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Abstract

This study focuses on how individuals navigate the homelessness system
over time, with the ultimate goal of securing stable housing. Admin-
istrative data collected by homeless service providers are used to infer
the unobserved underlying network of homeless services. A similarity
score between the ordered sequences of services that individuals receive
is proposed. The score leverages the structure of the inferred network
in addition to historical observations to identify individuals with simi-
lar trajectories. In doing so, the service an individual will be assigned
to next can be predicted. Extensive experiments show that the proposed
approach performs well not only on predicting exit from the system, or
simply guessing high frequency services (as most baselines), but is also
successful in less frequent scenarios. Building a model that learns to
replicate the dynamics of the existing system is the first step towards
developing computational methods to maximize outcomes (i.e., ensuring
that as many homeless individuals as possible secure stable housing).

Keywords: Complex systems, network inference, similarity, trajectory
prediction
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1 Introduction

The U.S. Department of Housing and Urban Development (HUD) defines
homelessness as a situation where an individual experiences lack of fixed, regu-
lar, and adequate nighttime residence [1]. Homelessness poses a long-standing
problem to the society with more than 582, 000 people having experienced
homelessness on a single night in 2022. Among which, 30% of the individuals
experience prolonged homelessness for at least 12 months, or repeated home-
lessness over a period of three years (i.e., chronic homeless [2]) [3]. Numerous
methods have been proposed to predict reentry [4–6] and chronic homelessness
risk prediction [7, 8]. Most such works are formulated as a binary–classification
task that doesn’t capture the complexities of the homeless service system as a
whole. On the other hand, [9] explored the utility of machine learning models
(eg., decision tree, random forest, multi-class AdaBoost) to predict the service
allocation upon entry to the homeless system.

This work focuses on individuals experiencing chronic homelessness,
broadly defined here as individuals entering the homeless system two or more
times. Viewing the history of each individual as a sequence of services and
time of stay within each service, the goal is to learn a model that can be
used to accurately estimate the next service an individual will be assigned to
within the homeless system in the future. To address this problem, we pro-
pose an approach that, given the history of an individual, identifies individuals
with similar sequences of homeless services, based on which it predicts the
next service the given individual will be assigned to. To model the overall
behavior of individuals within the homeless system, we represent the home-
less system as a network of interconnected services which individuals traverse
over time. Our comprehensive experimental evaluation demonstrates the abil-
ity of the proposed approach to accurately model the dynamics of this complex
sociotechnical system. Our key contributions can be summarized as follows:

• We infer the network of homeless services from administrative data collected
by homeless service providers.

• We define a similarity score between ordered sequences of services that are
visited by the homeless as they traverse the network of services.

• We propose a method that, given the history of an individual, can predict
the service she will be assigned to next.

• To ensure the reproducibility of the work, the source code is available at
https://github.com/IDIASLab/TRACE.

The remaining paper is organized as follows. Section 2 summarizes related
work. Section 3 introduces the problem statement. Section 4 describes the pro-
cess used to infer the network of homeless services from administrative data.
Section 5 introduces the proposed similarity score. Section 6 discusses the
proposed trajectory similarity estimation and probabilistic prediction method
and analyzes its computational complexity, whereas Section 7 explains the
tiered model for decision-making, MetaTier. Section 8 describes the data, base-
lines, and metrics used to evaluate the performance of the proposed approach,



Springer Nature 2021 LATEX template

Modeling and Predicting Individual Transitions within the Homelessness System 3

whereas Section 9 provides a detailed analysis of the experimental results.
Finally, Section 10 concludes with a discussion of the limitations of this study,
and potential future research directions.

2 Related work

Prior research that is most related to this study can be separated into three
main themes as follows.

The first theme comprises approaches that model reentry and chronic
homelessness prediction as binary classification (e.g., [4, 5, 8]). Unlike such
methods, this work addresses the more challenging problem of determining
whether an individual will exit the homeless system, or the exact program she
will be assigned to next. Furthermore, this work is the first to leverage the
history of an individual (both as a sequence of events, and her trajectory over
the unobserved network of services) to learn an accurate model.

The second theme of prior work focuses on similarity measures for time–
series data [10], including but not limited to Euclidean distance [11], Dynamic
Time Warping based measures [12], shapelets [13], and information theoretic
measures [14]. While suited for numerical (time–series) data, our study involves
trails of timestamped categorical data. Prior research on sequence analysis
includes optimal matching [15] and principle of minimal shared time [16]. Such
methods are often used to determine a common subsequence between two cate-
gorical sequences. However, data points in a sequence are typically assumed to
be independent and identically distributed. In contrast, the approach described
here uncovers the network that generates the observed sequences, and leverages
this knowledge, along with temporal overlap, to compute a novel similarity
score between two categorical trajectories.

The third theme of relevant work focuses on network inference from data
[17]. Such methods either focus solely on inferring the network structure (e.g.,
[18]), or infer transmission rates in addition to structure from observed traces
of diffusion processes (e.g., [19]). Different to this study, existing work relies on
unordered node activations, assumes that diffusion traces are directed acyclic
graphs (DAG) and that the transition probability for one node to another is
fixed and same for all edges, or infers pairwise interactions for pairs of nodes
that are expected to be directly connected via an edge. In this study, the
temporal chain of events is observed (leading to an easier inference problem)
while at the same time, observed trajectories may contain cycles (resulting
in a harder inference problem). It is also worth mentioning that the problem
discussed in this paper differs from that of learning the structure of a directed
graphical model or Bayesian network (e.g., [20]). Specifically, graphical models
do not model network properties (e.g., that nodes in an observed trajectory
must lie along a path in the network), whereas most Bayesian network inference
algorithms try to determine the most likely DAG that is consistent with a
fixed ordering. Moreover, neither approach considers long paths (and their
contribution to the final transition probability) between nodes over temporal
networks.
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Parts of the material in this article have been presented in our prior work
[21]. The present article expands on [21] both in breadth and depth, as follows.
First, we provide a detailed description of the process used to infer the graph of
homeless services, and analyze the computational complexity of the proposed
trajectory similarity estimation and probabilistic prediction model. Second,
motivated by our findings in [21], we propose a tiered model that improves
prediction accuracy, and therefore the chances of the proposed approach to
be adopted in the real–world. Third, we extend our experimental evaluation
with additional results and insights on the methods presented in [21], and
comparisons to the tiered model proposed here.

3 Problem Statement

Homeless service providers offer services that are organized in project types

(e.g., emergency shelters, transitional housing) [22]. We denote the set of
project types as P = {p1, p2, . . . , pn}, and the set of individuals requesting ser-
vices multiple times (i.e., reentering the homeless system more than once) as
C = {c1, c2, . . . , cm}. Reentries can be viewed as temporally ordered sequences
of tuples (pi, ti = [si, ei]), where pi ∈ P , and si and ei are the times at which
individual c ∈ C enters to, and exits from pi, accordingly. Such a trajectory,
Tc = (p1, [s1, e1]), (p2, [s2, e2]), . . . , (pN , [sN , eN ])) for each individual c ∈ C,
where for each two consecutive tuples si+1 ≥ ei, records her transitions from pi
to pi+1, which in turn record the trail of each individual within the unobserved
homeless service network. Given a set of trajectories T , and query trajectory
Tq = ((q1, [s1, e1]), . . . , (qN , [sN , eN ]) of an individual q ∈ C, up to time eN ,
we aim at predicting the project type q̂N+1 ∈ P that she will be assigned to
immediately after qN (or exit if she is likely to exit the system).

4 Inferring the graph of homeless services

Administrative data collected by homeless service providers record a timeline
of services received by each individual, including the beginning and end dates
of each service, transitions between service types, and exits and reentries (i.e.,
receipt of services after exiting the system). Such data offers a unique oppor-
tunity to study how individuals navigate through a complex sociotechnical
system over time, with the ultimate goal of securing stable housing. Unfortu-
nately, the data only records what services an individual receives and when,
but not why is she assigned to a particular program (e.g., emergency shelter)
versus another (e.g., long term housing).

Since the underlying connectivity of homeless services (i.e., the potential
paths an individuals can take once she is admitted into the homeless system)
is neither directly observable nor known, we set forth to uncover the aggregate
dynamics of the homeless system from the observed sequences of services (and
corresponding entry and exit dates) that it generates for each individual. For
every edge of the network, we additionally wish to estimate the corresponding
transition probability between services. This is an important step towards
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Table 1 Explanation of main symbols used in this article.

Symbol Description
C Set of chronically homeless individuals in our dataset
P Set of homeless service providers’ offered project types

m,n Number of individuals c ∈ C, and project types p ∈ P

ti = [si, ei] ith time interval at which an individual enters and exits a given
project type, pi

pi Project type at ith step of a trajectory
T Set of all trajectories

Ttrain Set of trajectories ∈ T used for inferring the homeless service network
Ttest Set of trajectories ∈ T \ Ttrain used for testing
H Set of historical trajectories ∈ Ttest. Given a query Q, similar trajec-

tories are identified from this set
Q Set of query trajectories ∈ Ttest \ H

Tc, Tq Trajectories of individual c and q, accordingly
T [t] Segment of trajectory T during time interval t
t Duration of time interval t

ti ∩ tj Temporal overlap of time intervals ti and tj
G = (P,E) Directed graph with node set P and edge set E

wij Weight of edge (i, j) ∈ E

fij,kl Frequency of k−step paths from pi to pj at offset l

α Attenuation factor used in edge weight computation
β Attenuation factor used in similarity computation for baseline Sim–

attenuate

N,M Maximum number of steps and offsets, respectively
σ(Tq , Tc) Similarity between two trajectories, Tq and Tc

d(q, T, tq) Distance between node q and trajectory T within time interval tq
NB(·) Out–neighbor of a node ∈ V

pc, qN Last matching project type in trajectory Tc, project type at Nth time
interval in trajectory Tq

q̂N+1 Service predicted to be assigned at time step N + 1
γ Number of past assignments (i.e., length of historical data) in Tq used

for identifying similar trajectories
F , λ Unique values of effective lengths of trajectories in T , element in F

Mexit,Mint Predictive model for exit and interim points accordingly
DX ,DY Input and output of MetaTier, respectively
XM, YM Input and output of Meta model, respectively

deriving computational models to predict individuals’ transitions over such
network, and subsequently developing methods to maximize outcomes (e.g.
securing stable housing).

We begin by modelling the network as a directed graph G = (P,E), where
P is the set of nodes representing services visited by individuals in C, and E

is the set of edges between nodes, such that a directed edge appears between
pi and pj if at least one trajectory in T exists, in which pj appears after pi.
We determine the weight of each edge (pi, pj) ∈ E based on the number of

steps taken before reaching pj from pi, and the position where pi appears in
the trajectory (i.e., offset). Specifically, a path from pi to pj in a trajectory T

involves j − i+ 1 steps starting from offset i. Therefore:

wij =

N∑

k=1

M−1∑

l=0

αk−1+lfij,kl, (1)
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where N is the maximum number of steps, and M the largest offset, α ∈ [0, 1]
is some attenuation factor, and fij,kl denotes the number of times a transition
from pi to pj appears in any path across all trajectories in T with k steps at
offset l. Finally, we normalize the weights of outgoing edges at each node to
sum to 1. Edge weights satisfy the following properties:

• wij > 0, ∀pi, pj ∈ P ,
• wij is undefined if ∃ no path from pi to pj ,
• wij ≈ 0 if path from pi to pj is long, and
•

∑
j∈V wij = 1, ∀pi ∈ P .

Figure 1 shows the key steps of the graph inference process. First, for each
trajectory, all possible unique paths are extracted. The value of fij,kl is then
computed by counting the frequency of each path across all trajectories. For
example, in Figure 1(c), the path between 11 and 13 appears in the trajec-
tory of individual X three times. For offset 0, the path {11, 13} appears two
times with 1 and 3 steps between the two project types. Similarly for off-
set 2, it appears once with 1 step between them. Note that the 1−step path
appears twice in this toy example, albeit with different offsets. To avoid dou-
ble counting, only unique paths at each number of steps are included in the
computation of fij,kl. Next, edge weights are calculated using Eq.(1), num-
ber of steps, and offset of each path appearing in the trajectories. Consider
for example the weight w11,exit of edge (11, exit). Three terms, correspond-
ing to (i) α4−1+0 for the 4−step path at offset 0, (ii) α2−1+2 for 2−step path
at offset 2, and (iii) α2−1+0 for the 2−step path at offset 0 are computed.
Next, the number of trajectories these paths appear in are counted, resulting
in f(11,exit),(3,0) = 1, f(11,exit),(2,2) = 1, and f(11,exit),(2,2) = 2. Using Eq.(1),
we get w11,exit = α3+0 × 1 + α1+2 × 1 + α1+0 × 2 = 1.25. The resulting graph
is shown in Fig. 1(e).

For comparison, Figs. 1(d) and (f) show two alternative representations of
the unobserved network of homeless services. Specifically, Fig. 1(d) models the
homeless system as an aggregate network, in which an directed edge from node
i to j signifies that there is at least one single step transition from i to j in the
dataset. Conversely, Fig. 1(f) shows a temporal graph representation of the
homeless system. While often used for dynamic networks [24], a temporal graph
view of the homeless system would result in extremely sparse snapshots (as
illustrated in Fig. 1(f)), which would in turn have limited predictive power. In
contrast, the proposed inference mechanism accounts for paths, as opposed to
direct edges [23], while at the same time ensuring low sparsity by constructing
snapshots not based on arbitrarily chosen durations, but based on effective

lengths. Specifically, the effective trajectories of individuals towards exiting
the system can be obtained from their actual paths by ignoring backward
transitions (i.e., admission to a program type already admitted in the past)
[23]. For instance, the effective trajectory of client X in Fig. 1 is {11, 13},
as opposed to her actual trajectory, which is {11, 13, 11, 13, exit}. Given the
unique effective lengths F of all trajectories in T , a transition graph Gλ is
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6 Trajectory Similarity Estimation and
Probabilistic Prediction

In this section, we describe TRACE, a novel approach for Trajectory
SimilaRity EstimAtion and ProbabilistiC PrEdiction. Specifically, given the
history Tq = ((q1, [s1, e1]), . . . , (qN , [sN , eN ]) of an individual, and time inter-
val t = [sN−γ , eN ], where γ is the number of prior services received in the past,
as well as the set T of trajectories of other individuals, TRACE begins by cal-
culating the effective length λ of Tq. Then, TRACE identifies the most similar
trajectory Tc ∈ T to Tq within t, using graphs Gλ and Gλ+1. The rationale for
this design choice is that the next node may either be a node already visited
in the past (in which case the effective length of Tq will remain unchanged) or
a new node (in which case the effective length of Tq will increase by 1). The
project type q̂N+1 that q is expected to be assigned to next is therefore esti-
mated to be the one that maximizes the transition probability from pc, the
last matching project type in trajectory Tc that maximizes σ(Tq, Tc, t) over
either Gλ or Gλ+1. Therefore, q̂N+1 is obtained by maximizing the following
objective:

1(qN ,pi)∈E × 1(pc,pi)∈E × P (pi ∈ NB(qN ) ∩NB(pc)|pc), (4)

where 1 is the indicator function. To ensure the predicted node is reachable
from qN , pi is constrained to be in the out–neighborhood of both pc and qN .
If no such node can be found within Tc, the search over trajectories continues,
identifying the next maximum similarity trajectory that satisfies Eq.(4). The
search terminates when a trajectory is identified that satisfies this constraint,
or if no further trajectories are left to be examined. Furthermore, only those
trajectories temporally overlapping with t are considered.

6.1 Computational Complexity of TRACE

The worst–case computational complexity of TRACE follows. During training
(offline), the unique effective lengths F are identified for the set of trajectories
Ttrain. For each λ ∈ F , paths with all possible number of steps, M , and offsets,
N , in each trajectory in Ttrain are computed, resulting in O(|F| × |Ttrain| ×
M × N) complexity. In our study, we find both |F|,M , and N to be small
(≤ 4, 55, and 55, respectively), which means that this step is linear to the
size of the training set. The calculation of edge weights involves recording the
number of occurrences of a particular path with a specific number of steps and
offset ∀e ∈ E, leading to an O(Ttrain ×M ×N × |E|) complexity. The overall
training (i.e., graph inference) complexity is therefore Θ(|Ttrain| × |E|) .

Presented with a query trajectory Tq, TRACE first iterates through each
trajectory in H to filter out trajectories with no temporal overlap with Tq.
Since the length of each trajectory can be at most N , the complexity of this
step is O(|H| × N). The distance of all historical trajectories with the query
is computed in O(|H|×N × γ), whereas similarity is computed in Θ(|H|× γ).
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Algorithm 1 TRACE

Input: H, Tq, γ

Output: Node q̂N+1 individual c is going to visit after qN
1: Identify subset Ht ⊆ H of trajectories temporally overlapping t =

(sN−γ , eN )
2: Compute effective length, λ, of query trajectory Tq

3: for each Tc ∈ Ht do

4: ∀qi ∈ Tq[t] compute distance to Tc[t] using Eq.(2) on Gλ (similarly for
Gλ+1)

5: Compute similarity between Tq[t] and Tc using Eq.(3)
6: Tmax ← Tc with highest similarity score
7: end for

8: Using Tmax, find q̂N+1 that maximizes Eq. (4) return q̂N+1

The prediction step requires constant time. Assuming that |F|,M,N , and γ

are all small compared to the size of the set of historical trajectories H used
during testing, the overall prediction complexity is linear to |H|.

7 Tiered Model For Better Performance

The experimental results we presented in [21] suggested that TRACE performs
well in predicting both low and high frequency project types. At the same time,
we noticed that some of the baselines are particularly good at predicting exit
or high frequency (HF) project types. This observation prompted us to explore
a tiered system, in which a prediction would be made whether an individual
is more likely to exit or not, and in the latter case, TRACE would be used to
predict the next service to be received by the individual.

Since, the number of combining the possible base models to construct a
tiered system is exponentially large, verifying the performance of every possible
combination is computationally prohibitive. We therefore propose a simple
stacking ensemble, MetaTier, which combines the predictions of two candidate
models: (i) with higher accuracy in predicting exit and HF project type, and
(ii) with high recall in predicting project types. We denote the predictive model
for exit and project types withMexit andMint respectively. Let {DX ,DY } ∈
D be the input and the output data of MetaTier. Each instance DXi

∈ DX is
given by the set:

{D1,Mexit
, . . . ,Dk,Mexit

,D1,Mint
, . . . ,Dk,Mint

}, (5)

where Da,b ∈ DXi
encodes the ath prediction of model b as a |P |−dimensional

vector, Da,b[j] = {1 if j = pi ∈ P , and 0 otherwise}. Furthermore, each
instance DYi

∈ DY is the project type belonging to the set P . Finally, MetaTier
is a logistic regression model that combines the predictions ofMexit andMint

as in Equation 5 and predicts whether an individual will exit or be assigned
to a project type in the next step. Figure 3 shows an overview of MetaTier.
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• Precision@k: measures how many times the predicted service is correct
using the top k predictions.

• Recall@k: measures how many times each project type is identified
correctly at kth prediction.

• Number of attempts: measures the minimum number of similar trajecto-
ries that must be examined before a successful prediction.

To evaluate MetaTier, we compute the following metrics, based on all
predictions (i.e., regardless of being exit or interim points):

• Accuracy: measures how many times the predicted service (or exit) is
correct.

• Class–specific Recall: measures how many times each project type (or
exit) is identified correctly. We additionally report mean recall for an overall
comparison.

8.3 Baselines

We evaluate two variants of TRACE, where TRACE1 uses only Gλ and
TRACE2 uses both Gλ and Gλ+1. We compare these TRACE models with
the baselines described below. Given the most similar trajectory Tc to query
Tq, q̂N+1 is predicted to be:

• pc −Next: pc+1 (i.e., the service following pc in Tc).
• pc −NB: the highest transition probability out–neighbor of pc ∈ P . Note
that we found no difference in performance when requiring the out–neighbor
of pc to also be an out–neighbor of qN (pcqN −NB).

• qN −NB: the out–neighbor of qN ∈ V with the highest transition
probability from qN .

• RN: a random node p ∈ P . We consider two variants, namely selecting
a node (UR) uniformly at random, and (PA) with a probability that is
proportional to a node’s in–degree (i.e., preferential attachment [25]).

• Sim–attenuate: the node identified using Eqs.(3) and (4), with the differ-
ence that an attenuation factor βk, where 0 ≤ k ≤ K is the number of nodes
in T [t], is used in Eq.(3) to penalize intervals which are further in the past.

• Log–Reg: the project type predicted by a logistic regression model. Given a
trajectory Tc = (p1, [s1, e1]), (p2, [s2, e2]), . . . , (pN , [sN , eN ])), we denote the
input and the output of Log–Reg model as X and Y respectively. Every
instance x ∈ X is organized as a sequence of encoded project types given
by x = [xN−1, ..., xN−1−γ ] where γ represents the window of past infor-
mation fed to the model for prediction. Furthermore, each xi ∈ x is an
|P |−dimensional vector defined as xi[j] = {1 if j = pi, or 0 otherwise}.
Moreover, for individuals with trajectories smaller than the window γ, xi is
padded with zeros indicating that no project type appeared in the trajec-
tory at time instance i. On the other hand, y ∈ Y records the scalar project
type that is expected to be assigned at N . Finally, Log–Reg is trained with
the train set, Ttrain and tested with query set Q.
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Finally, we set TRACE2 as Mint in MetaTier because of its over-
all performance compared to TRACE1, and consider pc −Next, pc −NB,
pcqN −NB, qN −NB, Sim–attenuate, and TRACE1 as candidates forMexit.
Note that both the baselines and TRACE are probabilistic in nature and
can be used to make k−predictions each. Therefore, for a fair comparison,
we design stacking ensemble models (Meta model) for each of the baselines
and TRACE (i.e., base models), similar to MetaTier. The difference between
Meta and MetaTier models lies in their inputs; while MetaTier model stacks
the k−predictions from two predictive models (Mint and Mexit) as input,
Meta model stacks the k−predictions from one specific predictive model (either
Mexit orMint) denoted byM. Specifically, let XM and YM be the input and
output of the Meta model, where each instance xi,M ∈ XM is given by the set
{x1, . . . , xk} with xa ∈ xi,M encoding the ath prediction of the model M as
a |P |−dimensional vector, xa[j] = {1 if j = pi ∈ P , and 0 otherwise} and the
output yi,M ∈ YM being the project type belonging to the set P . Finally, sim-
ilar to MetaTier, the Meta model is also a logistic regression model that takes
the predictions of a modelM and predicts whether an individual will exit or
be assigned to a project type in the next step. The MetaTier models and the
Meta models are denoted by the prefixes MetaTier– and Meta– respectively.

9 Results and Analysis

9.1 Result Analysis of TRACE

Fig. 4 shows precision@k. While, most methods perform well at predicting exit
points, only TRACE1 and TRACE2 excel at predicting interim points. In fact,
qN −NB consistently predicts the most frequent project type as the next tran-
sition (see Fig. 6) and is therefore meaningless. Similarly, both pc −NB and
Sim–attenuate predict project type 1 with high probability (80%) resulting in
good performance with respect to exit prediction, but meaningless prediction of
interim points. Interestingly, the performance of pc −NB and Sim–attenuate
improves dramatically for k ≥ 5. However, Fig. 5 suggests that this is an arti-
fact of their high recall for project type 1, which comprises 50% of the ground
truth. pc −Next focuses on the HF project types (e.g., 1, 11, 13). Finally,
TRACE1 performs poorly for exit points mainly due to its low recall. Instead,
TRACE2 seems to predict exit at first (i.e., k = 1), explaining its reduced per-
formance for interim points. However, TRACE2’s recall improves dramatically
with k increasing, as shown in Fig. 5. Moreover, we compare TRACE2 with
Log–Reg, Log–Reg performs well with exit points, however the performance
drops with interim points (Figure 4 and 5). Although Log–Reg is able to pre-
dict most of the project types unlike most of the other baselines, the recall for
each project type is quite low in comparison to TRACE models.

Given enough opportunities, prediction models may eventually be able to
“get a prediction right”. We therefore additionally report the distribution of
number of attempts required for a successful prediction in Fig. 7. Evidently,
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pc −NB, pcqN −NB, qN −NB, Sim–attenuate require few attempts to pre-
dict exit points due to their bias towards such nodes, as explained above. In
contrast, TRACE is better at predicting interim points, although occasionally
requiring more attempts before being able to correctly predict cases that sig-
nificantly deviate from the rest of the trajectories in the historical data. Fig. 8
shows that TRACE’s incorrect predictions are mostly for extremely short tra-
jectories, which lack enough historical data, indicating the significance of the
contextual information provided by the underlying and unobserved network.

Furthermore, we analyze Sim–attenuate to better understand why it con-
verges to pcqN −NB as β approaches 1. Fig. 9 shows that penalizing the
intervals further in past diminishes the model’s ability to predict exit points.
Intuitively, this indicates the necessity of past information to determine the
most similar trajectories to a query.

Next, we experiment with different values of α to determine its effect on
TRACE’s recall, as shown in Fig. 10. When α = 0.5, the TRACE1’s exit
performance improves dramatically, whereas α = 0.8 only slightly improves
performance for interim points. On the other hand, α = 0.2 achieves the best
results for TRACE2 for both exit and interim points, but the improvement
over α = 0.5 is not significant. We therefore report results for α = 0.5 for
both TRACE1 and TRACE2 when comparing their performance against the
baselines.

We further explore the effect of hyperparameter γ, and find that its value
becomes critical for lengthy trajectories, which require more past informa-
tion to improve the chances of accurately predicting the next interim point.
To demonstrate this, we focus on queries of length greater than 4. Fig. 11(b)
implies that the higher the value of γ, the higher the precision. In our
comparisons, our results are therefore for γ = 6.

Finally, we investigate how the time–frame of Ttrain affects TRACE2. We
observe that the performance of TRACE2 decreases with the size of Ttrain,
as shown in Figure 12, indicating that increased historical information better
equips TRACE2 to predict the next transition (or exit). Furthermore, Figure
13 shows that the tendency of TRACE2 to predict exit at first (i.e., k = 1)
decreases for year 2015 and 2016; this provides an explanation for the increase
in precision at k = 1 for interim points during those years. On the other
hand, a training dataset, Ttrain, spanning a longer time period (2012 – 2016)
in comparison to Ttest (2017 – 2018) does not influence the performance of
TRACE. This finding can be interpreted as a result of the fact that the length
of trajectories lies within 1 and 20 for both Ttrain and Ttest, despite the longer
time span of Ttrain, as shown in Figure 14. Even though few longer trajectories
can be observed in Ttrain, their frequency is so low it does not have a significant
affect on the performance of TRACE.

9.2 Result Analysis of MetaTier

Figure 15 captures the accuracy of MetaTier model for different choices of
Mexit and their respective Meta model across different values of k. It is
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