are several combinations which
require further interpretation. Figure 5 provides illustrative examples for com-
binations of ∆N(fm

k ) and ∆T (fm
k ). Note that for illustration purposes, fm

k

denotes the feature of gender with certain feature value of female (assuming
N equals to total number of females).

• When both ∆N(fm
k ) > 0 and ∆T (fm

k ) > 0, Gb(f
m
k ) is larger than Gh(f

m
k ).

This is desirable as relatively more people are benefited from decisions made
by model J . However, two scenarios need further consideration:

– N(fm
k ) is large but T (fm

k ) is small. This means that even with high relative
benefit within a certain feature value, the benefited people comprise only
a small fraction of the overall population. Figure 5(a) shows this case,
where the total number of females is 18, and the total number of Gb and
Gh are 6 and 3, respectively. Therefore, ∆N(fm

k ) = 6− 1 = 5, ∆T (fm
k ) =

5/18 = 0.27.
– N(fm

k ) is small but T (fm
k ) is large. In this case, even with small relative

benefit within a certain feature value, the portion of benefited people
take a large proportion of the overall population. Figure 5(b) shows this
case, where the total number of females is 9, and the total number of
Gb and Gh are 6 and 3, respectively. Therefore, ∆N(fm

k ) = 6 − 3 = 3,
∆T (fm

k ) = 3/9 = 0.33.

• When ∆N(fm
k ) < 0 and ∆T (fm

k ) < 0, Gb(f
m
k ) is smaller than Gh(f

m
k ). This

is undesirable, as relatively more people are harmed by service allocations
made by model J . Figure 5(c) shows this case, where the total number of
females is 9, and the total number of Gb and Gh are 3 and 6, respectively.
Therefore, ∆N(fm

k ) = 3− 6 = −3, ∆T (fm
k ) = −3/9 = −0.33.

• When ∆N(fm
k ) = 0 and ∆T (fm

k ) = 0, Gb(f
m
k ) is equal to Gh(f

m
k ). In this

case, the effectiveness of the service allocation system is neither improved
nor impaired compared with the reality status. Figure 5(d) shows this case,
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Table 3 Summary of the proposed evaluation metrics. Gb denotes group of people that is
benefited by an algorithmic intervention method. Gh denotes group of people that is
harmed. Gu denotes the group of people that were neither negatively nor positively
impacted. fm

k
denotes feature m with value k.

Evaluation
metrics

Definition Brief Explanation Ranges Advantages Disadvantages

∆N ∆N(fm
k ) = Gb(f

m
k )−Gh(f

m
k ) Measures the differ-

ence in group size
between Gb and Gh

for fm
k

(−∞,+∞) Showing
the relative
improvement

Cannot show the
detailed value
of Gb(f

m
k ) and

Gh(f
m
k )

∆T ∆T (fm
k ) = ∆N(fm

k )
∑

N

i=1
1(xim=fm

k
)

N
Quantifies the rel-
ative beneficial
degree on overall
population

(−∞,+∞) Showing the
relative dif-
ference on
overall pop-
ulation

Cannot show the
detailed value
of Gb(f

m
k ) and

Gh(f
m
k )

∆U ∆U(fm
k ) =

Gu0
(fm

k
)

Gu0
(fm

k
)+Gh(fm

k
) −

Gh(f
m

k
)

Gu0
(fm

k
)+Gh(fm

k
) −

Gu1
(fm

k
)

Gu1
(fm

k
)+Gb(fm

k
) +

Gb(f
m

k
)

Gu1
(fm

k
)+Gb(fm

k
)

Measures the tran-
sition rate from
reentry to non–
reentry

[−2, 2] Showing
relative dif-
ference to
(non)reentry
in Gu

Cannot show the
detailed value of
reentry and non–
reentry in Gu

Note that ∆U(fm
k ) ∈ [−2, 2]. To explain why, we consider the range of

∆U0(f
m
k ) and ∆U1(f

m
k ) (each one separately), as they are the only two factors

that contribute to the calculation of ∆U(fm
k ) according to Equation 10. We

know that ∆U0(f
m
k ) =

Gu0
(fm

k
)

Gu0
(fm

k
)+Gh(fm

k
) −

Gh(f
m

k
)

Gu0
(fm

k
)+Gh(fm

k
) . The lower bound

for ∆U0(f
m
k ) is −1, becasue

Gu0
(fm

k
)

Gu0
(fm

k
)+Gh(fm

k
) = 0 and

Gh(f
m

k
)

Gu0
(fm

k
)+Gh(fm

k
) = 1.

Thus, ∆U0(f
m
k ) = 0 − 1 = −1. This extreme case means Gu0

(fm
k ) = 0, and

Gu0
(fm

k ) + Gh(f
m
k ) = Gh(f

m
k ). The upper bound for ∆U0(f

m
k ) is 1, becasue

Gu0
(fm

k
)

Gu0
(fm

k
)+Gh(fm

k
) = 1 and

Gh(f
m

k
)

Gu0
(fm

k
)+Gh(fm

k
) = 0. Thus, ∆U0(f

m
k ) = 1 − 0 = 1.

This extreme case means Gh(f
m
k ) = 0, and Gu0

(fm
k ) + Gh(f

m
k ) = Gu0

(fm
k ).

Therefore, the range for ∆U0(f
m
k ) is [−1, 1]. ∆U1(f

m
k ) follows the similar idea.

The lower bound for ∆U is the lower bound of ∆U0(f
m
k ) subtracting the upper

bound of ∆U1(f
m
k ), which is −1 − 1 = −2. The upper bound for ∆U is the

upper bound of ∆U0(f
m
k ) subtracting the lower bound of ∆U1(f

m
k ), which is

1− (−1) = 2. Therefore, the range for ∆U is [−2, 2].
Table 3 summarizes the proposed evaluation metrics. Apart from being

applicable to specific features independently, the proposed evaluation met-
rics can be used to evaluate fairness when considering aggregate features. For
instance, one may be interested in evaluating the performance of an algorith-
mic intervention model with respect to fairness specifically to “back females
whose age elder than 60”. Naively, one could perform such analysis by examin-
ing the model’s fairness with respect to race, sex, and age independently. The
benefit of aggregating features, however, is that one can get a single measure
of fairness even if multiple dimensions (i.e., features) are under investigation.
In the particular scenario of back females that are older than 60, we begin by
extracting the features (i.e., for illustration propose, we list a small example
here and assume the total number of individual is 15). Let m1 (i.e., Female: 5;
Male: 10), m2 (i.e., Asian: 4; White: 6; Black: 5), and m3 (i.e., Age 0− 60: 9;
Age > 60: 6) denote gender, race, and age, accordingly. Then, the correspond-

ing features values are km
1

(i.e., Female), km
2

(i.e., Black), and km
2

(i.e., Age



Springer Nature 2021 LATEX template

Evaluating Algorithmic Homeless Service Allocation 15

> 60). To get the final evaluation results, we organize the selected features

and corresponding feature values as f
(m1,m2,m3)

(km1
,km3

,km3 )
(i.e., select the individual

whose being female, black, and elder than 60, and the total number of such
individuals is 2) which is used to substitute fm

k (i.e., select the individual based
on single feature such as female, the the total number of female is 5) in all
proposed evaluation metrics.

4.3.2 Cost

The cost for training and predicting using a computationally expensive
algorithmic model can be significant, particularly when a third party com-
putational resource is used to host the model. The computation cost of an
algorithmic model can be quantified as the CPU/GPU time required to train
a model, and the time required to make predictions using the model. Per-
haps more important than the computation cost may be the effort required
to acquire and assemble training data. To quantify data collection effort,
we propose a measure of data cost (DC) defined for a particular training
and prediction duration in terms of the number, ns of static features (e.g.,
gender) that require a onetime collection effort, and the number, nd, of
dynamic features (e.g., income) that need periodic acquisition. Specifically,
DC =

∑ns

i=1 si +
∑nd

i=1 di, where si and di are the counts of the unique values
for feature si and di respectively.

5 Candidate solutions

Three well–known algorithmic models (K Nearest Neighbors, Random Forest,
and AdaBoost) and the Gurobi optimation method proposed in [7] are used
in this section to illustrate the usefulness of the proposed metrics.

• K Nearest Neighbors (KNN): KNN is a simplistic algorithmic model
commonly used for classification without any knowledge of the underlying
domain [41]. In our study, we use KNN to output an assistance service by
examining the allocation of individuals that are most similar to the one
at hand. We use 5–fold cross–validation on the training set to select the
reasonable value of the number of neighbors.

• Random Forest (RF): RF is constructed by a set of decision trees with
random subsets of features. The label is decided by the most votes [42]. We
use 5–fold cross–validation to chose the number of trees.

• AdaBoost (AB): Boosting has been a popular technique for two–class
classification, with multiple proposed variants [43]. We use the Stagewise
Additive variant with exponential loss function (SAMME) [44], which exper-
imentally proved its superiority compared with other boosting variants [44].
We use decision tree as a weak classifier and perform 5–fold cross–validation
to choose maximum tree depth of weak classifiers.
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• Gurobi: [7] used Gurobi optimization to find optimal biweekly alloca-
tions for homeless individuals given aggregate capacity constriants (e.g.,
unavailability of beds in a shelter).

6 Experimental Setup

6.1 Dataset

For evaluation purposes, we use a dataset of 50, 469 records, corresponding to
38, 954 individuals (i.e., each individual may have multiple records) who seek
homelessness assistance in the New York Capital Region. Each record com-
prises individual–level characteristics and allocated services (e.g., Emergency
Shelter, Homelessness Prevention, Rapid Rehousing, and Transitional Hous-
ing). A complete description of the data elements is available at [45]. The
characteristics of each individual are collected and extracted from household
relations, education background, living situation, health, and employment sit-
uation. The name and Social Security Number of enrolled people in the dataset
have been double hashed to protect their privacy. Note that reentry is defined
as returning to the homeless service system after previously exiting the system.

6.1.1 Feature Selection

To ensure that only informative features are used to train model J , we perform
feature selection before feeding the dataset into training models. Initially, a
total of 174 features are available in the dataset. We first removed features such
as “Date Created”, “Date Deletect”, “ClientID”, “ExportID”, “FirstName”,
and “NameSuffix”, which are irrelevant from a machine learning model per-
spective. In the next step, we extract implicit but important features (e.g., we
compute age from date of birth). We subsequently remove uninformative fea-
tures by performing feature selection. Specifically, we remove features whose
fraction of missing values is larger than 60% of selected records. Such features
include “WorldWarII” (i.e., whether attend WorldWarII), “VietnamWar” (i.e.,
whether attend VietnamWar), “DesertStorm” (i.e., whether experience Desert-
Storm). We additionally remove features with zero variance (i.e., the value is
1 for all selected data instances), such as “NameDataQuality”. At this point,
the number of features is 34.

To quantify feature importance, we leverage the SHAP [46] package, which
uses Shapley values to estimate how each feature contributes to the prediction
of a machine learning model [47]. Specifically, a feature importance score is
estimated based on the boosted trees that are constructed from the features in
the dataset [48]. Therefore, features’ importance scores depend on the dataset
itself. The higher the SHAP value is, the more important the feature is. In
our analysis, we drop features whose importance score is lower than 0.01; such
features have very little effect in the model’s outcome. The final list of selected
features is shown in Figure 4, and summarized in Table 4.
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Table 4 Summary of features’ type and corresponding number.

Type Number Examples

Binary Features 5 Physical Disability, Disabling Condition, Mental Disability
Categorical Features 14 Race, Living Situation, Gender
Continuous Features 1 Age

Table 5 Reentry statistics with respect to train and test sets.

Data Number of Records Number of Reentry Number of Non–Reentry

Train 3499 1049 (29.97%) 2450 (70.03%)
Test 1,167 369 (31.67%) 798 (68.33%)

6.1.2 Data Preparation for BART Experiment

In our experiments, we focus on the subset of those individuals in our dataset
that received services after exiting the system (i.e., reentering more than
once) [7, 13, 14]. This definition includes individuals that for example used an
“Emergency Shelter” more than once, or an emergency shelter before being
assigned to a “Permanent Supportive Housing” program. The overall number
of records referring to such individuals is 38, 954. We additionally focus on
records corresponding to “head of household” individuals, since records belong-
ing to dependents and/or spouses often lack socioeconomic, employment and
education data. This down selection results in a subset of 24, 117 records.

At the same time, to ensure fair comparison with methods listed in Section
5, we focus on records for four homeless programs, namely Emergency Shel-
ter, Day Shelter, Homelessness Prevention, Rapid Re-Housing. This further
reduces the number of relevant records to 18, 952 (i.e., ∼ 19k records). We
denote this dataset as Dori, and use it to train and test the counterfactual
model BART.

6.1.3 Data Preparation for Algorithmic Models Experiment

For a fair experimental evaluation of the Gurobi baseline [7], we tried to repli-
cate, to the extend possible, the setting used by that work. Specifically, the
HMIS data reported in [7] was limited in scale (only 7, 474 records in total),
and had a reported reentry rate of 43.03% (as opposed to 21.92% in our 18, 952
records dataset). To match that rate, we selected all records between 2013 to
2015 (4, 666 in total), among which, 1, 418 have entered the homeless system
more than once, leading to a reentry rate of 30.3%. We denote this dataset as
as Dml, and randomly pre–split it into a training and testing set with a ratio
of 3 : 1. Table 5 presents the statistics.

6.1.4 Data Preparation for Data Imbalance Experiment

The impact of data imbalance on ML and AI models is well documented,
however addressing it remains an open research question [49]. One of the most
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widely used solutions to handle this problem in practice, is selecting a subset
of available data (e.g., by random sampling) that ensures all classes are equally
represented, or excluding the records of severely underrepresented classes.

To study the impact (if any) of data imbalance (i.e., the ratio of records
between reentry and non–reentry) on (i) BART, (ii) algorithmic service allo-
cation methods, and (iii) the proposed evaluation metrics, we created subsets
sampled from Dori with different reentry rates as follows. We randomly split
data instances in Dori (i.e., ∼ 19k records) into training and test sets with
a ratio of 4 : 1. The number of data instances for training and test sets are
15, 161 and 3, 791 accordingly, resulting in reentry rates 21.64% and 23.08%,
respectively. We fixed the test set, and derived (from the original training set)
five separate training sets, with different reentry rates, as shown in Table 6.
Specifically, in the original training set (i.e., 15, 161 records), the total number
of reentries is 3, 275. Thus, to create a balanced training set (i.e., reentry rate of
0.5), we randomly sampled 3, 275 non–reentry records. To create training sets
with varying reentry rates, we fixed the total number of the training set and
randomly selected reentry data records according to the corresponding reentry
rate. We subsequently randomly selected the non–reentry data instances.

Table 6 Statistical number of training set with different reentry rate.

Reentry
Rate

Data Imbal-
ance Ratio
(Reentry/
Non–reentry)

Number
of Reentry
Records

Number of
Non–reentry
Records

Total Number
of Training
Data Instances

0.1 1:9 655 5,895 6,550
0.2 2:8 1,310 5,220 6,550
0.3 3:7 1,965 4,585 6,550
0.4 4:6 2,620 3,930 6,550
0.5 5:5 3,275 3,275 6,550

6.2 Model Configuration

6.2.1 BART Model

The BART model has been verified to accurately predict the actual reentry [7].
To build and train model B, we follow the same experimental setting suggested
by [7] with the only difference that a limitation on the number of years passed
before someone reentering the homelessness system is not imposed. Therefore,
a total number of 18, 952 records are split into training and testing sets with a
ratio of 3 : 1. Specifically, the number of training and testing data instances are
14, 214 and 4, 783, respectively. We use R package bartMachine [50] to build
and fit B.





Springer Nature 2021 LATEX template

20 Evaluating Algorithmic Homeless Service Allocation

Table 7 Statistics of reentry result based on different algorithmic models and Gurobi
optimization for assistance service allocation.

Allocation Methods Number of Reentry Percentage of Reentry

AB 294 25.19

RF 377 32.30
KNN 407 34.87
Gurobi 476 40.78

Actual Reentry 369 31.61

Table 8 Statistics of three groups based on different algorithmic models and Gurobi
optimization for assistance service allocation.

Allocation Methods Gb Gh Gu1
Gu0

AB 233 167 127 640

RF 218 230 147 572
KNN 188 235 172 572
Gurobi 176 296 184 515

real reentry/non–reentry situation with given allocation services. We use the
trained B to evaluate the results of assistance service allocated by algorithmic
models.

7.2 Algorithmic Models Evaluation

Table 7 summarizes the reentry results based on the delivered services by
different algorithmic models. AB achieves the best performance by lowering
the reentry from 369 to 294. The performance of RF and KNN are better than
the comparative method Gurobi. However, it is worse than the actual reentry
outcome.

Based on the discussion on Section 4.3, we compute the overall Gb, Gh and
Gu for each algorithmic model and Gurobi method. Detailed statistical results
are shown in Tables 9 and 12 in the Appendix. Ideally, we want Gb and Gu0

to be as high as possible, whereas Gh and Gu1
to be as low as possible, as

we wish more people to be benefited, and fewer people to be harmed. In this
context, AB still achieves the best performance, whereas RF and KNN both
outperform Gurobi.

As mentioned in Section 4.3, we tend to avoid the algorithmic model like
JA shown in Fig 3(a). Therefore, we visualize the three groups on feature value
level for that selected importance and sensitive features shown in Table 2.
Note that features that belong to the category of basic information (i.e., Age,
Gender, Race) are considered sensitive features. We use radar plot to visualize
the fairness evaluation metrics ∆N , ∆T , and ∆U . Table 9 shows the boundary
line of acceptable model performance with respect to ∆N , ∆T , and ∆U . Note
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Table 9 Criterion for three evaluation metrics.

Evaluation metrics Acceptable Unacceptable

∆N ∆N ≥ −5% ∆N < −5% and ∆T < −5%
∆T ∆T ≥ −5% ∆T < −5%
∆U ∆U ≥ 0 ∆U < 0

performance with allocated service by the algorithmic model is poor. To sum
up, to quantitatively explore the service allocation results by three algorithmic
models and the baseline work, we classify the possible combination of ∆N ,
∆T , and ∆U into two categories which are acceptable and unacceptable shown
in Table 9.

According to experimental results presented in Fig 7, we further analyze
the service allocation results of each method as follows.

• AdaBoost (AB): The total number of Unacceptable cases (i.e., fm
k ) defined

in Table 9 is 2, including the value of Place Not for Habitation in feature
Living Situation and the feature value of No Physical Disability. The rest
results of the feature values belong to the acceptable cases. There are no
unacceptable cases shown in the sensitive features (i.e., Basic information).
AB model achieves a relatively high score (i.e., the highest score of all three
metrics for certain features) for several feature values, including female,
having employment earned, previous living in the emergency shelter, and
having physical disability.

• Random Forest(RF): 12 unacceptable cases exist in the allocated results
of the RF model. 2 among them belong to sensitive features that are age
between 40 to 60 and older than 60. The rest 25 feature cases belong to
acceptable, and the RF model achieves a relatively high score in the feature
values, including female, having employment earned, monthly income is zero,
having employment earned, and having a physical disability. The results of
the RF model are less satisfactory than AB because of hurting sensitive
features and more unacceptable cases.

• K Nearest Neighbors (KNN): 11 unacceptable cases are shown in the allo-
cated result of the KNN model, and one of them belongs to the sensitive
feature, which is the age is elder than 60 years old. The rest of the cases
belong to acceptable. The feature values with a relatively high score are
female, American Indian or Alaska Native, having employment earned,
monthly income is zero, and having a physical disability. The results of the
KNN model are also worse than the AB model.

• Gurobi: The total number of unacceptable cases in Gurobi is 19, and 5 of
them belong to the sensitive features. The feature values with a relatively
high score in Groubi are age between 20 and 40 years old, having employing
earned, previous living in the emergency shelter, the information of times
being homeless past three years is unknown or missed (i.e., THTPY other).
The performance of Gurobi is the worst compared with the three algorithmic
models.
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of those services reallocation models. Specifically, with increasing reentry rate,
the benefit rate keeps diminishing.

The key takeaway from this analysis is twofold. First, data imbalance can
adversely impact model output, so a balanced training dataset is required for
both BART and the algorithmic models to be accurate. Second, the proposed
evaluation metrics, which are designed to evaluate models’ output, can be
potentially used to indicate problems with the training dataset, such as biases
as the result of data imbalance (e.g., when the perceived benefit is deemed to
be too “good to be true”).

Table 10 Tables for experiments statistical results for allocation models and Gurobi
methods of domain–specific evaluation metrics

AB RF KNN Gurobi

Reentry Rate Gb Gh Gu0
/Gu1

Gb Gh Gu0
/Gu1

Gb Gh Gu0
/Gu1

Gb Gh Gu0
/Gu1

0.1 0.26 0.05 0.67/0.02 0.28 0.07 0.65/0.00 0.21 0.04 0.70/0.05 0.22 0.04 0.69/0.04
0.2 0.21 0.07 0.70/0.02 0.21 0.07 0.70/0.01 0.12 0.09 0.78/0.01 0.10 0.11 0.77/0.01
0.3 0.13 0.05 0.81/0.01 0.12 0.09 0.71/0.08 0.11 0.10 0.70/0.09 0.09 0.14 0.69/0.08
0.4 0.09 0.13 0.74/0.04 0.08 0.09 0.70/0.14 0.04 0.23 0.60/0.13 0.02 0.31 0.54/0.13
0.5 0.05 0.28 0.59/0.07 0.06 0.21 0.64/0.09 0.02 0.37 0.50/0.11 0.02 0.46 0.43/0.09

8 Conclusion and Future Work

In this study, we evaluated the performance of algorithmic models for homeless
service allocation. To include fairness in the evaluation process, we proposed
three application specific evaluation metrics. Using the proposed metrics, we
compared several data science solutions for homeless services allocation in a
unique dataset of homeless services administrative records.

Avenues for future study include exploring allocation fairness at the indi-
vidual level, as well as different criteria for service effectiveness assessment. For
instance, while reentry can be a good indicator of those still in need of assis-
tance after receiving homelessness services, it does not capture cases where
people request assistance but are placed on a waiting list due to resource
constraints (e.g., unavailability of beds in a shelter). Finally, the proposed
application specific evaluation metrics for fairness are computed for each indi-
vidual feature. As a result, it can be time consuming to manually inspect a
large number of important features as the dimensionality of the data increases
in order to best inform model selection. To address this “scalability” issue,
either an aggregate metric can be developed or an explainable machine learning
metamodel can be developed to communicate to practitioners which features
may be most important in their selection of a fair (while at the same time
being accurate) model. This is a challenging problem in itself and can therefore
be a promising research direction.
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Table 11 Tables for experiments statistical results for algorithmic models and Gurobi methods of three domain–specifc evaluation metrics I

Features Values AB RF KNN Gurobi

Features Values ∆N ∆T ∆U ∆N ∆T ∆U ∆N ∆T ∆U ∆N ∆T ∆U

Age 0-20 14.42 1.28 1.22 9.61 0.85 0.93 0.00 0.00 0.56 -0.96 -0.08 0.53
20-40 9.19 3.59 1.11 8.53 3.34 1.11 2.84 1.11 0.84 1.31 0.51 0.80
40-60 2.86 1.28 0.63 -10.89 -4.88 0.14 -9.36 -4.19 0.11 -20.07 -8.99 -0.26
≥60 -7.22 -0.51 0.96 -10.84 -0.77 0.87 -13.25 -0.94 0.62 -19.27 -1.37 0.37

Gender Female 10.11 3.68 1.45 6.58 2.39 1.38 3.05 1.11 1.14 -1.41 -0.51 1.01
Male 2.98 1.88 0.60 -6.11 -3.85 0.26 -8.15 -5.14 0.13 -14.94 -9.42 -0.11
Other 16.66 0.08 1.0 0.00 0.00 0.5 0.00 0.00 0.5 0.00 0.00 0.5

Race AI&AN 15.15 0.42 1.52 21.21 0.59 1.69 15.15 0.42 0.8 15.15 0.42 1.52
Asian 0.00 0.00 1.6 16.66 0.08 2.0 -16.66 -0.08 -0.39 -16.66 -0.08 -0.39
B&AA 7.95 4.19 0.95 2.11 1.11 0.74 -0.81 -0.42 0.56 -5.84 -3.08 0.39
NH&PI 33.33 0.17 2.0 16.66 0.08 1.0 16.66 0.08 1.5 0.00 0.00 0.5
White 2.10 0.85 0.71 -8.42 -3.42 0.35 -9.89 -4.02 0.21 -17.68 -7.19 -0.05
Other 0.00 0.00 1.01 3.22 0.08 1.09 0.00 0.00 1.01 0.00 0.00 1.01

LS ES 19.20 6.16 1.35 13.59 4.37 1.16 5.33 1.71 0.8 5.59 1.79 0.81
Jail 9.19 0.68 0.96 17.24 1.28 1.33 5.74 0.42 0.78 5.74 0.42 0.78

SFaMP -0.65 -0.08 0.60 -2.63 -0.34 0.48 -12.50 -1.62 0.08 -12.50 -1.62 0.08
SFiMP -4.87 -0.51 0.16 -13.82 -1.45 -0.22 -20.32 -2.14 -0.49 -20.32 -2.14 -0.49
PHP -14.11 -1.02 -0.54 -7.05 -0.51 -0.25 -24.70 -1.79 -0.96 -25.88 -1.88 -1.01
RCS 7.69 0.42 1.93 -20.00 -1.11 1.05 7.69 0.42 1.93 -23.07 -1.28 0.73
OCS 7.51 0.85 1.29 -17.29 -1.97 0.28 12.03 1.37 1.51 -22.55 -2.57 0.09
Other -6.80 -0.85 0.77 -13.60 -1.71 0.51 -19.04 -2.39 0.28 -21.08 -2.65 0.23
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Table 12 Tables for experiments statistical results for algorithmic models and Gurobi methods of three domain–specifc evaluation metrics II

Features Values AB RF KNN Gurobi

Features Values ∆N ∆T ∆U ∆N ∆T ∆U ∆N ∆T ∆U ∆N ∆T ∆U

Earned No 3.17 2.74 0.76 -4.36 -3.77 0.50 -7.24 -6.25 0.32 -13.30 -11.48 0.11
Yes 21.25 2.91 1.66 16.87 2.31 1.40 16.25 2.22 1.35 11.24 1.54 1.13

MI 0 6.29 3.59 0.82 4.79 2.74 0.81 -1.34 -0.77 0.51 -3.59 -2.05 0.42
≤ 1,000 3.72 1.28 0.84 -10.17 -3.51 0.28 -7.19 -2.48 0.35 -18.61 -6.42 -0.03

1,000-2,000 10.58 0.77 1.52 -7.05 -0.51 0.71 7.05 -0.51 0.57 -15.29 -1.11 0.36
≥ 2,000 0.00 0.00 1.81 -16.66 -0.17 -0.36 -25.00 -0.25 -0.54 -33.33 -0.34 -0.72

THPTY One 4.81 3.08 0.92 -1.33 -0.85 0.72 -2.40 -1.54 0.61 -8.70 -5.56 0.39
Two 9.35 1.37 0.94 12.28 1.79 1.17 3.50 0.51 0.69 -4.09 -0.59 0.34
Three 2.97 0.25 0.63 -10.89 -0.94 0.13 -10.89 -0.94 0.10 -15.84 -1.37 -0.09
Four 3.50 0.34 0.43 -22.80 -2.22 -0.67 -27.19 -2.65 -0.83 -30.70 -2.99 -0.98
Other 20.58 0.59 1.63 26.47 0.77 1.91 20.58 0.59 1.63 20.58 0.59 1.63

DC No 8.88 5.31 1.02 8.45 5.05 1.03 5.01 2.99 0.86 2.00 1.19 0.74
Yes -0.96 -0.34 0.60 -20.53 -7.28 -0.14 -21.49 -7.62 -0.28 -33.09 -11.73 -0.67

Other 14.54 0.68 1.09 16.36 0.77 1.24 12.72 0.59 1.08 12.72 0.59 1.03

PD No -13.20 -1.19 -0.79 -21.69 -1.97 -0.34 -24.52 -2.22 0.32 -25.47 -2.31 -0.53
Yes 7.54 6.85 0.98 0.56 0.5 0.73 -1.97 -1.79 1.35 -8.38 -7.62 0.33
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