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Abstract
Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the se
lected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across 
the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic 
spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. 
In recent years, numerous methods have been devised that consider genomic spatial distributions across summary 
statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may 
be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet 
transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each ana
lysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, al
lowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks 
and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and 
power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep 
strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established 
sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling 
framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the 
population-genomic toolkit for learning about adaptive processes from genomic data.
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Introduction
A number of phenomena shape genomic diversity, includ
ing nonadaptive processes, such as mutation, recombin
ation, genetic drift, and migration as well as adaptive 
processes, such as positive, negative, and balancing selec
tion (Gillespie 2004). Many of these events leave local foot
prints of altered haplotypic variation across individuals in 
populations, restructuring the landscape of diversity across 
the genome (Fay et al. 2001; Prezeworski et al. 2005; 
Charlesworth 2006; Schlamp et al. 2016). To learn about 
such processes, myriad summary statistics have been de
veloped over decades, providing tools for testing whether 
patterns in genetic variation match expectations, either 
from theoretical models or from mean patterns observed 
from simulations (e.g., Tajima 1983; Garud et al. 2015). 
One of the most extensively studied population-genetic 
phenomena that has received substantial attention in 
terms of method development over the past few decades 
is natural selection.

Natural selection is a process that acts on traits of indi
viduals within an environment, leading to differential fit
ness among individuals that may result in changes in the 
frequencies of alleles that code for such traits within a 
population (Gillespie 2004). Genomic studies of a wide 

range of populations and species have been analyzed using 
a variety of summary statistic methodologies to search for 
signatures of natural selection (e.g., Glinka et al. 2003; 
Lucas et al. 2019; Xue et al. 2021). Summary statistics devel
oped throughout the past several years rely heavily on the 
haplotype frequency spectrum (e.g., Garud et al. 2015), 
whereas more classical summaries focused more on the 
site frequency spectrum (e.g., Tajima 1983). These varied 
approaches interrogate different aspects of genomic vari
ation, and lend greater ability to detect specific forms of 
adaptation (Vitti et al. 2013).

However, such summary statistics typically make simplify
ing assumptions about expected patterns of variation, and 
can be both underpowered and nonrobust to confounding 
factors when applied individually. To overcome the pitfalls 
associated with using a single summary statistic to uncover 
signals of evolutionary processes, combining the knowledge 
garnered from a plethora of summary statistics has become 
an emerging trend (Schrider and Kern 2018). Specifically, the 
recent expansion of modeling frameworks that combine sets 
of measured values to discriminate among diverse evolution
ary scenarios is owed to the advancement of computational 
technologies and resurgence of statistical machine learning 
and artificial intelligence.

Mol. Biol. Evol. 40(7):msad157 https://doi.org/10.1093/molbev/msad157 Advance Access publication July 11, 2023 1

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/7/m
sad157/7222828 by Florida Atlantic U

niversity user on 31 August 2023

https://orcid.org/0000-0003-0827-5327
https://orcid.org/0000-0003-4908-7234
mailto:sarnab2020@fau.edu
mailto:mdegiorg@fau.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


The goal of supervised machine learning is to provide al
gorithms with a dataset of known input (feature) and out
put (response) values, with the goal to learn the relationship 
(or function) that maps measured features to a given re
sponse (Hastie et al. 2009). This learned function is the mod
el, and the shape of the function is estimated (trained) from 
the dataset of input and output examples, termed the train
ing set. This model can then be deployed to make predic
tions on new input data. The taxonomy of supervised 
learning algorithms can be further split into regression and 
classification tasks, which depend on whether the response 
is a quantitative (regression) or qualitative (classification) va
lue (Hastie et al. 2009). Different machine learning algorithms 
make varying assumptions regarding the form of this func
tion, which ultimately influences the predictive accuracy of 
the trained models. Commonly employed supervised ma
chine learning methods include linear regression (Weisberg 
2005), logistic regression (Kleinbaum et al. 2002), decision 
trees (Safavian and Landgrebe 1991), random forests 
(Breiman 2001), support vector machines (Hearst et al. 
1998), and neural networks (Müller et al. 1995).

The predictive models based on the application of su
pervised machine learning to problems in evolutionary 
genomics have been shown to typically offer greater detec
tion power and accuracy, while also combating the draw
backs of individual hand-engineered summary statistics 
(e.g., Lin et al. 2011; Schrider and Kern 2016; Sheehan 
and Song 2016; Kern and Schrider 2018; Sugden et al. 
2018; Mughal and DeGiorgio 2019; Mughal et al. 2020). 
These machine learning techniques employ diverse model
ing paradigms, and have differing performances and ro
bustness to confounding factors depending on how the 
data are modeled as well as the types of summary statistics 
that are used as input to the models. Thus, all methods 
show room for improvement in prediction performance.

To glean more information from input summary statistics, 
many of these models (e.g., Lin et al. 2011; Schrider and Kern 
2016; Sheehan and Song 2016) construct feature sets so that 
they capture the expected spatial autocorrelation of vari
ation in a local genomic region. That is, the input summary 
statistics are calculated over a number of contiguous or over
lapping genomic windows with the hope that the machine 
learning models will discover relationships among various 
statistics calculated across different windows to aid in predic
tion. However, explicitly modeling these autocorrelations 
may have the potential for improving prediction perform
ance. As an example, Mughal et al. (2020) developed a meth
od for learning about positive natural selection by utilizing 
multiple summary statistics computed in overlapping gen
omic windows as input, and then modeled the autocorrel
ation across these windows by estimating the underlying 
continuous functional form of each summary statistic. 
Specifically, Mughal et al. (2020) employed a spectral analysis 
technique termed the discrete wavelet transform, which de
composed the summary statistic vectors in the form of 
multilevel details of constituent low- and high-frequency re
gions, enabling additional meaningful information to be ex
tracted from the summary statistics.

Spectral analysis of signals has been extensively applied 
in various domains, including biomedical sciences (O’Brien 
et al. 2019), power systems (Khan and Pierre 2018), and 
seismography (Puryear et al. 2012), to extract information 
about the source (or process) responsible for the gener
ation of the examined signals from their oscillatory charac
teristics. One way to extract information from the signal is 
to divide the signal into time-localized components and 
examine each part of the signal independently though 
spectra. Different spectral analysis methods focus on dif
ferent characteristics of a signal (Xiang and Hu 2012), 
and thus, images of the characteristics identified by differ
ent spectral analysis methods can be used as input to es
tablished modeling frameworks that are able to extract 
meaningful information and make accurate predictions. 
One mechanism for attempting to learn such features is 
with supervised machine learning models known as convo
lutional neural networks (CNNs, LeCun et al. 1998).

Neural networks are a class of machine learning archi
tectures that are inspired by the structure and function 
of the human brain. They consist of layers of intercon
nected nodes termed neurons, which process information 
in a way that is similar to how neurons in the brain process 
information. Such models can be used for a wide range of 
predictive modeling tasks that involve large amounts of 
data and complex relationships between the measured 
features and a predicted response. CNNs are a subclass 
of neural networks architectures that are effective for ap
plications requiring image recognition and processing.

Multilayered CNNs process data in a hierarchical fash
ion through a network of nodes. When the input is an im
age, the first layer can identify simple features, such as 
edges and corners of objects in the image, whereas succes
sive layers may identify more complicated features, such as 
shapes or higher-order objects, by building upon features 
learned from previous layers (LeCun et al. 1998). The final 
layer of the CNN makes a prediction using the identified 
features from the input image. To learn features from in
put images, CNNs rely on convolutions, which involve slid
ing a filter of a given size over the image and computing 
the dot product between the filter and each matching 
patch of pixels in the image (LeCun et al. 1998). Through 
this process, the network is able to identify invariant local 
patterns and features. Other layers, including pooling 
layers and activation layers, are also used in CNNs. 
Downsampling the output of the convolutional layers 
with pooling layers makes feature maps more precise, in
variant to object orientation, and robust to noise, as well 
as makes the network more accurate. Networks learn 
more complicated relationships between features and 
the response through activation layers, which introduce 
nonlinearity to the network (LeCun et al. 1998). In the field 
of image recognition, CNNs have proven to be highly ef
fective, often outperforming human experts on a variety 
of classification tasks (De Man et al. 2019).

CNNs offer a framework for extracting features from in
puts that can be one-dimensional vectors, two-dimensional 
matrices (or grayscale images), and three-dimensional tensors 
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(or color images) (LeCun et al. 1998). Several studies have 
shown the effectiveness of CNNs for detecting evolutionary 
events for both one- and two-dimensional signals (Schrider 
and Kern 2016; Flagel et al. 2019; Torada et al. 2019; Gower 
et al. 2021). Indeed, CNNs have been applied in the context 
of learning about evolutionary processes from image repre
sentations of haplotype variation, and have been demon
strated to often have greater power and accuracy 
compared to the current state-of-the-art summary statistic- 
based methods (Flagel et al. 2019; Isildak et al. 2021). A hybrid 
application of using two-dimensional spectra generated 
through signal decomposition to train CNNs has the poten
tial to empower the CNNs to make more effective predictive 
models. To employ this modeling strategy, one-dimensional 
summary statistic signals need to be converted into two- 
dimensional spectra (Cohen 1995; Sejdi et al. 2009), which 
provide information about the spectral estimates of the 
underlying source (or process) that generates genomic 
variation.

Therefore, we seek to improve evolutionary process classi
fiers, by adding a layer of spectral inference of the underlying 
process generating the genetic variation. To that end, we use 
the detection of positive natural selection as a test case, as 
this setting is where the majority of population-genetic ma
chine learning development has focused, and thus represents 
a test case for illustrating the performance gains by modeling 
input data differently. Positive natural selection increases the 
frequencies of alleles in a population that code for beneficial 
traits, potentially leading to fixation within the population 
and ultimately reducing diversity at the selected locus 
(Gillespie 2004). As this beneficial allele increases in fre
quency, alleles on the same haplotype at nearby neutral 
loci also increase in frequency through a process known as 
genetic hitchhiking (Smith and Haigh 1974). The resulting 
loss of haplotypic diversity around the selected locus is 
known as a selective sweep (Przeworski 2002; Hermisson 
and Pennings 2005), and is a footprint that is often used to 
uncover signals of past positive selection. Depending on 
the number of distinct haplotypes that have risen to high fre
quency, selective sweeps can be categorized as either soft or 
hard, with hard sweeps typically easier to detect due to their 
more conspicuous genomic pattern (Przeworski 2002; 
Hermisson and Pennings 2005; Garud et al. 2015).

In this article, we examine the utility of applying three 
signal decomposition methods on arrays of summary sta
tistics computed across overlapping windows to generate 
spectra (Thomson 1982; Daubechies 1992; Stockwell et al. 
1996), and develop machine learning methods trained 
with these images. We additionally employ ensemble- 
based stacking procedures (Hastie et al. 2009) that 
aggregate the results of individual classifiers with the 
goal of further improving power and accuracy to 
detect sweeps from genome variation. With this in 
mind, we introduce an approach termed SISSSCO 
(Spectral Inference of Summary Statistic Signals using 
COnvolutional neural networks) with open-source imple
mentation available at https://www.github.com/ 
sandipanpaul06/SISSSCO. As an empirical test case, we 

then apply our trained SISSSCO models to whole-genome 
data of the well-studied central European human indivi
duals sequenced by the 1000 Genomes Project (The 
1000 Genomes Project Consortium 2015). SISSSCO identi
fies multiple genes, including LCT, ABCA12, SLC45A2, 
HLA-DRB6, and HCG9, which have been identified as sweep 
candidates from previous studies. SISSSCO also identified 
several novel sweep candidates, including PDPN, WASF2, 
LRIG2, and SDAD1.

Results
In this section, we begin by highlighting power and accuracy 
to detect selective sweeps using various strategies that com
bine different spectral decompositions of summary statistic 
signals as well as stacking of trained CNN architectures. We 
also compare the performance of these approaches with 
other contemporary machine learning methods that take 
summary statistics as input to detect sweeps. We then inves
tigate how confounding factors, like changing population 
sizes over time, the existence of missing genomic segments, 
and background selection, influence predictive accuracy, 
power, and robustness. Finally, as a proof of concept, we 
test our new approaches using a genomic dataset from a hu
man population that has been extensively studied.

Modeling Description
To train and test our models, we simulated neutral and 
sweep replicate observations using the coalescent simula
tor discoal (Kern and Schrider 2016) under either an 
equilibrium constant-size demographic history of 10,000 
diploid individuals (Takahata 1993) or under a nonequili
brium history inferred from central European human gen
omes (Terhorst et al. 2017) that includes a recent severe 
population bottleneck. Per-site per-generation mutation 
(μ = 1.25 × 10−8) and recombination rates (exponential 
distribution with mean r = 10−8 and truncated at 3r) 
were chosen to reflect expectations from human genomes 
and previous studies (Payseur and Nachman 2000; Scally 
and Durbin 2012; Schrider and Kern 2016). For each simu
lated replicate, we sampled 198 haplotypes of length 1.1 
megabase (Mb) to match the number of sampled haplo
types in our empirical experiments.

At the center of simulated sequences for sweep observa
tions, we introduced a beneficial mutation that became se
lected for at a frequency of f ∈ [0.001, 0.1] (drawn 
uniformly at random on a logarithmic scale) with per- 
generation selection coefficient s ∈ [0.005, 0.5] (drawn uni
formly at random on a logarithmic scale) and became fixed 
in the population t generations prior to sampling. For each of 
the two demographic scenarios, we generated two datasets: 
one with the sweep completing at time of sampling (t = 0 
generations) and a setting that should be more difficult to 
distinguish from neutrality, with t ∈ [0, 1,200] generations 
drawn uniformly at random, permitting the processes 
of mutation, recombination, and genetic drift to erode 
genomic footprints of the selective sweep after fixation. 
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We denote these four datasets as Equilibrium_fixed, 
Equilibrium_variable, Nonequilibrium_ 
fixed, and Nonequilibrium_variable, where the 
demographic history is given by either equilibrium (constant- 
size) or nonequilibrium (European human bottleneck), and 
the time of sampling after sweep completion is given by ei
ther as a fixed (t = 0) or variable (t ∈ [0, 1,200]) number of 
generations.

For each class (neutral or sweep), we generated 11,000 in
dependent simulated replicate observations, with 9,000, 
1,000, and 1,000 observations reserved for training, valid
ation, and testing. For each replicate, we computed sum
mary statistics across the simulated sequence to obtain 
nine one-dimensional signals to use as features for down
stream modeling identical to the ones used in Mughal 
et al. (2020) (see Methods for summary statistic computa
tion on simulated data). The initial summary statistic that 
we explored in our model training is the mean pairwise se
quence difference (π̂; Tajima 1983) estimated across 
sampled haplotypes. The dataset containing instances of π̂ 
computed as a one-dimensional signal of length 128 across 
a genomic sequence of neutral and selective sweep regions 
was used to test the efficacy of each of the three spectral 
analysis methods. These summary statistic signals of length 
128 are based on short overlapping windows with a fixed 
number of single nucleotide polymorphisms (SNPs) per 
window, and a fixed SNP stride between windows (see 
Methods section). We calculated π̂ in overlapping windows 
with a goal to capture local patterns along a chromosome 
(see Methods section for details).

The two-dimensional images that we obtain by perform
ing spectral analysis on a one-dimensional signal (e.g., π̂) are 
then fed into a CNN (LeCun et al. 1998), which is depicted 
in figure 1. The CNN has an input size of (N, m, n, c) contain
ing N training observations of c different summary statistic 
signals decomposed as m × n images through spectral ana
lysis. Here we have N = 18, 000, m = 65, and n = 128. As 
we are currently only considering a single signal based on 
the π̂ statistic, we are using a c = 1 channel input for our 
CNN. The CNN has two convolution layers with 32 filters, ker
nels of size 3 × 3 (Agrawal and Mittal 2020), and a stride of 
two (Kong and Lucey 2017) with zero padding (Hashemi 
2019). Each convolution layer is then followed by an activa
tion layer using a rectified linear unit (ReLU), as well as a batch 
normalizing layer (Goodfellow et al. 2016). The convolution 
layers are followed by a dense layer containing 128 nodes, 
which is the same as the input signal length n. The dense layer 
also contains an elastic-net style regularization penalty (Zou 
and Hastie 2005), whereby network weights shrink in magni
tude together toward zero through an L2-norm penalty while 
simultaneously performing feature selection by setting some 
weights to zero through an L1-norm penalty (Hastie et al. 
2009). The fraction of regularization deriving from the 
L2-norm penalty is controlled by hyperparameter α ∈ 
{0.0, 0.1, . . . , 1.0} and the amount of total regularization 
is controlled by hyperparameter λ ∈ {10−6, 10−5, . . . , 105}. 
The model also utilizes a dropout layer with dropout rate hy
perparameter x ∈ {0.1, 0.2, . . . , 0.5} to further prevent 

model overfitting by reaching a saturation point (Srivastava 
et al. 2014; Goodfellow et al. 2016). The model is trained 
with each (α, λ, x) hyperparameter triple, with a batch size 
of 50 for 30 iterations, and the best model is chosen as the 
one with the smallest validation loss, where we employ the 
categorical cross-entropy loss measurement. We deployed 
the keras Python library (Chollet et al. 2015) with a 
TensorFlow (Abadi et al. 2015) back-end for training of 
CNNs and making downstream predictions from the learned 
models.

The first of three spectral analysis methods that we con
sider is wavelet decomposition. Specifically, we assume 
that each π̂ sequence of length n = 128 represents a sam
ple from a continuous wavelet containing n data points. 
This signal is then decomposed by a level m wavelet ana
lysis method, with the Morlet wavelet (Bernardino and 
Santos-Victor 2005) selected as the mother wavelet. 
Level m = 65 is chosen for the scalograms generated to 
match the size of the spectral images that result from 
the other two spectral analysis methods that we subse
quently introduce. Every decomposed signal generates an 
m × n dimensional scalogram matrix. A more detailed 
treatment of the wavelet decomposition for spectral ana
lysis is provided in the Methods section, and we employed 
the PyWavelets Python package (Lee et al. 2019) to 
construct scalogram images.

Next, for the multitaper spectral analysis approach, to 
derive the periodogram of the estimate of the true power 
spectral density from a signal of size n = 128 using the mul
titaper spectral analysis method, we used a window length 
of n. We calculated discrete prolate spheroidal sequence 
(DPSS) tapers over time half-bandwidth parameter 
(n × Δf/2) values in {2, 2.5, . . . , 4} and a DPSS window 
size of m = n/2 + 1 = 65, which results in a matrix of ta
pering windows of size m × n and a vector of eigenvalues 
of length m. Here, Δf is the bandwidth of the most dom
inant frequencies in the frequency domain such that 
n × Δf/2 > 1Hz. Using this matrix and vector, a periodo
gram of size m × n is generated, which is the same as the 
dimension of the scalogram that we considered with the 
wavelet analysis method. See the Methods section for a 
complete detailed description of multitaper analysis. We 
utilized the spectrum Python package (Cokelaer and 
Hasch 2017) to generate multitaper periodogram images.

Finally, for spectral analysis using the Stockwell trans
form (also known as the S-transform) we used the same 
datasets as the previous two spectral analysis approaches. 
The S-transform returns a spectrogram matrix estimate of 
the true power spectral density that has size m × n, where 
m = n/2 + 1 and where the length of the signal is n = 128. 
The spectrogram has the same image size as the previous 
two methods. See the Methods section for further details 
on the S-transform. We used the stockwell Python 
package (Satriano 2017) to estimate S-transform spectral 
images. The images are then fed into a CNN with identical 
architecture to that of the previous two methods with the 
addition of a third convolution layer, which we included 
as we found that adding this extra convolution layer 
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substantially increased performance under the 
S-transform image inputs.

Application of Signal Decomposition
Supplementary figure S1, Supplementary Material online 
presents heatmaps of the raw spectral images, averaged 
across simulated replicates, for neutral and selective sweep 
regions using three signal decomposition methods. 
However, based on these raw images, it is difficult to visu
ally distinguish between sweeps and neutrality for each of 
the spectral analysis methods. To better explore the visual 
differences within these matrices, we scaled each element 
of each spectral analysis matrix to have unit standard de
viation across the neutral and sweep replicates. The mean 
scaled matrices depicted in figure 2 show the emergence of 
more-readily distinguishable patterns between sweeps and 
neutrality. The wavelet decomposition results display a 
clear distinction between the two classes, with a triangular 
bulge in the mid-segment of the sweep scalogram that is 
not present within the neutral scalogram. This pattern in
dicates that the selective sweep signals have information in 
the middle windows between windows 45 and 85 that is 
not present in neutral signals. Similarly, the mean sweep 
spectrogram generated by S-transform shows a T-shaped 
construct in the midportion of the image, again indicating 
a difference of power between the classes of some low- to 
mid-frequency components in the central windows. The 
mean spectra generated by multitaper analysis depict a 
rib-cage like structure in the mean sweep periodogram. 
Each ‘rib’ represents a Fourier transformation of a signal ta
pered by a single taper. The frequency of the taper in
creases as we descend the rows of the image, whereas 
the amplitude of the central window of the taper de
creases. Hence, a signal tapered by higher frequency tapers 
generate a distorted representation of the signal. As the 
frequencies of the tapers increase, more low- and high- 
frequency components in the sweep signal are lost, result
ing in a narrower spectral density. These characteristics of 
the tapers lead to the the rib-cage structure depicted in 
the mean sweep image.

The standardized (combined centering and scaling) 
images in supplementary figure S2, Supplementary 
Materialonline that are ultimately used as input to CNNs 

show that the classes can be easily visually differentiated 
as the images show exactly opposite patterns for the 
two classes, with the images for neutral regions having low
er values for the majority of the area in the images. These 
opposite patterns are due to centering. A peach pit shape 
is present in the center of both mean sweep and neutral 
spectrograms generated by the S-transform, albeit repre
sented by two distinctly different shades corresponding 
to positive and negative values, respectively. Several mid- 
and low-frequency components are present in the central 
windows of the sweep samples, which results in the bright 
core of the peach pit in the mean sweep image. The rib- 
cage structure is also present in mean spectra of both 
classes in the images created by multitaper analysis, with 
different shades for the two classes corresponding mostly 
to positive and negative values.

Figure 2, supplementary figures S1 and S2, 
Supplementary Material online highlight the qualitative 
patterns in images derived from neutral and sweep settings 
that result from three different spectral analysis methods 
applied to a sequence of π̂ values calculated across over
lapping genomic windows. Given that these images show 
qualitative differences between sweeps and neutrality, 
our goal is to evaluate the predictive ability of discriminat
ing between sweeps and neutrality from such input 
images. These mean images suggest that there exists useful 
information within the spectral images that may help dis
tinguish between the two classes. Nevertheless, it may be 
difficult to spot anomalies by looking at the individual 
spectral analysis images, especially if it is important to dis
tinguish between classes while remaining resistant to arti
facts. Therefore, we used the CNN architecture described 
above in the Modeling description subsection. We fed 
the images derived from application of the three spectral 
analysis methods to a sequence of π̂ values to evaluate 
classification rates and accuracies. Supplementary figure 
S3, Supplementary Material online shows that the models 
trained on wavelet analysis scalogram and S-transform 
spectrogram images have an imbalance in their classifica
tion rates, with skews toward detecting neutral regions 
more accurately than the sweep regions. In contrast, the 
model trained on multitaper analysis periodogram images 
with a time half-bandwidth parameter of 2.5 displays 

FIG. 1. Depiction of a c = 1 channel convolutional neural network (CNN) architecture. A summary statistic signal of length n = 128 is used as 
input to a spectral analysis method (either wavelet decomposition, multitaper analysis, or S-transform) to decompose the signal into a matrix of 
dimensions m × n, with m = 65, which is then standardized at each element based on the mean and standard deviation across all N = 18, 000 
training observations, and is then used as input to a CNN. The CNN has two convolution layers (three layers for the S-transform), followed by a 
dense layer with n nodes containing both elastic-net and dropout regularization. The output layer of the CNN is a softmax that computes the 
probability of a sweep.

Uncovering Footprints of Natural Selection Through Spectral Analysis · https://doi.org/10.1093/molbev/msad157 MBE

5

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/7/m
sad157/7222828 by Florida Atlantic U

niversity user on 31 August 2023

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad157#supplementary-data


greater accuracy for correctly estimating sweeps compared 
to neutral regions, whereas changing the time half- 
bandwidth parameter to 2.0 or lower results in classifica
tion rates more skewed toward correctly detecting neu
trality. Because we want to avoid false discoveries of 
sweeps, higher time half-bandwidth parameter values are 
more expensive computationally, and time half- 
bandwidth parameters higher than 2.5 did not change per
formance significantly in our preliminary tests, we selected 
2.0 for future multitaper experiments.

Stacking Models to Enhance Sweep Detection
We have three models trained with three signal decom
position methods that have yielded comparable but slight
ly differing results (supplementary fig. S3, Supplementary 
Material online). We now discuss architectures to increase 
the learning capacity of our models when trained to jointly 
consider all three spectra. Our previous experiments ex
plored a single summary statistic signal (π̂) to decompose 
and train the models with spectra. Following Mughal et al. 
(2020), we next compute nine one-dimensional summary 
statistic signals (π̂, H1, H12, H2/H1 and frequencies of the 5 
most common haplotypes) per simulated replicate and 
generate 9 spectra for each of the 3 spectral analysis meth
ods, resulting in 27 different images.

The first joint modeling approach taken was to train three 
separate models using three signal decomposition methods 
with nine images per replicate provided as input to a CNN, 
with one image for each of the c = 9 channels of the CNN 
(supplementary fig. S4, Supplementary Material online). 
These models were then concatenated and trained in three 
different ways. The first of these three strategies is to train 
each of the three nine-channel CNNs, fix the weights of 
the trained CNNs, and concatenate their output layers 
(sweep probability values) into a three-element vector of 
sweep probabilities. The linear combination of these sweep 
probabilities is then used as input to a new softmax function 
to predict the probability of a sweep from evidence of the 
three pretrained CNNs. The final weights of the linear com
bination leading to the new softmax function are trained, 
and we denote this method by SISSSCO[3CO] (three-input 
CNNs and concatenation of the output layer). The weights 
of the three individually trained CNNs are not retrained in 
the final model. A depiction of this SISSSCO[3CO] architec
ture is given in supplementary figure S5, Supplementary 
Material online. In the next strategy, we instead concate
nated the dense layers of the three nine-channel CNNs, lead
ing to a vector of 3 × 128 = 384 elements that we send to a 
new softmax layer as in the SISSSCO[3CO] method. As with 
SISSSCO[3CO], we trained the weights of the linear combin
ation leading from the concatenation of the dense layers 

FIG. 2. Mean spectral analysis input matrices for n = 128 windows of the mean pairwise sequence differences π̂ across the N/2 = 9, 000 neutral 
and N/2 = 9, 000 sweep replicates under the Equilibrium_fixed dataset containing an equilibrium constant-size demographic history and 
a sweep that completed t = 0 generations before sampling. Top row are neutral simulations and bottom row are sweep simulations. Spectral 
methods are depicted from left to right columns for the wavelet decomposition, multitaper analysis, and the S-transform, respectively. Elements 
of each matrix have been scaled to have a standard deviation of one across all N simulated replicates for a given spectral analysis method.
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to the new softmax function, but did not retrain the 
weights of the three individually trained CNNs, and we de
note this method by SISSSCO[3CD] (three-input CNNs and 
concatenation of the dense layer). A depiction of the 
SISSSCO[3CD] architecture is given in supplementary figure 
S6, Supplementary Material online. The third and final strat
egy, has an identical architecture of the SISSSCO[3CD] model, 
with one key difference—the weights of the entire concate
nated model are jointly trained. We denote this method 
by SISSSCO[3MD] (three-input CNNs and merging of the 
dense layer prior to training). A depiction of the 
SISSSCO[3MD] architecture is given in supplementary 
figure S7, Supplementary Material online.

The second joint modeling approach is more complex than 
the first. Specifically, we construct 3 CNNs per summary stat
istic based on the 3 signal decomposition methods, resulting in 
27 distinct CNNs each with c = 1 channel (fig. 1). Similar to 
the previous concatenation strategies, the concatenation 
and training were accomplished in an identical fashion by pre
training individual CNNs and concatenating output layers 
(model denoted by SISSSCO[27CO]), pretraining individual 
CNNs and concatenating dense layers (model denoted by 
SISSSCO[27CD]), and concatenating dense layers of individual 
CNNs with all weights in the subsequent merged model 
trained (model denoted by SISSSCO[27MD]). Both 
SISSSCO[27CD] and SISSSCO[27MD] methods result in the 
most complex final models, with the dense layer containing 
128 × 27 = 3, 456 nodes. Though SISSSCO[27CD] and 
SISSSCO[27MD] have the same number of concatenated 
dense layer nodes, the node weights are not set prior to con
catenation for SISSSCO[27MD], making SISSSCO[27MD] the 
most computationally expensive method among all the six 
models. To further elaborate, SISSSCO[27CD] and 
SISSSCO[27MD] each have a total of 83,98,818 parameters, 
of which 128 × 27 = 3, 456 are trainable postconcatenation 
for SISSSCO[27CD], whereas SISSSCO[27CO] has 83,98,589 
parameters of which 27 are trainable postconcatenation. 
The architectures of the SISSSCO[27CO], SISSSCO[27CD], and 
SISSSCO[27MD] models are depicted in supplementary 
figure S8, Supplementary Material online, figure 3, and 
supplementary figure S9, Supplementary Material online, re
spectively. In the next subsection, we evaluate the accuracies 
and powers of the six SISSSCO models on idealistic constant- 
size demographic history datasets.

Power and Accuracy to Detect Sweeps
All of our six SISSSCO models have high classification accur
acies and powers on the two constant-size demographic his
tory datasets (supplementary figs. S10–S13, Supplementary 
Material online). Of these, SISSSCO[27CD] exhibited uniformly 
highest accuracy to discriminate sweeps from neutrality, 
reaching 99.75% and 99.80% accuracy on the 
Equilibrium_fixed and Equilibrium_vari 
able datasets, respectively (supplementary figs. S10 and 
S12, Supplementary Material online). However, even the worst 
performing SISSSCO model had high accuracy on each dataset, 
with SISSSCO[3CD] achieving an accuracy of 96.50% and 

95.45% on the Equilibrium_fixed and Equilibr 
ium_variable datasets, respectively (supplementary figs. 
S10 and S12, Supplementary Material online). This lower clas
sification accuracy of SISSSCO[3CD] compared to the other 
SISSSCO models appears to be primarily driven by a skew in 
misclassifying neutral regions as sweeps (supplementary figs. 
S10 and S12, Supplementary Material online).

The accuracy results are also reflected in the high powers of 
the SISSSCO models to detect sweeps based on receiver oper
ating characteristic (ROC) curves (supplementary figs. S11 and 
S13, Supplementary Material online). ROC curves are graphical 
representations that display the tradeoff between the true 
positive rate and the false positive rate of a binary classifier 
as the discrimination threshold changes. Specifically, 
SISSSCO[27CD] achieves an area under the ROC curve of close 
to one for both datasets (supplementary figs. S11 and S13, 
Supplementary Material online), suggesting that it has perfect 
power to detect sweeps for even small false positive rates. 
Moreover, consistent with SISSSCO[3CD] having the lowest ac
curacy among the six SISSSCO models, the ROC curves show 
that SISSSCO[3CD] reaches high power for low false positive 
rates, but plateaus at this level until high false positive rates 
(supplementary figs. S11 and S13, Supplementary Material on
line), reducing the overall area under the ROC curve com
pared to the other SISSSCO models. The results show that, 
though all SISSSCO models have high powers and accuracies 
for sweep detection, the most parameter rich (yet not most 
computationally expensive) SISSSCO[27CD] model outper
forms all others developed here on the constant-size demo
graphic history datasets (supplementary figs. S10–S13, 
Supplementary Material online).

ROC curves are helpful for determining the optimal 
threshold and assessing the overall performance of a clas
sifier. In contrast, confusion matrices display classification 
performance for only one possible choice for the thresh
old. Specifically, the confusion matrices presented here 
employ a sweep probability threshold of 0.5, such that pre
dicted probabilities greater than 0.5 are classified as a 
sweep, and otherwise are classified as neutral. Adjusting 
this default threshold of 0.5 would modulate method 
accuracy and robustness to false discoveries. For 
the confusion matrices, we have assigned the class label 
(neutral or sweep) that has the larger probability 
conditional on the input data—that is, we choose label 
Y ∈ {neutral, sweep} such that P(Y | X) is maximal for in
put X.

Performance Relative to Comparable Methods
We tested the classification performance of our models 
against three state-of-the-art methods that employ summary 
statistics as input: SURFDAWave (Mughal et al. 2020), diploS/ 
HIC (Schrider and Kern 2016), and evolBoosting (Lin et al. 
2011). SURFDAWave is a wavelet-based classification method 
that takes as input nine summary statistic arrays, exactly the 
ones that we have used for our study, and learns the function
al form of the spatial distribution of each summary statistic 
using a wavelet basis expansion to represent the 
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autocorrelation within a summary statistic across the gen
ome. The method then uses estimated wavelet coefficients 
as input to elastic-net logistic regression models for classifying 
selective sweeps and predicting adaptive parameters.

On the other hand, to detect selective sweeps, diploS/HIC 
takes a complementary deep learning approach to extract 
additional information from arrays of different features of 
population-genetic variation. In particular, the deep CNN 
classifier used in diploS/HIC takes images of a set of multidi
mensional summary statistic vectors calculated in 11 win
dows, with the central window denoted as the target. The 
set of summary statistics considered is different from 
SURFDWave, instead employing a set of summary statistics 
that assesses nucleotide and multilocus genotype variation 
without the need for phased haplotypes.

Furthermore, evolBoosting also uses arrays of different 
summary statistics as input and applies boosting to detect 
selective sweeps from neutrality. The purpose of the boost
ing (Schapire 1999) ensemble technique is to create an op
timum combination of simple classification rules obtained 
from the base classifiers (Hastie et al. 2009), which are 
themselves quite simple and not particularly accurate. 
This strategy is inspired by the observation that, in most 
cases, an ensemble of basic rules can outperform classifiers 
individually (Schapire 1999). Boosting involves fitting data 
instances to a model, and training the model in a series. 
Incorrect predictions are used to train a subsequent mod
el. Each newly added base model improves prediction error 
by accounting for error that was not captured by the set of 
prior base models. At each iteration, the less reliable rules 

FIG. 3. Depiction of the SISSSCO[27CD] model. Each summary statistic signal (π̂, H1, H12, H2/H1 and frequencies of the first five most common 
haplotypes respectively denoted by P1 to P5) of length n = 128 is used as input to each of the three spectral analysis method (wavelet decom
position, multitaper analysis, and S-transform) to decompose the signal into three matrices of dimension m × n, with m = 65, which are then 
each standardized at each element based on the mean and standard deviation across all N = 18, 000 training observations. These 27 images (9 
statistics across 3 spectral analysis methods) each used as input to train 27 independent convolutional neural networks (CNNs). The CNNs have 
two convolution layers (three layers for the S-transform), followed by a dense layer with n nodes containing both elastic-net and dropout regu
larization. The output layer of the CNN is a softmax that computes the probability of a sweep. After training, the model parameters are fixed, and 
the dense layers of the 27 CNNs are concatenated and these 27n = 3, 456 nodes are used as input to a new output layer, which computes the 
probability of a sweep as a softmax.
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of each base classifier are aggregated into a single, more re
liable rule.

These three methods consider both linear and non
linear classification strategies, with SURFDAWave employ
ing a linear model and diploS/HIC and evolBoosting 
nonlinear approaches. We applied these three methods 
using their default settings, such as window lengths, win
dow sizes, sets of features, and summary statistic gener
ation and usage. It is important to note that diploS/HIC 
was originally developed to discriminate among five 
classes: soft sweeps, hard sweeps, linked soft sweeps, linked 
hard sweeps, and neutrality. As in Mughal et al. (2020), we 
retooled the method as a binary classifier to distinguish se
lective sweeps from neutrality given input summary 
statistics.

On both the Equilibrium_fixed and Equilibri 
um_variable datasets, SURFDAWave, diploS/HIC, and 
evolBoosting achieved relatively high accuracy to discrimin
ate sweeps from neutrality, with the lowest of them 
(evolBoosting) achieving an accuracy of 97% and 95% on 
the Equilibrium_fixed and Equilibrium_ 
variable datasets, respectively (supplementary figs. S10 
and S12, Supplementary Material online). SURFDAWave 
had highest accuracy among the three methods on each da
taset, achieving an accuracy of 97.95% and 97.60% on the 
Equilibrium_fixed and Equilibrium_varia 
ble datasets, respectively (supplementary figs. S10 and 
S12, Supplementary Material online). The marginally lower 
accuracies of evolBoosting and diploS/HIC compared to 
SURFDAWave appears to be due to an imbalance in their 
predictions, with extremely high accuracy at correctly classi
fying neutrality coupled with elevated misclassification rates 
of sweeps as neutral (supplementary figs. S10 and S12, 
Supplementary Material online). However, this skew toward 
misclassifying sweeps as neutral is conservative, and is sub
stantially more desirable than a skew toward falsely discover
ing neutral regions as sweeps. Moreover, as expected, each 
method had a decrease in accuracy on the more challenging 
Equilibrium_variable dataset (supplementary fig. 
S12, Supplementary Material online) relative to the 
Equilibrium_fixed dataset (supplementary fig. S10, 
Supplementary Material online). In comparison with 
SISSSCO, four of the SISSSCO models had higher accuracy 
than the competing methods on the Equilibrium 
_fixed dataset (supplementary fig. S10, Supplementary 
Material online), whereas three of them showed higher ac
curacy on the Equilibrium_variable dataset 
(supplementary fig. S12, Supplementary Material online).

In terms of method power, SURFDAWave, evolBoosting, 
and diploS/HIC tended to exhibit marginally lower power 
than the SISSSCO models, yet generally still achieved simi
larly high levels of the area under the ROC curves as 
SISSSCO models on both datasets (supplementary figs. 
S11 and S13, Supplementary Material online). An excep
tion is evolBoosting, which displayed substantially lower 
area under the ROC curve compared to other methods, 
achieving a power (true positive rate) close to one for false 
positive rates close to 0.2, whereas all other methods 

attained power close to one for false positive rates less 
than 0.05. These results suggest that under the constant- 
size demographic history and selection setting explored 
here, several SISSSCO models had higher classification ac
curacies and powers compared to other leading machine 
learning methods that use as input summary statistics 
for detecting sweeps. Moreover, the SISSSCO[27CD] model 
achieves near perfect classification accuracy and power.

Robustness to Background Selection
A ubiquitous force affecting genetic variation across chromo
somes is background selection (McVicker et al. 2009; 
Comeron 2014), which results from the purging of deleteri
ous genetic variants by negative selection (Charlesworth 
et al. 1993; Hudson and Kaplan 1995; Charlesworth 2012). 
Importantly, background selection has historically been a 
confounding factor when searching for sweep footprints 
from allelic variation, as it can lead to distortions in the dis
tribution of allele frequencies that masquerade as positive se
lection (Charlesworth et al. 1993, 1995, 1997; Keinan and 
Reich 2010; Seger et al. 2010; Nicolaisen and Desai 2013; 
Huber et al. 2016). However, though background selection 
is unlikely to leave prominent signatures of low haplotypic 
variation (Charlesworth et al. 1993; Charlesworth 2012; 
Enard et al. 2014; Fagny et al. 2014; Schrider 2020), it is never
theless important to explore whether SISSSCO is robust to 
this common selective force.

To investigate the effect of background selection on 
model performance, we generated 1,000 test replicates 
that matched the demographic history and genetic para
meters of the Equilibrium_variable dataset 
using the forward-time simulator SLiM (Haller and 
Messer 2019), and evolved the simulated population for 
120,000 generations (12 times the diploid size), which in
cluded a 100,000 generation burn-in period (10 times 
the diploid size) with 20,000 generations of evolution after
ward. Following Cheng et al. (2017), we simulated back
ground selection where recessive (h = 0.1) deleterious 
mutations, with selection coefficients (s) drawn from a 
gamma distribution with mean of −0.1 and shape param
eter of 0.2, are distributed across a protein-coding gene of 
length 55 kilobases located at the center of the simulated 
1.1 Mb region. This simulated gene consists of 50 exons 
each of length 100 bases, 49 introns each of length 1,000 
bases, an upstream 5′ untranslated region (UTR) of length 
200 bases, and a downstream 3′ UTR of length 800 bases, 
with the lengths of these elements approximately match
ing mean human values (Mignone et al. 2002; Sakharkar 
et al. 2004). Within this gene, 75% of mutations in exons 
are deleterious, 10% in introns are deleterious, and 50% 
in 5′ and 3′ UTRs are deleterious. We then computed sum
mary statistics and corresponding spectral analysis images 
from the 198 haplotypes sampled from each simulated 
replicate in an identical manner to those used to train 
SISSSCO, and then fed sets of spectral images as input to 
the SISSSCO models trained on the Equilibrium_ 
variable dataset. As expected, we find that all 
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SISSSCO models are robust to background selection, with 
the proportion of false sweep signals due to background 
selection mirroring closely the false positive rate from 
neutral simulations, and all methods classifying 
over 96% of background selection replicates as 
neutral (supplementary fig. S14, Supplementary Material
online).

Influence of Population Size Changes
Our prior experiments have highlighted the excellent clas
sification accuracies and powers for the SISSSCO models. 
However, such test settings were idealistic, in which there 
has been no demographic changes over time—in contrast 
to the expectation for real populations. We therefore 
trained and tested our models on a demographic history 
estimated from the well-studied human central 
European population (CEU) from the 1000 Genomes 
Project dataset (The 1000 Genomes Project Consortium 
2015), for which there is extensive evidence of severe 
population size changes in recent history (Terhorst et al. 
2017).

As with the idealistic constant-size demographic histor
ies, we trained our methods on the Nonequilibrium_ 
fixed and Nonequilibrium_variable datasets, 
which differ by whether the time that the sweep com
pleted was fixed at t = 0 generations before sampling or 
variable and drawn from a distribution t ∈[0, 1,200] gen
erations in the past, respectively. The latter dataset repre
sents a setting that should be more difficult, as it leads to 
blurring of the boundaries between the sweep and neutral 
classes. Moreover, we deployed the six SISSSCO models as 
well as the comparison methods (SURFDAWAave, diploS/ 
HIC, and evolBoosting) with identical architectures, train
ing paradigms, and quantity of train, test, and validation 
data as for the constant population size experiments.

Similarly to the constant-size setting, SISSSCO[27CD] 
displayed near perfect accuracy of 99.9% and 99.5% to dis
criminate sweeps from neutrality on the Nonequilibr 
ium_fixed and Nonequilibrium_variable da
tasets, respectively (fig. 4 and supplementary fig. S15, 
Supplementary Material online). SISSSCO[27CD] also had 
uniformly highest accuracy across all tested SISSSCO and 
non-SISSSCO methods (fig. 4 and supplementary fig. S15, 
Supplementary Material online). Of the non-SISSSCO meth
ods, highest accuracy was achieved by SURFDAWave 
(98.65%), and lowest by evolBoosting (94.50%) on the 
Nonequilibrium_fixed dataset (supplementary fig. 
S15, Supplementary Material online). On the Nonequili 
brium_variable dataset we see the same pattern 
among the non-SISSSCO methods, with SURFDAWave 
achieving the highest accuracy (96.55%), and evolBoosting 
the lowest (93.00%) (fig. 4).

The high classification accuracies on these datasets are 
echoed by their high powers to detect sweeps, with all 
methods aside from evolBoosting achieving areas under 
the ROC curves that are close to one on the 
Nonequilibrium_fixed dataset (supplementary fig. 
S16, Supplementary Material online). However, the 

Nonequilibrium_variable dataset was more 
challenging, with SISSSCO[27CD] the only method achiev
ing near perfect area under the ROC curve, though 
SISSSCO[27MD] is close (right panel of fig. 5). For small false 
positive rates of less than 0.05, evolBoosting has the lowest 
power, followed by diploS/HIC and SURFDAWave 
having comparable powers, which have lower powers 
than the three-input SISSSCO models (SISSSCO[3CO], 
SISSSCO[3CD], and SISSSCO[3MD]), with the 27-input 
SISSSCO models (SISSSCO[27CO], SISSSCO[27CD], and 
SISSSCO[27MD]) harboring the highest overall powers 
(right panel of fig. 5). The decreased powers of some of 
the methods are reflected in the imbalance in classification 
rates demonstrated in figure 4, for which some methods 
have a skew toward misclassifying sweeps as neutral. 
However, as discussed for the constant-size demographic 
history results, such classification is conservative, as we 
wish to avoid the alternative skew toward false discovery 
of sweeps. Overall, our experiments point to 
SISSSCO[27CD] having near perfect accuracy and power 
on the two selection regimes simulated under the none
quilibrium recent strong population bottleneck demo
graphic history.

Comparison to Summary- and Likelihood-based 
Sweep Detectors
To showcase the power to detect traces of selective sweeps 
by using spectral images, we compared SISSSCO against 
three state-of-the-art machine learning models that are 
also geared toward detecting adaptation from vectors of 
multiple summary statistics. To evaluate how SISSSCO 
fares against more traditional nonmachine learning sweep 
detectors, we compared our most consistently performing 
method (SISSSCO[27CD]) to the summary statistics H12 
(Garud et al. 2015) and Fay and Wu’s H (Fay and Wu 
2003), as well as to the likelihood method SweepFinder2 
(DeGiorgio et al. 2016) across all four datasets. We com
puted H12 and H for different window sizes, considering 
windows of 25, 50, or 100 SNPs, and chose 50 SNP windows 
for comparison as they gave H12 and H their highest 
powers. H12 displayed higher power to detect sweeps com
pared to H and SweepFinder2 on three of the four datasets 
(supplementary fig. S17, Supplementary Material online), 
with H showing generally low power on all tested scenarios 
and SweepFinder2 having highest power among the three 
methods on the Equilibrium_variable dataset. 
The overall superior performance of H12, especially com
pared to SweepFinder2 is unsurprising. The reasoning is 
that our test datasets consider sweeps of differing degrees 
of softness and hardness, and H12 was developed to detect 
hard and soft sweeps with similar efficiency, whereas 
SweepFinder2 employs a model of a recent hard sweep 
and has limited power on soft sweeps. Even with the gen
eral superior performance of H12 compared to H and 
SweepFinder2, SISSSCO[27CD] has substantially higher 
power to detect sweeps compared to these three trad
itional methods on all four datasets.
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Robustness to Missing Genomic Segments
The presence of missing genomic segments results from 
technical artifacts, and can lead to reductions in haplotypic 
diversity due to unobserved polymorphism. As such losses 
of local genomic variation can masquerade as selective 
sweep footprints, missing genomic segments may mislead 
methods that detect sweeps to falsely classify neutral gen
omic regions harboring missing segments as having under
gone positive selection. Hence, our goal is to examine 
whether missing genomic segments within neutrally evolv
ing test regions lead SISSSCO and non-SISSSCO methods to 
falsely identify them as selective sweeps, and whether such 
missing genomic segments hampers the ability of the 
methods to discriminate between sweeps and neutrality. 
We therefore simulated an independent set of discoal 
(Kern and Schrider 2016) replicates for neutral and sweep 
regions, and generated missing genomic segments from 

these new simulations. Specifically, we first followed the 
protocol of Mughal et al. (2020) by excluding approximately 
30% of the SNPs in each simulated replicate, distributed 
evenly across 10 nonoverlapping genomic blocks of equal 
size containing approximately 3% of the SNPs in the repli
cate. The locations of these blocks are chosen uniformly at 
random, with a new location chosen for a block if it intersects 
with locations of previously placed blocks. To ensure disrup
tion of genomic diversity near the locations that beneficial 
alleles are introduced in sweep replicates, we also made 
sure that at least one of these blocks overlaps with either 
the 200 SNPs to the left or 200 SNPs to the right of the center 
of the simulated sequences for each neutral and sweep test 
replicate. This simulation protocol allows us to evaluate how 
a sparse distribution of missing polymorphic sites that are 
spread across simulated genomic regions affects the ability 
to distinguish sweeps from neutrality.

FIG. 4. Classification rates and accuracies as depicted by confusion matrices to differentiate sweeps from neutrality on the 
Nonequilibrium_variable dataset for the six SISSSCO architectures compared to SURFDAWave, diploS/HIC, and evolBoosting. The 
Nonequilibrium_variable dataset is based on the nonequilibrium recent strong bottleneck demographic history of central 
European humans (CEU population in the 1000 Genomes Project) and a sweep that completed t ∈[0, 1,200] generations before sampling.
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We then computed summary statistics using the re
maining 70% of SNPs in each replicate, with these statistics 
measured identically as for the training set using n = 128 
overlapping windows with a window length of 10 SNPs 
and a stride of three SNPs calculated over the 400 central 
SNP sites (200 to the left of the sequence center, and 200 
to the right). These one-dimensional summary statistic ar
rays are then used to generate spectra through the three 
signal decomposition methods to produce the test dataset 
consisting of sweep and neutral regions with missing gen
omic segments.

Because the Nonequilibrium_variable data
set is the most complex and features a realistic demo
graphic history, we sought to evaluate robustness to 
missing genomic segments on this dataset. We employ 
models from previous analyses that are trained without 
missing genomic segments (figs. 4 and 5) to these test data
sets that contain missing genomic segments. As would be ex
pected, the inclusion of missing genomic segments in the test 
dataset leads to a reduction in classification accuracy across 
all methods (fig. 6) compared to no missing segments (fig. 4). 
Most notably, diploS/HIC, SISSSCO[3MD], and evolBoosting 
experienced moderate to large reductions in accuracy to dis
criminate sweeps from neutrality, with reductions of 3.85%, 
4.40%, and 5.00%, respectively (compare figs. 4 and 6). This 
reduction in accuracy appears to be primarily driven by an 
increase in misclassifying neutral regions as sweeps (fig. 6), 
for which evolBoosting displays a 23% misclassification rate 
of falsely detecting neutral regions as sweeps. Of the nine 
methods compared, SISSSCO[27MD] has the highest and 
near perfect accuracy on missing genomic segments of 
99.95%, exceeding the classification performance of the 
SISSSCO[27CD] model that achieved accuracy of 99.50% 
without missing genomic segments but has only 97.90% 
with missing segments. Even on this challenging dataset, 
SISSSCO[27CD] and SISSSCO[27MD] have near perfect 
powers as evidenced by their near perfect areas under the 
ROC curves (supplementary fig. S18, Supplementary 
Material online). Therefore, the SISSSCO[27CD] and 

SISSSCO[27MD] models perform comparably well on missing 
genomic segments in terms of power, with SISSSCO[27MD] 
edging out SISSSCO[27CD] in terms of accuracy even though 
both methods exhibit high accuracy.

As an alternate approach, we generated missing seg
ments to mimic an empirical distribution of missing seg
ments as in our empirical application to humans (see 
Processing empirical data subsection of the Methods sec
tion), where we define a missing segment as a 100 kb re
gion of mean CRG  (Centre for Genomic Regulation) 
mappability and alignability score lower than 0.9 
(Talkowski et al. 2011). To generate missing data blocks 
in the simulated neutral and sweep test replicates, we first 
randomly selected one of the 22 human autosomes, with 
probability of selecting a given autosome weighted by its 
length from the hg19 human reference build. For the se
lected chromosome, we chose a starting genomic position 
for a 1.1 Mb segment uniformly at random, and scaled the 
genomic positions to begin at zero and end at one to 
match the format of the sequences simulated by 
discoal. If a random 1.1 Mb segment did not have at 
least one region of low mean CRG score, then a new seg
ment was randomly drawn until one containing a region 
with low mean CRG score was found. We then removed 
SNPs at positions from a given simulated replicate that in
tersected with genomic stretches of low mean CRG scores. 
Removal of SNPs in this manner ensures that missing data 
blocks match the distribution of regions of low mean CRG 
scores in the human reference genome. We repeated this 
process for each simulated neutral and sweep test repli
cate. This distribution of missing genomic segments is sub
stantially different from our prior missing segment 
distribution, with similar levels of mean missing SNPs 
across test replicates (on average 32.518% of SNPs dis
carded), but each 1.1 Mb segment typically only a few 
(and typically one) long blocks of missing SNPs in contrast 
to 10 short blocks.

We applied each of the six SISSSCO models and the 
three other competing methods to these test replicates 

FIG. 5. Power to detect sweeps as depicted by ROC curves on the Nonequilibrium_variable dataset for the six SISSSCO architectures 
compared to SURFDAWave, diploS/HIC, and evolBoosting. The Nonequilibrium_variable dataset is based on the nonequilibrium re
cent strong bottleneck demographic history of central European humans (CEU population in the 1000 Genomes Project) and a sweep that 
completed t ∈ [0, 1,200] generations before sampling. The right panel is a zoom in on the upper left-hand corners of the left panel.
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with missing segments inspired by an empirical distribu
tion. Supplementary figures S19 and S20, Supplementary 
Material online show that all methods suffer significantly 
from this distribution of missing segments. Among the 
SISSSCO models, SISSSCO[27CD], SISSSCO[27CO], and 
SISSSCO[3CO] had the highest classification accuracies 
and powers to detect sweeps, with these SISSSCO models 
still achieving high accuracies of 92.5%, 91.0%, and 91.0%, 
respectively. Moreover, SURFDAWave performed similarly 
to the high performing SISSSCO methods, with an accuracy 
of 91.5%. In contrast, the performances of evolBoosting 
and diploS/HIC were impacted most drastically, leading 
to generally low classification accuracies of 64.0% and 
83.5%, respectively, and with evolBoosting demonstrating 
low power to detect sweeps. We attribute the reduced 

performances of diploS/HIC and evolBoosting on the set
tings of missing genomic segments to the fact that they 
operate on summary statistics that have been computed 
across physical-based genomic, as opposed to the 
SNP-based windows utilized by the SISSSCO models and 
SURFDAWave.

Effect of Signal Decomposition
To study the benefits of adding the layer of spectral infer
ence within SISSSCO, we evaluated the accuracy and power 
of CNN models that take as input nine raw summary stat
istic vectors instead of 27 spectra. Specifically, we adapted 
the SISSSCO model architectures to construct four one- 
dimensional CNN models: a single CNN with nine channels 
(1D-CNN[1CNN]), nine pretrained single-channel CNNs 

FIG. 6. Classification rates and accuracies as depicted by confusion matrices to differentiate sweeps from neutrality on the 
Nonequilibrium_variable dataset when test data contain missing genomic segments for the six SISSSCO architectures compared 
to SURFDAWave, diploS/HIC, and evolBoosting. The Nonequilibrium_variable dataset is based on the nonequilibrium recent strong 
bottleneck demographic history of central European humans (CEU population in the 1000 Genomes Project) and a sweep that completed t ∈[0, 
1,200] generations before sampling. Trained models are identical to those in figure 4 and fitted to training observations without missing data, but 
the test observations derive from sequences containing approximately 30% missing SNPs distributed evenly across 10 nonoverlapping segments.
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with the output layers concatenated (1D-CNN[9CO]), nine 
pretrained single-channel CNNs with the dense layer con
catenated (1D-CNN[9CD]), and nine simultaneously 
trained single-channel CNNs with the dense layer concate
nated (1D-CNN[9MD]). We find that all four 1D-CNN 
methods have substantially lower classification accuracy 
and power than SISSSCO[27CD] on the Nonequilib 
rium_variable dataset (compare supplementary fig. 
S21, Supplementary Material online to fig. 4). Among the 
four 1D-CNN models, we found 1D-CNN[9MD] to have 
highest accuracy, which is approximately 5% lower than 
SISSSCO[27CD]. The powers of the 1D-CNN methods evi
denced by the ROC curves echo the relative accuracies 
of the methods, with the ranking from worst to best per
formance given by 1D-CNN[1CNN], 1D-CNN[9CO], 
1D-CNN[9CD], and 1D-CNN[9MD]. The powers demon
strated by the 1D-CNN architectures are dwarfed by 
SISSSCO[27CD], which displays a near perfect area under 
the ROC curve (supplementary fig. S21, Supplementary 
Material online). Though the SISSSCO models require sig
nificantly more time and computational resources to train 
compared to the 1D-CNN models, the improvement in 
model performance is quite considerable. Therefore, add
ing the layer of spectral inference appears to provide add
itional performance gains to SISSSCO compared to 
operating on the raw summary statistics.

Interpretability of the SISSSCO Models
Thus far, we have focused on the predictive ability of the 
SISSSCO models. However, interpretability of the models 
is also important. A mechanism that can facilitate inter
pretation is through computation of saliency maps (Zhai 
and Shah 2006). When discussing visual processing, the 
term “saliency” refers to the ability to recognize and dif
ferentiate individual aspects of an image, such as its pixels 
and resolution. These elements highlight the most visual
ly compelling parts of an image. Saliency maps are a topo
graphical representation of these locations, and their 
purpose is to reflect the degree of importance of a pixel 
to the human visual system. Therefore, to enhance inter
pretability of SISSSCO we generated aggregated saliency 
maps for SISSSCO[27CD] and visualize them as heatmaps 
(fig. 7). We used the GradientTape function from 
TensorFlow (Abadi et al. 2015) to calculate the gradi
ents of variables based on the loss function that we chose. 
We constructed these maps by averaging the saliency 
maps of the 27 pretrained CNNs using all 18,000 training 
samples (9,000 per class), where the weight of the saliency 
map of a given CNN in the average is taken from the 
dense layer node weights that lead to the concatenated 
dense layer of SISSSCO[27CD]. We constructed three 
such heatmaps, where each map aggregates saliency 
maps generated by the nine individual CNNs trained on 
spectral images from one of the three signal decompos
ition methods, giving one heatmap for the wavelet de
composition, one for the multitaper analysis, and one 
for the S-transform. The saliency maps for the wavelet 

decomposition and the S-transform place emphasis on 
low-frequency oscillations to explain the underlying sum
mary statistic signals, with the wavelet decomposition 
demonstrating a notable localization near the central 
window of the summary statistics, which is expected to 
be close to the selected locus. In contrast, the saliency 
map for the multitaper analysis exhibits a different pat
tern, placing most emphasis on the edges of the ribs in 
the rib-cage structure (recall the mean multitaper images 
in fig. 2).

Roles of Summary and Spectral Methods in SISSSCO 
Predictions
Using saliency maps, we were able to learn which pixels of in
put spectral analysis images SISSSCO tends to place greater 
emphasis when making predictions. However, a related effort 
is to decipher the role that different summary statistics and 
spectral analysis methods play in making prediction within 
SISSSCO. That is, we wish to investigate whether certain sum
mary statistics or spectral analysis approaches are more im
portant in the SISSSCO model than others. To accomplish 
this, for each of the 18,000 training observations (9,000 per 
class) for the Nonequilibrium_variable dataset, 
we fed the 27 spectral images to their corresponding pre
trained individuals CNNs and obtained the values for the 
128 nodes within the dense layer of the CNN. For each obser
vation, we then merged the 27 vectors of dense layer va
lues into a single vector of length 27 × 128 = 3, 456. We 
processed all observations in the same fashion, and cre
ated an input matrix with 18,000 rows, corresponding 
to the training observations, and 3,456 columns, corre
sponding to the values of the 27 component CNN dense 
layers. We then grouped features from these 3,456 col
umns of the input matrix, either by summary statistic giv
ing 9 groups, by spectral analysis method giving 3 groups, 
or by each pair of summary statistic and spectral analysis 
method giving 27 groups. Given one of these groupings, 
we applied group lasso (Yuan and Lin 2006) to fit a logis
tic regression model to discriminate sweeps from neutral
ity while performing both regularization as well as group 
selection. This computationally efficient approach helps 
identify groups of features less important for classifica
tion, whether due to irrelevance for predicting the re
sponse or due to correlation with other groups of 
features, by setting weights of every feature in a group 
to zero.

We first considered grouping with 27 groups defined by 
distinct summary statistic and spectral analysis pairs, and 
find that group lasso removes 13 groups (sets coefficients 
to zero for all features in the groups), with all combinations 
of π̂, H1, and P4 with the 3 spectral analysis methods re
moved. Additionally, seven groups utilizing multitaper 
analysis were also removed. We next evaluated groupings 
with three groups defined by distinct spectral analysis 
methods, and find that group lasso removes the group de
fined by multitaper analysis images. Finally, we explored 
grouping with nine groups defined by distinct summary 
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statistics, and find that group lasso removes four groups 
defined by images of π̂, H1, P2, and P4.

Based on the results from these group lasso experi
ments, we trained two new stacked CNN architectures 
in an identical manner to that of SISSSCO[27CD], which 
we denote by SISSSCO[18CD] and SISSSCO[15CD]. The 
SISSSCO[18CD] architecture is trained with 18 spectral 
analysis images per observation using all nine summary 
statistics decomposed by wavelet decomposition and 
S-transform (i.e., multitaper spectral analysis images are re
moved), whereas SISSSCO[15CD] is trained with 15 spectral 
analysis images per observation using the five summary 
statistics H12, H2/H1, P1, P3, and P5 decomposed by all three 
spectral analysis techniques (i.e., π̂, H1, P2, and P4 images 
are removed). We find that both new SISSSCO models 
have lower power and accuracy to detect sweeps than 
SISSSCO[27CD] (supplementary fig. S22, Supplementary 
Material online). Moreover, based on the superior per
formance of SISSSCO[18CD] over SISSSCO[15CD], we con
clude that removing summary statistics had a more 
deleterious effect on classification performance than elim
inating the multitaper images.

Application to Unphased Genotypes
The SISSSCO models were trained with phased haplotypic 
data. However, phased data are difficult or impossible to 
reliably generate for many study systems—notably most 
nonmodel organisms. Hence, for our models to be versa
tile, it is imperative that they can also accommodate un
phased data (e.g., similarly to diploS/HIC of Kern and 
Schrider 2018). Fortunately, the phased haplotype sum
mary statistics used by SISSSCO have natural analogs for 
unphased multilocus genotype data. Specifically, we could 
replace H1, H2/H1, and H12 with their respective unphased 
analogs G1, G2/G1, and G123 (Harris et al. 2018) and ex
change the frequencies of the five most common haplo
types with the five most common unphased multilocus 
genotypes. Given the relatively strong concordance with 
results from haplotype-based methods (Harris et al. 
2018; Harris and DeGiorgio 2020a, 2020b; DeGiorgio and 
Szpiech 2022) and power to detect sweeps in prior studies 
using unphased multilocus genotypes (Kern and Schrider 
2018; Mughal and DeGiorgio 2019; Gower et al. 2021), 
we expect that SISSSCO would retain excellent classifica
tion accuracy and power when applied to unphased data.

FIG. 7. Saliency maps of the pretrained component CNNs of SISSSCO[27CD] aggregated on the basis of dense layer node weights post concat
enation across 9,000 training observations per class. The top left, top right, and bottom images are aggregated using saliency maps generated by 
nine component single-channel CNNs trained using spectral images generated by wavelet decomposition, S-transform, and multitaper analysis, 
respectively.
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To test this hypotheses, we calculated π̂, G1, G2/G1, G123, 
and the five most common unphased multilocus genotypes 
from the 18,000 training, 2,000 test, and 2,000 validation ob
servations (respectively 9,000, 1,000, and 1,000 per class) from 
the Nonequilibrium_variable dataset. We ob
tained these summary statistics from unphased multilocus 
genotype data in an identical manner as with phased haplo
type data by computing 128 windows of size 10 SNPs with a 
stride of three SNPs across 400 SNPs of each replicate, with 
these SNPs selected as 200 SNPs immediately to the left 
and 200 SNPs immediately to the right of the center of the 
simulated sequence. We also generated spectral images in 
an identical manner to when we employed the original 
nine summary statistics computed from haplotype data. 
Using these spectral images, we trained a classifier with an 
identical architecture to the haplotype-based 
SISSSCO[27CD] (denoted SISSSCO_MLG[27CD]) that 
achieves an overall accuracy of 95.60% (supplementary fig. 
S23, Supplementary Material online), which is only marginal
ly higher than diploS/HIC (fig. 4), which was developed for 
unphased data. However, diploS/HIC correctly classifies neu
tral regions with a slightly higher accuracy compared to 
SISSSCO_MLG[27CD].

Effect of Sweep Strength and Softness
During model training and performance evaluation, we have 
considered settings for which sweep replicates had selection 
coefficients (s) drawn on a logarithmic scale within the inter
val [0.005, 0.5] as well as the frequencies (f) at which bene
ficial mutation became selected drawn on a logarithmic scale 
within the interval [0.001, 0.1], permitting method behavior 
to be explored on average across diverse levels of sweep 
strength (s) and softness (f). Here, we restrict the test sets 
to derive from restricted portions of the selection parameter 
space to evaluate the performance of SISSSCO for differing 
degrees of sweep strength and softness. We first explored 
the effect of selection strength on the accuracy and power 
of SISSSCO[27CD] under the nonequilibrium demographic 
history. In particular, SISSSCO[27CD] was trained on the 
Nonequilibrium_variable dataset, and five new 
test sets each with 1,000 sweep observations were generated 
with identical genetic, demographic, and selection para
meters as in previous Nonequilibrium_variable 
test sets, with the exception that selection coefficients 
were drawn from a different distribution. Specifically, selec
tion coefficients for these five sweep test sets were drawn 
uniformly at random within one of the five intervals of 
[0.001, 0.005], [0.005, 0.01], [0.01, 0.05], [0.05, 0.1], or 
[0.1, 0.5], respectively leading to five settings of decreasing 
difficulty based on increasing sweep strength. We used the 
same 1,000 neutral test replicates for all five test sets that 
we used in earlier experiments on the Nonequilibr 
ium_variable dataset.

As expected, accuracy and power of SISSSCO[27CD] 
tend to increase as ranges of selection coefficients consider 
sweeps with higher strengths (supplementary fig. S24, 
Supplementary Material online). Accuracy (65.55%) and 

power are notably low for SISSSCO[27CD] tested on sweeps 
with selection coefficients within the range [0.001, 0.005], 
as selection in this range is weak and unlikely to leave a 
strong local footprint of reduced diversity, thereby making 
it difficult to distinguish sweeps from neutrality. Moreover, 
this range of selection coefficients falls outside the range 
used to train SISSSCO[27CD], yet still SISSSCO[27CD] man
ages to correctly identifies 32.1% of the sweep replicates. 
However, within the bounds of selection coefficients 
used to train SISSSCO[27CD], accuracy ranges from 88.2% 
to 98.8% for the selection coefficients within the range 
of [0.005, 0.01] and [0.1, 0.5], respectively. Moreover, 
sweeps with selection coefficients within the ranges of 
[0.01, 0.05] or [0.05, 0.1] achieves accuracies of over 95%.

We also examine the performance of SISSSCO[27CD] on 
harder and softer sweeps by applying it to 1,000 test repli
cates for which the frequency (f) of the beneficial allele 
when selection initiated was drawn uniformly at random 
within the intervals [0.001, 0.01] (harder sweeps) or 
[0.01, 0.1] (softer sweeps), and fixing all other genetic, 
demographic, and selection parameters as in previous 
Nonequilibrium_variable test sets. We find 
that classification accuracy differs markedly between the 
harder and softer sweep scenarios, with accuracy approxi
mately 15% higher for the harder (96.9% accuracy) sweeps 
compared to the softer (82.0% accuracy) ones 
(supplementary fig. S25, Supplementary Material online).

Training and Testing SISSSCO on Weaker Sweeps
Based on the results in supplementary figure S24, 
Supplementary Material online, we can see that 
SISSSCO[27CD] generally performs poorly on test settings 
for which the selection coefficient is [0.001, 0.005], which 
is unsurprising as this interval falls outside the range of 
[0.005, 0.5] that selection coefficients were drawn to train 
SISSSCO[27CD]. Though these results reaffirm the ten
dency of SISSSCO[27CD] to conservatively classify patterns 
that look closer to neutrality as neutral, we wanted to in
vestigate whether training with weaker sweep replicates 
would make SISSSCO[27CD] more sensitive to weaker 
sweeps. We therefore generated 11,000 new sweep repli
cates with genetic, demographic, and selection parameters 
drawn identically to the Nonequilibrium_ 
variable dataset, except that selection coefficients 
were drawn uniformly at random on a logarithmic scale 
within the interval [0.001, 0.05], with 1,000 replicates re
served for testing and the remaining 10,000 reserved for 
training and validation. We trained the six SISSSCO models 
as well as SURFDAWave, diploS/HIC, and evolBoosting in 
an identical manner to the originally trained models. 
The classification accuracies of all six SISSSCO models 
decreased substantially on this dataset, with 
SISSSCO[27CD] achieving the highest accuracy of 92.5% 
among the six methods (supplementary fig. S26, 
Supplementary Material online). This reduction in accur
acy is unsurprising, as many of the replicates will be for 
weak sweeps, which may leave genomic footprint that 
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resemble neutrality. Moreover, SURFDAWave and diploS/ 
HIC achieved identical overall classification accuracy to 
SISSSCO[27CD]. In contrast, the classification accuracy of 
evolBoosting suffered due to a large increase in the rate 
of misclassifying neutral regions as sweeps (compare fig. 
4 and supplementary fig. S26, Supplementary Material
online).

Application to Human Genomic Data
Until now, we assessed the six SISSSCO methods on a number 
of simulated settings, and compared the results with three 
competing state-of-the-art methods. Across these tests, 
SISSSCO[27CD] was the most consistent performer through
out the evaluation process (fig. 4 and supplementary fig. S18, 
Supplementary Material online), with a heavier computa
tional cost compared to some of the other SISSSCO architec
tures apart from SISSSCO[27MD]. Because of its favorable 
behavior on simulated settings, we apply SISSSCO[27CD] to 
variant calls and phased haplotypes of 99 individuals in the 
CEU population from the 1000 Genomes Project (The 
1000 Genomes Project Consortium 2015) to uncover sweeps 
in a well-studied human dataset as a proof of concept appli
cation of SISSSCO.

SISSSCO classified most of the genome (approximately 
95.5%; table 1) as neutral, with a mean sweep probability 
of 17.89%. Increasing the probability threshold for calling 
sweeps from 0.5 to 0.9 raises the neutral detection rate 
above 97% (table 1). For our empirical analysis, we set 
the sweep footprint detection criterion as a mean predic
tion probability of at least 0.9 for a set of 10 consecutive 
prediction windows. Calling sweep regions in this manner 
circumvents the few isolated data points with marginally 
high sweep prediction probabilities, and ensures that we 
are finding peaks in genomes with high sweep support.

To test the reliability of this sweep detection criterion 
that we chose for the empirical dataset, we analyzed simu
lated test sets in an identical manner that were generated 
from the Nonequilibrium_variable dataset. In 
particular, rather than computing the central 128 sum
mary statistic windows for a given replicate simulation, 
we instead consider the central 137 windows, as this would 
provide a total of 10 consecutive summary statistic arrays 
computed across 128 windows, assuming a stride of one 
window. From these 10 consecutive arrays, we generated 
10 sets of spectral analysis images, predicted the sweep 
probability for each set of images from SISSSCO[27CD], 
and averaged these probabilities across the 10 sets of images 
to obtain an estimate of the sweep probability for a given 
replicate. Assuming a sweep probability threshold of 0.9, 
we find that 99% of neutral replicates are correctly classified 
and that we preserve a high rate of 97.9% for correctly clas
sifying sweep replicates, while also retaining high power to 
detect sweeps at low false positive rates (supplementary 
fig. S27, Supplementary Material online).

Figure 8 displays sweep prediction probabilities as a 
function of genomic position, using a 10-point moving 
average to generate smoothed curves that match our 

sweep detection criterion. Of the 22 human autosomes, 
the first 6 contained regions that satisfied our detection 
criterion, resulting in 20 identified sweep regions contain
ing 22 genes (table 2 and fig. 8). Among these 22 genes, 
many are expected from prior scans of European human 
genomes (e.g., LCT, ABCA12, SLC45A2, HCG9, and 
HLA-DRB6), with a few (e.g., PDPN, WASF2, LRIG2, 
SDAD1, POMGNT1, UQCRH, ULK4, and TMPRS11D) identi
fied as novel candidates in our study.

With a predicted sweep probability of 1.0 and a 
10-window mean of 0.9998, the LCT gene harbors one of 
the clearest indicators of a sweep found by SISSSCO. This 
high sweep support reinforces the overwhelming evidence 
for recent positive selection at LCT in Europeans from prior 
studies (e.g., Tishkoff et al. 2007; Field et al. 2016; Ségurel and 
Bon 2017). Because of various polymorphisms in the LCT 
gene, which encodes lactase-phlorizin hydrolase, the per
centage of adults who are able to digest lactose varies sub
stantially across the world’s populations (Boll et al. 1991). In 
particular, the geographical distribution of dairy production 
and lactase persistence are correlated with one another 
(Boll et al. 1991). Moreover, groups where milk and milk 
products are consumed have been shown to have higher 
LCT gene expression levels (Tishkoff et al. 2007). High inci
dence of lactase persistence in European adult populations 
are the product of positive selection brought about as it pre
vented lactose intolerance for the people in populations 
who were consuming dairy products (Bayless and 
Rosensweig 1966; Scrimshaw and Murray 1988). The 
SISSSCO model suggests that the high-frequency haplotype 
at LCT is the result of one of the most significant recent sig
nals of positive selection in the genomes of Europeans.

Table 1. Percentage of Windows Classified as Sweep Based on Sweep 
Probability Threshold of 0.5, 0.7, and 0.9 for Each of the 22 Autosomes of 
CEU Individuals from the 1000 Genomes Project Dataset.

Chromosome Threshold = 0.5 Threshold = 0.7 Threshold = 0.9

1 5.31 4.31 3.32
2 6.59 6.41 5.89
3 6.60 4.13 2.55
4 5.56 3.89 2.92
5 5.99 4.76 2.12
6 5.19 3.72 3.01
7 5.71 3.92 2.02
8 5.00 3.67 2.01
9 4.23 3.22 2.13
10 4.49 3.49 2.86
11 4.14 2.99 2.33
12 4.66 3.10 2.09
13 3.98 2.04 1.99
14 4.37 2.34 2.34
15 4.12 2.83 2.43
16 4.00 3.16 2.66
17 4.00 3.93 3.77
18 3.77 3.56 3.41
19 3.49 3.42 3.30
20 3.01 2.99 2.78
21 2.12 2.00 1.90
22 2.23 1.89 1.89
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Another region that showed high sweep prediction 
probabilities, including a peak of 0.987 and a 10-window 
mean of 0.967, is the region containing the ABCA12 
gene, which codes for the protein ATP-binding cassette 
transporter (Annilo et al. 2002). The ABCA12 gene is an ab
solute requirement for the outer layer of the skin to be able 
to transport lipids and enzymes (Akiyama 2014). This mo
lecular movement is the only way to keep the lipid layers in 
the epidermis, which are vital to the maintenance of prop
er skin development (Akiyama 2014). The lipid barrier of 
the skin is the first line of defense that the body has against 
potentially harmful environmental toxins. Multiple varia
tions of hair and skin pigmentation exist to adapt to differ
ent levels of ultraviolet radiation (Jablonski and Chaplin 
2010; Baroni et al. 2012). A genome-wide scan in 
Eurasians found that a variant in the ABCA12 gene harbors 
footprints of positive selection (Colonna et al. 2014; Sirica 
et al. 2019), and SISSSCO lends support to these claims 
with high confidence of a predicted sweep in this region.

Furthermore, the region including the gene SLC45A2 
passed the sweep qualification criterion, with a peak of 
0.996 predicted sweep probability and a 10-window 
mean of 0.9906. The protein coded by SLC45A2, which is 
found in melonocytes, is a key component of the opera
tions responsible for transporting and processing pigmen
tation enzymes throughout the cell (Kamaraj and Purohit 
2014). The frequency of an allele in SLC45A2, which in
duces lighter skin pigmentation in modern humans, seems 
to increase from southern to northern Europe (Costin et al. 
2003). In populations with lighter skin pigmentation, there 
is a considerable association between regional diversity in 
multiple functional skin pigmentation polymorphisms 
within the gene and distance from the equator (Wilde 
et al. 2014). This correlation suggests that selection pres
sure occurred within populations residing in high latitude 
regions compared to the ones living in lower latitudes over 
the course of human evolution, as vitamin D3 photosyn
thesis in northern Europe is expected to be higher for light
er than for darker skin (Novembre and Di Rienzo 2009; 
Wilde et al. 2014). Along with ABCA12, the detection of 
SLC45A2 by SISSSCO lends support to the hypothesis 
that multiple genes responsible for skin pigmentation 
went through positive selection in Europeans (Jablonski 
and Chaplin 2017).

SISSSCO also identified four candidate genes in the ma
jor histocompatibility complex (MHC) region. Among 
them, HLA-DRB6 and HCG9 passed our sweep qualification 
criterion with peaks of 0.9812 and 1.0 predicted sweep 
probability, and 10-window means of 0.977 and 0.992, re
spectively. However, the other candidates (HLA-DRA and 
HLA-A) moderately exhibit signatures of sweeps, as they 
do not pass the stringent qualification criterion, but do 
pass it if we relax the threshold to a 10-window mean of 
0.7. Though categorized as an MHC gene, HLA-DRB6 is a 
pseudogene (Cree et al. 2010) that may have lost its first 
exon and promoter to the insertion of a virus far in the 
past, thereby making it nonfunctional (Mayer et al. 
1993). In contrast, HCG9 is a long noncoding RNA gene 

(Pal et al. 2016), and hence may be involved in gene regu
lation. The MHC region contains many exceptionally high
ly polymorphic genes that code for cell surface proteins 
responsible for communication between cells and extra
cellular environments (Horton et al. 2004). These proteins 
make up the adaptive immune system by recognizing for
eign pathogens to initiate a targeted immune response, 
which becomes essential when the innate immune system 
fails in protecting cells (Horton et al. 2004). Among MHC 
Class I genes, HLA-A showed marginal signs of positive se
lection with 10-window mean sweep prediction probabil
ity of 0.70. Similarly, among MHC Class II genes, along with 
HLA-DRB6, HLA-DRA showed signs of positive selection 
with 10-window mean sweep prediction probability of 
0.72. The marginal sweep candidates HLA-A and 
HLA-DRA show a trend of multiple genes in the MHC 
Class I and Class II to exhibit signs of sweeps. These findings 
are reinforced by other studies that observed sweep signa
tures at the MHC region within Europeans (e.g., 
Albrechtsen et al. 2010; Goeury et al. 2018; Harris and 
DeGiorgio 2020b; DeGiorgio and Szpiech 2022).

SISSSCO detected 16 other sweep candidates, a large 
number of which are associated with cancer detection or 
suppression. Specifically, the PDPN gene that encodes 
the protein Podoplanin, which serves as a marker for 
lymphatic vessels (Kitano et al. 2010). Because it can be uti
lized as a tool, though rather weak, for cancer diagnosis, 
this gene has played a crucial role in cancer research 
(Kawaguchi et al. 2008; Krishnan et al. 2018; Quintanilla 
et al. 2019). Additionally, it is a major factor in the metas
tasis of squamous cell carcinoma, a common form of skin 
cancer (Kitano et al. 2010). The genes WASF2 and LRIG2 
have been linked with many forms of cancer detection 
as well (Wang et al. 2014; Kitagawa et al. 2019). WASF2 ex
pression levels have been studied as a biomarker in detec
tion of pancreatic (Kitagawa et al. 2019) and ovarian 
cancers (Yang et al. 2022), whereas LRIG2 has been identi
fied as a biomarker for detection of nonsmall cell cancer 
(Wang et al. 2014). On the other hand, SDAD1 has been 
identified as a gene responsible for suppressing colon can
cer metastasis (Zeng et al. 2017). A number of prior scans 
also found traces of selective sweep footprints in cancer- 
associated genes. For instance, Lou et al. (2014) and 
Mughal and DeGiorgio (2019) identified the BRCA1 
gene as a sweep candidate, and Schrider and Kern (2017)
detected sweep signatures at several cancer-related 
genes, including CADM1 and MUPP1. Though the cancer- 
associated genes detected by SISSSCO differ from those of 
prior studies, these findings portray an interesting enough 
trend that SISSSCO, along with a number of other ap
proaches from prior studies, identified several cancer- 
related genes as selective sweep candidates.

Discussion
In this study, we found that the SISSSCO models do indeed 
have increased power and accuracy compared to the three 
competing summary statistic-based machine learning 
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methods. In particular, the 27-input CNN models 
(SISSSCO[27CO], SISSSCO[27CD], and SISSSCO[27MD]) 
generally outperformed the 3-input CNN models 
(SISSSCO[3CO], SISSSCO[3CD], and SISSSCO[3MD]), with 
all 3 27-input models showing similarly high performance 
across tested demographic histories and selection regimes. 
Though classification accuracy is slightly lower for 
SISSSCO[27CD] than for SISSSCO[27MD] on missing blocks 
of SNPs, given its high accuracy and power across the range 
of demographic and adaptive scenarios tested as well as ro
bustness to missing genomic segments, we decided to use 
this method to detect sweeps on an empirical human gen
omic dataset.

Application of SISSSCO to European human genome vari
ation gave high support for previously identified sweeps at 

the LCT, ABCA12, and SLC45A2 genes (Bersaglieri et al. 
2004; Beleza et al. 2013; Sirica et al. 2019), as well as 19 other 
candidate genes with high confidence. We employed a strin
gent sweep qualification criterion to limit the number of 
falsely discovered sweeps. A key finding is that, two genes 
in the MHC region, namely HCG9 and HLA-DRB6, and with 
a relaxed qualification criterion another two genes HLA-A 
and HLA-DRA, presented sweep signatures. However, past 
studies have indicated that the MHC region has undergone 
balancing selection (e.g., Solberg et al. 2008; Cagliani et al. 
2011). As recent balancing selection leaves a spatial pattern 
in the genome similar to that of an ongoing selective sweep 
(Isildak et al. 2021), SISSSCO may have picked up such spatial 
patterns in the MHC region. However, we can hypothesize 
that similar spatial patterns might also emerge as artifacts 

FIG. 8. The genome-wide sweep scan results generated by the trained SISSSCO[27CD] model on the central European humans (CEU population in 
the 1000 Genomes Project). Ten consecutive windows of sweep probability higher than 0.9 was chosen as the qualifying criteria to be classified as 
a region to be under positive natural selection. In total, 23 genes in 17 regions in the genome show qualifying signs of sweep.
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when a highly polymorphic region, such as the MHC, is se
quenced at lower levels of genomic coverage. Evaluating gen
etic diversity at the MHC locus presents a variety of 
methodological hurdles, which in turn may lead to inaccurate 
assessment of polymorphism and diversity within the region 
(Dilthey et al. 2015; Ribeiro et al. 2015) and affect downstream 
summary statistic estimates that would ultimately impact 
classifiers that use such summaries as input.

Moreover, we found that, as expected, the vast majority of 
the genomic windows were classified as neutral, with only a 
handful of regions showing clear sweep signatures. Though 
roughly 3–5% of the genomic windows had predicted sweep 
probabilities higher than their respective threshold, many 
were isolated peaks within intergenic regions and near re
gions of low mean CRG scores, which we removed from 
our study. Detection of the majority of the genome to be neu
trally evolving coupled with the identification of classic sweep 
candidate genes in humans served as a sanity check for the 
efficacy of SISSSCO on empirical data.

The three spectral analysis techniques that we em
ployed add versatility to SISSSCO, as they focus on different 
characteristics of signals. In particular, they extract infor
mation from multiresolution analysis of frequency compo
nents within the summary statistics signals within the 
summary statistic signals. This information is obtained ei
ther through wavelet transformation of signals or through 
multitaper spectral analysis by tapering signals using quali
fying tapers to generate power maps emphasizing overall 
signal shapes. Focusing on genomic spatial windows as a 
function of the dominant frequency within the summary 
statistic signal through the S-transform also offers a unique 
mechanism for drawing information from signals. By lever
aging these diverse patterns of information, SISSSCO gains 
the ability to build a more accurate and robust system 

compared to existing sweep detectors that utilize vectors 
of multiple summary statistics as input.

A potential reason that these signal decomposition 
methods offer improved predictive ability over the use 
of raw summary statistics might be that they aim to isolate 
low-frequency components that are responsible for overall 
trends of signals, but place lower importance on regions of 
signals where abrupt changes occur. Some low-frequency 
components may be generated by genetic variation within 
the population stemming from nonadaptive processes in
cluding mutation, recombination, migration, and genetic 
drift. However, adaptive processes, such as positive natural 
selection, may be responsible for a different range of low- 
and mid-frequency components to be present in the sig
nal. Because the signal decomposition methods are able 
to isolate high-frequency white noise incurred from calcu
lating summary statistics in small overlapping windows, it 
becomes easier for the machine learning models to differ
entiate between low-frequency components generated 
from nonadaptive processes, and low- to mid-frequency 
components generated from adaptive processes.

The two-dimensional images generated by these spec
tral analysis tools have different patterns that can be 
used to explain the energy of the frequency components 
within the signal. CNNs therefore play a vital role in iden
tifying regions of interest from these images. Because 
CNNs are so flexible, we were able to set up image process
ing architectures that were suited for finding specific re
gions of interest in the three types of images made by 
the three signal decomposition methods that match the 
complexity of patterns in those regions. In addition to 
this adaptability, the CNNs made it possible to combine 
data from several image types to create a stacked (or con
catenated) set of models with increased ability to spot 
signs of adaptive events.

We tested 6 stacking, or concatenation, architectures 
that utilize information from 27 input images generated 
by nine summary statistic signals, each decomposed with 
3 spectral analysis methods. Three of our 6 stacked models 
involve 3 nine-channel input CNNs (SISSSCO[3CO], 
SISSSCO[3CD], and SISSSCO[3MD]), whereas the other 3 op
erate on 27 single-channel input CNNs (SISSSCO[27CO], 
SISSSCO[27CD], and SISSSCO[27MD]). The three stacking 
approaches involving nine-channel input CNNs generally 
performed better than each of the signal decomposition 
methods tested in isolation as presented in the Results sec
tion, corroborating the motivation that combining knowl
edge from three signal decomposition methods does 
indeed enhance classification performance. A likely reason
ing for this result is that the different signal decomposition 
methods interrogate distinct properties of a signal, making 
images from the three spectral analysis approaches comple
mentary rather than redundant. On the other hand, stack
ing methods employing nine-channel CNNs were often 
outperformed by those using single-channel CNNs.

An important consideration when fitting predictive 
models, especially those that employ deep neural net
works, is the size of the training set. To study the influence 

Table 2. List of Peaks and Corresponding Genes Detected by the 
SISSSCO[27CD] Model Meeting the Sweep Qualifying Criteria of CEU 
Individuals from the 1000 Genomes Project Dataset.

Chromosome Start (Mb) Stop (Mb) Genes

1 13.83 13.97 PDPN
1 27.82 27.89 WASF2
1 27.96 28.02 ADHC1
1 46.67 46.79 POMGNT1, RAD54L, UQCRH
1 113.61 113.63 LRIG2-DT, LRIG2
1 161.29 161.31 SDHC
2 136.47 136.58 LCT
2 215.81 215.88 ABCA12
3 41.88 41.94 ULK4
3 41.96 42.05 ULK4
3 148.55 148.57 CPB1
4 17.61 17.74 FAM184B
4 68.66 66.71 TMPRS11D
4 76.83 76.93 SDAD1
5 33.92 33.99 SLC45A2
5 54.75 54.80 PLPP1
5 54.89 54.90 SLC38A9
6 29.94 29.95 HCG9
6 32.53 32.53 HLA-DRB6
6 128.55 128.99 PTPRK
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of training set size on classification accuracy, we trained 
SISSSCO[27CD] and the three competing methods with 
1,000, 3,000, and 5,000 observations per class, with 1,000 
observations per class to use as a validation. We find 
that with 1,000 observations per class, the classification ac
curacy of all four methods suffers (supplementary fig. S28, 
Supplementary Material online), with evolBoosting exhi
biting the greatest drop in accuracy (from 93.00% to 
80.05%) compared to our original training set size (fig. 
4). Of the four approaches, SISSSCO[27CD] topped the 
list with an accuracy of 94.75%, which is down from 
99.50% on the original training set size. When training 
set size was increased to 3,000 observations per class, train
ing accuracies of all methods steadily improved, though 
still remained far from the accuracies attained under the 
original training set size. By a training set size of 5,000 ob
servations per class, SISSSCO[27CD] reached an accuracy of 
99.00%, which is virtually identical to the value on the ori
ginal training set size, whereas the accuracies of the other 
methods remained between approximately 1% and 4% 
lower than on the original training set size. Thus, even 
with moderate training set sizes, SISSSCO[27CD] is able 
to achieve high accuracy.

When exploring the effect of nonequilibrium demo
graphic histories on the ability to discriminate sweeps 
from neutrality, we focused on population size fluctua
tions. However, extreme population structure and admix
ture represents an additional nonequilibrium setting that 
can potentially distort distributions of summary statistics 
and lead to false signals of sweeps (Harris et al. 2018). 
For example, Harris et al. (2018) showed that under a sym
metric island migration model the distribution of H12 is in
flated toward higher values relative to neutrality, and that 
this distribution can overlap that of hard (and thus likely 
soft) sweeps when selection is old enough and when mi
gration among populations is sufficiently rare. Moreover, 
they showed that under an admixture setting, when the 
donor population size is substantially smaller than the re
cipient population size, H12 increases and H2/H1 decreases 
with increasing admixture proportion, thus leading to po
tential false inferences of sweeps. Such extreme population 
structure and migration settings may also lead to similar 
alterations in the distributions of other summary statistics 
used by SISSSCO, and therefore mislead SISSSCO and other 
machine learning classifiers to detect false footprints of 
adaptation. Thus, accounting for such extreme demo
graphic settings would be important within the training 
of the classifier if inferred demographic models suggest 
substantial levels of structure or admixture. Moreover, 
even if these factors are accounted for when training mod
els, because of the potential increase in overlap of sum
mary statistic distributions between neutral and sweep 
scenarios, we expect that classification accuracy and power 
of SISSSCO and other machine learning approaches would 
likely decrease due to less class separation. However, be
cause Harris et al. (2018) found that the H12 and H2/H1 dis
tributions were only similar between sweeps and neutrality 
under exceptional circumstances, we believe that the 

impact of migration in general on the predictive outcomes 
of our SISSSCO models is likely to be minimal.

Across the various simulated test settings, the relative 
performances of the SISSSCO and non-SISSSCO models 
remained consistent, as did the relative performances 
among non-SISSSCO models. A comprehensive under
standing of what drives these differences in classification 
behavior is difficult, but key characteristics of modeling 
decisions may provide some light. First, though SISSSCO 
and SURFDAWave both employ signal decomposition 
methods as well as the same set of summary statistic vec
tors, the underlying relationships between the class labels 
and the summary statistic values may be nonlinear, and 
thus the nonlinear CNN models employed by SISSSCO 
may provide it with better accuracy and power. 
Moreover, three signal decomposition methods em
ployed by SISSSCO each interrogate different characteris
tics of a signal and are thus complementary. In contrast 
SURFDAWave considers only a single signal decompos
ition method for extracting features from summary stat
istic vectors.

Next, diploS/HIC uses a different set of summary statis
tics that operate on unphased multilocus genotype data, 
whereas we used input summaries from phased haplotype 
data to train SISSSCO. Second, diploS/HIC divides the ana
lyzed genomic region into a small number of large 
physical-based windows, whereas SISSSCO uses a large 
number of SNP-based windows. These SNP-based win
dows give SISSSCO robustness to missing genomic regions, 
whereas diploS/HIC is less robust due to its use of physical- 
based windows—though masking of genomic regions can 
be implemented within model training to account for miss
ing regions (Kern and Schrider 2018). Third, diploS/HIC does 
not use ensemble learning other than dropout layers. 
However, the network architecture does have three branches 
that can learn nonredundant features from the input images, 
and results from these branches are aggregated through con
catenation for making predictions. Fourth, diploS/HIC nor
malizes each summary statistic across windows, whereas 
SISSSCO does not normalize summary statistic signals before 
signal decomposition. Instead, SISSSCO standardizes each 
pixel of the images after signal decomposition. Finally, 
diploS/HIC was designed to discriminate among five classes, 
which is important because the diploS/HIC summary statis
tics may have been chosen to provide optimal performance 
for the original setting of five classes.

In relation to evolBoosting, though it employs ensemble 
learning similar to SISSSCO, these ensemble approaches 
have many differences. That is, evolBoosting utilizes boost
ing, which aggregates predictions from many weak lear
ners, whereas the stacking approach of SISSSCO takes 
node weights from the fully connected dense layers or 
the output layers of the individually trained CNNs, which 
are each potentially strong predictive models. Second, 
evolBoosting uses a different set of summary statistics, 
computed across a moderate number of moderate-length 
physical-based windows. Similarly to diploS/HIC, this sen
sitivity of evolBoosting to missing genomic segments is 
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likely due to the calculation of summary statistics in 
physical-based windows.

Though we focused on the application of SISSSCO to bin
ary classification problems, it can be extended to multiclass 
problems and retooled to infer evolutionary parameters 
within a regression framework, which can provide a richer 
understanding of the processes that have led to selection 
footprints in the genome. For example, estimating the tim
ing (t) and strength (s) of selection may provide a hint at the 
environmental pressures that led to the rise in frequency of 
particular traits associated with identified sweep candidates. 
Moreover, predicting the frequency of the allele when it be
came adaptive (f) can lend information about the mode of 
positive selection at candidate genes, with low frequency 
suggesting a hard sweep from a de novo mutation and mod
erate frequency a soft sweep from standing variation.

To retool SISSSCO for such tasks, we would need to con
vert the 27 component CNNs to output a quantitative re
sponse, so that they are consistent with a regression 
problem, which would potentially require changing the 
output layer activation functions and making modifica
tions to the network architectures. For example, we could 
make the output layer three nodes, with each node corre
sponding to either t, s, or f instead of a single node for pre
dicting the sweep probability, such that predictions are on 
the real number line. Thus, instead of a sigmoid activation 
function for the output layer, linear or ReLU activation 
functions could be used instead, depending on whether 
the t, s, or f are (linear) or are not (ReLU) logarithmically 
transformed. Next, the loss function needs to be adjusted 
so that it takes into account the discrepancy between an
ticipated and desired values for regression, such as employ
ing the mean squared error instead of the cross entropy, 
which we used for the classification problem. In addition, 
other hyperparameters, such as gradient descent learning 
rate, and batch size may need to be modified.

On the other hand, adjusting the SISSSCO architecture to 
predict more than two classes is more straight forward. 
Rather than having a single node in the output layer with 
a sigmoid activation function, we would have the same num
ber of nodes as the number of classes, and then utilize the 
softmax activation function to predict the probability of 
each of class. Moreover, when considering multiclass pro
blems, incorporating images of two-dimensional statistics 
may be helpful, such as discriminating among neutrality, 
nonintrogression sweeps, and adaptive introgression 
(Racimo et al. 2015). In particular, Mughal et al. (2020)
showed that including two-dimensional statistics [i.e., mo
ments of the distribution of the squared correlation coeffi
cient r2 (Hill and Robertson 1968)] in addition to 
one-dimensional statistics can aid in discriminating among 
different types of adaptive processes, such as adaptive intro
gression and nonintrogression sweeps. However such two- 
dimensional summary statistics do not fall within the 
SISSSCO framework developed here. Instead, SISSSCO could 
accommodate images that are not from spectral analysis, 
such as moments of pairwise linkage disequilibrium compu
tations, as separate concatenation branches.

Overall, spectral analysis of genomic summary statistics 
that result in spectral images offer precise localization of 
frequency components within the signal. In contrast to 
the frequency components generated by genetic variation 
due to nonadaptive events, the low- to mid-frequency 
components caused by adaptive events like positive natural 
selection are qualitatively different. This article also demon
strated that stacking is a useful technique for integrating 
models that search for signatures of such evolutionary 
events in various ways. The versatility of the SISSSCO frame
work provides it with the ability to be adjusted for particu
lar use cases. To tailor SISSSCO for particular applications, it 
is important to examine the comparative performances of 
the model architectures that we explored. As 
SISSSCO[27CD] and SISSSCO[27MD] architectures have 
their own sets of strengths and weaknesses, users can 
choose the architecture that best serves their purposes 
based on the availability of computational resources, 
complexity of the demographic history, and nature of 
the input data. To reduce the complexity of the architec
ture, users can also choose to use a subset of summary 
statistic-signal decomposition method combinations on 
the final concatenated model by making use of feature se
lection methods (as we did using group lasso in the Results 
section). We believe that SISSSCO will prove to be a 
powerful tool for future development of robust predictive 
models that aim to find traces of adaptive events, and pre
dicting evolutionary parameters by tapping into the po
tential of spectral analysis.

Methods
Computational Setup
We ran our entire analysis on a system with an AMD EPYC 
7702 64-core CPU and 100 GB of RAM. After loading the 
necessary spectral analysis image datasets, training every 
single-channel CNN with a batch size of 50 for 30 iterations 
on this system consumes roughly 4.16 GB of memory. It 
takes approximately 32 minutes to complete hyperpara
meter tuning on each of the 27 components CNNs, which 
are each trained independently. Though we trained the 27 
component CNNs serially for the development of 
SISSSCO[27CD], it is possible to train the 27 CNNs in par
allel. However, though training the component CNNs in 
parallel will significantly reduce the training time, it will re
quire around 500 GB of system memory considering the 
overhead caused by loading the image datasets containing 
10,000 images per class. It will also require additional hard 
drive space of around 34.56 GB to store the 27 component 
CNNs if chosen to train the CNNs in parallel. Memory util
ization during testing is unaffected by whether CNNs are 
trained serially or in parallel, as the final saved concaten
ation model will be loaded during testing. Finally, it takes 
roughly 16 hours to compute the spectral analysis of all 
nine summary statistics for 10,000 samples per class 
when three signal decomposition methods are run in 
parallel.
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Computing SISSSCO Summary Statistics from 
Simulated Data
For the purpose of training the SISSSCO models, we gener
ated the nine summary statistics from the population sam
ple files that we simulated using discoal. As discussed 
in the Modeling description subsection of the Results 
section, we generated four simulated training sets: Equ 
ilibrium_fixed, Equilibrium_variable, 
Nonequilibrium_fixed, and Nonequilibrium 
_variable. We parsed each replicate from these simula
ted datasets to include the central 400 SNPs (200 to the left 
and 200 to the right of the center position of each simula
ted sequence of length 1.1 Mb). Using these 400 SNPs, we 
calculated the nine summary statistics for our training, val
idation, and test sets with a window of size 10 SNPs and a 
stride of three SNPs. This procedure resulted in summary 
statistic arrays of length 128 windows. Choice of window 
size when calculating summary statistics is important, as 
windows that are too small would incur substantial noise, 
whereas windows that are too large may miss detectable lo
cal patterns within a signal. Moreover, it has been shown 
that assessing haplotype variation across many small win
dows can enhance the range of detectable sweeps, with 
comparable power for recent sweeps but significantly high
er power for older sweeps (Harris and DeGiorgio 2020b; 
DeGiorgio and Szpiech 2022). For these reasons, and due 
to the fact that our choice of summary statistics is inspired 
Mughal et al. (2020) who also employed small windows, we 
opted to calculate summary statistics across many small 
overlapping windows. The nine summary statistic vectors 
of size 128 were then fed into the 3 signal decomposition 
methods with identical protocols and packages (Cokelaer 
and Hasch 2017; Satriano 2017; Lee et al. 2019) as described 
in the Modeling description subsection of the Results sec
tion. As a result, a total of 27 spectra of size 65 × 128 
were generated per simulated replicate.

Spectral Analysis of Summary Statistics
Each of the nine summary statistics described in this study 
exhibit oscillatory dynamics. The oscillatory characteriza
tion of time series data provides valuable insights into the 
construction of the data via spectral analysis (Babadi and 
Brown 2014). However, for our purpose, we calculated these 
summary statistics over overlapping windows, which por
tray autocorrelation properties similar to that of time series 
data. A key characteristic of our summary statistic compu
tations is that they are of finite length, while in theory we 
need a sample of infinite length to describe a system in 
the frequency domain. However, finite-length data can re
sult in spectral analysis that is highly erroneous (Sadowsky 
1996; Babadi and Brown 2014). In this subsection, we con
sider three different methods for performing spectral ana
lysis on finite-length signals: wavelet decomposition, 
multitaper analysis, and the S-transform. Furthermore, we 
generally follow the notation of Sadowsky (1996), Babadi 
and Brown (2014), and Yun et al. (2013) to respectively de
scribe the wavelet decomposition, multitaper analysis, and 

S-transform, with modifications to ensure uniform and con
sistent notation across subsections.

Wavelet Decomposition
The continuous wavelet transform (CWT) permits the 
examination of signals, the extraction of spectral features, 
and the discovery of nonstationary properties that are de
pendent on time and scale (Sadowsky 1996). It is a tech
nique that takes a signal x(t) over time t and produces a 
time- and scale-variable parameter surface that could 
prove useful for its characterization of a signal and the ori
gin of the signal. For the CWT to fulfill the requirements of 
its role as the kernel function of a signal transform, it is spe
cified in relation to a basis function ψ(t) termed a mother 
wavelet. To qualify as a mother wavelet, a wavelet must 
satisfy two properties. The first property is that the mother 
wavelet is designed so that the wavelet transform is invert
ible (Sadowsky 1996). That is, because the wavelet trans
form takes a signal from the time domain and projects it 
onto a time–frequency plane, there must be an operation 
that permits the reconstruction of the time domain signal 
from the time–frequency plane. In addition to this prop
erty, the “admissibility condition” must also be met by 
the mother wavelet. The admissibility condition states 
that, for there to be an inverse wavelet transform, the 
Fourier transform (Grafakos 2008) of the mother wavelet 
must be zero for any constant component in the signal, 
and thus have zero direct current bias (Holschneider 
1996). Therefore, the mother wavelet must have oscilla
tions to meet the admissibility condition (Sadowsky 1996).

The Fourier transform is a mathematical tool used for 
frequency analysis of a signal, which transforms a time do
main signal into the frequency domain. That is, it is a 
method of frequency domain representation of a signal, 
which can also be reversed to get the time domain signal. 
The Fourier transform employs a technique so that every 
signal can be decomposed into one or many sinusoidal 
waves of varying frequencies and amplitudes. For a con
tinuous time signal x(t), the transformation is defined as 
Bracewell (1986)

X( f ) = ∫∞−∞ x(t) exp (−i2πft) dt, 

where i =
����
−1
√

indicates an imaginary component, f is the 
frequency, and complex number exp (−i2πft) = 
cos (2πf t) + isin (2πf t) can be broken into cosine and 
sine functions. The real valued waveform cos (2πf t) and 
imaginary valued waveform sin (2πf t) are of same fre
quency f. The product of exp (−i2πft) with the time do
main signal x(t) gives us the amplitude of every 
participating waveform in the frequency space.

In this study, we consider the Morlet wavelet as the 
mother wavelet (Kronland-Martinet et al. 1987). The 
Morlet wavelet can be defined as Sadowsky (1996)

ψ(t) =
��
2
√

exp −
t2

α2

􏼒 􏼓

exp (iπt) − exp
π2α2

4

􏼒 􏼓􏼔 􏼕

, 
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where α denotes the shaping factor to obtain a desired 
shaping of the Morlet wavelet. This shaping helps generate 
a spectral image with resolution and size that is suitable for 
a given performed analysis. The frequency domain re
presentation of the mother wavelet after applying the 
Fourier transform is

Ψ( f) = ∫∞−∞ ψ(t) exp (−i2πft) dt.

Because the admissibility condition dictates that ψ(0) = 0, 
it follows that (Sadowsky 1996)

∫∞−∞ ψ(t) dt = 0, 

which leads to the frequency domain representation of the 
Morlet wavelet as

Ψ( f) = α exp −
α2π2(1 + 4f 2)

4

􏼔 􏼕

exp (π2α2f − 1).

We set the shaping factor as α =
��
2
√

to ensure reduction 
of frequency overlap while preserving a reasonable level 
of temporal resolution. This α value results in horizontal 
shaping of the mother wavelet in the time domain to ob
tain the necessary number of oscillations (supplementary 
fig. S29, Supplementary Material online), and determin
ation of the center frequency of the wavelet in the fre
quency domain.

The CWT of a signal x(t) with respect to a wavelet ψ(t) 
is a function of scaling factor a and translation factor b, 
and can be expressed as Daubechies (1992), Sadowsky 
(1996)

CWT(a, b) =
1
��
a
√ ∫∞−∞ x(t)ψ∗

t − b
a

􏼒 􏼓

dt, 

where the superscript * indicates complex conjugation 
and where locality in time and frequency are controlled 
by parameters b and a, respectively. Scaling can refer to 
either a reduction or an increase in horizontal shape, as 
it can be both contracted (squeezed) or dilated 
(stretched). It is feasible to express the amplitude versus 
the scale and its fluctuation over time by altering the 
scale and translation parameters along the time index t. 
The wavelet is said to be stretched if a > 1, and squeezed 
if 0 < a < 1. In this study, the translation parameter is dis
cretized to integer values, whereas the scale parameter is 
discretized to fractional powers of two.

Supplementary figure S29, Supplementary Material on
line depicts the mother wavelet and its children wavelets 
produced by changing scale factors. Fixing the scaling 
factor a, we perform the CWT(a, b) with increasing values 
of translation factor b. The translation, represented by 
the shaded blocks in supplementary figure S29, 
Supplementary Material online, makes up each row of 
the multiresolution spectral image, which is referred to 
as a scalogram.

Multitaper Analysis
Multitaper analysis is a nonparametric method introduced 
to overcome the high bias and error variance of time series 
data (Berardi and Zhang 2003). Bias is the discrepancy be
tween the expected value of an estimator and the true 
underlying function, whereas variance refers to the spread 
of the distribution of functions about this expected value 
(Berardi and Zhang 2003). Multitaper analysis attempts to 
overcome a key limitation of conventional Fourier analysis, 
as it does not assume that a single instance of a noisy stat
istical signal can deliver the true coefficients of the under
lying process of interest (Prieto et al. 2007). To decompose 
a signal into one or many sinusoidal waves of varying fre
quencies and amplitudes, the Fourier transform assumes 
that the signal is of infinite length. However, the summary 
statistic vectors that we employ as our signals are of finite 
length.

Using the frequency analysis of a time series that has 
been discretized over time, the Fourier transform can be 
expressed as Bracewell (1986)

X(f) =
􏽘∞

t=−∞
x(t) exp (−i2πft).

Let xk = x(kΔ), k = 0, 1, . . . , N − 1, be a discrete-time sig
nal of finite length N for sampling interval Δ. That is, the 
underlying continuous analog signal x(t) from which the 
finite-length digital signal xk is generated was sampled 
after every Δ time unit. The Fourier transform of xk is de
fined as Babadi and Brown (2014)

XN( f) = Δ
􏽘N−1

k=0

xk exp (−i2πkfΔ).

The power spectral density (Youngworth et al. 2005) de
fines the distribution of the power of a signal as a function 
of frequency f and aids in the identification of the fre
quency ranges where changes in the signal are prominent. 
To compute the power spectral density, the mean power 
P(f) in the frequency band of f ± 1

2 df , where df indicates 
an arbitrarily small amount of change in frequency f, is de
fined as Babadi and Brown (2014)

P( f ) = lim
N→∞

1
NΔ

∫∞−∞ |XN( f )|2 df , 

where XN(f ) is the frequency domain representation of xk, 
k = 0, 1, . . . , N − 1, and the expression |a + ib| = 
��������
a2 + b2
√

denotes modulus of complex number a + ib. 
However, because as N approaches infinity there are never 
enough windows N in real-world settings, it is impossible 
to compute this quantity in practice. Instead, we constrain 
the analysis to second-order stationary and ergodic se
quences, as the summary statistic vectors in this study 
are computed from a finite number of genomic windows. 
A constant mean and a time-invariant autocovariance are 
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two crucial characteristics of second-order stationary sig
nals (Boshnakov 2011). On the other hand, any given rea
sonably sized sample from an ergodic process can be taken 
as a true reflection of the process (Cherstvy et al. 2013).

According to the Wiener-Khintchine theorem 
(Khintchine 1934), the power spectrum of a wide-sense 
stationary random process, such as a second-order 
stationary process, can be used to derive the 
spectral decomposition of the autocovariance function 
sk, k = 0, 1, . . . , N − 1, of the process, with sk = 0 for all 
other values of k. This theorem dictates that

S( f) = Δ
􏽘N−1

k=0

sk exp (−i2πkfΔ)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2

, 

where S(f ) is the power spectral density of the discrete 
window signal at frequency f. Computing sk of an ergodic 
second-order stationary infinite-length signal xk, 
−∞ < k < ∞, would provide the power spectral density 
(Babadi and Brown 2014). However, we do not have an 
infinite-length signal. Assume that 􏽢S( f ) ≈ S( f ), where 
􏽢S( f ) is the power spectral density estimated from finite- 
length signal xk, where the variance of the estimated power 
spectral density is approximately zero. Denoting the auto
covariance of xk by 􏽢sk, k = 0, 1, . . . , N − 1, the Fourier 
transform of the sequence 􏽢sk yields the power spectral 
density (Bartlett 1950; Babadi and Brown 2014)

􏽢S(f) = Δ
􏽘N−1

k=0

􏽢sk exp (−i2πkfΔ)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2

.

Bias is the distinction between the true power spectral 
density and a smoothed representation of the true power 
spectral density, which can be divided, at a given fre
quency, into narrow-band bias and wide-band bias. The 
dominant frequency components cause narrow-band 
bias, whereas the minor ones cause wide-band bias. 
Consider a taper hk, k = 0, 1, . . . , N − 1, which when 
multiplied with xk, generates a tapered sequence (see 
supplementary fig. S30, Supplementary Material online). 
A periodogram estimate of this tapered sequence can be 
written as Babadi and Brown (2014)

􏽢ST( f ) = Δ
􏽘N−1

k=0

hkxk exp (−i2πkfΔ)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2

, 

where the signal is replaced by the product of a taper hk 
and the signal xk. Tapering presents a middle ground be
tween narrow-band and wide-band bias that helps equal
ize the imbalance of these two forms of biases (Bronez 
1992; Babadi and Brown 2014). Multitaper spectral estima
tion is used to distinguish between optimal tapers and 
suboptimal tapers, which are unable to efficiently localize 
the frequency components. High variance for N ≫ 1 is a 
drawback shared by both the 􏽢ST( f) and 􏽢S( f) estimates, 

and this variance does not converge to zero as N ap
proaches infinity, preventing these estimates from exactly 
matching the true power spectral density. Multitaper 
spectral analysis aids in overcoming this drawback.

For a set {hk0, hk2, . . . , hk(L−1)} of L uncorrelated tapers 
each with unit variance, the multitaper spectral estimate 
of the true power spectral density is defined as (Welch 
1967; Babadi and Brown 2014)

􏽢SMT( f) =
1
L

􏽘L−1

j=0

􏽢Sj(f), 

where

􏽢Sj( f ) = Δ
􏽘N−1

k=0

hkjxk exp (−i2πkfΔ)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

2

.

The single-taper spectrum denoted by 􏽢Sj( f ), 
j = 0, 1, . . . , L − 1, generates each row of the spectral ana
lysis matrix (supplementary fig. S30, Supplementary 
Material online). Due to their superior defense against 
spectral leakage that causes a reduction in frequency reso
lution (Lyon 2009), DPSS (Lees and Park 1995; Karnik et al. 
2022) are often utilized as tapers for the multitaper spec
tral analysis (supplementary fig. S30, Supplementary 
Material online). Calculating the DPSS tapers that connect 
frequency resolution to data window size requires the 
usage of the time half-bandwidth parameter, which is 
the product of the duration of the data window and half 
the bandwidth (Prerau et al. 2017).

S-transform
Time series characteristics are said to be stationary if they 
do not change as the series progresses across observational 
time. Means, variances, and covariances among observa
tions, however, tend to change with time or are nonsta
tionary. In many real-world applications, such as 
seismographic activity detection and financial forecasting 
(Frohlich et al. 1982; Abu-Mostafa and Atiya 1996), it is un
realistic to expect stationarity in a time series, and thus, as
suming stationarity may not be particularly useful for 
characterizing the signal source. Considering the analysis 
may imply relationships among variables where none exist, 
drawing a conclusion based on nonstationary time series 
analysis carries the risk of false interpretation (Stockwell 
et al. 1996).

Alternately, by utilizing the Fourier transform to con
vert a signal from the one-dimensional time domain to 
the one-dimensional frequency domain, we are able to 
glean further insight into the relationship that exists be
tween the signal x(t) and its origin (source generating 
the signal). The signal that is generated as a result of this 
transformation of domains has a high-frequency resolution 
but a low time resolution. Spectral analysis methods involve 
projecting one-dimensional nonstationary signals into a 
two-dimensional spectral plane so that they can be 
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analyzed. To accomplish this projection, the S-transform 
(Stockwell et al. 1996) makes use of a moving and scalable 
Gaussian window in conjunction with the concepts behind 
the short-time Fourier transform (Yun et al. 2013).

Denoting the time-dependent localizing Gaussian win
dow as wG(t), we can write the short-time Fourier trans
form as Fano (1950)

STFT(τ, f )= ∫∞−∞ x(t)wG(t − τ) exp (−i2πft) dt, 

where τ is an arbitrary time displacement, and wG(t − τ) 
explains the translational property of the Gaussian win
dow. Stockwell et al. (1996) defines this time-dependent 
Gaussian window as

wG(t) =
1

δ
���
2π
√ exp −

t2

2δ2

􏼒 􏼓

, 

where δ is the window width. The horizontal width of the 
Gaussian window can be adjusted by using the scale factor 
δ. Yun et al. (2013) defines δ as δ( f) = 1/| f | so that it is a 
function of frequency, and thus defines a new spectral de
pendent Gaussian window function as

wG(t, f ) =
|f |
���
2π
√ exp −

f 2t2

2

􏼒 􏼓

.

The Gaussian window function with a certain scale factor δ 
is depicted in supplementary figure S31, Supplementary 
Material online. This window has unit area above the hori
zontal time axis such that ∫∞−∞ wG(t, f) dt = 1, which signi
fies that the window does not have a diminishing impact on 
the windowed signal. To expand upon this idea, suppose we 
have x(t) = 1 and ∫∞−∞ wG(t, f) dt = 0, which indicates that 
the window function has an equal area both above and be
neath the time axis. The area under x(t) is positive. If we 
multiply x(t) with wG(t, f ) as depicted in supplementary 
figure S31, Supplementary Material online, then the result
ant signal will have an equal area above and beneath the 
horizontal axis. However, if we have ∫∞−∞ wG(t, f ) dt = 1, 
then the resultant signal will also have all of its area above 
the horizontal axis, which signifies that this Gaussian win
dow preserves the trend of the signal. Putting it all together, 
the S-transform is defined as Yun et al. (2013)

ST(τ, f) = ∫∞−∞ x(t)wG(t − τ, f) exp (−i2πft) dt

=
|f |
���
2π
√ ∫∞−∞ x(t) exp −

f 2(t − τ)2

2

􏼒 􏼓

exp (−i2πft) dt, 

which is the Fourier transformation of the multiplication of 
the window function and the signal as visualized in 
supplementary figure S31, Supplementary Material online.

Processing Empirical Data
Before calculation of the summary statistics from our em
pirical dataset, we removed the SNPs with a minor allele 

count of two or lower. To avoid spurious signals due to 
technical artifacts, we also removed 100 kb regions of 
mean CRG mappability and alignability score lower than 
0.9 (Talkowski et al. 2011). After the removal of unquali
fied SNPs, we calculated the nine summary statistics in 
an identical way to our training dataset, with a window 
size of 10 SNPs and a stride of three SNPs. Though there 
is no missing data in the 1000 Genomes Project dataset, re
moval of SNPs in this fashion can lead to reductions in lo
cal haplotypic variation, which may confound sweep 
detectors. However, we have extensively evaluated the ef
fect of such missing segments on the power and accuracy 
of the SISSSCO[27CD] model that we apply in our empirical 
analysis in the Robustness to missing genomic segments 
subsection of the Results section, and find that such distri
butions of missing segments does not lead to false infer
ences of sweeps.

To match the length of the summary statistic vectors 
employed by our trained models, we took 128 consecutive 
windows of each summary statistic, moving by a stride of 
one window across each chromosome to generate each 
additional summary statistic vector until the last window 
of a particular chromosome is reached. Identical to the 
process discussed in the Computing SISSSCO summary sta
tistics from simulated data subsection, we then generated 
the 27 spectral images from these summary statistic arrays 
to make our predictions.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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