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Abstract

Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the se-
lected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across
the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic
spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection.
In recent years, numerous methods have been devised that consider genomic spatial distributions across summary
statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may
be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet
transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each ana-
lysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, al-
lowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks
and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and
power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep
strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established
sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling
framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the
population-genomic toolkit for learning about adaptive processes from genomic data.
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range of populations and species have been analyzed using
a variety of summary statistic methodologies to search for
signatures of natural selection (e.g, Glinka et al. 2003;
Lucas et al. 2019; Xue et al. 2021). Summary statistics devel-
oped throughout the past several years rely heavily on the
haplotype frequency spectrum (e.g, Garud et al. 2015),
whereas more classical summaries focused more on the
site frequency spectrum (e.g, Tajima 1983). These varied
approaches interrogate different aspects of genomic vari-
ation, and lend greater ability to detect specific forms of
adaptation (Vitti et al. 2013).

However, such summary statistics typically make simplify-
ing assumptions about expected patterns of variation, and
can be both underpowered and nonrobust to confounding
factors when applied individually. To overcome the pitfalls
associated with using a single summary statistic to uncover
signals of evolutionary processes, combining the knowledge

Introduction

A number of phenomena shape genomic diversity, includ-
ing nonadaptive processes, such as mutation, recombin-
ation, genetic drift, and migration as well as adaptive
processes, such as positive, negative, and balancing selec-
tion (Gillespie 2004). Many of these events leave local foot-
prints of altered haplotypic variation across individuals in
populations, restructuring the landscape of diversity across
the genome (Fay et al. 2007; Prezeworski et al. 2005;
Charlesworth 2006; Schlamp et al. 2016). To learn about
such processes, myriad summary statistics have been de-
veloped over decades, providing tools for testing whether
patterns in genetic variation match expectations, either
from theoretical models or from mean patterns observed
from simulations (e.g, Tajima 1983; Garud et al. 2015).
One of the most extensively studied population-genetic
phenomena that has received substantial attention in

terms of method development over the past few decades
is natural selection.

Natural selection is a process that acts on traits of indi-
viduals within an environment, leading to differential fit-
ness among individuals that may result in changes in the
frequencies of alleles that code for such traits within a
population (Gillespie 2004). Genomic studies of a wide

garnered from a plethora of summary statistics has become
an emerging trend (Schrider and Kern 2018). Specifically, the
recent expansion of modeling frameworks that combine sets
of measured values to discriminate among diverse evolution-
ary scenarios is owed to the advancement of computational
technologies and resurgence of statistical machine learning
and artificial intelligence.
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The goal of supervised machine learning is to provide al-
gorithms with a dataset of known input (feature) and out-
put (response) values, with the goal to learn the relationship
(or function) that maps measured features to a given re-
sponse (Hastie et al. 2009). This learned function is the mod-
el, and the shape of the function is estimated (trained) from
the dataset of input and output examples, termed the train-
ing set. This model can then be deployed to make predic-
tions on new input data. The taxonomy of supervised
learning algorithms can be further split into regression and
classification tasks, which depend on whether the response
is a quantitative (regression) or qualitative (classification) va-
lue (Hastie et al. 2009). Different machine learning algorithms
make varying assumptions regarding the form of this func-
tion, which ultimately influences the predictive accuracy of
the trained models. Commonly employed supervised ma-
chine learning methods include linear regression (Weisberg
2005), logistic regression (Kleinbaum et al. 2002), decision
trees (Safavian and Landgrebe 1991), random forests
(Breiman 2001), support vector machines (Hearst et al.
1998), and neural networks (Mdiller et al. 1995).

The predictive models based on the application of su-
pervised machine learning to problems in evolutionary
genomics have been shown to typically offer greater detec-
tion power and accuracy, while also combating the draw-
backs of individual hand-engineered summary statistics
(e.g, Lin et al. 2011; Schrider and Kern 2016; Sheehan
and Song 2016; Kern and Schrider 2018; Sugden et al.
2018; Mughal and DeGiorgio 2019; Mughal et al. 2020).
These machine learning techniques employ diverse model-
ing paradigms, and have differing performances and ro-
bustness to confounding factors depending on how the
data are modeled as well as the types of summary statistics
that are used as input to the models. Thus, all methods
show room for improvement in prediction performance.

To glean more information from input summary statistics,
many of these models (e.g, Lin et al. 2011; Schrider and Kern
2016; Sheehan and Song 2016) construct feature sets so that
they capture the expected spatial autocorrelation of vari-
ation in a local genomic region. That is, the input summary
statistics are calculated over a number of contiguous or over-
lapping genomic windows with the hope that the machine
learning models will discover relationships among various
statistics calculated across different windows to aid in predic-
tion. However, explicitly modeling these autocorrelations
may have the potential for improving prediction perform-
ance. As an example, Mughal et al. (2020) developed a meth-
od for learning about positive natural selection by utilizing
multiple summary statistics computed in overlapping gen-
omic windows as input, and then modeled the autocorrel-
ation across these windows by estimating the underlying
continuous functional form of each summary statistic.
Specifically, Mughal et al. (2020) employed a spectral analysis
technique termed the discrete wavelet transform, which de-
composed the summary statistic vectors in the form of
multilevel details of constituent low- and high-frequency re-
gions, enabling additional meaningful information to be ex-
tracted from the summary statistics.

2

Spectral analysis of signals has been extensively applied
in various domains, including biomedical sciences (O’Brien
et al. 2019), power systems (Khan and Pierre 2018), and
seismography (Puryear et al. 2012), to extract information
about the source (or process) responsible for the gener-
ation of the examined signals from their oscillatory charac-
teristics. One way to extract information from the signal is
to divide the signal into time-localized components and
examine each part of the signal independently though
spectra. Different spectral analysis methods focus on dif-
ferent characteristics of a signal (Xiang and Hu 2012),
and thus, images of the characteristics identified by differ-
ent spectral analysis methods can be used as input to es-
tablished modeling frameworks that are able to extract
meaningful information and make accurate predictions.
One mechanism for attempting to learn such features is
with supervised machine learning models known as convo-
lutional neural networks (CNNs, LeCun et al. 1998).

Neural networks are a class of machine learning archi-
tectures that are inspired by the structure and function
of the human brain. They consist of layers of intercon-
nected nodes termed neurons, which process information
in a way that is similar to how neurons in the brain process
information. Such models can be used for a wide range of
predictive modeling tasks that involve large amounts of
data and complex relationships between the measured
features and a predicted response. CNNs are a subclass
of neural networks architectures that are effective for ap-
plications requiring image recognition and processing.

Multilayered CNNs process data in a hierarchical fash-
ion through a network of nodes. When the input is an im-
age, the first layer can identify simple features, such as
edges and corners of objects in the image, whereas succes-
sive layers may identify more complicated features, such as
shapes or higher-order objects, by building upon features
learned from previous layers (LeCun et al. 1998). The final
layer of the CNN makes a prediction using the identified
features from the input image. To learn features from in-
put images, CNNs rely on convolutions, which involve slid-
ing a filter of a given size over the image and computing
the dot product between the filter and each matching
patch of pixels in the image (LeCun et al. 1998). Through
this process, the network is able to identify invariant local
patterns and features. Other layers, including pooling
layers and activation layers, are also used in CNNs.
Downsampling the output of the convolutional layers
with pooling layers makes feature maps more precise, in-
variant to object orientation, and robust to noise, as well
as makes the network more accurate. Networks learn
more complicated relationships between features and
the response through activation layers, which introduce
nonlinearity to the network (LeCun et al. 1998). In the field
of image recognition, CNNs have proven to be highly ef-
fective, often outperforming human experts on a variety
of classification tasks (De Man et al. 2019).

CNNs offer a framework for extracting features from in-
puts that can be one-dimensional vectors, two-dimensional
matrices (or grayscale images), and three-dimensional tensors
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(or color images) (LeCun et al. 1998). Several studies have
shown the effectiveness of CNNs for detecting evolutionary
events for both one- and two-dimensional signals (Schrider
and Kern 2016; Flagel et al. 2019; Torada et al. 2019; Gower
et al. 2021). Indeed, CNNs have been applied in the context
of learning about evolutionary processes from image repre-
sentations of haplotype variation, and have been demon-
strated to often have greater power and accuracy
compared to the current state-of-the-art summary statistic-
based methods (Flagel et al. 2019; Isildak et al. 2021). A hybrid
application of using two-dimensional spectra generated
through signal decomposition to train CNNs has the poten-
tial to empower the CNNs to make more effective predictive
models. To employ this modeling strategy, one-dimensional
summary statistic signals need to be converted into two-
dimensional spectra (Cohen 1995; Sejdi et al. 2009), which
provide information about the spectral estimates of the
underlying source (or process) that generates genomic
variation.

Therefore, we seek to improve evolutionary process classi-
fiers, by adding a layer of spectral inference of the underlying
process generating the genetic variation. To that end, we use
the detection of positive natural selection as a test case, as
this setting is where the majority of population-genetic ma-
chine learning development has focused, and thus represents
a test case for illustrating the performance gains by modeling
input data differently. Positive natural selection increases the
frequencies of alleles in a population that code for beneficial
traits, potentially leading to fixation within the population
and ultimately reducing diversity at the selected locus
(Gillespie 2004). As this beneficial allele increases in fre-
quency, alleles on the same haplotype at nearby neutral
loci also increase in frequency through a process known as
genetic hitchhiking (Smith and Haigh 1974). The resulting
loss of haplotypic diversity around the selected locus is
known as a selective sweep (Przeworski 2002; Hermisson
and Pennings 2005), and is a footprint that is often used to
uncover signals of past positive selection. Depending on
the number of distinct haplotypes that have risen to high fre-
quency, selective sweeps can be categorized as either soft or
hard, with hard sweeps typically easier to detect due to their
more conspicuous genomic pattern (Przeworski 2002;
Hermisson and Pennings 2005; Garud et al. 2015).

In this article, we examine the utility of applying three
signal decomposition methods on arrays of summary sta-
tistics computed across overlapping windows to generate
spectra (Thomson 1982; Daubechies 1992; Stockwell et al.
1996), and develop machine learning methods trained
with these images. We additionally employ ensemble-
based stacking procedures (Hastie et al. 2009) that
aggregate the results of individual classifiers with the
goal of further improving power and accuracy to
detect sweeps from genome variation. With this in
mind, we introduce an approach termed SISSSCO
(Spectral Inference of Summary Statistic Signals using
COnvolutional neural networks) with open-source imple-
mentation  available at  https://www.github.com/
sandipanpaul06/SISSSCO. As an empirical test case, we

then apply our trained SISSSCO models to whole-genome
data of the well-studied central European human indivi-
duals sequenced by the 1000 Genomes Project (The
1000 Genomes Project Consortium 2015). SISSSCO identi-
fies multiple genes, including LCT, ABCA12, SLC45A2,
HLA-DRB6, and HCGY, which have been identified as sweep
candidates from previous studies. SISSSCO also identified
several novel sweep candidates, including PDPN, WASF2,
LRIG2, and SDAD1.

Results

In this section, we begin by highlighting power and accuracy
to detect selective sweeps using various strategies that com-
bine different spectral decompositions of summary statistic
signals as well as stacking of trained CNN architectures. We
also compare the performance of these approaches with
other contemporary machine learning methods that take
summary statistics as input to detect sweeps. We then inves-
tigate how confounding factors, like changing population
sizes over time, the existence of missing genomic segments,
and background selection, influence predictive accuracy,
power, and robustness. Finally, as a proof of concept, we
test our new approaches using a genomic dataset from a hu-
man population that has been extensively studied.

Modeling Description

To train and test our models, we simulated neutral and
sweep replicate observations using the coalescent simula-
tor discoal (Kern and Schrider 2016) under either an
equilibrium constant-size demographic history of 10,000
diploid individuals (Takahata 1993) or under a nonequili-
brium history inferred from central European human gen-
omes (Terhorst et al. 2017) that includes a recent severe
population bottleneck. Per-site per-generation mutation
(1 =1.25%107%) and recombination rates (exponential
distribution with mean r=10"% and truncated at 3r)
were chosen to reflect expectations from human genomes
and previous studies (Payseur and Nachman 2000; Scally
and Durbin 2012; Schrider and Kern 2016). For each simu-
lated replicate, we sampled 198 haplotypes of length 1.1
megabase (Mb) to match the number of sampled haplo-
types in our empirical experiments.

At the center of simulated sequences for sweep observa-
tions, we introduced a beneficial mutation that became se-
lected for at a frequency of f € [0.001,0.1] (drawn
uniformly at random on a logarithmic scale) with per-
generation selection coefficient s € [0.005, 0.5] (drawn uni-
formly at random on a logarithmic scale) and became fixed
in the population t generations prior to sampling. For each of
the two demographic scenarios, we generated two datasets:
one with the sweep completing at time of sampling (t =0
generations) and a setting that should be more difficult to
distinguish from neutrality, with t € [0, 1,200] generations
drawn uniformly at random, permitting the processes
of mutation, recombination, and genetic drift to erode
genomic footprints of the selective sweep after fixation.

3
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We denote these four datasets as Equilibrium fixed,
Equilibrium variable, Nonequilibrium
fixed, and Nonequilibrium variable, where the
demographic history is given by either equilibrium (constant-
size) or nonequilibrium (European human bottleneck), and
the time of sampling after sweep completion is given by ei-
ther as a fixed (t = 0) or variable (t € [0, 1,200]) nhumber of
generations.

For each class (neutral or sweep), we generated 11,000 in-
dependent simulated replicate observations, with 9,000,
1,000, and 1,000 observations reserved for training, valid-
ation, and testing. For each replicate, we computed sum-
mary statistics across the simulated sequence to obtain
nine one-dimensional signals to use as features for down-
stream modeling identical to the ones used in Mughal
et al. (2020) (see Methods for summary statistic computa-
tion on simulated data). The initial summary statistic that
we explored in our model training is the mean pairwise se-
quence difference (7; Tajima 1983) estimated across
sampled haplotypes. The dataset containing instances of 7
computed as a one-dimensional signal of length 128 across
a genomic sequence of neutral and selective sweep regions
was used to test the efficacy of each of the three spectral
analysis methods. These summary statistic signals of length
128 are based on short overlapping windows with a fixed
number of single nucleotide polymorphisms (SNPs) per
window, and a fixed SNP stride between windows (see
Methods section). We calculated 7 in overlapping windows
with a goal to capture local patterns along a chromosome
(see Methods section for details).

The two-dimensional images that we obtain by perform-
ing spectral analysis on a one-dimensional signal (e.g, 7) are
then fed into a CNN (LeCun et al. 1998), which is depicted
in figure 1. The CNN has an input size of (N, m, n, ¢) contain-
ing N training observations of ¢ different summary statistic
signals decomposed as m X n images through spectral ana-
lysis. Here we have N =18, 000, m =65, and n = 128. As
we are currently only considering a single signal based on
the 7 statistic, we are using a ¢ = 1 channel input for our
CNN. The CNN has two convolution layers with 32 filters, ker-
nels of size 3 X 3 (Agrawal and Mittal 2020), and a stride of
two (Kong and Lucey 2017) with zero padding (Hashemi
2019). Each convolution layer is then followed by an activa-
tion layer using a rectified linear unit (ReLU), as well as a batch
normalizing layer (Goodfellow et al. 2016). The convolution
layers are followed by a dense layer containing 128 nodes,
which is the same as the input signal length n. The dense layer
also contains an elastic-net style regularization penalty (Zou
and Hastie 2005), whereby network weights shrink in magni-
tude together toward zero through an L,-norm penalty while
simultaneously performing feature selection by setting some
weights to zero through an L;-norm penalty (Hastie et al.
2009). The fraction of regularization deriving from the
L,-norm penalty is controlled by hyperparameter o €
{0.0, 0.1, ..., 1.0} and the amount of total regularization
is controlled by hyperparameter 4 € {107, 107>, ..., 10°}.
The model also utilizes a dropout layer with dropout rate hy-
perparameter x € {0.1,0.2, ..., 0.5} to further prevent

4

model overfitting by reaching a saturation point (Srivastava
et al. 2014; Goodfellow et al. 2016). The model is trained
with each (a, 4, x) hyperparameter triple, with a batch size
of 50 for 30 iterations, and the best model is chosen as the
one with the smallest validation loss, where we employ the
categorical cross-entropy loss measurement. We deployed
the keras Python library (Chollet et al. 2015) with a
TensorFlow (Abadi et al. 2015) back-end for training of
CNNs and making downstream predictions from the learned
models.

The first of three spectral analysis methods that we con-
sider is wavelet decomposition. Specifically, we assume
that each 7 sequence of length n = 128 represents a sam-
ple from a continuous wavelet containing n data points.
This signal is then decomposed by a level m wavelet ana-
lysis method, with the Morlet wavelet (Bernardino and
Santos-Victor 2005) selected as the mother wavelet.
Level m =65 is chosen for the scalograms generated to
match the size of the spectral images that result from
the other two spectral analysis methods that we subse-
quently introduce. Every decomposed signal generates an
m X n dimensional scalogram matrix. A more detailed
treatment of the wavelet decomposition for spectral ana-
lysis is provided in the Methods section, and we employed
the PyWavelets Python package (Lee et al. 2019) to
construct scalogram images.

Next, for the multitaper spectral analysis approach, to
derive the periodogram of the estimate of the true power
spectral density from a signal of size n = 128 using the mul-
titaper spectral analysis method, we used a window length
of n. We calculated discrete prolate spheroidal sequence
(DPSS) tapers over time half-bandwidth parameter
(n X Af/2) values in {2, 2.5, ..., 4} and a DPSS window
size of m =n/2 + 1 =65, which results in a matrix of ta-
pering windows of size m X n and a vector of eigenvalues
of length m. Here, Af is the bandwidth of the most dom-
inant frequencies in the frequency domain such that
n X Af/2 > 1Hz. Using this matrix and vector, a periodo-
gram of size m X n is generated, which is the same as the
dimension of the scalogram that we considered with the
wavelet analysis method. See the Methods section for a
complete detailed description of multitaper analysis. We
utilized the spectrum Python package (Cokelaer and
Hasch 2017) to generate multitaper periodogram images.

Finally, for spectral analysis using the Stockwell trans-
form (also known as the S-transform) we used the same
datasets as the previous two spectral analysis approaches.
The S-transform returns a spectrogram matrix estimate of
the true power spectral density that has size m X n, where
m = n/2 + 1 and where the length of the signal is n = 128.
The spectrogram has the same image size as the previous
two methods. See the Methods section for further details
on the S-transform. We used the stockwell Python
package (Satriano 2017) to estimate S-transform spectral
images. The images are then fed into a CNN with identical
architecture to that of the previous two methods with the
addition of a third convolution layer, which we included
as we found that adding this extra convolution layer
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Fic. 1. Depiction of a ¢ = 1 channel convolutional neural network (CNN) architecture. A summary statistic signal of length n = 128 is used as
input to a spectral analysis method (either wavelet decomposition, multitaper analysis, or S-transform) to decompose the signal into a matrix of
dimensions m X n, with m = 65, which is then standardized at each element based on the mean and standard deviation across all N = 18, 000
training observations, and is then used as input to a CNN. The CNN has two convolution layers (three layers for the S-transform), followed by a
dense layer with n nodes containing both elastic-net and dropout regularization. The output layer of the CNN is a softmax that computes the

probability of a sweep.

substantially  increased
S-transform image inputs.

performance under the

Application of Signal Decomposition
Supplementary figure S1, Supplementary Material online
presents heatmaps of the raw spectral images, averaged
across simulated replicates, for neutral and selective sweep
regions using three signal decomposition methods.
However, based on these raw images, it is difficult to visu-
ally distinguish between sweeps and neutrality for each of
the spectral analysis methods. To better explore the visual
differences within these matrices, we scaled each element
of each spectral analysis matrix to have unit standard de-
viation across the neutral and sweep replicates. The mean
scaled matrices depicted in figure 2 show the emergence of
more-readily distinguishable patterns between sweeps and
neutrality. The wavelet decomposition results display a
clear distinction between the two classes, with a triangular
bulge in the mid-segment of the sweep scalogram that is
not present within the neutral scalogram. This pattern in-
dicates that the selective sweep signals have information in
the middle windows between windows 45 and 85 that is
not present in neutral signals. Similarly, the mean sweep
spectrogram generated by S-transform shows a T-shaped
construct in the midportion of the image, again indicating
a difference of power between the classes of some low- to
mid-frequency components in the central windows. The
mean spectra generated by multitaper analysis depict a
rib-cage like structure in the mean sweep periodogram.
Each ‘rib’ represents a Fourier transformation of a signal ta-
pered by a single taper. The frequency of the taper in-
creases as we descend the rows of the image, whereas
the amplitude of the central window of the taper de-
creases. Hence, a signal tapered by higher frequency tapers
generate a distorted representation of the signal. As the
frequencies of the tapers increase, more low- and high-
frequency components in the sweep signal are lost, result-
ing in a narrower spectral density. These characteristics of
the tapers lead to the the rib-cage structure depicted in
the mean sweep image.

The standardized (combined centering and scaling)
images in supplementary figure S2, Supplementary
Materialonline that are ultimately used as input to CNNs

show that the classes can be easily visually differentiated
as the images show exactly opposite patterns for the
two classes, with the images for neutral regions having low-
er values for the majority of the area in the images. These
opposite patterns are due to centering. A peach pit shape
is present in the center of both mean sweep and neutral
spectrograms generated by the S-transform, albeit repre-
sented by two distinctly different shades corresponding
to positive and negative values, respectively. Several mid-
and low-frequency components are present in the central
windows of the sweep samples, which results in the bright
core of the peach pit in the mean sweep image. The rib-
cage structure is also present in mean spectra of both
classes in the images created by multitaper analysis, with
different shades for the two classes corresponding mostly
to positive and negative values.

Figure 2, supplementary figures S1 and S2,
Supplementary Material online highlight the qualitative
patterns in images derived from neutral and sweep settings
that result from three different spectral analysis methods
applied to a sequence of 7 values calculated across over-
lapping genomic windows. Given that these images show
qualitative differences between sweeps and neutrality,
our goal is to evaluate the predictive ability of discriminat-
ing between sweeps and neutrality from such input
images. These mean images suggest that there exists useful
information within the spectral images that may help dis-
tinguish between the two classes. Nevertheless, it may be
difficult to spot anomalies by looking at the individual
spectral analysis images, especially if it is important to dis-
tinguish between classes while remaining resistant to arti-
facts. Therefore, we used the CNN architecture described
above in the Modeling description subsection. We fed
the images derived from application of the three spectral
analysis methods to a sequence of 7 values to evaluate
classification rates and accuracies. Supplementary figure
S3, Supplementary Material online shows that the models
trained on wavelet analysis scalogram and S-transform
spectrogram images have an imbalance in their classifica-
tion rates, with skews toward detecting neutral regions
more accurately than the sweep regions. In contrast, the
model trained on multitaper analysis periodogram images
with a time half-bandwidth parameter of 2.5 displays

5
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Fic. 2. Mean spectral analysis input matrices for n = 128 windows of the mean pairwise sequence differences 7 across the N/2 = 9, 000 neutral
and N/2 =9, 000 sweep replicates under the Equilibrium fixed dataset containingan equilibrium constant-size demographic history and
a sweep that completed t = 0 generations before sampling. Top row are neutral simulations and bottom row are sweep simulations. Spectral
methods are depicted from left to right columns for the wavelet decomposition, multitaper analysis, and the S-transform, respectively. Elements
of each matrix have been scaled to have a standard deviation of one across all N simulated replicates for a given spectral analysis method.

greater accuracy for correctly estimating sweeps compared
to neutral regions, whereas changing the time half-
bandwidth parameter to 2.0 or lower results in classifica-
tion rates more skewed toward correctly detecting neu-
trality. Because we want to avoid false discoveries of
sweeps, higher time half-bandwidth parameter values are
more expensive computationally, and time half-
bandwidth parameters higher than 2.5 did not change per-
formance significantly in our preliminary tests, we selected
2.0 for future multitaper experiments.

Stacking Models to Enhance Sweep Detection

We have three models trained with three signal decom-
position methods that have yielded comparable but slight-
ly differing results (supplementary fig. S3, Supplementary
Material online). We now discuss architectures to increase
the learning capacity of our models when trained to jointly
consider all three spectra. Our previous experiments ex-
plored a single summary statistic signal () to decompose
and train the models with spectra. Following Mughal et al.
(2020), we next compute nine one-dimensional summary
statistic signals (7, Hq, H1,, H,/Hq and frequencies of the 5
most common haplotypes) per simulated replicate and
generate 9 spectra for each of the 3 spectral analysis meth-
ods, resulting in 27 different images.

6

The first joint modeling approach taken was to train three
separate models using three signal decomposition methods
with nine images per replicate provided as input to a CNN,
with one image for each of the c =9 channels of the CNN
(supplementary fig. S4, Supplementary Material online).
These models were then concatenated and trained in three
different ways. The first of these three strategies is to train
each of the three nine-channel CNNs, fix the weights of
the trained CNNs, and concatenate their output layers
(sweep probability values) into a three-element vector of
sweep probabilities. The linear combination of these sweep
probabilities is then used as input to a new softmax function
to predict the probability of a sweep from evidence of the
three pretrained CNNs. The final weights of the linear com-
bination leading to the new softmax function are trained,
and we denote this method by SISSSCO[3CO] (three-input
CNNs and concatenation of the output layer). The weights
of the three individually trained CNNs are not retrained in
the final model. A depiction of this SISSSCO[3CO)] architec-
ture is given in supplementary figure S5, Supplementary
Material online. In the next strategy, we instead concate-
nated the dense layers of the three nine-channel CNNs, lead-
ing to a vector of 3 X 128 = 384 elements that we send to a
new softmax layer as in the SISSSCO[3CO] method. As with
SISSSCO[3C0], we trained the weights of the linear combin-
ation leading from the concatenation of the dense layers
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to the new softmax function, but did not retrain the
weights of the three individually trained CNNs, and we de-
note this method by SISSSCO[3CD] (three-input CNNs and
concatenation of the dense layer). A depiction of the
SISSSCO[3CD] architecture is given in supplementary figure
S6, Supplementary Material online. The third and final strat-
egy, has an identical architecture of the SISSSCO[3CD] model,
with one key difference—the weights of the entire concate-
nated model are jointly trained. We denote this method
by SISSSCO[3MD] (three-input CNNs and merging of the
dense layer prior to training). A depiction of the
SISSSCO[3MD] architecture is given in supplementary
figure S7, Supplementary Material online.

The second joint modeling approach is more complex than
the first. Specifically, we construct 3 CNNs per summary stat-
istic based on the 3 signal decomposition methods, resulting in
27 distinct CNNs each with ¢ = 1 channel (fig. 1). Similar to
the previous concatenation strategies, the concatenation
and training were accomplished in an identical fashion by pre-
training individual CNNs and concatenating output layers
(model denoted by SISSSCO[27CO]), pretraining individual
CNNs and concatenating dense layers (model denoted by
SISSSCO[27CD]), and concatenating dense layers of individual
CNNs with all weights in the subsequent merged model
trained (model denoted by SISSSCO[27MD]). Both
SISSSCO[27CD] and SISSSCO[27MD] methods result in the
most complex final models, with the dense layer containing
128 X 27 =3, 456 nodes. Though SISSSCO[27CD] and
SISSSCO[27MD] have the same number of concatenated
dense layer nodes, the node weights are not set prior to con-
catenation for SISSSCO[27MD], making SISSSCO[27MD] the
most computationally expensive method among all the six
models. To further elaborate, SISSSCO[27CD] and
SISSSCO[27MD] each have a total of 83,98,818 parameters,
of which 128 X 27 = 3, 456 are trainable postconcatenation
for SISSSCO[27CD], whereas SISSSCO[27CO] has 83,98,589
parameters of which 27 are trainable postconcatenation.
The architectures of the SISSSCO[27CO0], SISSSCO[27CD], and
SISSSCO[27MD] models are depicted in supplementary
figure S8, Supplementary Material online, figure 3, and
supplementary figure S9, Supplementary Material online, re-
spectively. In the next subsection, we evaluate the accuracies
and powers of the six SISSSCO models on idealistic constant-
size demographic history datasets.

Power and Accuracy to Detect Sweeps

All of our six SISSSCO models have high classification accur-
acies and powers on the two constant-size demographic his-
tory datasets (supplementary figs. S10-S13, Supplementary
Material online). Of these, SISSSCO[27CD] exhibited uniformly
highest accuracy to discriminate sweeps from neutrality,
reaching 99.75% and 99.80% accuracy on the
Equilibrium fixed and Equilibrium vari
able datasets, respectively (supplementary figs. S10 and
S$12, Supplementary Material online). However, even the worst
performing SISSSCO model had high accuracy on each dataset,
with SISSSCO[3CD] achieving an accuracy of 96.50% and

9545% on the Equilibrium fixed and Equilibr
ium variable datasets, respectively (supplementary figs.
$10 and S12, Supplementary Material online). This lower clas-
sification accuracy of SISSSCO[3CD] compared to the other
SISSSCO models appears to be primarily driven by a skew in
misclassifying neutral regions as sweeps (supplementary figs.
S10 and S12, Supplementary Material online).

The accuracy results are also reflected in the high powers of
the SISSSCO models to detect sweeps based on receiver oper-
ating characteristic (ROC) curves (supplementary figs. $11 and
$13, Supplementary Material online). ROC curves are graphical
representations that display the tradeoff between the true
positive rate and the false positive rate of a binary classifier
as the discrimination threshold changes. Specifically,
SISSSCO[27CD] achieves an area under the ROC curve of close
to one for both datasets (supplementary figs. S11 and S13,
Supplementary Material online), suggesting that it has perfect
power to detect sweeps for even small false positive rates.
Moreover, consistent with SISSSCO[3CD] having the lowest ac-
curacy among the six SISSSCO models, the ROC curves show
that SISSSCO[3CD] reaches high power for low false positive
rates, but plateaus at this level until high false positive rates
(supplementary figs. S11 and $13, Supplementary Material on-
line), reducing the overall area under the ROC curve com-
pared to the other SISSSCO models. The results show that,
though all SISSSCO models have high powers and accuracies
for sweep detection, the most parameter rich (yet not most
computationally expensive) SISSSCO[27CD] model outper-
forms all others developed here on the constant-size demo-
graphic history datasets (supplementary figs. S10-S13,
Supplementary Material online).

ROC curves are helpful for determining the optimal
threshold and assessing the overall performance of a clas-
sifier. In contrast, confusion matrices display classification
performance for only one possible choice for the thresh-
old. Specifically, the confusion matrices presented here
employ a sweep probability threshold of 0.5, such that pre-
dicted probabilities greater than 0.5 are classified as a
sweep, and otherwise are classified as neutral. Adjusting
this default threshold of 0.5 would modulate method
accuracy and robustness to false discoveries. For
the confusion matrices, we have assigned the class label
(neutral or sweep) that has the larger probability
conditional on the input data—that is, we choose label
Y € {neutral, sweep} such that P(Y | X) is maximal for in-
put X.

Performance Relative to Comparable Methods

We tested the classification performance of our models
against three state-of-the-art methods that employ summary
statistics as input: SURFDAWave (Mughal et al. 2020), diploS/
HIC (Schrider and Kern 2016), and evolBoosting (Lin et al.
2011). SURFDAWave is a wavelet-based classification method
that takes as input nine summary statistic arrays, exactly the
ones that we have used for our study, and learns the function-
al form of the spatial distribution of each summary statistic
using a wavelet basis expansion to represent the
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Fic. 3. Depiction of the SISSSCO[27CD] model. Each summary statistic signal (Z, Hy, H1, H,/Hq and frequencies of the first five most common
haplotypes respectively denoted by P; to Ps) of length n = 128 is used as input to each of the three spectral analysis method (wavelet decom-
position, multitaper analysis, and S-transform) to decompose the signal into three matrices of dimension m X n, with m = 65, which are then
each standardized at each element based on the mean and standard deviation across all N = 18, 000 training observations. These 27 images (9
statistics across 3 spectral analysis methods) each used as input to train 27 independent convolutional neural networks (CNNs). The CNNs have
two convolution layers (three layers for the S-transform), followed by a dense layer with n nodes containing both elastic-net and dropout regu-

larization. The output layer of the CNN is a softmax that computes the
the dense layers of the 27 CNNs are concatenated and these 27n = 3,
probability of a sweep as a softmax.

autocorrelation within a summary statistic across the gen-
ome. The method then uses estimated wavelet coefficients
asinput to elastic-net logistic regression models for classifying
selective sweeps and predicting adaptive parameters.

On the other hand, to detect selective sweeps, diploS/HIC
takes a complementary deep learning approach to extract
additional information from arrays of different features of
population-genetic variation. In particular, the deep CNN
classifier used in diploS/HIC takes images of a set of multidi-
mensional summary statistic vectors calculated in 11 win-
dows, with the central window denoted as the target. The
set of summary statistics considered is different from
SURFDWave, instead employing a set of summary statistics
that assesses nucleotide and multilocus genotype variation
without the need for phased haplotypes.

8

probability of a sweep. After training, the model parameters are fixed, and
456 nodes are used as input to a new output layer, which computes the

Furthermore, evolBoosting also uses arrays of different
summary statistics as input and applies boosting to detect
selective sweeps from neutrality. The purpose of the boost-
ing (Schapire 1999) ensemble technique is to create an op-
timum combination of simple classification rules obtained
from the base classifiers (Hastie et al. 2009), which are
themselves quite simple and not particularly accurate.
This strategy is inspired by the observation that, in most
cases, an ensemble of basic rules can outperform classifiers
individually (Schapire 1999). Boosting involves fitting data
instances to a model, and training the model in a series.
Incorrect predictions are used to train a subsequent mod-
el. Each newly added base model improves prediction error
by accounting for error that was not captured by the set of
prior base models. At each iteration, the less reliable rules
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of each base classifier are aggregated into a single, more re-
liable rule.

These three methods consider both linear and non-
linear classification strategies, with SURFDAWave employ-
ing a linear model and diploS/HIC and evolBoosting
nonlinear approaches. We applied these three methods
using their default settings, such as window lengths, win-
dow sizes, sets of features, and summary statistic gener-
ation and usage. It is important to note that diploS/HIC
was originally developed to discriminate among five
classes: soft sweeps, hard sweeps, linked soft sweeps, linked
hard sweeps, and neutrality. As in Mughal et al. (2020), we
retooled the method as a binary classifier to distinguish se-
lective sweeps from neutrality given input summary
statistics.

On both the Equilibrium fixedand Equilibri
um variable datasets, SURFDAWave, diploS/HIC, and
evolBoosting achieved relatively high accuracy to discrimin-
ate sweeps from neutrality, with the lowest of them
(evolBoosting) achieving an accuracy of 97% and 95% on
the Equilibrium fixed and Equilibrium
variable datasets, respectively (supplementary figs. S10
and S12, Supplementary Material online). SURFDAWave
had highest accuracy among the three methods on each da-
taset, achieving an accuracy of 97.95% and 97.60% on the
Equilibrium fixed and Equilibrium varia
ble datasets, respectively (supplementary figs. S10 and
S12, Supplementary Material online). The marginally lower
accuracies of evolBoosting and diploS/HIC compared to
SURFDAWave appears to be due to an imbalance in their
predictions, with extremely high accuracy at correctly classi-
fying neutrality coupled with elevated misclassification rates
of sweeps as neutral (supplementary figs. S10 and S12,
Supplementary Material online). However, this skew toward
misclassifying sweeps as neutral is conservative, and is sub-
stantially more desirable than a skew toward falsely discover-
ing neutral regions as sweeps. Moreover, as expected, each
method had a decrease in accuracy on the more challenging
Equilibrium variable dataset (supplementary fig.
S12, Supplementary Material online) relative to the
Equilibrium fixed dataset (supplementary fig. S10,
Supplementary Material online). In comparison with
SISSSCO, four of the SISSSCO models had higher accuracy
than the competing methods on the Equilibrium
_fixed dataset (supplementary fig. S10, Supplementary
Material online), whereas three of them showed higher ac-
curacy on the Equilibrium variable dataset
(supplementary fig. S12, Supplementary Material online).

In terms of method power, SURFDAWave, evolBoosting,
and diploS/HIC tended to exhibit marginally lower power
than the SISSSCO models, yet generally still achieved simi-
larly high levels of the area under the ROC curves as
SISSSCO models on both datasets (supplementary figs.
S11 and S13, Supplementary Material online). An excep-
tion is evolBoosting, which displayed substantially lower
area under the ROC curve compared to other methods,
achieving a power (true positive rate) close to one for false
positive rates close to 0.2, whereas all other methods

attained power close to one for false positive rates less
than 0.05. These results suggest that under the constant-
size demographic history and selection setting explored
here, several SISSSCO models had higher classification ac-
curacies and powers compared to other leading machine
learning methods that use as input summary statistics
for detecting sweeps. Moreover, the SISSSCO[27CD] model
achieves near perfect classification accuracy and power.

Robustness to Background Selection

A ubiquitous force affecting genetic variation across chromo-
somes is background selection (McVicker et al. 2009;
Comeron 2014), which results from the purging of deleteri-
ous genetic variants by negative selection (Charlesworth
et al. 1993; Hudson and Kaplan 1995; Charlesworth 2012).
Importantly, background selection has historically been a
confounding factor when searching for sweep footprints
from allelic variation, as it can lead to distortions in the dis-
tribution of allele frequencies that masquerade as positive se-
lection (Charlesworth et al. 1993, 1995, 1997; Keinan and
Reich 2010; Seger et al. 2010; Nicolaisen and Desai 2013;
Huber et al. 2016). However, though background selection
is unlikely to leave prominent signatures of low haplotypic
variation (Charlesworth et al. 1993; Charlesworth 2012;
Enard et al. 2014; Fagny et al. 2014; Schrider 2020), it is never-
theless important to explore whether SISSSCO is robust to
this common selective force.

To investigate the effect of background selection on
model performance, we generated 1,000 test replicates
that matched the demographic history and genetic para-
meters of the Equilibrium variable dataset
using the forward-time simulator SLiM (Haller and
Messer 2019), and evolved the simulated population for
120,000 generations (12 times the diploid size), which in-
cluded a 100,000 generation burn-in period (10 times
the diploid size) with 20,000 generations of evolution after-
ward. Following Cheng et al. (2017), we simulated back-
ground selection where recessive (h=0.1) deleterious
mutations, with selection coefficients (s) drawn from a
gamma distribution with mean of —0.1 and shape param-
eter of 0.2, are distributed across a protein-coding gene of
length 55 kilobases located at the center of the simulated
1.1 Mb region. This simulated gene consists of 50 exons
each of length 100 bases, 49 introns each of length 1,000
bases, an upstream 5’ untranslated region (UTR) of length
200 bases, and a downstream 3’ UTR of length 800 bases,
with the lengths of these elements approximately match-
ing mean human values (Mignone et al. 2002; Sakharkar
et al. 2004). Within this gene, 75% of mutations in exons
are deleterious, 10% in introns are deleterious, and 50%
in 5" and 3’ UTRs are deleterious. We then computed sum-
mary statistics and corresponding spectral analysis images
from the 198 haplotypes sampled from each simulated
replicate in an identical manner to those used to train
SISSSCO, and then fed sets of spectral images as input to
the SISSSCO models trained on the Equilibrium
variable dataset. As expected, we find that all
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SISSSCO models are robust to background selection, with
the proportion of false sweep signals due to background
selection mirroring closely the false positive rate from
neutral simulations, and all methods classifying
over 96% of background selection replicates as
neutral (supplementary fig. S14, Supplementary Material
online).

Influence of Population Size Changes

Our prior experiments have highlighted the excellent clas-
sification accuracies and powers for the SISSSCO models.
However, such test settings were idealistic, in which there
has been no demographic changes over time—in contrast
to the expectation for real populations. We therefore
trained and tested our models on a demographic history
estimated from the well-studied human central
European population (CEU) from the 1000 Genomes
Project dataset (The 1000 Genomes Project Consortium
2015), for which there is extensive evidence of severe
population size changes in recent history (Terhorst et al.
2017).

As with the idealistic constant-size demographic histor-
ies, we trained our methods on the Nonequilibrium
fixed and Nonequilibrium variable datasets,
which differ by whether the time that the sweep com-
pleted was fixed at t = 0 generations before sampling or
variable and drawn from a distribution t €[0, 1,200] gen-
erations in the past, respectively. The latter dataset repre-
sents a setting that should be more difficult, as it leads to
blurring of the boundaries between the sweep and neutral
classes. Moreover, we deployed the six SISSSCO models as
well as the comparison methods (SURFDAWAave, diploS/
HIC, and evolBoosting) with identical architectures, train-
ing paradigms, and quantity of train, test, and validation
data as for the constant population size experiments.

Similarly to the constant-size setting, SISSSCO[27CD]
displayed near perfect accuracy of 99.9% and 99.5% to dis-
criminate sweeps from neutrality on the Nonequilibr
ium fixed and Nonequilibrium variable da-
tasets, respectively (fig. 4 and supplementary fig. S15,
Supplementary Material online). SISSSCO[27CD] also had
uniformly highest accuracy across all tested SISSSCO and
non-SISSSCO methods (fig. 4 and supplementary fig. S15,
Supplementary Material online). Of the non-SISSSCO meth-
ods, highest accuracy was achieved by SURFDAWave
(98.65%), and lowest by evolBoosting (94.50%) on the
Nonequilibrium fixed dataset (supplementary fig.
S15, Supplementary Material online). On the Nonequili
brium variable dataset we see the same pattern
among the non-SISSSCO methods, with SURFDAWave
achieving the highest accuracy (96.55%), and evolBoosting
the lowest (93.00%) (fig. 4).

The high classification accuracies on these datasets are
echoed by their high powers to detect sweeps, with all
methods aside from evolBoosting achieving areas under
the ROC curves that are close to one on the
Nonequilibrium fixed dataset (supplementary fig.
S16, Supplementary Material online). However, the
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Nonequilibrium variable dataset was more
challenging, with SISSSCO[27CD] the only method achiev-
ing near perfect area under the ROC curve, though
SISSSCO[27MD] is close (right panel of fig. 5). For small false
positive rates of less than 0.05, evolBoosting has the lowest
power, followed by diploS/HIC and SURFDAWave
having comparable powers, which have lower powers
than the three-input SISSSCO models (SISSSCO[3CO],
SISSSCO[3CD], and SISSSCO[3MD]), with the 27-input
SISSSCO models (SISSSCO[27C0], SISSSCO[27CD], and
SISSSCO[27MD]) harboring the highest overall powers
(right panel of fig. 5). The decreased powers of some of
the methods are reflected in the imbalance in classification
rates demonstrated in figure 4, for which some methods
have a skew toward misclassifying sweeps as neutral.
However, as discussed for the constant-size demographic
history results, such classification is conservative, as we
wish to avoid the alternative skew toward false discovery
of sweeps. Overall, our experiments point to
SISSSCO[27CD] having near perfect accuracy and power
on the two selection regimes simulated under the none-
quilibrium recent strong population bottleneck demo-
graphic history.

Comparison to Summary- and Likelihood-based
Sweep Detectors

To showcase the power to detect traces of selective sweeps
by using spectral images, we compared SISSSCO against
three state-of-the-art machine learning models that are
also geared toward detecting adaptation from vectors of
multiple summary statistics. To evaluate how SISSSCO
fares against more traditional nonmachine learning sweep
detectors, we compared our most consistently performing
method (SISSSCO[27CD]) to the summary statistics Hy,
(Garud et al. 2015) and Fay and Wu's H (Fay and Wu
2003), as well as to the likelihood method SweepFinder2
(DeGiorgio et al. 2016) across all four datasets. We com-
puted Hq, and H for different window sizes, considering
windows of 25, 50, or 100 SNPs, and chose 50 SNP windows
for comparison as they gave Hq, and H their highest
powers. Hy, displayed higher power to detect sweeps com-
pared to H and SweepFinder2 on three of the four datasets
(supplementary fig. S17, Supplementary Material online),
with H showing generally low power on all tested scenarios
and SweepFinder2 having highest power among the three
methods on the Equilibrium variable dataset.
The overall superior performance of Hy,, especially com-
pared to SweepFinder2 is unsurprising. The reasoning is
that our test datasets consider sweeps of differing degrees
of softness and hardness, and H;, was developed to detect
hard and soft sweeps with similar efficiency, whereas
SweepFinder2 employs a model of a recent hard sweep
and has limited power on soft sweeps. Even with the gen-
eral superior performance of H;, compared to H and
SweepFinder2, SISSSCO[27CD] has substantially higher
power to detect sweeps compared to these three trad-
itional methods on all four datasets.
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Fic. 4. Classification rates and accuracies as depicted by confusion matrices to differentiate sweeps from neutrality on the
Nonequilibrium variable dataset for the six SISSSCO architectures compared to SURFDAWave, diploS/HIC, and evolBoosting. The
Nonequilibrium variable dataset is based on the nonequilibrium recent strong bottleneck demographic history of central
European humans (CEU population in the 1000 Genomes Project) and a sweep that completed t €[0, 1,200] generations before sampling.

Robustness to Missing Genomic Segments

The presence of missing genomic segments results from
technical artifacts, and can lead to reductions in haplotypic
diversity due to unobserved polymorphism. As such losses
of local genomic variation can masquerade as selective
sweep footprints, missing genomic segments may mislead
methods that detect sweeps to falsely classify neutral gen-
omic regions harboring missing segments as having under-
gone positive selection. Hence, our goal is to examine
whether missing genomic segments within neutrally evolv-
ing test regions lead SISSSCO and non-SISSSCO methods to
falsely identify them as selective sweeps, and whether such
missing genomic segments hampers the ability of the
methods to discriminate between sweeps and neutrality.
We therefore simulated an independent set of discoal
(Kern and Schrider 2016) replicates for neutral and sweep
regions, and generated missing genomic segments from

these new simulations. Specifically, we first followed the
protocol of Mughal et al. (2020) by excluding approximately
30% of the SNPs in each simulated replicate, distributed
evenly across 10 nonoverlapping genomic blocks of equal
size containing approximately 3% of the SNPs in the repli-
cate. The locations of these blocks are chosen uniformly at
random, with a new location chosen for a block if it intersects
with locations of previously placed blocks. To ensure disrup-
tion of genomic diversity near the locations that beneficial
alleles are introduced in sweep replicates, we also made
sure that at least one of these blocks overlaps with either
the 200 SNPs to the left or 200 SNPs to the right of the center
of the simulated sequences for each neutral and sweep test
replicate. This simulation protocol allows us to evaluate how
a sparse distribution of missing polymorphic sites that are
spread across simulated genomic regions affects the ability
to distinguish sweeps from neutrality.
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Fic. 5. Power to detect sweeps as depicted by ROC curves on the Nonequilibrium variable dataset for the six SISSSCO architectures
compared to SURFDAWave, diploS/HIC, and evolBoosting. The Nonequilibrium variable dataset is based on the nonequilibrium re-
cent strong bottleneck demographic history of central European humans (CEU population in the 1000 Genomes Project) and a sweep that
completed t € [0, 1,200] generations before sampling. The right panel is a zoom in on the upper left-hand corners of the left panel.

We then computed summary statistics using the re-
maining 70% of SNPs in each replicate, with these statistics
measured identically as for the training set using n = 128
overlapping windows with a window length of 10 SNPs
and a stride of three SNPs calculated over the 400 central
SNP sites (200 to the left of the sequence center, and 200
to the right). These one-dimensional summary statistic ar-
rays are then used to generate spectra through the three
signal decomposition methods to produce the test dataset
consisting of sweep and neutral regions with missing gen-
omic segments.

Because the Nonequilibrium variable data-
set is the most complex and features a realistic demo-
graphic history, we sought to evaluate robustness to
missing genomic segments on this dataset. We employ
models from previous analyses that are trained without
missing genomic segments (figs. 4 and 5) to these test data-
sets that contain missing genomic segments. As would be ex-
pected, the inclusion of missing genomic segments in the test
dataset leads to a reduction in classification accuracy across
all methods (fig. 6) compared to no missing segments (fig. 4).
Most notably, diploS/HIC, SISSSCO[3MD], and evolBoosting
experienced moderate to large reductions in accuracy to dis-
criminate sweeps from neutrality, with reductions of 3.85%,
4.40%, and 5.00%, respectively (compare figs. 4 and 6). This
reduction in accuracy appears to be primarily driven by an
increase in misclassifying neutral regions as sweeps (fig. 6),
for which evolBoosting displays a 23% misclassification rate
of falsely detecting neutral regions as sweeps. Of the nine
methods compared, SISSSCO[27MD] has the highest and
near perfect accuracy on missing genomic segments of
99.95%, exceeding the classification performance of the
SISSSCO[27CD] model that achieved accuracy of 99.50%
without missing genomic segments but has only 97.90%
with missing segments. Even on this challenging dataset,
SISSSCO[27CD] and SISSSCO[27MD] have near perfect
powers as evidenced by their near perfect areas under the
ROC curves (supplementary fig. S18, Supplementary
Material online). Therefore, the SISSSCO[27CD] and
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SISSSCO[27MD] models perform comparably well on missing
genomic segments in terms of power, with SISSSCO[27MD]
edging out SISSSCO[27CD] in terms of accuracy even though
both methods exhibit high accuracy.

As an alternate approach, we generated missing seg-
ments to mimic an empirical distribution of missing seg-
ments as in our empirical application to humans (see
Processing empirical data subsection of the Methods sec-
tion), where we define a missing segment as a 100 kb re-
gion of mean CRG (Centre for Genomic Regulation)
mappability and alignability score lower than 0.9
(Talkowski et al. 2011). To generate missing data blocks
in the simulated neutral and sweep test replicates, we first
randomly selected one of the 22 human autosomes, with
probability of selecting a given autosome weighted by its
length from the hg19 human reference build. For the se-
lected chromosome, we chose a starting genomic position
for a 1.1 Mb segment uniformly at random, and scaled the
genomic positions to begin at zero and end at one to
match the format of the sequences simulated by
discoal. If a random 1.1 Mb segment did not have at
least one region of low mean CRG score, then a new seg-
ment was randomly drawn until one containing a region
with low mean CRG score was found. We then removed
SNPs at positions from a given simulated replicate that in-
tersected with genomic stretches of low mean CRG scores.
Removal of SNPs in this manner ensures that missing data
blocks match the distribution of regions of low mean CRG
scores in the human reference genome. We repeated this
process for each simulated neutral and sweep test repli-
cate. This distribution of missing genomic segments is sub-
stantially different from our prior missing segment
distribution, with similar levels of mean missing SNPs
across test replicates (on average 32.518% of SNPs dis-
carded), but each 1.1 Mb segment typically only a few
(and typically one) long blocks of missing SNPs in contrast
to 10 short blocks.

We applied each of the six SISSSCO models and the
three other competing methods to these test replicates
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Fic. 6. Classification rates and accuracies as depicted by confusion matrices to differentiate sweeps from neutrality on the
Nonequilibrium variable dataset when test data contain missing genomic segments for the six SISSSCO architectures compared
to SURFDAWave, diploS/HIC, and evolBoosting. The Nonequilibrium variable dataset is based on the nonequilibrium recent strong
bottleneck demographic history of central European humans (CEU population in the 1000 Genomes Project) and a sweep that completed t €[0,
1,200] generations before sampling. Trained models are identical to those in figure 4 and fitted to training observations without missing data, but
the test observations derive from sequences containing approximately 30% missing SNPs distributed evenly across 10 nonoverlapping segments.

with missing segments inspired by an empirical distribu-
tion. Supplementary figures S19 and S20, Supplementary
Material online show that all methods suffer significantly
from this distribution of missing segments. Among the
SISSSCO models, SISSSCO[27CD], SISSSCO[27CO], and
SISSSCO[3CO] had the highest classification accuracies
and powers to detect sweeps, with these SISSSCO models
still achieving high accuracies of 92.5%, 91.0%, and 91.0%,
respectively. Moreover, SURFDAWave performed similarly
to the high performing SISSSCO methods, with an accuracy
of 91.5%. In contrast, the performances of evolBoosting
and diploS/HIC were impacted most drastically, leading
to generally low classification accuracies of 64.0% and
83.5%, respectively, and with evolBoosting demonstrating
low power to detect sweeps. We attribute the reduced

performances of diploS/HIC and evolBoosting on the set-
tings of missing genomic segments to the fact that they
operate on summary statistics that have been computed
across physical-based genomic, as opposed to the
SNP-based windows utilized by the SISSSCO models and
SURFDAWave.

Effect of Signal Decomposition

To study the benefits of adding the layer of spectral infer-
ence within SISSSCO, we evaluated the accuracy and power
of CNN models that take as input nine raw summary stat-
istic vectors instead of 27 spectra. Specifically, we adapted
the SISSSCO model architectures to construct four one-
dimensional CNN models: a single CNN with nine channels
(1D-CNN[1CNN]), nine pretrained single-channel CNNs
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with the output layers concatenated (1D-CNN[9CO]), nine
pretrained single-channel CNNs with the dense layer con-
catenated (1D-CNN[9CD]), and nine simultaneously
trained single-channel CNNs with the dense layer concate-
nated (1D-CNN[9MD]). We find that all four 1D-CNN
methods have substantially lower classification accuracy
and power than SISSSCO[27CD] on the Nonequilib
rium variable dataset (compare supplementary fig.
S21, Supplementary Material online to fig. 4). Among the
four 1D-CNN models, we found 1D-CNN[9MD] to have
highest accuracy, which is approximately 5% lower than
SISSSCO[27CD]. The powers of the 1D-CNN methods evi-
denced by the ROC curves echo the relative accuracies
of the methods, with the ranking from worst to best per-
formance given by 1D-CNN[TCNN], 1D-CNN[9CO],
1D-CNN[9CD], and 1D-CNN[9MD]. The powers demon-
strated by the 1D-CNN architectures are dwarfed by
SISSSCO[27CD], which displays a near perfect area under
the ROC curve (supplementary fig. S21, Supplementary
Material online). Though the SISSSCO models require sig-
nificantly more time and computational resources to train
compared to the 1D-CNN models, the improvement in
model performance is quite considerable. Therefore, add-
ing the layer of spectral inference appears to provide add-
itional performance gains to SISSSCO compared to
operating on the raw summary statistics.

Interpretability of the SISSSCO Models

Thus far, we have focused on the predictive ability of the
SISSSCO models. However, interpretability of the models
is also important. A mechanism that can facilitate inter-
pretation is through computation of saliency maps (Zhai
and Shah 2006). When discussing visual processing, the
term “saliency” refers to the ability to recognize and dif-
ferentiate individual aspects of an image, such as its pixels
and resolution. These elements highlight the most visual-
ly compelling parts of an image. Saliency maps are a topo-
graphical representation of these locations, and their
purpose is to reflect the degree of importance of a pixel
to the human visual system. Therefore, to enhance inter-
pretability of SISSSCO we generated aggregated saliency
maps for SISSSCO[27CD] and visualize them as heatmaps
(fig. 7). We used the GradientTape function from
TensorFlow (Abadi et al. 2015) to calculate the gradi-
ents of variables based on the loss function that we chose.
We constructed these maps by averaging the saliency
maps of the 27 pretrained CNNs using all 18,000 training
samples (9,000 per class), where the weight of the saliency
map of a given CNN in the average is taken from the
dense layer node weights that lead to the concatenated
dense layer of SISSSCO[27CD]. We constructed three
such heatmaps, where each map aggregates saliency
maps generated by the nine individual CNNs trained on
spectral images from one of the three signal decompos-
ition methods, giving one heatmap for the wavelet de-
composition, one for the multitaper analysis, and one
for the S-transform. The saliency maps for the wavelet
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decomposition and the S-transform place emphasis on
low-frequency oscillations to explain the underlying sum-
mary statistic signals, with the wavelet decomposition
demonstrating a notable localization near the central
window of the summary statistics, which is expected to
be close to the selected locus. In contrast, the saliency
map for the multitaper analysis exhibits a different pat-
tern, placing most emphasis on the edges of the ribs in
the rib-cage structure (recall the mean multitaper images
in fig. 2).

Roles of Summary and Spectral Methods in SISSSCO
Predictions

Using saliency maps, we were able to learn which pixels of in-
put spectral analysis images SISSSCO tends to place greater
emphasis when making predictions. However, a related effort
is to decipher the role that different summary statistics and
spectral analysis methods play in making prediction within
SISSSCO. That is, we wish to investigate whether certain sum-
mary statistics or spectral analysis approaches are more im-
portant in the SISSSCO model than others. To accomplish
this, for each of the 18,000 training observations (9,000 per
class) for the Nonequilibrium variable dataset,
we fed the 27 spectral images to their corresponding pre-
trained individuals CNNs and obtained the values for the
128 nodes within the dense layer of the CNN. For each obser-
vation, we then merged the 27 vectors of dense layer va-
lues into a single vector of length 27 X 128 = 3, 456. We
processed all observations in the same fashion, and cre-
ated an input matrix with 18,000 rows, corresponding
to the training observations, and 3,456 columns, corre-
sponding to the values of the 27 component CNN dense
layers. We then grouped features from these 3,456 col-
umns of the input matrix, either by summary statistic giv-
ing 9 groups, by spectral analysis method giving 3 groups,
or by each pair of summary statistic and spectral analysis
method giving 27 groups. Given one of these groupings,
we applied group lasso (Yuan and Lin 2006) to fit a logis-
tic regression model to discriminate sweeps from neutral-
ity while performing both regularization as well as group
selection. This computationally efficient approach helps
identify groups of features less important for classifica-
tion, whether due to irrelevance for predicting the re-
sponse or due to correlation with other groups of
features, by setting weights of every feature in a group
to zero.

We first considered grouping with 27 groups defined by
distinct summary statistic and spectral analysis pairs, and
find that group lasso removes 13 groups (sets coefficients
to zero for all features in the groups), with all combinations
of 7, Hy, and P, with the 3 spectral analysis methods re-
moved. Additionally, seven groups utilizing multitaper
analysis were also removed. We next evaluated groupings
with three groups defined by distinct spectral analysis
methods, and find that group lasso removes the group de-
fined by multitaper analysis images. Finally, we explored
grouping with nine groups defined by distinct summary
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Fic. 7. Saliency maps of the pretrained component CNNs of SISSSCO[27CD] aggregated on the basis of dense layer node weights post concat-
enation across 9,000 training observations per class. The top left, top right, and bottom images are aggregated using saliency maps generated by
nine component single-channel CNNs trained using spectral images generated by wavelet decomposition, S-transform, and multitaper analysis,

respectively.

statistics, and find that group lasso removes four groups
defined by images of 7, Hq, P,, and P,

Based on the results from these group lasso experi-
ments, we trained two new stacked CNN architectures
in an identical manner to that of SISSSCO[27CD], which
we denote by SISSSCO[18CD] and SISSSCO[15CD]. The
SISSSCO[18CD] architecture is trained with 18 spectral
analysis images per observation using all nine summary
statistics decomposed by wavelet decomposition and
S-transform (i.e, multitaper spectral analysis images are re-
moved), whereas SISSSCO[15CD] is trained with 15 spectral
analysis images per observation using the five summary
statistics Hq, H, /H4, P1, P3, and Ps decomposed by all three
spectral analysis techniques (i.e, 7, Hy, P,, and P, images
are removed). We find that both new SISSSCO models
have lower power and accuracy to detect sweeps than
SISSSCO[27CD] (supplementary fig. S22, Supplementary
Material online). Moreover, based on the superior per-
formance of SISSSCO[18CD] over SISSSCO[15CD], we con-
clude that removing summary statistics had a more
deleterious effect on classification performance than elim-
inating the multitaper images.

Application to Unphased Genotypes

The SISSSCO models were trained with phased haplotypic
data. However, phased data are difficult or impossible to
reliably generate for many study systems—notably most
nonmodel organisms. Hence, for our models to be versa-
tile, it is imperative that they can also accommodate un-
phased data (e.g, similarly to diploS/HIC of Kern and
Schrider 2018). Fortunately, the phased haplotype sum-
mary statistics used by SISSSCO have natural analogs for
unphased multilocus genotype data. Specifically, we could
replace Hy, H,/H,, and Hq; with their respective unphased
analogs G, G,/Gq, and Gy,3 (Harris et al. 2018) and ex-
change the frequencies of the five most common haplo-
types with the five most common unphased multilocus
genotypes. Given the relatively strong concordance with
results from haplotype-based methods (Harris et al.
2018; Harris and DeGiorgio 2020a, 2020b; DeGiorgio and
Szpiech 2022) and power to detect sweeps in prior studies
using unphased multilocus genotypes (Kern and Schrider
2018; Mughal and DeGiorgio 2019; Gower et al. 2021),
we expect that SISSSCO would retain excellent classifica-
tion accuracy and power when applied to unphased data.
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To test this hypotheses, we calculated 7, Gy, G/G1, G1p3,
and the five most common unphased multilocus genotypes
from the 18,000 training, 2,000 test, and 2,000 validation ob-
servations (respectively 9,000, 1,000, and 1,000 per class) from
the Nonequilibrium variable dataset. We ob-
tained these summary statistics from unphased multilocus
genotype data in an identical manner as with phased haplo-
type data by computing 128 windows of size 10 SNPs with a
stride of three SNPs across 400 SNPs of each replicate, with
these SNPs selected as 200 SNPs immediately to the left
and 200 SNPs immediately to the right of the center of the
simulated sequence. We also generated spectral images in
an identical manner to when we employed the original
nine summary statistics computed from haplotype data.
Using these spectral images, we trained a classifier with an
identical ~ architecture to  the  haplotype-based
SISSSCO[27CD]  (denoted  SISSSCO_MLG[27CD])  that
achieves an overall accuracy of 95.60% (supplementary fig.
S23, Supplementary Material online), which is only marginal-
ly higher than diploS/HIC (fig. 4), which was developed for
unphased data. However, diploS/HIC correctly classifies neu-
tral regions with a slightly higher accuracy compared to
SISSSCO_MLG([27CD].

Effect of Sweep Strength and Softness

During model training and performance evaluation, we have
considered settings for which sweep replicates had selection
coefficients (s) drawn on a logarithmic scale within the inter-
val [0.005, 0.5] as well as the frequencies (f) at which bene-
ficial mutation became selected drawn on a logarithmic scale
within the interval [0.001, 0.1], permitting method behavior
to be explored on average across diverse levels of sweep
strength (s) and softness (f). Here, we restrict the test sets
to derive from restricted portions of the selection parameter
space to evaluate the performance of SISSSCO for differing
degrees of sweep strength and softness. We first explored
the effect of selection strength on the accuracy and power
of SISSSCO[27CD] under the nonequilibrium demographic
history. In particular, SISSSCO[27CD] was trained on the
Nonequilibrium variable dataset, and five new
test sets each with 1,000 sweep observations were generated
with identical genetic, demographic, and selection para-
meters as in previous Nonequilibrium variable
test sets, with the exception that selection coefficients
were drawn from a different distribution. Specifically, selec-
tion coefficients for these five sweep test sets were drawn
uniformly at random within one of the five intervals of
[0.001, 0.005], [0.005, 0.01], [0.01, 0.05], [0.05,0.1], or
[0.1, 0.5], respectively leading to five settings of decreasing
difficulty based on increasing sweep strength. We used the
same 1,000 neutral test replicates for all five test sets that
we used in earlier experiments on the Nonequilibr
ium variable dataset.

As expected, accuracy and power of SISSSCO[27CD]
tend to increase as ranges of selection coefficients consider
sweeps with higher strengths (supplementary fig. S24,
Supplementary Material online). Accuracy (65.55%) and
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power are notably low for SISSSCO[27CD] tested on sweeps
with selection coefficients within the range [0.001, 0.005],
as selection in this range is weak and unlikely to leave a
strong local footprint of reduced diversity, thereby making
it difficult to distinguish sweeps from neutrality. Moreover,
this range of selection coefficients falls outside the range
used to train SISSSCO[27CD], yet still SISSSCO[27CD] man-
ages to correctly identifies 32.1% of the sweep replicates.
However, within the bounds of selection coefficients
used to train SISSSCO[27CD], accuracy ranges from 88.2%
to 98.8% for the selection coefficients within the range
of [0.005, 0.01] and [0.1, 0.5], respectively. Moreover,
sweeps with selection coefficients within the ranges of
[0.01, 0.05] or [0.05, 0.1] achieves accuracies of over 95%.

We also examine the performance of SISSSCO[27CD] on
harder and softer sweeps by applying it to 1,000 test repli-
cates for which the frequency (f) of the beneficial allele
when selection initiated was drawn uniformly at random
within the intervals [0.001, 0.01] (harder sweeps) or
[0.01, 0.1] (softer sweeps), and fixing all other genetic,
demographic, and selection parameters as in previous
Nonequilibrium variable test sets. We find
that classification accuracy differs markedly between the
harder and softer sweep scenarios, with accuracy approxi-
mately 15% higher for the harder (96.9% accuracy) sweeps
compared to the softer (82.0% accuracy) ones
(supplementary fig. S25, Supplementary Material online).

Training and Testing SISSSCO on Weaker Sweeps

Based on the results in supplementary figure S24,
Supplementary Material online, we can see that
SISSSCO[27CD] generally performs poorly on test settings
for which the selection coefficient is [0.001, 0.005], which
is unsurprising as this interval falls outside the range of
[0.005, 0.5] that selection coefficients were drawn to train
SISSSCO[27CD). Though these results reaffirm the ten-
dency of SISSSCO[27CD] to conservatively classify patterns
that look closer to neutrality as neutral, we wanted to in-
vestigate whether training with weaker sweep replicates
would make SISSSCO[27CD] more sensitive to weaker
sweeps. We therefore generated 11,000 new sweep repli-
cates with genetic, demographic, and selection parameters
drawn identically to the Nonequilibrium
variable dataset, except that selection coefficients
were drawn uniformly at random on a logarithmic scale
within the interval [0.001, 0.05], with 1,000 replicates re-
served for testing and the remaining 10,000 reserved for
training and validation. We trained the six SISSSCO models
as well as SURFDAWave, diploS/HIC, and evolBoosting in
an identical manner to the originally trained models.
The classification accuracies of all six SISSSCO models
decreased substantially on this dataset, with
SISSSCO[27CD] achieving the highest accuracy of 92.5%
among the six methods (supplementary fig. S26,
Supplementary Material online). This reduction in accur-
acy is unsurprising, as many of the replicates will be for
weak sweeps, which may leave genomic footprint that
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resemble neutrality. Moreover, SURFDAWave and diploS/
HIC achieved identical overall classification accuracy to
SISSSCO[27CD]. In contrast, the classification accuracy of
evolBoosting suffered due to a large increase in the rate
of misclassifying neutral regions as sweeps (compare fig.
4 and supplementary fig. S26, Supplementary Material
online).

Application to Human Genomic Data

Until now, we assessed the six SISSSCO methods on a number
of simulated settings, and compared the results with three
competing state-of-the-art methods. Across these tests,
SISSSCO[27CD] was the most consistent performer through-
out the evaluation process (fig. 4 and supplementary fig. S18,
Supplementary Material online), with a heavier computa-
tional cost compared to some of the other SISSSCO architec-
tures apart from SISSSCO[27MD]. Because of its favorable
behavior on simulated settings, we apply SISSSCO[27CD] to
variant calls and phased haplotypes of 99 individuals in the
CEU population from the 1000 Genomes Project (The
1000 Genomes Project Consortium 2015) to uncover sweeps
in a well-studied human dataset as a proof of concept appli-
cation of SISSSCO.

SISSSCO classified most of the genome (approximately
95.5%; table 1) as neutral, with a mean sweep probability
of 17.89%. Increasing the probability threshold for calling
sweeps from 0.5 to 0.9 raises the neutral detection rate
above 97% (table 1). For our empirical analysis, we set
the sweep footprint detection criterion as a mean predic-
tion probability of at least 0.9 for a set of 10 consecutive
prediction windows. Calling sweep regions in this manner
circumvents the few isolated data points with marginally
high sweep prediction probabilities, and ensures that we
are finding peaks in genomes with high sweep support.

To test the reliability of this sweep detection criterion
that we chose for the empirical dataset, we analyzed simu-
lated test sets in an identical manner that were generated
from the Nonequilibrium variable dataset. In
particular, rather than computing the central 128 sum-
mary statistic windows for a given replicate simulation,
we instead consider the central 137 windows, as this would
provide a total of 10 consecutive summary statistic arrays
computed across 128 windows, assuming a stride of one
window. From these 10 consecutive arrays, we generated
10 sets of spectral analysis images, predicted the sweep
probability for each set of images from SISSSCO[27CD],
and averaged these probabilities across the 10 sets of images
to obtain an estimate of the sweep probability for a given
replicate. Assuming a sweep probability threshold of 0.9,
we find that 99% of neutral replicates are correctly classified
and that we preserve a high rate of 97.9% for correctly clas-
sifying sweep replicates, while also retaining high power to
detect sweeps at low false positive rates (supplementary
fig. S27, Supplementary Material online).

Figure 8 displays sweep prediction probabilities as a
function of genomic position, using a 10-point moving
average to generate smoothed curves that match our

Table 1. Percentage of Windows Classified as Sweep Based on Sweep
Probability Threshold of 0.5, 0.7, and 0.9 for Each of the 22 Autosomes of
CEU Individuals from the 1000 Genomes Project Dataset.

Chr: Threshold = 0.5 Threshold = 0.7 Threshold = 0.9
1 5.31 4.31 3.32
2 6.59 6.41 5.89
3 6.60 413 2.55
4 5.56 3.89 2.92
5 5.99 4.76 2.12
6 5.19 3.72 3.01
7 5.71 3.92 2.02
8 5.00 3.67 2.01
9 4.23 3.22 2.13
10 4.49 3.49 2.86
11 4.14 2.99 2.33
12 4.66 3.10 2.09
13 3.98 2.04 1.99
14 4.37 2.34 2.34
15 4.12 2.83 2.43
16 4.00 3.16 2.66
17 4.00 3.93 3.77
18 3.77 3.56 3.41
19 3.49 3.42 3.30
20 3.01 2.99 2.78
21 2.12 2.00 1.90
22 2.23 1.89 1.89

sweep detection criterion. Of the 22 human autosomes,
the first 6 contained regions that satisfied our detection
criterion, resulting in 20 identified sweep regions contain-
ing 22 genes (table 2 and fig. 8). Among these 22 genes,
many are expected from prior scans of European human
genomes (e.g, LCT, ABCA12, SLC45A2, HCGY, and
HLA-DRB6), with a few (e.g, PDPN, WASF2, LRIG2,
SDAD1, POMGNTT1, UQCRH, ULK4, and TMPRS11D) identi-
fied as novel candidates in our study.

With a predicted sweep probability of 1.0 and a
10-window mean of 0.9998, the LCT gene harbors one of
the clearest indicators of a sweep found by SISSSCO. This
high sweep support reinforces the overwhelming evidence
for recent positive selection at LCT in Europeans from prior
studies (e.g, Tishkoff et al. 2007; Field et al. 2016; Ségurel and
Bon 2017). Because of various polymorphisms in the LCT
gene, which encodes lactase-phlorizin hydrolase, the per-
centage of adults who are able to digest lactose varies sub-
stantially across the world’s populations (Boll et al. 1991). In
particular, the geographical distribution of dairy production
and lactase persistence are correlated with one another
(Boll et al. 1991). Moreover, groups where milk and milk
products are consumed have been shown to have higher
LCT gene expression levels (Tishkoff et al. 2007). High inci-
dence of lactase persistence in European adult populations
are the product of positive selection brought about as it pre-
vented lactose intolerance for the people in populations
who were consuming dairy products (Bayless and
Rosensweig 1966; Scrimshaw and Murray 1988). The
SISSSCO model suggests that the high-frequency haplotype
at LCT is the result of one of the most significant recent sig-
nals of positive selection in the genomes of Europeans.
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Another region that showed high sweep prediction
probabilities, including a peak of 0.987 and a 10-window
mean of 0.967, is the region containing the ABCA12
gene, which codes for the protein ATP-binding cassette
transporter (Annilo et al. 2002). The ABCA12 gene is an ab-
solute requirement for the outer layer of the skin to be able
to transport lipids and enzymes (Akiyama 2014). This mo-
lecular movement is the only way to keep the lipid layers in
the epidermis, which are vital to the maintenance of prop-
er skin development (Akiyama 2014). The lipid barrier of
the skin is the first line of defense that the body has against
potentially harmful environmental toxins. Multiple varia-
tions of hair and skin pigmentation exist to adapt to differ-
ent levels of ultraviolet radiation (Jablonski and Chaplin
2010; Baroni et al. 2012). A genome-wide scan in
Eurasians found that a variant in the ABCA12 gene harbors
footprints of positive selection (Colonna et al. 2014; Sirica
et al. 2019), and SISSSCO lends support to these claims
with high confidence of a predicted sweep in this region.

Furthermore, the region including the gene SLC45A2
passed the sweep qualification criterion, with a peak of
0.996 predicted sweep probability and a 10-window
mean of 0.9906. The protein coded by SLC45A2, which is
found in melonocytes, is a key component of the opera-
tions responsible for transporting and processing pigmen-
tation enzymes throughout the cell (Kamaraj and Purohit
2014). The frequency of an allele in SLC45A2, which in-
duces lighter skin pigmentation in modern humans, seems
to increase from southern to northern Europe (Costin et al.
2003). In populations with lighter skin pigmentation, there
is a considerable association between regional diversity in
multiple functional skin pigmentation polymorphisms
within the gene and distance from the equator (Wilde
et al. 2014). This correlation suggests that selection pres-
sure occurred within populations residing in high latitude
regions compared to the ones living in lower latitudes over
the course of human evolution, as vitamin D3 photosyn-
thesis in northern Europe is expected to be higher for light-
er than for darker skin (Novembre and Di Rienzo 2009;
Wilde et al. 2014). Along with ABCA12, the detection of
SLC45A2 by SISSSCO lends support to the hypothesis
that multiple genes responsible for skin pigmentation
went through positive selection in Europeans (Jablonski
and Chaplin 2017).

SISSSCO also identified four candidate genes in the ma-
jor histocompatibility complex (MHC) region. Among
them, HLA-DRB6 and HCG9 passed our sweep qualification
criterion with peaks of 0.9812 and 1.0 predicted sweep
probability, and 10-window means of 0.977 and 0.992, re-
spectively. However, the other candidates (HLA-DRA and
HLA-A) moderately exhibit signatures of sweeps, as they
do not pass the stringent qualification criterion, but do
pass it if we relax the threshold to a 10-window mean of
0.7. Though categorized as an MHC gene, HLA-DRB6 is a
pseudogene (Cree et al. 2010) that may have lost its first
exon and promoter to the insertion of a virus far in the
past, thereby making it nonfunctional (Mayer et al.
1993). In contrast, HCGY is a long noncoding RNA gene
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(Pal et al. 2016), and hence may be involved in gene regu-
lation. The MHC region contains many exceptionally high-
ly polymorphic genes that code for cell surface proteins
responsible for communication between cells and extra-
cellular environments (Horton et al. 2004). These proteins
make up the adaptive immune system by recognizing for-
eign pathogens to initiate a targeted immune response,
which becomes essential when the innate immune system
fails in protecting cells (Horton et al. 2004). Among MHC
Class | genes, HLA-A showed marginal signs of positive se-
lection with 10-window mean sweep prediction probabil-
ity of 0.70. Similarly, among MHC Class Il genes, along with
HLA-DRB6, HLA-DRA showed signs of positive selection
with 10-window mean sweep prediction probability of
0.72. The marginal sweep candidates HLA-A and
HLA-DRA show a trend of multiple genes in the MHC
Class I and Class Il to exhibit signs of sweeps. These findings
are reinforced by other studies that observed sweep signa-
tures at the MHC region within Europeans (e.g,
Albrechtsen et al. 2010; Goeury et al. 2018; Harris and
DeGiorgio 2020b; DeGiorgio and Szpiech 2022).

SISSSCO detected 16 other sweep candidates, a large
number of which are associated with cancer detection or
suppression. Specifically, the PDPN gene that encodes
the protein Podoplanin, which serves as a marker for
lymphatic vessels (Kitano et al. 2010). Because it can be uti-
lized as a tool, though rather weak, for cancer diagnosis,
this gene has played a crucial role in cancer research
(Kawaguchi et al. 2008; Krishnan et al. 2018; Quintanilla
et al. 2019). Additionally, it is a major factor in the metas-
tasis of squamous cell carcinoma, a common form of skin
cancer (Kitano et al. 2010). The genes WASF2 and LRIG2
have been linked with many forms of cancer detection
as well (Wang et al. 2014; Kitagawa et al. 2019). WASF2 ex-
pression levels have been studied as a biomarker in detec-
tion of pancreatic (Kitagawa et al. 2019) and ovarian
cancers (Yang et al. 2022), whereas LRIG2 has been identi-
fied as a biomarker for detection of nonsmall cell cancer
(Wang et al. 2014). On the other hand, SDAD1 has been
identified as a gene responsible for suppressing colon can-
cer metastasis (Zeng et al. 2017). A number of prior scans
also found traces of selective sweep footprints in cancer-
associated genes. For instance, Lou et al. (2014) and
Mughal and DeGiorgio (2019) identified the BRCA1
gene as a sweep candidate, and Schrider and Kern (2017)
detected sweep signatures at several cancer-related
genes, including CADM1 and MUPP1. Though the cancer-
associated genes detected by SISSSCO differ from those of
prior studies, these findings portray an interesting enough
trend that SISSSCO, along with a number of other ap-
proaches from prior studies, identified several cancer-
related genes as selective sweep candidates.

Discussion

In this study, we found that the SISSSCO models do indeed
have increased power and accuracy compared to the three
competing summary statistic-based machine learning

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq



Uncovering Footprints of Natural Selection Through Spectral Analysis - https://doi.org/10.1093/molbev/msad157

MBE

10 i i H HH H ™ T 1 ¥ T WG T H H T H
v ' ' AT S ! ! ! ! !

0.8 ! ! ! [0S T 4 a4 ¢ : i ! ! :
: ' ' VE e o oo o or : : : : !

0.6 i ! i 1R | oA w i : i : i
1 ) 1 (] 1 " " 1 1 ] ] ] 1 1 1 1 )

! ' ' e g1 m F A ! ! ! ! !

i P s LT E iAl &l \d e E
: ] ' o T = ! Al o ! :

0.2 PR : Giig (] S R & Vg o : e
G ' ST g SRR S e i o

ol | § I 0l (¢ = = H | H . 21

13.90 13.9 13.98 27.86 27.92 27.98 46.68 46.72 46.76 113.52 113.60 113.68 161.280 161.305 161.330

Position on Chromosome 1 Position on Chromosome 1 Position on Chromosome 1 Position on Chromosome 1 Position on Chromosome 1

1.0

0.8

0.6

0.4

0.2

LcT
ABCA12

ULK4
CPB1
FAM184B

0.0

136.50 136.55 136.60 215.78 215.82 215.86 415

1.0

Sweep Probability

0.8

0.6

0.4

0.2

SDAD1

TMPRS11D

@
| s b T RN LR
~
v

0.0

68,65 6870 76.86 7690  76.94

1.0

0.8

0.6

0.4

0.2

ILA-DRB6

PTPRK

]
i

32.519 32.523 32.527 1282 1285 12858
Position on Chromosome 6 Position on Chromosome 6

0.0

3394 3396 339
Position on Chromosome 4 Position on Chromosome 4 Position on Chromosome 5 Position on Chromosome 5 Position on Chromosome 6

a8 421
Position on Chromosome 2 Position on Chromosome 2 Position on Chromosome 3 Position on Chromosome 3 Position on Chromosome 4

14853 14856  148.59 176 177 17.8

PLPP1

HCG9

SLC45A2
SLC38A9

|
i
]
2

54.75 5485 54.95 20.042 29.945 29.948

Fic. 8. The genome-wide sweep scan results generated by the trained SISSSCO[27CD] model on the central European humans (CEU population in
the 1000 Genomes Project). Ten consecutive windows of sweep probability higher than 0.9 was chosen as the qualifying criteria to be classified as
a region to be under positive natural selection. In total, 23 genes in 17 regions in the genome show qualifying signs of sweep.

methods. In particular, the 27-input CNN models
(SISSSCO[27C0], SISSSCO[27CD], and SISSSCO[27MD])
generally outperformed the 3-input CNN models
(SISSSCO[3CO], SISSSCO[3CD], and SISSSCO[3MD]), with
all 3 27-input models showing similarly high performance
across tested demographic histories and selection regimes.
Though classification accuracy is slightly lower for
SISSSCO[27CD] than for SISSSCO[27MD] on missing blocks
of SNPs, given its high accuracy and power across the range
of demographic and adaptive scenarios tested as well as ro-
bustness to missing genomic segments, we decided to use
this method to detect sweeps on an empirical human gen-
omic dataset.

Application of SISSSCO to European human genome vari-
ation gave high support for previously identified sweeps at

the LCT, ABCA12, and SLC45A2 genes (Bersaglieri et al.
2004; Beleza et al. 2013; Sirica et al. 2019), as well as 19 other
candidate genes with high confidence. We employed a strin-
gent sweep qualification criterion to limit the number of
falsely discovered sweeps. A key finding is that, two genes
in the MHC region, namely HCG9 and HLA-DRB6, and with
a relaxed qualification criterion another two genes HLA-A
and HLA-DRA, presented sweep signatures. However, past
studies have indicated that the MHC region has undergone
balancing selection (e.g, Solberg et al. 2008; Cagliani et al.
2011). As recent balancing selection leaves a spatial pattern
in the genome similar to that of an ongoing selective sweep
(Isildak et al. 2021), SISSSCO may have picked up such spatial
patterns in the MHC region. However, we can hypothesize
that similar spatial patterns might also emerge as artifacts
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Table 2. List of Peaks and Corresponding Genes Detected by the
SISSSCO[27CD] Model Meeting the Sweep Qualifying Criteria of CEU
Individuals from the 1000 Genomes Project Dataset.

Chromosome Start (Mb) Stop (Mb) Genes

1 13.83 13.97 PDPN

1 27.82 27.89 WASF2

1 27.96 28.02 ADHC1

1 46.67 46.79 POMGNT1, RAD54L, UQCRH
1 113.61 113.63 LRIG2-DT, LRIG2
1 161.29 161.31 SDHC

2 136.47 136.58 LCT

2 215.81 215.88 ABCA12
3 41.88 41.94 ULK4

3 41.96 42.05 ULK4

3 148.55 148.57 CPB1

4 17.61 17.74 FAM184B
4 68.66 66.71 TMPRS11D
4 76.83 76.93 SDAD1

5 33.92 33.99 SLC45A2
5 54.75 54.80 PLPP1

5 54.89 54.90 SLC38A9
6 29.94 29.95 HCG9

6 32.53 32.53 HLA-DRB6
6 128.55 128.99 PTPRK

when a highly polymorphic region, such as the MHG, is se-
quenced at lower levels of genomic coverage. Evaluating gen-
etic diversity at the MHC locus presents a variety of
methodological hurdles, which in turn may lead to inaccurate
assessment of polymorphism and diversity within the region
(Dilthey et al. 2015; Ribeiro et al. 2015) and affect downstream
summary statistic estimates that would ultimately impact
classifiers that use such summaries as input.

Moreover, we found that, as expected, the vast majority of
the genomic windows were classified as neutral, with only a
handful of regions showing clear sweep signatures. Though
roughly 3-5% of the genomic windows had predicted sweep
probabilities higher than their respective threshold, many
were isolated peaks within intergenic regions and near re-
gions of low mean CRG scores, which we removed from
our study. Detection of the majority of the genome to be neu-
trally evolving coupled with the identification of classic sweep
candidate genes in humans served as a sanity check for the
efficacy of SISSSCO on empirical data.

The three spectral analysis techniques that we em-
ployed add versatility to SISSSCO, as they focus on different
characteristics of signals. In particular, they extract infor-
mation from multiresolution analysis of frequency compo-
nents within the summary statistics signals within the
summary statistic signals. This information is obtained ei-
ther through wavelet transformation of signals or through
multitaper spectral analysis by tapering signals using quali-
fying tapers to generate power maps emphasizing overall
signal shapes. Focusing on genomic spatial windows as a
function of the dominant frequency within the summary
statistic signal through the S-transform also offers a unique
mechanism for drawing information from signals. By lever-
aging these diverse patterns of information, SISSSCO gains
the ability to build a more accurate and robust system
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compared to existing sweep detectors that utilize vectors
of multiple summary statistics as input.

A potential reason that these signal decomposition
methods offer improved predictive ability over the use
of raw summary statistics might be that they aim to isolate
low-frequency components that are responsible for overall
trends of signals, but place lower importance on regions of
signals where abrupt changes occur. Some low-frequency
components may be generated by genetic variation within
the population stemming from nonadaptive processes in-
cluding mutation, recombination, migration, and genetic
drift. However, adaptive processes, such as positive natural
selection, may be responsible for a different range of low-
and mid-frequency components to be present in the sig-
nal. Because the signal decomposition methods are able
to isolate high-frequency white noise incurred from calcu-
lating summary statistics in small overlapping windows, it
becomes easier for the machine learning models to differ-
entiate between low-frequency components generated
from nonadaptive processes, and low- to mid-frequency
components generated from adaptive processes.

The two-dimensional images generated by these spec-
tral analysis tools have different patterns that can be
used to explain the energy of the frequency components
within the signal. CNNs therefore play a vital role in iden-
tifying regions of interest from these images. Because
CNNss are so flexible, we were able to set up image process-
ing architectures that were suited for finding specific re-
gions of interest in the three types of images made by
the three signal decomposition methods that match the
complexity of patterns in those regions. In addition to
this adaptability, the CNNs made it possible to combine
data from several image types to create a stacked (or con-
catenated) set of models with increased ability to spot
signs of adaptive events.

We tested 6 stacking, or concatenation, architectures
that utilize information from 27 input images generated
by nine summary statistic signals, each decomposed with
3 spectral analysis methods. Three of our 6 stacked models
involve 3 nine-channel input CNNs (SISSSCO[3CO],
SISSSCO[3CD], and SISSSCO[3MD]), whereas the other 3 op-
erate on 27 single-channel input CNNs (SISSSCO[27CO],
SISSSCO[27CD], and SISSSCO[27MD]). The three stacking
approaches involving nine-channel input CNNs generally
performed better than each of the signal decomposition
methods tested in isolation as presented in the Results sec-
tion, corroborating the motivation that combining knowl-
edge from three signal decomposition methods does
indeed enhance classification performance. A likely reason-
ing for this result is that the different signal decomposition
methods interrogate distinct properties of a signal, making
images from the three spectral analysis approaches comple-
mentary rather than redundant. On the other hand, stack-
ing methods employing nine-channel CNNs were often
outperformed by those using single-channel CNNs.

An important consideration when fitting predictive
models, especially those that employ deep neural net-
works, is the size of the training set. To study the influence
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of training set size on classification accuracy, we trained
SISSSCO[27CD] and the three competing methods with
1,000, 3,000, and 5,000 observations per class, with 1,000
observations per class to use as a validation. We find
that with 1,000 observations per class, the classification ac-
curacy of all four methods suffers (supplementary fig. S28,
Supplementary Material online), with evolBoosting exhi-
biting the greatest drop in accuracy (from 93.00% to
80.05%) compared to our original training set size (fig.
4). Of the four approaches, SISSSCO[27CD] topped the
list with an accuracy of 94.75%, which is down from
99.50% on the original training set size. When training
set size was increased to 3,000 observations per class, train-
ing accuracies of all methods steadily improved, though
still remained far from the accuracies attained under the
original training set size. By a training set size of 5,000 ob-
servations per class, SISSSCO[27CD] reached an accuracy of
99.00%, which is virtually identical to the value on the ori-
ginal training set size, whereas the accuracies of the other
methods remained between approximately 1% and 4%
lower than on the original training set size. Thus, even
with moderate training set sizes, SISSSCO[27CD] is able
to achieve high accuracy.

When exploring the effect of nonequilibrium demo-
graphic histories on the ability to discriminate sweeps
from neutrality, we focused on population size fluctua-
tions. However, extreme population structure and admix-
ture represents an additional nonequilibrium setting that
can potentially distort distributions of summary statistics
and lead to false signals of sweeps (Harris et al. 2018).
For example, Harris et al. (2018) showed that under a sym-
metric island migration model the distribution of Hy; is in-
flated toward higher values relative to neutrality, and that
this distribution can overlap that of hard (and thus likely
soft) sweeps when selection is old enough and when mi-
gration among populations is sufficiently rare. Moreover,
they showed that under an admixture setting, when the
donor population size is substantially smaller than the re-
cipient population size, Hy, increases and H,/H; decreases
with increasing admixture proportion, thus leading to po-
tential false inferences of sweeps. Such extreme population
structure and migration settings may also lead to similar
alterations in the distributions of other summary statistics
used by SISSSCO, and therefore mislead SISSSCO and other
machine learning classifiers to detect false footprints of
adaptation. Thus, accounting for such extreme demo-
graphic settings would be important within the training
of the classifier if inferred demographic models suggest
substantial levels of structure or admixture. Moreover,
even if these factors are accounted for when training mod-
els, because of the potential increase in overlap of sum-
mary statistic distributions between neutral and sweep
scenarios, we expect that classification accuracy and power
of SISSSCO and other machine learning approaches would
likely decrease due to less class separation. However, be-
cause Harris et al. (2018) found that the Hy, and H, /H; dis-
tributions were only similar between sweeps and neutrality
under exceptional circumstances, we believe that the

impact of migration in general on the predictive outcomes
of our SISSSCO models is likely to be minimal.

Across the various simulated test settings, the relative
performances of the SISSSCO and non-SISSSCO models
remained consistent, as did the relative performances
among non-SISSSCO models. A comprehensive under-
standing of what drives these differences in classification
behavior is difficult, but key characteristics of modeling
decisions may provide some light. First, though SISSSCO
and SURFDAWave both employ signal decomposition
methods as well as the same set of summary statistic vec-
tors, the underlying relationships between the class labels
and the summary statistic values may be nonlinear, and
thus the nonlinear CNN models employed by SISSSCO
may provide it with better accuracy and power.
Moreover, three signal decomposition methods em-
ployed by SISSSCO each interrogate different characteris-
tics of a signal and are thus complementary. In contrast
SURFDAWave considers only a single signal decompos-
ition method for extracting features from summary stat-
istic vectors.

Next, diploS/HIC uses a different set of summary statis-
tics that operate on unphased multilocus genotype data,
whereas we used input summaries from phased haplotype
data to train SISSSCO. Second, diploS/HIC divides the ana-
lyzed genomic region into a small number of large
physical-based windows, whereas SISSSCO uses a large
number of SNP-based windows. These SNP-based win-
dows give SISSSCO robustness to missing genomic regions,
whereas diploS/HIC is less robust due to its use of physical-
based windows—though masking of genomic regions can
be implemented within model training to account for miss-
ing regions (Kern and Schrider 2018). Third, diploS/HIC does
not use ensemble learning other than dropout layers.
However, the network architecture does have three branches
that can learn nonredundant features from the input images,
and results from these branches are aggregated through con-
catenation for making predictions. Fourth, diploS/HIC nor-
malizes each summary statistic across windows, whereas
SISSSCO does not normalize summary statistic signals before
signal decomposition. Instead, SISSSCO standardizes each
pixel of the images after signal decomposition. Finally,
diploS/HIC was designed to discriminate among five classes,
which is important because the diploS/HIC summary statis-
tics may have been chosen to provide optimal performance
for the original setting of five classes.

In relation to evolBoosting, though it employs ensemble
learning similar to SISSSCO, these ensemble approaches
have many differences. That is, evolBoosting utilizes boost-
ing, which aggregates predictions from many weak lear-
ners, whereas the stacking approach of SISSSCO takes
node weights from the fully connected dense layers or
the output layers of the individually trained CNNs, which
are each potentially strong predictive models. Second,
evolBoosting uses a different set of summary statistics,
computed across a moderate number of moderate-length
physical-based windows. Similarly to diploS/HIC, this sen-
sitivity of evolBoosting to missing genomic segments is

21

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq


http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data

Arnab et al. - https://doi.org/10.1093/molbev/msad157

MBE

likely due to the calculation of summary statistics in
physical-based windows.

Though we focused on the application of SISSSCO to bin-
ary classification problems, it can be extended to multiclass
problems and retooled to infer evolutionary parameters
within a regression framework, which can provide a richer
understanding of the processes that have led to selection
footprints in the genome. For example, estimating the tim-
ing (t) and strength (s) of selection may provide a hint at the
environmental pressures that led to the rise in frequency of
particular traits associated with identified sweep candidates.
Moreover, predicting the frequency of the allele when it be-
came adaptive (f) can lend information about the mode of
positive selection at candidate genes, with low frequency
suggesting a hard sweep from a de novo mutation and mod-
erate frequency a soft sweep from standing variation.

To retool SISSSCO for such tasks, we would need to con-
vert the 27 component CNNs to output a quantitative re-
sponse, so that they are consistent with a regression
problem, which would potentially require changing the
output layer activation functions and making modifica-
tions to the network architectures. For example, we could
make the output layer three nodes, with each node corre-
sponding to either t, s, or f instead of a single node for pre-
dicting the sweep probability, such that predictions are on
the real number line. Thus, instead of a sigmoid activation
function for the output layer, linear or ReLU activation
functions could be used instead, depending on whether
the t, s, or f are (linear) or are not (ReLU) logarithmically
transformed. Next, the loss function needs to be adjusted
so that it takes into account the discrepancy between an-
ticipated and desired values for regression, such as employ-
ing the mean squared error instead of the cross entropy,
which we used for the classification problem. In addition,
other hyperparameters, such as gradient descent learning
rate, and batch size may need to be modified.

On the other hand, adjusting the SISSSCO architecture to
predict more than two classes is more straight forward.
Rather than having a single node in the output layer with
a sigmoid activation function, we would have the same num-
ber of nodes as the number of classes, and then utilize the
softmax activation function to predict the probability of
each of class. Moreover, when considering multiclass pro-
blems, incorporating images of two-dimensional statistics
may be helpful, such as discriminating among neutrality,
nonintrogression sweeps, and adaptive introgression
(Racimo et al. 2015). In particular, Mughal et al. (2020)
showed that including two-dimensional statistics [i.e, mo-
ments of the distribution of the squared correlation coeffi-
cient r* (Hill and Robertson 1968)] in addition to
one-dimensional statistics can aid in discriminating among
different types of adaptive processes, such as adaptive intro-
gression and nonintrogression sweeps. However such two-
dimensional summary statistics do not fall within the
SISSSCO framework developed here. Instead, SISSSCO could
accommodate images that are not from spectral analysis,
such as moments of pairwise linkage disequilibrium compu-
tations, as separate concatenation branches.
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Overall, spectral analysis of genomic summary statistics
that result in spectral images offer precise localization of
frequency components within the signal. In contrast to
the frequency components generated by genetic variation
due to nonadaptive events, the low- to mid-frequency
components caused by adaptive events like positive natural
selection are qualitatively different. This article also demon-
strated that stacking is a useful technique for integrating
models that search for signatures of such evolutionary
events in various ways. The versatility of the SISSSCO frame-
work provides it with the ability to be adjusted for particu-
lar use cases. To tailor SISSSCO for particular applications, it
is important to examine the comparative performances of
the model architectures that we explored. As
SISSSCO[27CD] and SISSSCO[27MD] architectures have
their own sets of strengths and weaknesses, users can
choose the architecture that best serves their purposes
based on the availability of computational resources,
complexity of the demographic history, and nature of
the input data. To reduce the complexity of the architec-
ture, users can also choose to use a subset of summary
statistic-signal decomposition method combinations on
the final concatenated model by making use of feature se-
lection methods (as we did using group lasso in the Results
section). We believe that SISSSCO will prove to be a
powerful tool for future development of robust predictive
models that aim to find traces of adaptive events, and pre-
dicting evolutionary parameters by tapping into the po-
tential of spectral analysis.

Methods

Computational Setup

We ran our entire analysis on a system with an AMD EPYC
7702 64-core CPU and 100 GB of RAM. After loading the
necessary spectral analysis image datasets, training every
single-channel CNN with a batch size of 50 for 30 iterations
on this system consumes roughly 4.16 GB of memory. It
takes approximately 32 minutes to complete hyperpara-
meter tuning on each of the 27 components CNNs, which
are each trained independently. Though we trained the 27
component CNNs serially for the development of
SISSSCO[27CD], it is possible to train the 27 CNNs in par-
allel. However, though training the component CNNs in
parallel will significantly reduce the training time, it will re-
quire around 500 GB of system memory considering the
overhead caused by loading the image datasets containing
10,000 images per class. It will also require additional hard
drive space of around 34.56 GB to store the 27 component
CNNs if chosen to train the CNNs in parallel. Memory util-
ization during testing is unaffected by whether CNNs are
trained serially or in parallel, as the final saved concaten-
ation model will be loaded during testing. Finally, it takes
roughly 16 hours to compute the spectral analysis of all
nine summary statistics for 10,000 samples per class
when three signal decomposition methods are run in
parallel.
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Computing SISSSCO Summary Statistics from
Simulated Data

For the purpose of training the SISSSCO models, we gener-
ated the nine summary statistics from the population sam-
ple files that we simulated using discoal. As discussed
in the Modeling description subsection of the Results
section, we generated four simulated training sets: Equ
ilibrium fixed, Equilibrium variable,
Nonequilibrium fixed, and Nonequilibrium
_variable. We parsed each replicate from these simula-
ted datasets to include the central 400 SNPs (200 to the left
and 200 to the right of the center position of each simula-
ted sequence of length 1.1 Mb). Using these 400 SNPs, we
calculated the nine summary statistics for our training, val-
idation, and test sets with a window of size 10 SNPs and a
stride of three SNPs. This procedure resulted in summary
statistic arrays of length 128 windows. Choice of window
size when calculating summary statistics is important, as
windows that are too small would incur substantial noise,
whereas windows that are too large may miss detectable lo-
cal patterns within a signal. Moreover, it has been shown
that assessing haplotype variation across many small win-
dows can enhance the range of detectable sweeps, with
comparable power for recent sweeps but significantly high-
er power for older sweeps (Harris and DeGiorgio 2020b;
DeGiorgio and Szpiech 2022). For these reasons, and due
to the fact that our choice of summary statistics is inspired
Mughal et al. (2020) who also employed small windows, we
opted to calculate summary statistics across many small
overlapping windows. The nine summary statistic vectors
of size 128 were then fed into the 3 signal decomposition
methods with identical protocols and packages (Cokelaer
and Hasch 2017; Satriano 2017; Lee et al. 2019) as described
in the Modeling description subsection of the Results sec-
tion. As a result, a total of 27 spectra of size 65 X 128
were generated per simulated replicate.

Spectral Analysis of Summary Statistics

Each of the nine summary statistics described in this study
exhibit oscillatory dynamics. The oscillatory characteriza-
tion of time series data provides valuable insights into the
construction of the data via spectral analysis (Babadi and
Brown 2014). However, for our purpose, we calculated these
summary statistics over overlapping windows, which por-
tray autocorrelation properties similar to that of time series
data. A key characteristic of our summary statistic compu-
tations is that they are of finite length, while in theory we
need a sample of infinite length to describe a system in
the frequency domain. However, finite-length data can re-
sult in spectral analysis that is highly erroneous (Sadowsky
1996; Babadi and Brown 2014). In this subsection, we con-
sider three different methods for performing spectral ana-
lysis on finite-length signals: wavelet decomposition,
multitaper analysis, and the S-transform. Furthermore, we
generally follow the notation of Sadowsky (1996), Babadi
and Brown (2014), and Yun et al. (2013) to respectively de-
scribe the wavelet decomposition, multitaper analysis, and

S-transform, with modifications to ensure uniform and con-
sistent notation across subsections.

Wavelet Decomposition
The continuous wavelet transform (CWT) permits the
examination of signals, the extraction of spectral features,
and the discovery of nonstationary properties that are de-
pendent on time and scale (Sadowsky 1996). It is a tech-
nique that takes a signal x(t) over time t and produces a
time- and scale-variable parameter surface that could
prove useful for its characterization of a signal and the ori-
gin of the signal. For the CWT to fulfill the requirements of
its role as the kernel function of a signal transform, it is spe-
cified in relation to a basis function y(t) termed a mother
wavelet. To qualify as a mother wavelet, a wavelet must
satisfy two properties. The first property is that the mother
wavelet is designed so that the wavelet transform is invert-
ible (Sadowsky 1996). That is, because the wavelet trans-
form takes a signal from the time domain and projects it
onto a time—frequency plane, there must be an operation
that permits the reconstruction of the time domain signal
from the time—frequency plane. In addition to this prop-
erty, the “admissibility condition” must also be met by
the mother wavelet. The admissibility condition states
that, for there to be an inverse wavelet transform, the
Fourier transform (Grafakos 2008) of the mother wavelet
must be zero for any constant component in the signal,
and thus have zero direct current bias (Holschneider
1996). Therefore, the mother wavelet must have oscilla-
tions to meet the admissibility condition (Sadowsky 1996).
The Fourier transform is a mathematical tool used for
frequency analysis of a signal, which transforms a time do-
main signal into the frequency domain. That is, it is a
method of frequency domain representation of a signal,
which can also be reversed to get the time domain signal.
The Fourier transform employs a technique so that every
signal can be decomposed into one or many sinusoidal
waves of varying frequencies and amplitudes. For a con-
tinuous time signal x(t), the transformation is defined as
Bracewell (1986)

X(f) =7, x(t) exp (—i2zft) dt,

where i = /=1 indicates an imaginary component, f is the
frequency, and complex number exp (—i2zft) =
cos (2zft) + isin (2zft) can be broken into cosine and
sine functions. The real valued waveform cos (2zft) and
imaginary valued waveform sin (2zft) are of same fre-
quency f. The product of exp (—i2zft) with the time do-
main signal x(t) gives us the amplitude of every
participating waveform in the frequency space.

In this study, we consider the Morlet wavelet as the
mother wavelet (Kronland-Martinet et al. 1987). The
Morlet wavelet can be defined as Sadowsky (1996)

w(t) = /2 exp (— ;—Z) |:exp (imt) — exp (#)},
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where a denotes the shaping factor to obtain a desired
shaping of the Morlet wavelet. This shaping helps generate
a spectral image with resolution and size that is suitable for
a given performed analysis. The frequency domain re-
presentation of the mother wavelet after applying the
Fourier transform is

W(f) =17, w(t) exp (—i2zft) dt.

Because the admissibility condition dictates that y(0) =0,
it follows that (Sadowsky 1996)

I, wt)dt=0,

which leads to the frequency domain representation of the
Morlet wavelet as

a2 (1 + 4f?)

Y(f)= anP[— y

i| exp (T o’f — 1).

We set the shaping factor as o = /2 to ensure reduction
of frequency overlap while preserving a reasonable level
of temporal resolution. This o value results in horizontal
shaping of the mother wavelet in the time domain to ob-
tain the necessary number of oscillations (supplementary
fig. S29, Supplementary Material online), and determin-
ation of the center frequency of the wavelet in the fre-
quency domain.

The CWT of a signal x(t) with respect to a wavelet y/(t)
is a function of scaling factor a and translation factor b,
and can be expressed as Daubechies (1992), Sadowsky
(1996)

CWT(a, b) = \/ia O (?) dt,

where the superscript * indicates complex conjugation
and where locality in time and frequency are controlled
by parameters b and a, respectively. Scaling can refer to
either a reduction or an increase in horizontal shape, as
it can be both contracted (squeezed) or dilated
(stretched). It is feasible to express the amplitude versus
the scale and its fluctuation over time by altering the
scale and translation parameters along the time index t.
The wavelet is said to be stretched if a > 1, and squeezed
if 0 < a < 1.In this study, the translation parameter is dis-
cretized to integer values, whereas the scale parameter is
discretized to fractional powers of two.

Supplementary figure S29, Supplementary Material on-
line depicts the mother wavelet and its children wavelets
produced by changing scale factors. Fixing the scaling
factor a, we perform the CWT(a, b) with increasing values
of translation factor b. The translation, represented by
the shaded blocks in supplementary figure S29,
Supplementary Material online, makes up each row of
the multiresolution spectral image, which is referred to
as a scalogram.
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Multitaper Analysis
Multitaper analysis is a nonparametric method introduced
to overcome the high bias and error variance of time series
data (Berardi and Zhang 2003). Bias is the discrepancy be-
tween the expected value of an estimator and the true
underlying function, whereas variance refers to the spread
of the distribution of functions about this expected value
(Berardi and Zhang 2003). Multitaper analysis attempts to
overcome a key limitation of conventional Fourier analysis,
as it does not assume that a single instance of a noisy stat-
istical signal can deliver the true coefficients of the under-
lying process of interest (Prieto et al. 2007). To decompose
a signal into one or many sinusoidal waves of varying fre-
quencies and amplitudes, the Fourier transform assumes
that the signal is of infinite length. However, the summary
statistic vectors that we employ as our signals are of finite
length.

Using the frequency analysis of a time series that has
been discretized over time, the Fourier transform can be
expressed as Bracewell (1986)

o)

X(f) =Y x(t) exp (—i2zft).

t=—00

Let x, = x(kA), k=0, 1, ..., N — 1, be a discrete-time sig-
nal of finite length N for sampling interval A. That is, the
underlying continuous analog signal x(t) from which the
finite-length digital signal x, is generated was sampled
after every A time unit. The Fourier transform of x; is de-
fined as Babadi and Brown (2014)

N—-1
XN(f)=A) " xiexp (~i2mkfA).
k=0

The power spectral density (Youngworth et al. 2005) de-
fines the distribution of the power of a signal as a function
of frequency f and aids in the identification of the fre-
quency ranges where changes in the signal are prominent.
To compute the power spectral density, the mean power
P(f) in the frequency band of f + 1 df, where df indicates
an arbitrarily small amount of change in frequency f, is de-
fined as Babadi and Brown (2014)

PUT) = lim = [ (AP

li
N— oo

where Xy(f) is the frequency domain representation of xy,
k=0,1,...,N—1 and the expression |a+ib|=
~/a? + b? denotes modulus of complex number a + ib.
However, because as N approaches infinity there are never
enough windows N in real-world settings, it is impossible
to compute this quantity in practice. Instead, we constrain
the analysis to second-order stationary and ergodic se-
quences, as the summary statistic vectors in this study
are computed from a finite number of genomic windows.
A constant mean and a time-invariant autocovariance are

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq


http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data

Uncovering Footprints of Natural Selection Through Spectral Analysis - https://doi.org/10.1093/molbev/msad157

MBE

two crucial characteristics of second-order stationary sig-
nals (Boshnakov 2011). On the other hand, any given rea-
sonably sized sample from an ergodic process can be taken
as a true reflection of the process (Cherstvy et al. 2013).

According to the Wiener-Khintchine theorem
(Khintchine 1934), the power spectrum of a wide-sense
stationary random process, such as a second-order
stationary process, can be used to derive the
spectral decomposition of the autocovariance function
sk, k=0,1, ..., N—1, of the process, with s, =0 for all
other values of k. This theorem dictates that

2

S(H=A

’

N=1
Z sk exp (—i2zwkfA)
k=0

where S(f) is the power spectral density of the discrete
window signal at frequency f. Computing s, of an ergodic
second-order stationary infinite-length  signal X,
—o0 < k < 0o, would provide the power spectral density
(Babadi and Brown 2014). However, we do not have an
infinite-length signal. Assume that ’S\(f) =~ S(f), where
/S\(f) is the power spectral density estimated from finite-
length signal x, where the variance of the estimated power
spectral density is approximately zero. Denoting the auto-
covariance of x, by 5, k=0,1, ..., N—1, the Fourier
transform of the sequence i yields the power spectral
density (Bartlett 1950; Babadi and Brown 2014)

2

S(H=A

N=T
Z?k exp (—i2mkfA)
k=0

Bias is the distinction between the true power spectral
density and a smoothed representation of the true power
spectral density, which can be divided, at a given fre-
quency, into narrow-band bias and wide-band bias. The
dominant frequency components cause narrow-band
bias, whereas the minor ones cause wide-band bias.
Consider a taper hy, k=0,1, ..., N—1, which when
multiplied with x,, generates a tapered sequence (see
supplementary fig. S30, Supplementary Material online).
A periodogram estimate of this tapered sequence can be
written as Babadi and Brown (2014)

2

N-1
SHH =AY hxcexp (—iznkfA)|
k=0

where the signal is replaced by the product of a taper hy
and the signal x. Tapering presents a middle ground be-
tween narrow-band and wide-band bias that helps equal-
ize the imbalance of these two forms of biases (Bronez
1992; Babadi and Brown 2014). Multitaper spectral estima-
tion is used to distinguish between optimal tapers and
suboptimal tapers, which are unable to efficiently localize
the frequency components. High variance for N> 1 is a

drawback shared by both the ’S\T(f) and /S\(f) estimates,

and this variance does not converge to zero as N ap-
proaches infinity, preventing these estimates from exactly
matching the true power spectral density. Multitaper
spectral analysis aids in overcoming this drawback.

For a set {hio, hia, - .., hx—1)} of L uncorrelated tapers
each with unit variance, the multitaper spectral estimate
of the true power spectral density is defined as (Welch
1967; Babadi and Brown 2014)

~ 180~
Smr(f) = sz S0
where
R N—1 2
S =AD" higxicexp (—iamkfA)| .
k=0
The single-taper spectrum denoted by g;(f),

j=0,1, ..., L—1,generates each row of the spectral ana-
lysis matrix (supplementary fig. S30, Supplementary
Material online). Due to their superior defense against
spectral leakage that causes a reduction in frequency reso-
lution (Lyon 2009), DPSS (Lees and Park 1995; Karnik et al.
2022) are often utilized as tapers for the multitaper spec-
tral analysis (supplementary fig. S30, Supplementary
Material online). Calculating the DPSS tapers that connect
frequency resolution to data window size requires the
usage of the time half-bandwidth parameter, which is
the product of the duration of the data window and half
the bandwidth (Prerau et al. 2017).

S-transform

Time series characteristics are said to be stationary if they
do not change as the series progresses across observational
time. Means, variances, and covariances among observa-
tions, however, tend to change with time or are nonsta-
tionary. In many real-world applications, such as
seismographic activity detection and financial forecasting
(Frohlich et al. 1982; Abu-Mostafa and Atiya 1996), it is un-
realistic to expect stationarity in a time series, and thus, as-
suming stationarity may not be particularly useful for
characterizing the signal source. Considering the analysis
may imply relationships among variables where none exist,
drawing a conclusion based on nonstationary time series
analysis carries the risk of false interpretation (Stockwell
et al. 1996).

Alternately, by utilizing the Fourier transform to con-
vert a signal from the one-dimensional time domain to
the one-dimensional frequency domain, we are able to
glean further insight into the relationship that exists be-
tween the signal x(t) and its origin (source generating
the signal). The signal that is generated as a result of this
transformation of domains has a high-frequency resolution
but a low time resolution. Spectral analysis methods involve
projecting one-dimensional nonstationary signals into a
two-dimensional spectral plane so that they can be
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analyzed. To accomplish this projection, the S-transform
(Stockwell et al. 1996) makes use of a moving and scalable
Gaussian window in conjunction with the concepts behind
the short-time Fourier transform (Yun et al. 2013).

Denoting the time-dependent localizing Gaussian win-
dow as w((t), we can write the short-time Fourier trans-
form as Fano (1950)

STFT(z, f)= [",, x(t)wg(t — 7) exp (—i2ft) dt,

where 1 is an arbitrary time displacement, and w(t — 7)
explains the translational property of the Gaussian win-
dow. Stockwell et al. (1996) defines this time-dependent
Gaussian window as

o 1 2
w =——exp|l——5 ),
G 021 P\ 72

where ¢ is the window width. The horizontal width of the
Gaussian window can be adjusted by using the scale factor
0. Yun et al. (2013) defines d as d(f) = 1/| f| so that it is a
function of frequency, and thus defines a new spectral de-
pendent Gaussian window function as

242
wg(t f) = %QXP (— fT) .

The Gaussian window function with a certain scale factor ¢
is depicted in supplementary figure S31, Supplementary
Material online. This window has unit area above the hori-
zontal time axis such that Iiooo WG(t, f)dt = 1, which signi-
fies that the window does not have a diminishing impact on
the windowed signal. To expand upon this idea, suppose we
have x(t) = 1 and fiooo wg(t, f) dt = 0, which indicates that
the window function has an equal area both above and be-
neath the time axis. The area under x(t) is positive. If we
multiply x(t) with wg(t, f) as depicted in supplementary
figure S31, Supplementary Material online, then the result-
ant signal will have an equal area above and beneath the
horizontal axis. However, if we have Jiooo wg(t f)dt=1,
then the resultant signal will also have all of its area above
the horizontal axis, which signifies that this Gaussian win-
dow preserves the trend of the signal. Putting it all together,
the S-transform is defined as Yun et al. (2013)

ST(5, f) =", x(twg(t — 7, f) exp (—i2zft) dt

2
= Jf2|_7r fio x(t) exp (— fz(tz—r)) exp (—i2zft) dt,

which is the Fourier transformation of the multiplication of
the window function and the signal as visualized in
supplementary figure S31, Supplementary Material online.

Processing Empirical Data
Before calculation of the summary statistics from our em-
pirical dataset, we removed the SNPs with a minor allele
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count of two or lower. To avoid spurious signals due to
technical artifacts, we also removed 100 kb regions of
mean CRG mappability and alignability score lower than
0.9 (Talkowski et al. 2011). After the removal of unquali-
fied SNPs, we calculated the nine summary statistics in
an identical way to our training dataset, with a window
size of 10 SNPs and a stride of three SNPs. Though there
is no missing data in the 1000 Genomes Project dataset, re-
moval of SNPs in this fashion can lead to reductions in lo-
cal haplotypic variation, which may confound sweep
detectors. However, we have extensively evaluated the ef-
fect of such missing segments on the power and accuracy
of the SISSSCO[27CD] model that we apply in our empirical
analysis in the Robustness to missing genomic segments
subsection of the Results section, and find that such distri-
butions of missing segments does not lead to false infer-
ences of sweeps.

To match the length of the summary statistic vectors
employed by our trained models, we took 128 consecutive
windows of each summary statistic, moving by a stride of
one window across each chromosome to generate each
additional summary statistic vector until the last window
of a particular chromosome is reached. Identical to the
process discussed in the Computing SISSSCO summary sta-
tistics from simulated data subsection, we then generated
the 27 spectral images from these summary statistic arrays
to make our predictions.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments

This work was supported by National Institutes of Health
grant R35GM128590 and by National Science Foundation
grants DEB-1949268, BCS-2001063, and DBI-2130666.
Computations for this research were performed using
the services provided by Research Computing at the
Florida Atlantic University.

Data Availability

The data analyzed in this article are publicly available at
http://www.1000genomes.org/. The code for the open-
source software SISSSCO can be found at https://github.-
com/sandipanpaul06/SISSSCO.

References

The 1000 Genomes Project Consortium. 2015. A global reference for
human genetic variation. Nature 526:68-74.

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado
GS, Davis A, Dean J, Devin M, et al. 2015. TensorFlow: large-scale
machine learning on heterogeneous systems. Available from:
https://www.tensorflow.org/

Abu-Mostafa YS, Atiya AF. 1996. Introduction to financial forecast-
ing. Appl Intel. 6:205-213.

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq


http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
https://www.tensorflow.org/

Uncovering Footprints of Natural Selection Through Spectral Analysis - https://doi.org/10.1093/molbev/msad157

MBE

Agrawal A, Mittal N. 2020. Using CNN for facial expression recogni-
tion: a study of the effects of kernel size and number of filters on
accuracy. Vis Comput. 36:405-412.

Akiyama M. 2014. The roles of ABCA12 in epidermal lipid barrier for-
mation and keratinocyte differentiation. Biochim Biophys Acta.
1841:435-440.

Albrechtsen A, Moltke |, Nielsen R. 2010. Natural selection and the
distribution of identity-by-descent in the human genome.
Genetics 186:295-308.

Annilo T, Shulenin S, Chen ZQ, Arnould |, Prades C, Lemoine C,
Maintoux-Larois C, Devaud C, Dean M, Denefle P, et al. 2002.
Identification and characterization of a novel ABCA subfamily
member, ABCA12, located in the lamellar ichthyosis region on
2q34. Cytogenet Genome Res. 98(2-3):169-176.

Babadi B, Brown EN. 2014. A review of multitaper spectral analysis.
IEEE Trans Biomed Eng. 61(5):1555—1564.

Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R.
2012. Structure and function of the epidermis related to barrier
properties. Clin Dermatol. 30:257-262.

Bartlett MS. 1950. Periodogram analysis and continuous spectra.
Biometrika 37:1-16.

Bayless TM, Rosensweig NS. 1966. A racial difference in incidence of
lactase deficiency: a survey of milk intolerance and lactase defi-
ciency in healthy adult males. JAMA 197:968-972.

Beleza S, Santos AM, McEvoy B, Alves |, Martinho C, Cameron E,
Shriver MD, Parra EJ, Rocha J. 2013. The timing of pigmentation
lightening in Europeans. Mol Biol Evol. 30:24-35.

Berardi VL, Zhang GP. 2003. An empirical investigation of bias and
variance in time series forecasting: modeling considerations
and error evaluation. IEEE Trans Neural Netw. 14:668-679.

Bernardino A, Santos-Victor ). 2005. A real-time Gabor primal sketch
for visual attention. Iberian Conference on Pattern Recognition
and Image Analysis. p. 335-342.

Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF,
Drake JA, Rhodes M, Reich DE, Hirschhorn JN. 2004. Genetic sig-
natures of strong recent positive selection at the lactase gene.
Am ] Hum Genet. 74:1111-1120.

Boll W, Wagner P, Mantei N. 1991. Structure of the chromosomal
gene and cDNAs coding for lactase-phlorizin hydrolase in hu-
mans with adult-type hypolactasia or persistence of lactase.
Am | Hum Genet. 48:889.

Boshnakov GN. 2011. On first and second order stationarity of ran-
dom coefficient models. Linear Algebra Appl. 434:415-423.
Bracewell RN. 1986. The Fourier transform and its applications.

Vol. 31999. New York: Mcgraw-Hill.

Breiman L. 2001. Random forests. Mach Learn. 45:5-32.

Bronez TP. 1992. On the performance advantage of multitaper spec-
tral analysis. I[EEE Trans Signal Process. 40:2941-2946.

Cagliani R, Riva S, Pozzoli U, Fumagalli M, Comi GP, Bresolin N, Clerici
M, Sironi M. 2011. Balancing selection is common in the ex-
tended MHC region but most alleles with opposite risk profile
for autoimmune diseases are neutrally evolving. BMC Evol Biol.
11:1-18.

Charlesworth D. 2006. Balancing selection and its effects on se-
quences in nearby genome regions. PLoS Genet. 2:e64.

Charlesworth B. 2012. The effects of deleterious mutations on evo-
lution at linked sites. Genetics 190:5-22.

Charlesworth D, Charlesworth B, Morgan MT. 1995. The pattern of
neutral molecular variation under the background selection
model. Genetics 141:1619-1632.

Charlesworth B, Morgan MT, Charlesworth D. 1993. The effect of
deleterious mutations on neutral molecular variation. Genetics
134:1289-1303.

Charlesworth B, Nordborg M, Charlesworth D. 1997. The effects of
local selection, balanced polymorphism and background selec-
tion on equilibrium patterns of genetic diversity in subdivided
populations. Genet Res. 70:155-174.

Cheng X, Xu C, DeGiorgio M. 2017. Fast and robust detection of an-
cestral selective sweeps. Mol Ecol. 26:6871-6891.

Cherstvy AG, Chechkin AV, Metzler R. 2013. Anomalous diffusion
and ergodicity breaking in heterogeneous diffusion processes.
New | Phys. 15:083039.

Chollet F, et al. 2015. Keras. Available from: https://github.com/
fchollet/keras

Cohen L. 1995. Time-frequency analysis. Vol. 778. New Jersey:
Prentice Hall.

Cokelaer T, Hasch ). 2017. ‘spectrum’: spectral analysis in python.
J Open Source Softw. 2:348.

Colonna V, Ayub Q, Chen Y, Pagani L, Luisi P, Pybus M, Garrison E,
Xue'Y, Tyler-Smith C. 2014. Human genomic regions with excep-
tionally high levels of population differentiation identified from
911 whole-genome sequences. Genome Biol. 15:1-14.

Comeron JM. 2014. Background selection as baseline for nucleotide
variation across the drosophila genome. PLoS Genet. 10:21004434.

Costin GE, Valencia JC, Vieira WD, Lamoreux ML, Hearing V). 2003.
Tyrosinase processing and intracellular trafficking is disrupted
in mouse primary melanocytes carrying the underwhite (uw)
mutation. a model for oculocutaneous albinism (OCA) type 4.
J Cell Sci. 116:3203-3212.

Cree BAC, Rioux JD, McCauley JL, Gourraud PAFD, Goyette P,
McElroy ), De Jager P, Santaniello A, Vyse T), Gregersen PK,
et al. 2010. A major histocompatibility class | locus contributes
to multiple sclerosis susceptibility independently from
HLA-DRB1*15:01. PLoS ONE. 5:e11296.

Daubechies I. 1992. Ten lectures on wavelets. Philadelphia: SIAM.

DeGiorgio M, Huber CD, Hubisz M), Hellmann |, Nielsen R. 2016.
Sweepfinder2: increased sensitivity, robustness and flexibility.
Bioinformatics 32:1895-1897.

DeGiorgio M, Szpiech ZA. 2022. A spatially aware likelihood test to
detect sweeps from haplotype distributions. PLoS Genet. 18:
e1010134.

De Man R, Gang GJ, Li X, Wang G. 2019. Comparison of deep learning
and human observer performance for detection and character-
ization of simulated lesions. | Med Imaging. 6:025503.

Dilthey A, Cox C, Igbal Z, Nelson MR, McVean G. 2015. Improved
genome inference in the MHC using a population reference
graph. Nat Genet. 47:682-688.

Enard D, Messer PW, Petrov DA. 2014. Genome-wide signals of posi-
tive selection in human evolution. Genome Res. 24:885-895.
Fagny M, Patin E, Enard D, Barreiro LB, Quintana-Murci L, Laval G.
2014. Exploring the occurrence of classic selective sweeps in hu-
mans using whole-genome sequencing data sets. Mol Biol Evol.

31:1850-1868.

Fano RM. 1950. Short-time autocorrelation functions and power
spectra. ] Acoust Soc. 22:546-550.

Fay JC, Wu C. 2003. Sequence divergence, functional constraint, and
selection in protein evolution. Annu Rev Genom Hum Genet. 4:
213-235.

Fay JC, Wyckoff GJ, Wu CI. 2001. Positive and negative selection on
the human genome. Genetics 158:1227-1234.

Field Y, Boyle EA, Telis N, Gao Z, Gaulton K], Golan D, Yengo L,
Rocheleau G, Froguel P, McCarthy MI, Pritchard JK. 2016.
Detection of human adaptation during the past 2000 years.
Science. 354:760-764.

Flagel L, Brandvain Y, Schrider DR. 2019. The unreasonable effective-
ness of convolutional neural networks in population genetic in-
ference. Mol Biol Evol. 36:220-238.

Frohlich C, Billington S, Engdahl ER, Malahoff A. 1982. Detection and
location of earthquakes in the central aleutian subduction zone
using island and ocean bottom seismograph stations. | Geophys
Res Solid Earth. 87:6853-6864.

Garud NR, Messer PW, Buzbas EO, Petrov DA. 2015. Recent selective
sweeps in north American Drosophila melanogaster show signa-
tures of soft sweeps. PLoS Genet. 11:e1005004.

Gillespie JH. 2004. Population genetics: a concise guide. Baltimore: JHU
Press.

Glinka S, Ometto L, Mousset S, Stephan W, De Lorenzo D. 2003.
Demography and natural selection have shaped genetic

27

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq


https://github.com/fchollet/keras
https://github.com/fchollet/keras

Arnab et al. - https://doi.org/10.1093/molbev/msad157

MBE

variation in Drosophila melanogaster: a multi-locus approach.
Genetics 165:1269-1278.

Goeury T, Creary LE, Brunet L, Galan M, Pasquier M, Kervaire B,
Langaney A, Tiercy JM, Fernandez-Vifia MA, Nunes JM, et al.
2018. Deciphering the fine nucleotide diversity of full HLA class
I and class Il genes in a well-documented population from
sub-Saharan Africa. HLA 91:36-51.

Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge:
MIT Press.

Gower G, Picazo PI, Fumagalli M, Racimo F. 2021. Detecting adaptive
introgression in human evolution using convolutional neural
networks. elife 10:e64669.

Grafakos L. 2008. Classical Fourier analysis. Vol. 2. New York: Springer.

Haller BC, Messer PW. 2019. SLiM 3: forward genetic simulations be-
yond the Wright-Fisher model. Mol Biol Evol. 36:632-637.

Harris AM, DeGiorgio M. 2020a. Identifying and classifying shared se-
lective sweeps from multilocus data. Genetics 215:143-171.

Harris AM, DeGiorgio M. 2020b. A likelihood approach for uncover-
ing selective sweep signatures from haplotype data. Mol Biol Evol.
37:3023-3046.

Harris AM, Garud NR, DeGiorgio M. 2018. Detection and classifica-
tion of hard and soft sweeps from unphased genotypes by multi-
locus genotype identity. Genetics 210:1429—1452.

Hashemi M. 2019. Enlarging smaller images before inputting into
convolutional neural network: zero-padding vs. interpolation.
] Big Data. 6:1-13.

Hastie T, Tibshirani R, Friedman ). 2009. The elements of statistical
learning: data mining inference, and prediction. 2nd ed. New
York: Springer.

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. 1998. Support
vector machines. IEEE Intell Sys. 13:18-28.

Hermisson ), Pennings PS. 2005. Soft sweeps: molecular population
genetics of adaptation from standing genetic variation.
Genetics 169:2335-2352.

Hill WG, Robertson A. 1968. Linkage disequilibrium in finite popula-
tions. Theor Appl Genet. 38:226-231.

Holschneider M. 1996. Continuous wavelet transforms on the
sphere. ] Math Phys. 37:4156-4165.

Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK,
Lush MJ, Povey S, Talbot CC, Wright MW, et al. 2004. Gene map
of the extended human MHC. Nat Rev Genet. 5:889-899.

Huber CD, DeGiorgio M, Hellmann |, Nielsen R. 2016. Detecting re-
cent selective sweeps while controlling for mutation rate and
background selection. Mol Ecol. 25:142-156.

Hudson RR, Kaplan NL. 1995. Deleterious background selection with
recombination. Genetics 141:1605-1617.

Isildak U, Stella A, Fumagalli M. 2021. Distinguishing between recent
balancing selection and incomplete sweep using deep neural
networks. Mol Ecol Resour. 21:2706-2718.

Jablonski NG, Chaplin G. 2010. Human skin pigmentation as an
adaptation to UV radiation. Proc Natl Acad Sci. 107:8962—-8968.

Jablonski NG, Chaplin G. 2017. The colours of humanity: the evolu-
tion of pigmentation in the human lineage. Philos Trans R Soc
Lond B Biol Sci. 372(1724):20160349.

Kamaraj B, Purohit R. 2014. Mutational analysis of oculocutaneous
albinism: a compact review. Biomed Res Int. 68:97-109.

Karnik S, Romberg ), Davenport MA. 2022. Thomson'’s multitaper
method revisited. IEEE Trans Inf Theory.68(7):4864-4891.

Kawaguchi H, El-Naggar AK, Papadimitrakopoulou V, Ren H, Fan Y,
Feng L, Lee JJ, Kim E, Hong WK, Lippman SM, et al. 2008.
Podoplanin: a novel marker for oral cancer risk in patients
with oral premalignancy. J Clin Oncol. 26:354-360.

Keinan A, Reich D. 2010. Human population differentiation is strong-
ly correlated with local recombination rate. PLoS Genet. 6:
€1000886.

Kern AD, Schrider DR. 2016. Discoal: flexible coalescent simulations
with selection. Bioinformatics 32(24):3839-3841.

28

Kern AD, Schrider DR. 2018. diploS/HIC: an updated approach to
classifying selective sweeps. G3-Genes Genom Genet. 8:
1959-1970.

Khan MA, Pierre JW. 2018. Detection of periodic forced oscillations
in power systems using multitaper approach. IEEE Trans Power
Syst. 34:1086—-1094.

Khintchine A. 1934. Korrelationstheorie der stationdren stochas-
tischen prozesse. Math Ann. 109:604-615.

Kitagawa T, Taniuchi K, Tsuboi M, Sakaguchi M, Kohsaki T,
Okabayashi T, Saibara T. 2019. Circulating pancreatic cancer exo-
somal RNAs for detection of pancreatic cancer. Mol Oncol. 13:
212-227.

Kitano H, Kageyama S, Hewitt SM, Hayashi R, Doki Y, Ozaki Y, Fujino S,
Takikita M, Kubo H, Fukuoka ). 2010. Podoplanin expression in can-
cerous stroma induces lymphangiogenesis and predicts lymphatic
spread and patient survival. Arch Path Lab. 134:1520-1527.

Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M. 2002. Logistic re-
gression. New York: Springer.

Kong C, Lucey S. 2017. Take it in your stride: do we need striding in
CNNs? arXiv preprint arXiv:1712.02502.

Krishnan H, Rayes ), Miyashita T, Ishii G, Retzbach EP, Sheehan SA,
Takemoto A, Chang Y, Yoneda K, Asai J, et al. 2018.
Podoplanin: an emerging cancer biomarker and therapeutic tar-
get. Cancer Sci. 109:1292-1299.

Kronland-Martinet R, Morlet ), Grossmann A. 1987. Analysis of
sound patterns through wavelet transforms. Int | Pattern
Recognit Artif Intell. 1:273-302.

LeCun'Y, Bottou L, Bengio Y, Hafner P. 1998. Gradient-based learning
applied to document recognition. Proc IEEE. 86:2278-2324.

Lee GR, Gommers R, Wasilewski F, Wohlfahrt K, O’Leary A. 2019.
Pywavelets/pywt: PyWavelets v1.0.3. Available from: https://doi.
org/10.5281/zenodo.2634243

Lees JM, Park ). 1995. Multiple-taper spectral analysis: a stand-alone
C-subroutine. Comput Geosci. 21:199-236.

Lin K, Li H, Schlotterer C, Futschik A. 2011. Distinguishing positive
selection from neutral evolution: boosting the performance of
summary statistics. Genetics 187:229-244.

Lou DI, McBee RM, Le UQ, Stone AC, Wilkerson GK, Demogines AM,
Sawyer SL. 2014. Rapid evolution of BRCA1 and BRCA2 in hu-
mans and other primates. BMC Evol Biol. 14:1-13.

Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MKN,
Kwiatkowski DP, Weetman D, Donnelly M), Anopheles gambiae
1000 Genomes Consortium. 2019. Whole-genome sequencing re-
veals high complexity of copy number variation at insecticide resist-
ance loci in malaria mosquitoes. Genome Res. 29:1250-1261.

Lyon DA. 2009. The discrete Fourier transform, part 4: spectral leak-
age. ] Object Technol. 8:23-34.

Mayer WE, O’hUigin C, Klein ). 1993. Resolution of the HLA-DRB6
puzzle: a case of grafting a de novo-generated exon on an existing
gene. Proc Natl Acad Sci U S A. 90:10720-10724.

McVicker G, Gordon D, Davis C, Green P. 2009. Widespread genomic
signatures of natural selection in hominid evolution. PLoS Genet.
5:e1000471.

Mignone F, Gissi C, Liuni S, Pesole G. 2002. Untranslated regions of
mRNAs. Genome Biol. 3:1-10.

Mughal MR, DeGiorgio M. 2019. Localizing and classifying adap-
tive targets with trend filtered regression. Mol Biol Evol. 36:
252-270.

Mughal MR, Koch H, Huang J, Chiaromonte F, DeGiorgio M. 2020.
Learning the properties of adaptive regions with functional
data analysis. PLoS Genet. 16:¢1008896.

Muiller B, Reinhardt J, Strickland MT. 1995. Neural networks: an intro-
duction. Berlin: Springer Science & Business Media.

Nicolaisen LE, Desai MM. 2013. Distortions in genealogies due to
purifying selection and recombination. Genetics 195:221-230.

Novembre J, Di Rienzo A. 2009. Spatial patterns of variation due to
natural selection in humans. Nat Rev Genet. 10:745-755.

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq


https://doi.org/
https://doi.org/10.5281/zenodo.2634243
https://doi.org/10.5281/zenodo.2634243

Uncovering Footprints of Natural Selection Through Spectral Analysis - https://doi.org/10.1093/molbev/msad157

MBE

O’Brien CB, Baghdoyan HA, Lydic R. 2019. Computer-based multita-
per spectrogram program for electroencephalographic data. J Vis
Exp. 2019(153):e60333.

Pal M, Ebrahimi S, Oh G, Khare T, Zhang A, Kaminsky ZA, Wang SC,
Petronis A. 2016. High precision DNA modification analysis of
HCG9 in major psychosis. Schizophr Bull. 42:170-177.

Payseur BA, Nachman MW. 2000. Micorsatelllite variation and recom-
bination rate in the human genome. Genetics 156:1285-1298.
Prerau M), Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. 2017.
Sleep neurophysiological dynamics through the lens of multita-

per spectral analysis. Physiology 32:60-92.

Prezeworski M, Coop G, Wall JD. 2005. The signature of positive se-
lection on standing genetic variation. Evolution 59:2312-2323.

Prieto GA, Parker RL, Thomson D), Vernon FL, Graham RL. 2007.
Reducing the bias of multitaper spectrum estimates. Geophys |
Int. 171:1269-1281.

Przeworski M. 2002. The signature of positive selection at randomly
chosen loci. Genetics 160:1179-1189.

Puryear Cl, Portniaguine ON, Cobos CM, Castagna JP. 2012.
Constrained least-squares spectral analysis: application to seis-
mic data. Geophysics 77:V143-V167.

Quintanilla M, Montero-Montero L, Renart J, Martin-Villar E. 2019.
Podoplanin in inflammation and cancer. Int | Mol Sci. 20:707.

Racimo F, Sankararaman S, Nielsen R, Huerta-Sanchez E. 2015.
Evidence for archaic adaptive introgression in humans. Nat Rev
Genet. 16:359-371.

Ribeiro A, Golicz A, Hackett CA, Milne |, Stephen G, Marshall D,
Flavell AJ, Bayer M. 2015. An investigation of causes of false posi-
tive single nucleotide polymorphisms using simulated reads
from a small eukaryote genome. BMC Bioinform. 16:1-16.

Sadowsky J. 1996. Investigation of signal characteristics using the
continuous wavelet transform. Johns Hopkins APL Tech Dig. 17:
258-269.

Safavian SR, Landgrebe D. 1991. A survey of decision tree classifier
methodology. IEEE Trans Syst Man Cybern. 21:660-674.

Sakharkar MK, Chow VTK, Kangueane P.2004. Distributions of exons
and introns in the human genome. In Silico Biol. 4:387-393.

Satriano C. 2017. PyPi: Stockwell. Available from: https://github.com/
claudiodsf/stockwell.git

Scally A, Durbin R. 2012. Revising the human mutation rate: implica-
tions for understanding human evolution. Nat Rev Genet. 13:
745-753.

Schapire RE. 1999. A brief introduction to boosting. Proceedings of
the Sixteenth International Joint Conference on Artificial
Intelligence 99:1401-1406.

Schlamp F, van der Made J, Stambler R, Chesebrough L, Boyko AR,
Messer PW. 2016. Evaluating the performance of selection scans
to detect selective sweeps in domestic dogs. Mol Ecol. 25:342—-356.

Schrider DR. 2020. Background selection does not mimic the pat-
terns of genetic diversity produced by selective sweeps.
Genetics 216:499-519.

Schrider DR, Kern AD. 2016. S/HIC: robust identification of soft and
hard sweeps using machine learning. PLoS Genet. 12:1-31.

Schrider DR, Kern AD. 2017. Soft sweeps are the dominant mode
of adaptation in the human genome. Mol Biol Evol. 34:1863-1877.

Schrider DR, Kern AD. 2018. Supervised machine learning for popu-
lation genetics: a new paradigm. Trends Genet. 34:301-312.

Scrimshaw NS, Murray EB. 1988. The acceptability of milk and milk
products in populations with a high prevalence of lactose in-
tolerance. Am J Clin Nutr. 48:1142-1159.

Seger ), Smith WA, Perry JJ, Hunn ), Kaliszewska ZA, Sala LL, Pozzi L,
Rowntree V), Adler FR. 2010. Gene genealogies strongly distorted
by weakly interfering mutations in constant environments.
Genetics 184:529-545.

Ségurel L, Bon C.2017. On the evolution of lactase persistence in hu-
mans. Ann Rev Genom Hum Genet. 18:297-319.

Sejdi E, Djurovi |, Jiang ). 2009. Time—frequency feature representa-
tion using energy concentration: an overview of recent advances.
Digit Signal Process. 19:153-183.

Sheehan S, Song YS. 2016. Deep learning for population genetic in-
ference. PLoS Comput Biol. 12:e1004845.

Sirica R, Buonaiuto M, Petrella V, Sticco L, Tramontano D, Antonini
D, Missero C, Guardiola O, Andolfi G, Kumar H, et al. 2019.
Positive selection in Europeans and east-Asians at the ABCA12
gene. Sci Rep. 9:1-10.

Smith JM, Haigh J. 1974. The hitch-hiking effect of a favourable gene.
Genet Res. 23:23-35.

Solberg OD, Mack SJ, Lancaster AK, Single RM, Tsai Y, Sanchez-Mazas
A, Thomson G. 2008. Balancing selection and heterogeneity
across the classical human leukocyte antigen locii a
meta-analytic review of 497 population studies. Hum Immunol.
69:443-464.

Srivastava N, Hinton G, Krizhevsky A, Sutskever |, Salakhutdinov R.
2014. Dropout: a simple way to prevent neural networks from
overfitting. | Mach Learn Res. 15:1929-1958.

Stockwell RG, Mansinha L, Lowe RP. 1996. Localization of the com-
plex spectrum: the S transform. IEEE Trans Signal Process. 44:
998-1001.

Sugden LA, Atkinson EG, Fischer AP, Rong S, Henn BM,
Ramachandran S. 2018. Localization of adaptive variants in hu-
man genomes using averaged one-dependence estimation. Nat
Commun. 9:703.

Tajima F. 1983. Evolutionary relationship of DNA sequences in finite
populations. Genetics 105:437—-460.

Takahata N. 1993. Allelic genealogy and human evolution. Mol Biol
Evol. 10:2-22.

Talkowski ME, Ernst C, Heilbut A, Colby C, Hanscom C, Lindgren A,
Kirby A, Liu S, Muddukrishna B, Ohsumi TK, et al. 2011.
Next-generation sequencing strategies enable routine detection
of balanced chromosome rearrangements for clinical diagnostics
and genetic research. Am | Hum Genet. 88:469-481.

Terhorst ), Kamm JA, Song YS. 2017. Robust and scalable inference of
population history from hundreds of unphased whole-genomes.
Nat Genet. 49:303-309.

Thomson D). 1982. Spectrum estimation and harmonic analysis. Proc
IEEE. 70:1055-1096.

Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman
JS, Powell K, Mortensen HM, Hirbo JB, Osman M, et al. 2007.
Convergent adaptation of human lactase persistence in Africa
and Europe. Nat Genet. 39:31-40.

Torada L, Lorenzon L, Beddis A, Isildak U, Pattini L, Mathieson S,
Fumagalli M. 2019. Imagene: a convolutional neural network to
quantify natural selection from genomic data. BMC Bioinform.
20:1-12.

Vitti J), Grossman SR, Sabeti PC. 2013. Detecting natural selection in
genomic data. Ann Rev Genet. 47:97-120.

Wang G, Wu J, Song H. 2014. LRIG2 expression and prognosis in non-
small cell lung cancer. Oncol Lett. 8:667-672.

Weisberg S. 2005. Applied linear regression. Vol. 528. Hoboken: John
Wiley & Sons.

Welch P. 1967. The use of fast Fourier transform for the estimation of
power spectra: a method based on time averaging over short,
modified periodograms. IEEE Trans Audio Electroacoust. 15:
70-73.

Wilde S, Timpson A, Kirsanow K, Kaiser E, Kayser M, Unterlander M,
Hollfelder N, Potekhina ID, Schier W, Thomas MG, et al. 2014.
Direct evidence for positive selection of skin, hair, and eye pig-
mentation in Europeans during the last 5,000 y. Proc Natl Acad
Sci U S A. 111:4832-4837.

Xiang L, Hu A. 2012. Comparison of methods for different time—fre-
quency analysis of vibration signal. J Softw. 7:68-74.

Xue AT, Schrider DR, Kern AD. 2021. Discovery of ongoing selective
sweeps within anopheles mosquito populations using deep
learning. Mol Biol Evol. 38:1168-1183.

Yang X, Ding Y, Sun L, Shi M, Zhang P, He A, Zhang X, Huang Z, Li R.
2022. WASF2 serves as a potential biomarker and therapeutic
target in ovarian cancer: a pan-cancer analysis. Front Oncol. 12:
840038.

29

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq


https://github.com/claudiodsf/stockwell.git
https://github.com/claudiodsf/stockwell.git

Arnab et al. - https://doi.org/10.1093/molbev/msad157

MBE

Youngworth RN, Gallagher BB, Stamper BL. 2005. An overview of
power spectral density (psd) calculations. In: San Diego Optical
manufacturing and testing VI. Vol. 5869. p. 206-216.

Yuan M, Lin Y. 2006. Model selection and estimation in regression
with grouped variables. J R Stat Soc B Stat Methodol. 68:49-67.

Yun L, Xiaochun X, Bin L, Jinfeng P. 2013. Time-frequency analysis
based on the s-transform. Int ] Signal Process, Image Process
Pattern Recognit. 6(5):245-254.

30

Zeng M, Zhu L, Li L, Kang C. 2017. miR-378 suppresses the prolifer-
ation, migration and invasion of colon cancer cells by inhibiting
SDAD?1. Cell Mol Biol Lett. 22(1):1-13.

Zhai Y, Shah M. 2006. Visual attention detection in video sequences
using spatiotemporal cues. Proceedings of the 14th ACM inter-
national conference on Multimedia. p. 815-824.

Zou H, Hastie T. 2005. Regularization and variable selection via the
elastic net. J R Stat Soc B. 67:301-320.

€202 1SNBny L€ Uo Jasn AYsioAiun ouepy epuold Aq 82822Z.//S L PESW/./0/aI91E/qU /W00 dno-olwapede//:sdny Wwolj papeojumoq



	Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics
	Introduction
	Results
	Modeling Description
	Application of Signal Decomposition
	Stacking Models to Enhance Sweep Detection
	Power and Accuracy to Detect Sweeps
	Performance Relative to Comparable Methods
	Robustness to Background Selection
	Influence of Population Size Changes
	Comparison to Summary- and Likelihood-based Sweep Detectors
	Robustness to Missing Genomic Segments
	Effect of Signal Decomposition
	Interpretability of the SISSSCO Models
	Roles of Summary and Spectral Methods in SISSSCO Predictions
	Application to Unphased Genotypes
	Effect of Sweep Strength and Softness
	Training and Testing SISSSCO on Weaker Sweeps
	Application to Human Genomic Data

	Discussion
	Methods
	Computational Setup
	Computing SISSSCO Summary Statistics from Simulated Data
	Spectral Analysis of Summary Statistics
	Wavelet Decomposition
	Multitaper Analysis
	S-transform

	Processing Empirical Data

	Supplementary Material
	Acknowledgments
	References




