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Abstract

This study focuses on how individuals navigate the homelessness system
over time, with the ultimate goal of securing stable housing. Admin-
istrative data collected by homeless service providers are used to infer
the unobserved underlying network of homeless services. A similarity
score between the ordered sequences of services that individuals receive
is proposed. The score leverages the structure of the inferred network
in addition to historical observations to identify individuals with simi-
lar trajectories. In doing so, the service an individual will be assigned
to next can be predicted. Extensive experiments show that the proposed
approach performs well not only on predicting exit from the system, or
simply guessing high frequency services (as most baselines), but is also
successful in less frequent scenarios. Building a model that learns to
replicate the dynamics of the existing system is the first step towards
developing computational methods to maximize outcomes (i.e., ensuring
that as many homeless individuals as possible secure stable housing).

Keywords: Complex systems, network inference, similarity, trajectory
prediction
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1 Introduction

The U.S. Department of Housing and Urban Development (HUD) defines
homelessness as a situation where an individual experiences lack of fixed, regu-
lar, and adequate nighttime residence [1]. Homelessness poses a long-standing
problem to the society with more than 582,000 people having experienced
homelessness on a single night in 2022. Among which, 30% of the individuals
experience prolonged homelessness for at least 12 months, or repeated home-
lessness over a period of three years (i.e., chronic homeless [2]) [3]. Numerous
methods have been proposed to predict reentry [4-6] and chronic homelessness
risk prediction [7, 8]. Most such works are formulated as a binary—classification
task that doesn’t capture the complexities of the homeless service system as a
whole. On the other hand, [9] explored the utility of machine learning models
(eg., decision tree, random forest, multi-class AdaBoost) to predict the service
allocation upon entry to the homeless system.

This work focuses on individuals experiencing chronic homelessness,
broadly defined here as individuals entering the homeless system two or more
times. Viewing the history of each individual as a sequence of services and
time of stay within each service, the goal is to learn a model that can be
used to accurately estimate the next service an individual will be assigned to
within the homeless system in the future. To address this problem, we pro-
pose an approach that, given the history of an individual, identifies individuals
with similar sequences of homeless services, based on which it predicts the
next service the given individual will be assigned to. To model the overall
behavior of individuals within the homeless system, we represent the home-
less system as a network of interconnected services which individuals traverse
over time. OQur comprehensive experimental evaluation demonstrates the abil-
ity of the proposed approach to accurately model the dynamics of this complex
sociotechnical system. Our key contributions can be summarized as follows:

e We infer the network of homeless services from administrative data collected
by homeless service providers.

® We define a similarity score between ordered sequences of services that are
visited by the homeless as they traverse the network of services.

e We propose a method that, given the history of an individual, can predict
the service she will be assigned to next.

® To ensure the reproducibility of the work, the source code is available at
https://github.com/IDIASLab/TRACE.

The remaining paper is organized as follows. Section 2 summarizes related
work. Section 3 introduces the problem statement. Section 4 describes the pro-
cess used to infer the network of homeless services from administrative data.
Section 5 introduces the proposed similarity score. Section 6 discusses the
proposed trajectory similarity estimation and probabilistic prediction method
and analyzes its computational complexity, whereas Section 7 explains the
tiered model for decision-making, MetaTier. Section 8 describes the data, base-
lines, and metrics used to evaluate the performance of the proposed approach,
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whereas Section 9 provides a detailed analysis of the experimental results.
Finally, Section 10 concludes with a discussion of the limitations of this study,
and potential future research directions.

2 Related work

Prior research that is most related to this study can be separated into three
main themes as follows.

The first theme comprises approaches that model reentry and chronic
homelessness prediction as binary classification (e.g., [4, 5, 8]). Unlike such
methods, this work addresses the more challenging problem of determining
whether an individual will exit the homeless system, or the exact program she
will be assigned to next. Furthermore, this work is the first to leverage the
history of an individual (both as a sequence of events, and her trajectory over
the unobserved network of services) to learn an accurate model.

The second theme of prior work focuses on similarity measures for time—
series data [10], including but not limited to Euclidean distance [11], Dynamic
Time Warping based measures [12], shapelets [13], and information theoretic
measures [14]. While suited for numerical (time—series) data, our study involves
trails of timestamped categorical data. Prior research on sequence analysis
includes optimal matching [15] and principle of minimal shared time [16]. Such
methods are often used to determine a common subsequence between two cate-
gorical sequences. However, data points in a sequence are typically assumed to
be independent and identically distributed. In contrast, the approach described
here uncovers the network that generates the observed sequences, and leverages
this knowledge, along with temporal overlap, to compute a novel similarity
score between two categorical trajectories.

The third theme of relevant work focuses on network inference from data
[17]. Such methods either focus solely on inferring the network structure (e.g.,
[18]), or infer transmission rates in addition to structure from observed traces
of diffusion processes (e.g., [19]). Different to this study, existing work relies on
unordered node activations, assumes that diffusion traces are directed acyclic
graphs (DAG) and that the transition probability for one node to another is
fixed and same for all edges, or infers pairwise interactions for pairs of nodes
that are expected to be directly connected via an edge. In this study, the
temporal chain of events is observed (leading to an easier inference problem)
while at the same time, observed trajectories may contain cycles (resulting
in a harder inference problem). It is also worth mentioning that the problem
discussed in this paper differs from that of learning the structure of a directed
graphical model or Bayesian network (e.g., [20]). Specifically, graphical models
do not model network properties (e.g., that nodes in an observed trajectory
must lie along a path in the network), whereas most Bayesian network inference
algorithms try to determine the most likely DAG that is consistent with a
fixed ordering. Moreover, neither approach considers long paths (and their
contribution to the final transition probability) between nodes over temporal
networks.
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Parts of the material in this article have been presented in our prior work
[21]. The present article expands on [21] both in breadth and depth, as follows.
First, we provide a detailed description of the process used to infer the graph of
homeless services, and analyze the computational complexity of the proposed
trajectory similarity estimation and probabilistic prediction model. Second,
motivated by our findings in [21], we propose a tiered model that improves
prediction accuracy, and therefore the chances of the proposed approach to
be adopted in the real-world. Third, we extend our experimental evaluation
with additional results and insights on the methods presented in [21], and
comparisons to the tiered model proposed here.

3 Problem Statement

Homeless service providers offer services that are organized in project types
(e.g., emergency shelters, transitional housing) [22]. We denote the set of
project types as P = {p1,p2,...,Pn}, and the set of individuals requesting ser-
vices multiple times (i.e., reentering the homeless system more than once) as
C ={ec1,ca,...,cm}. Reentries can be viewed as temporally ordered sequences
of tuples (p;, t; = [si,e;]), where p; € P, and s; and e; are the times at which
individual ¢ € C enters to, and exits from p;, accordingly. Such a trajectory,
T. = (p1,[s1,€1]), (P2, [s2,€2])s .-, (PN, [Sn,en])) for each individual ¢ € C,
where for each two consecutive tuples s; 11 > e;, records her transitions from p;
to pi+1, which in turn record the trail of each individual within the unobserved
homeless service network. Given a set of trajectories 7, and query trajectory
Ty = ((q1,[s1,€1])s---, (gn, [sn,en]) of an individual ¢ € C, up to time ey,
we aim at predicting the project type gn4+1 € P that she will be assigned to
immediately after gy (or exit if she is likely to exit the system).

4 Inferring the graph of homeless services

Administrative data collected by homeless service providers record a timeline
of services received by each individual, including the beginning and end dates
of each service, transitions between service types, and exits and reentries (i.e.,
receipt of services after exiting the system). Such data offers a unique oppor-
tunity to study how individuals navigate through a complex sociotechnical
system over time, with the ultimate goal of securing stable housing. Unfortu-
nately, the data only records what services an individual receives and when,
but not why is she assigned to a particular program (e.g., emergency shelter)
versus another (e.g., long term housing).

Since the underlying connectivity of homeless services (i.e., the potential
paths an individuals can take once she is admitted into the homeless system)
is neither directly observable nor known, we set forth to uncover the aggregate
dynamics of the homeless system from the observed sequences of services (and
corresponding entry and exit dates) that it generates for each individual. For
every edge of the network, we additionally wish to estimate the corresponding
transition probability between services. This is an important step towards
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Table 1 Explanation of main symbols used in this article.

Symbol Description
C Set of chronically homeless individuals in our dataset
P Set of homeless service providers’ offered project types
m,n Number of individuals ¢ € C, and project types p € P
ti = [si, ei] it" time interval at which an individual enters and exits a given
project type, p;
Di Project type at it" step of a trajectory
T Set of all trajectories
Terain Set of trajectories € T used for inferring the homeless service network
Tiest Set of trajectories € T \ Tirqin used for testing
H Set of historical trajectories € Ttest. Given a query @, similar trajec-
tories are identified from this set
Q Set of query trajectories € Trest \ H
Te, Ty Trajectories of individual ¢ and ¢, accordingly
Tt] Segment of trajectory T' during time interval ¢
t Duration of time interval ¢
ti Nt Temporal overlap of time intervals t; and ¢;
G=(P,E) Directed graph with node set P and edge set E
wij Weight of edge (i,7) € E
fijx Frequency of k—step paths from p; to p; at offset [
«@ Attenuation factor used in edge weight computation
B Attenuation factor used in similarity computation for baseline Sim—
attenuate
N, M Maximum number of steps and offsets, respectively
o(Ty, Te) Similarity between two trajectories, Tq and Te
d(q, T, tq) Distance between node ¢ and trajectory 71" within time interval ¢,
NB(-) Out—neighbor of a node € V
Pe, N Last matching project type in trajectory T., project type at Nt time
interval in trajectory Ty
dN+1 Service predicted to be assigned at time step N + 1
o' Number of past assignments (i.e., length of historical data) in T, used
for identifying similar trajectories
F A Unique values of effective lengths of trajectories in 7, element in F
Mezit, Mint | Predictive model for exit and interim points accordingly
Dx,Dy Input and output of MetaT'ier, respectively
X, Y Input and output of Meta model, respectively

deriving computational models to predict individuals’ transitions over such
network, and subsequently developing methods to maximize outcomes (e.g.
securing stable housing).

We begin by modelling the network as a directed graph G = (P, E), where
P is the set of nodes representing services visited by individuals in C', and F
is the set of edges between nodes, such that a directed edge appears between
p; and p; if at least one trajectory in 7 exists, in which p; appears after p;.
We determine the weight of each edge (p;,p;) € E based on the number of
steps taken before reaching p; from p;, and the position where p; appears in
the trajectory (i.e., offset). Specifically, a path from p; to p; in a trajectory T
involves j — 7 + 1 steps starting from offset ¢. Therefore:

N
wij: E

k=1 I=

M—1
o (1)
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where N is the maximum number of steps, and M the largest offset, o € [0, 1]
is some attenuation factor, and f;; 11 denotes the number of times a transition
from p; to p; appears in any path across all trajectories in 7" with k steps at
offset [. Finally, we normalize the weights of outgoing edges at each node to
sum to 1. Edge weights satisfy the following properties:

Wy > Oavapj € P7

wj; is undefined if 3 no path from p; to p;,
w;; ~ 0 if path from p; to p; is long, and
ZjEV Wij = 1,Vp1 e P.

Figure 1 shows the key steps of the graph inference process. First, for each
trajectory, all possible unique paths are extracted. The value of f;; x; is then
computed by counting the frequency of each path across all trajectories. For
example, in Figure 1(c), the path between 11 and 13 appears in the trajec-
tory of individual X three times. For offset 0, the path {11,13} appears two
times with 1 and 3 steps between the two project types. Similarly for off-
set 2, it appears once with 1 step between them. Note that the 1—step path
appears twice in this toy example, albeit with different offsets. To avoid dou-
ble counting, only unique paths at each number of steps are included in the
computation of f;;r. Next, edge weights are calculated using Eq.(1), num-
ber of steps, and offset of each path appearing in the trajectories. Consider
for example the weight w1 ezt Of edge (11, exit). Three terms, correspond-
ing to (i) a*~170 for the 4—step path at offset 0, (ii) a>~12 for 2—step path
at offset 2, and (iii) a®>~!'*0 for the 2—step path at offset 0 are computed.
Next, the number of trajectories these paths appear in are counted, resulting
in f(11,em't),(3,0) =1, f(11,ezit),(2,2) = 1, and f(ll,em’t),(Q,Q) = 2. Using Eq.(1),
we get w11 ezit = 30 x 1+ al*2 x 1+ al*0 x 2 = 1.25. The resulting graph
is shown in Fig. 1(e).

For comparison, Figs. 1(d) and (f) show two alternative representations of
the unobserved network of homeless services. Specifically, Fig. 1(d) models the
homeless system as an aggregate network, in which an directed edge from node
1 to j signifies that there is at least one single step transition from 4 to j in the
dataset. Conversely, Fig. 1(f) shows a temporal graph representation of the
homeless system. While often used for dynamic networks [24], a temporal graph
view of the homeless system would result in extremely sparse snapshots (as
illustrated in Fig. 1(f)), which would in turn have limited predictive power. In
contrast, the proposed inference mechanism accounts for paths, as opposed to
direct edges [23], while at the same time ensuring low sparsity by constructing
snapshots not based on arbitrarily chosen durations, but based on effective
lengths. Specifically, the effective trajectories of individuals towards exiting
the system can be obtained from their actual paths by ignoring backward
transitions (i.e., admission to a program type already admitted in the past)
[23]. For instance, the effective trajectory of client X in Fig. 1 is {11,13},
as opposed to her actual trajectory, which is {11,13,11, 13, exit}. Given the
unique effective lengths F of all trajectories in 7, a transition graph G, is
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Fig. 1 Illustration of the graph inference process: (a) Sample data for three individuals, (b)
Trajectories extracted from the data, (c) All possible unique paths for number of steps and
offset, (d) Aggregate transition graph, as defined in [23], where a directed edge from node %
to j signifies that there is at least one direct transition from ¢ to j in 7, (e) Inferred weighted
transition graph, where edge weights are computed using Eq.(1), (f) Temporal network
view of the toy dataset shown in (a), where edges within a snapshot exist if corresponding
transitions are recorded within a specific time interval (e.g., year), and intra—edges denote
transitions that span time intervals (e.g., individual X transitioned from project type 11 to
13 in 2014).

inferred YA € F. As an example, Fig.1(e) shows the inferred graph Gs (i.e.,
effective length 2) for the toy data in (a).

5 Trajectory Similarity

To compare a given individual’s trajectory with historical trajectories, we need
a notion of similarity. Specifically, given graph G, a query trajectory 7, and
a historical trajectory T¢, we wish to measure similarity, o, between Tj, and
T,, while taking into account the distance between nodes in G appearing in
T, and 7T, respectively, the temporal overlap between the trajectories, and
the time intervals individuals stayed on each node in the corresponding tra-
jectories. Figure 2 illustrates a query, Tj, and two trajectories, T, and T5.
Intuitively, T is more similar to T, due to higher temporal overlap and lower
distance between nodes in the two trajectories. Similarly, the temporal overlap
between T, and 75 is substantial, however, the two sequences are less aligned
in the early stages. This misalignment is captured by the distance between the
corresponding nodes in the transition graph.

Let the distance between two nodes ¢;,p; € P that appear in T, and T
respectively, be the weighted shortest path distance, d(g;,p;), between them
in G. The distance between ¢; € T; and 1" within time interval ¢, can then be

7
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Fig. 2 Sample trajectories over a toy network of homelessness services. A query trajectory
(Ty) and two similar trajectories (T and T%) are shown in black, and red and green, accord-
ingly. Bottom plot shows a naive label encoding (i.e., project types converted into integers)
of trajectories as time-series. A time—series prediction model (e.g., regression) could then be
trained, but such model would miss the rich context the underlying network provides.

computed as:

ming,; +)e(t,) MaxX|e;ne,| A4 pj)

A0, Tty) = B , @)

where Dg is the maximum weighted distance between any two nodes in G,
and T'[ty] denotes the sequence of nodes in T visited during ¢,. Intuitively, this
distance is minimized for (p;,t¢;) € T'[t,] that can be reached quickly from g¢;
in G, and for which the interval ¢; significantly overlaps with t,. By definition,
0 < d(g;,T,ty) < 1. The similarity between trajectories T, and T' for time
interval t, is therefore:

Z(q,tq)eTq[t] [ty N t] % e—d(a,Ttq)

2 Itq] ’

where . denotes the length of a time interval, and ¢; is the time interval in
T corresponding to the node that minimizes d(gq,T,t,). By definition, 0 <
o(Ty,T,t) < 1, with o(Ty, T,,t) = 1 for any time interval ¢, and o (75, T, t) =0
for any two trajectories T, and 7" with no temporal overlap.

3)

o(Ty,T,t) =
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6 Trajectory Similarity Estimation and
Probabilistic Prediction

In this section, we describe TRACE, a novel approach for Trajectory
SimilaRity EstimAtion and ProbabilistiC PrEdiction. Specifically, given the
history Ty, = ((¢1,[s1,€1]),- .., (gn, [sn,en]) of an individual, and time inter-
val t = [sy_~, en], where v is the number of prior services received in the past,
as well as the set T of trajectories of other individuals, TRACE begins by cal-
culating the effective length A of T,. Then, TRACE identifies the most similar
trajectory T, € T to T within ¢, using graphs G and G4;. The rationale for
this design choice is that the next node may either be a node already visited
in the past (in which case the effective length of T}, will remain unchanged) or
a new node (in which case the effective length of Tj, will increase by 1). The
project type ¢ny+1 that g is expected to be assigned to next is therefore esti-
mated to be the one that maximizes the transition probability from p., the
last matching project type in trajectory T. that maximizes o(Ty,T,,t) over
either G or G11. Therefore, gy is obtained by maximizing the following
objective:

Lignpiyer X Lo per X P(pi € NB(gn) N NB(pe)|pe), (4)

where 1 is the indicator function. To ensure the predicted node is reachable
from gy, p; is constrained to be in the out—neighborhood of both p. and ¢y .
If no such node can be found within T, the search over trajectories continues,
identifying the next maximum similarity trajectory that satisfies Eq.(4). The
search terminates when a trajectory is identified that satisfies this constraint,
or if no further trajectories are left to be examined. Furthermore, only those
trajectories temporally overlapping with ¢ are considered.

6.1 Computational Complexity of TRACE

The worst—case computational complexity of TRACE follows. During training
(offline), the unique effective lengths F are identified for the set of trajectories
Tirain- For each A € F, paths with all possible number of steps, M, and offsets,
N, in each trajectory in Tirqin are computed, resulting in O(|F| X |Tirain| X
M x N) complexity. In our study, we find both |F|,M, and N to be small
(< 4,55, and 55, respectively), which means that this step is linear to the
size of the training set. The calculation of edge weights involves recording the
number of occurrences of a particular path with a specific number of steps and
offset Ve € E, leading to an O(Tirain X M x N X |E|) complexity. The overall
training (i.e., graph inference) complexity is therefore O(| Terain| X |E|) -
Presented with a query trajectory Ty, TRACE first iterates through each
trajectory in H to filter out trajectories with no temporal overlap with Tj,.
Since the length of each trajectory can be at most N, the complexity of this
step is O(|H| x N). The distance of all historical trajectories with the query
is computed in O(|H| x N X «y), whereas similarity is computed in O(|H| X 7).
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Algorithm 1 TRACE
Input: H,T,,v
Output: Node ¢y individual ¢ is going to visit after gy
1: Identify subset H; C H of trajectories temporally overlapping t =
(SN—v,€n)
2: Compute effective length, X, of query trajectory T,
3: for each T, € H; do
Vq; € T,[t] compute distance to T.[t] using Eq.(2) on Gy (similarly for
Gxy1)
Compute similarity between Ty [t] and T, using Eq.(3)
Tinaz < T with highest similarity score
end for
Using Thnaz, find §yy1 that maximizes Eq. (4) return gy 11

»

The prediction step requires constant time. Assuming that |F|, M, N, and v
are all small compared to the size of the set of historical trajectories H used
during testing, the overall prediction complexity is linear to |H|.

7 Tiered Model For Better Performance

The experimental results we presented in [21] suggested that TRACE performs
well in predicting both low and high frequency project types. At the same time,
we noticed that some of the baselines are particularly good at predicting exit
or high frequency (HF) project types. This observation prompted us to explore
a tiered system, in which a prediction would be made whether an individual
is more likely to exit or not, and in the latter case, TRACE would be used to
predict the next service to be received by the individual.

Since, the number of combining the possible base models to construct a
tiered system is exponentially large, verifying the performance of every possible
combination is computationally prohibitive. We therefore propose a simple
stacking ensemble, MetaTier, which combines the predictions of two candidate
models: () with higher accuracy in predicting exit and HF project type, and
(#4) with high recall in predicting project types. We denote the predictive model
for exit and project types with M.+ and M,y respectively. Let {Dx,Dy } €
D be the input and the output data of MetaTier. Each instance Dx, € Dx is
given by the set:

{Dl,MEziu s ka,Mczitvpl,Minw s ka,Mmt}v (5)

where D, ;, € Dx, encodes the a'" prediction of model b as a | P|—dimensional
vector, Dyyplj] = {1 if j = p; € P, and 0 otherwise}. Furthermore, each
instance Dy, € Dy is the project type belonging to the set P. Finally, MetaTier
is a logistic regression model that combines the predictions of My and M,
as in Equation 5 and predicts whether an individual will exit or be assigned
to a project type in the next step. Figure 3 shows an overview of MetaTier.
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|P| — dimensional
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/ D1 Mine MetaTier ——Dy,

Trajectory, Ty Mint —> qn+11 AN+1k Final

e Prediction
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Candidate D, My,

models

MetaTier input Dy,

Fig. 3 Overview of MetaTier model. First, the query trajectory Ty is fed into the candidate
models (Megit and M;pe). Both of these candidate models output k—predictions in the
form [gn41,1,---,qN+1,5] which are then encoded and stacked in Dx,;. MetaTier model
takes Dy, as input and outputs the final prediction Dy;.

8 Experimental Evaluation

8.1 Data

Experiments are performed using an anonymized set of 50,469 records of all
services provided by homeless services providers in the Capital Region of the
state of New York to a total of 38,954 individuals over the time period of
2012 and 2018. The data was provided by CARES of NY. We focus on the
6,011 individuals that received services multiple times, out of which 3,475 exit
to stable or fairly stable exits. Specifically, “stable” exits indicate individuals
exiting to rental or owned housing without any housing subsidy, whereas “fairly
stable exits” include permanent housing, rental or owned housing with housing
subsidy, and long term facility [23].

We split the data into Tyrqin and Ties as follows. Trajectories with entry
date up to the end of 2016 are included in training set, Tirqin, Whereas tra-
jectories with entry dates from the beginning of 2017 onward are included in
test set, Tiese. This split ensures that predictive models are trained on data
that does not contain future information, and therefore avoids data leakage.
The test set Tyes is further split into two disjoint sets, namely historical set,
‘H, and query set, Q. For each query in @), the most similar trajectory in H is
obtained using Eq.(3). Graphs G\ and G41 are computed over Tiyqip. Finally,
D consists of the prediction for T;es; which is then randomly split into training
set, Dirain, and testing set, Dyesr. MetaTier, is trained over Dyyqin and tested
on Dyesr. We used 4-fold cross validation to avoid selection biases.

8.2 Metrics

We differentiate our analysis between individuals that exit the system (i.e.,
exit point) and those that transition to a new service (i.e., interim point) for a
granular assessment of the predicting capabilities of TRACE and the baselines
using the following metrics:
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® Precision@k: measures how many times the predicted service is correct
using the top k predictions.

® Recall@k: measures how many times each project type is identified
correctly at k'* prediction.

® Number of attempts: measures the minimum number of similar trajecto-
ries that must be examined before a successful prediction.

To evaluate MetaTier, we compute the following metrics, based on all
predictions (i.e., regardless of being exit or interim points):

¢ Accuracy: measures how many times the predicted service (or exit) is
correct.

¢ Class—specific Recall: measures how many times each project type (or
exit) is identified correctly. We additionally report mean recall for an overall
comparison.

8.3 Baselines

We evaluate two variants of TRACE, where TRACE; uses only G, and
TRACE; uses both G and G;1. We compare these TRACE models with
the baselines described below. Given the most similar trajectory T, to query
T4, Gn+1 is predicted to be:

e p. — Next: p.41 (i.e., the service following p. in T¢).

® p. — NB: the highest transition probability out—neighbor of p. € P. Note
that we found no difference in performance when requiring the out—neighbor
of p. to also be an out—neighbor of ¢n (pcan — NB).

® gn — NB: the out—neighbor of ¢y € V with the highest transition
probability from qp.

¢ RN: a random node p € P. We consider two variants, namely selecting
a node (UR) uniformly at random, and (PA) with a probability that is
proportional to a node’s in—degree (i.e., preferential attachment [25]).

¢ Sim—attenuate: the node identified using Eqs.(3) and (4), with the differ-
ence that an attenuation factor 8%, where 0 < k < K is the number of nodes
in T[t], is used in Eq.(3) to penalize intervals which are further in the past.

® Log—Reg: the project type predicted by a logistic regression model. Given a
trajectory T. = (p1, [s1,€1]), (P2, [s2,€2]), ..., (PN, [sn, en])), we denote the
input and the output of Log—Reg model as X and Y respectively. Every
instance x € X is organized as a sequence of encoded project types given
by ¢ = [#n_1,...,&N_1-] Where 7 represents the window of past infor-
mation fed to the model for prediction. Furthermore, each z; € x is an
| P|—dimensional vector defined as x;[j] = {1 if j = p;, or 0 otherwise}.
Moreover, for individuals with trajectories smaller than the window =, x; is
padded with zeros indicating that no project type appeared in the trajec-
tory at time instance i. On the other hand, y € Y records the scalar project
type that is expected to be assigned at N. Finally, Log-Reg is trained with
the train set, Tirqin and tested with query set Q.
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Finally, we set TRACE; as M;,; in MetaTier because of its over-
all performance compared to TRACE;, and consider p. — Next, p. — NB,
peqn — NB, gy — N B, Sim-attenuate, and TRACE; as candidates for M.
Note that both the baselines and TRACE are probabilistic in nature and
can be used to make k—predictions each. Therefore, for a fair comparison,
we design stacking ensemble models (Meta model) for each of the baselines
and TRACE (i.e., base models), similar to MetaTier. The difference between
Meta and MetaTier models lies in their inputs; while MetaTier model stacks
the k—predictions from two predictive models (M;,; and M) as input,
Meta model stacks the k—predictions from one specific predictive model (either
Mezit or M;p:) denoted by M. Specifically, let X o and Y4 be the input and
output of the Meta model, where each instance z; g € X 4 is given by the set
{x1,..., 71} with 2, € z; q encoding the a®® prediction of the model M as
a | P|—dimensional vector, x4[j] = {1 if j = p; € P, and 0 otherwise} and the
output ¥; m € Y being the project type belonging to the set P. Finally, sim-
ilar to MetaTier, the Meta model is also a logistic regression model that takes
the predictions of a model M and predicts whether an individual will exit or
be assigned to a project type in the next step. The MetaTier models and the
Meta models are denoted by the prefixes MetaTier— and Meta— respectively.

9 Results and Analysis
9.1 Result Analysis of TRACE

Fig. 4 shows precision@k. While, most methods perform well at predicting exit
points, only TRACE; and TRACE; excel at predicting interim points. In fact,
qn — N B consistently predicts the most frequent project type as the next tran-
sition (see Fig. 6) and is therefore meaningless. Similarly, both p. — NB and
Sim-attenuate predict project type 1 with high probability (80%) resulting in
good performance with respect to exit prediction, but meaningless prediction of
interim points. Interestingly, the performance of p. — NB and Sim-attenuate
improves dramatically for k£ > 5. However, Fig. 5 suggests that this is an arti-
fact of their high recall for project type 1, which comprises 50% of the ground
truth. p. — Next focuses on the HF project types (e.g., 1, 11, 13). Finally,
TRACE; performs poorly for exit points mainly due to its low recall. Instead,
TRACE; seems to predict exit at first (i.e., k = 1), explaining its reduced per-
formance for interim points. However, TRACE,’s recall improves dramatically
with k increasing, as shown in Fig. 5. Moreover, we compare TRACEy with
Log-Reg, Log—Reg performs well with exit points, however the performance
drops with interim points (Figure 4 and 5). Although Log-Reg is able to pre-
dict most of the project types unlike most of the other baselines, the recall for
each project type is quite low in comparison to TRACE models.

Given enough opportunities, prediction models may eventually be able to
“get a prediction right”. We therefore additionally report the distribution of
number of attempts required for a successful prediction in Fig. 7. Evidently,
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Fig. 4 Precision@k plot for TRACE and baselines predicting (a) exit points and (b) interim
points (Precision at z—axis and k at y—axis).
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pe — NB, p.qny — NB, gy — NB, Sim-attenuate require few attempts to pre-
dict exit points due to their bias towards such nodes, as explained above. In
contrast, TRACE is better at predicting interim points, although occasionally
requiring more attempts before being able to correctly predict cases that sig-
nificantly deviate from the rest of the trajectories in the historical data. Fig. 8
shows that TRACE’s incorrect predictions are mostly for extremely short tra-
jectories, which lack enough historical data, indicating the significance of the
contextual information provided by the underlying and unobserved network.

Furthermore, we analyze Sim-attenuate to better understand why it con-
verges to p.gqn — NB as 8 approaches 1. Fig. 9 shows that penalizing the
intervals further in past diminishes the model’s ability to predict exit points.
Intuitively, this indicates the necessity of past information to determine the
most similar trajectories to a query.

Next, we experiment with different values of o to determine its effect on
TRACE’s recall, as shown in Fig. 10. When a = 0.5, the TRACE;’s exit
performance improves dramatically, whereas @ = 0.8 only slightly improves
performance for interim points. On the other hand, o = 0.2 achieves the best
results for TRACE; for both exit and interim points, but the improvement
over a = 0.5 is not significant. We therefore report results for a« = 0.5 for
both TRACE; and TRACE; when comparing their performance against the
baselines.

We further explore the effect of hyperparameter v, and find that its value
becomes critical for lengthy trajectories, which require more past informa-
tion to improve the chances of accurately predicting the next interim point.
To demonstrate this, we focus on queries of length greater than 4. Fig. 11(b)
implies that the higher the value of ~, the higher the precision. In our
comparisons, our results are therefore for v = 6.

Finally, we investigate how the time—frame of 7;..;n affects TRACE,. We
observe that the performance of TRACE, decreases with the size of Tirain,
as shown in Figure 12, indicating that increased historical information better
equips TRACE; to predict the next transition (or exit). Furthermore, Figure
13 shows that the tendency of TRACE; to predict exit at first (i.e., k = 1)
decreases for year 2015 and 2016; this provides an explanation for the increase
in precision at £k = 1 for interim points during those years. On the other
hand, a training dataset, Ti,qin, sSpanning a longer time period (2012 — 2016)
in comparison to Tiest (2017 — 2018) does not influence the performance of
TRACE. This finding can be interpreted as a result of the fact that the length
of trajectories lies within 1 and 20 for both T;yqin and Ties:, despite the longer
time span of T¢,qin, as shown in Figure 14. Even though few longer trajectories
can be observed in Tyyqin, their frequency is so low it does not have a significant
affect on the performance of TRACE.

9.2 Result Analysis of MetaTier

Figure 15 captures the accuracy of MetaTier model for different choices of
Mie and their respective Meta model across different values of k. It is



Springer Nature 2021 ITEX template

16 Modeling and Predicting Individual Transitions within the Homelessness System
TRACE, TRACE; pc — Next
10/ - 20 10 - 20 - 20
- 60 - 60 - 60
08
06
04
02
4 6 om o121 %51 2 3 a4 6 o1 12 13 3 4 6 1 12 13
pc.—NB Pcgn—NB N qv—NB
104 - 20 10 - 20 ' - 20
- 60 - 6.0 - 60
08 08 08
06 06 061
04/ 04 04}
02} 02 021
T3 s d s m e 3T 33 a4 s m o %31 303 4 & momon
UR PA Sim — attenuate
10/ - 20 10 - 20 10} - 20
- 60 - 6.0 - 60
08 08 081
06/ 06 06/
04 04 04
O.I‘J Jl 0.2 021
0073 1 2 3 4 6 m 12 13 00731 2 3 & 6 1 12 13 0073 2 3 4 6 um o1z B
Log — Reg

- 20
- 60

06
: I I

: I
by 6

4 6 11 12 1

°

Fig. 5 Recall (y—axis) achieved by TRACE and the baselines at k = 2 (blue) and k = 6
(orange) for each project type (z—axis) separately.

clear that MetaTier models perform significantly better than their respective
Meta models. Moreover, Figure 16 indicates that, unlike the Meta models,
MetaTier models performs well at predicting both HF and low frequency (LF)
project types. This shows that stacking the two models (i.e., meta model and
TRACE:) takes advantage of their strengths, thus enhancing the overall pre-
dicting capability. On the other hand, the accuracy of Meta and MetaTier
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Fig. 6 Aggregate prediction distribution for (a) exit points and (b) interim points
(Frequency at y—axis and project type at z—axis).

models for TRACE; shows quite the opposite effect in comparison to the rest
of the models. This may be due to the similar capability of TRACE; and
TRACE: (Figure 4). It would make sense to consider TRACE; as an alterna-
tive M, for MetaTier model, however, while TRACE; and TRACE; have
similar performances in predicting interim points, TRACEs performs notably
better at predicting exit than TRACE;. Therefore, considering the overall per-
formance of the two variants of TRACE, we chose TRACE, as a better choice
for Mip:.

For MetaTier models, k is a hyperparameter that determines the number
of predictions fed to the MetaTier model, making it important to select a
specific value of k. We begin by selecting the top—5 highest accuracy and mean
recall values and their corresponding k values for all the MetaTier models. The
idea was to find the values of k& which are simultaneously present in the top—5

17
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Fig. 7 Distribution of the minimum number of attempts needed to make a successful
prediction of (a) exit point and (b) interim points.

MetaTier models, in this case, k = 8 and k = 9. Table 2 shows that the loss
in accuracy and mean recall is higher for k¥ = 9 than k = 8, thus we select k
to be 9 for our further analyses.

Next, we analyze how MetaTier performs in comparison to TRACE;.
MetaTier stems from the intent to exploit the ability of Mg, to predict
exit and HF project type, and concurrently the ability of TRACE; to predict
interim points. Table 3 shows that MetaTier models have better performance
than TRACE, with higher mean recall and accuracy than TRACE;. How-
ever, the main advantage of MetaTier models over TRACE lies in predicting
exit and HF project types (e.g., project type 1, which stands for emergency
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Fig. 9 Precision@k of Sim-attenuate with varying g for (a) exit points and (b) interim
points.

shelters). Table 4 shows that majority of the meta models with higher mean
recall than TRACE; in predicting HF project types and exit results in their
corresponding MetaTier models to have better mean recall in predicting HF
project types and exit than TRACE,.

19
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Fig. 10 Recall@k (y—axis) of TRACE with varying a.

Table 2 Accuracy (ACC) and Mean Recall (mR) at k =8 and k =9

Model ACC@8/ACC@9 | mR@8/mR@9
MetaTier TRACE; 0.53/0.56 0.26/0.29
MetaTicr pe — NB 0.61/0.60 0.29/0.30
MetaTier—p. — Next 0.53/0.52 0.25/0.27
MetaTier-p. — NB 0.61/0.60 0.29/0.30
MetaTier-qny — NB 0.57/0.59 0.29/0.30

MetaTier-Sim—attenuate 0.59/0.60 0.30/0.31

10 Conclusion

In this study, we proposed an approach that begins by inferring the network of
services that the homeless visit as they strive to secure permanent housing. We
subsequently defined a score to assess the similarity of their trajectories. Based
on these two contributions we proposed a method to predict the most likely
service an individual will be assigned to next given her history. Our experi-
mental evaluation showed the ability of the proposed approach to better match
the observed sequences as opposed to baselines. Our approach can be used as
a building block for more complex applications, such as recommending service
assignment. However, in replicating the observed data, biases in the service
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Fig. 12 Precision@k versus k for different starting year

assignment process may be replicated. In order to avoid this and to addition-
ally evaluate the potential ability of “wrong” predictions to lead to better
outcomes, we will explore counterfactual predictions in future work. We addi-
tionally plan to address limitations, such as accounting for imbalances among
project types. Another potential line of research concerns the explainability
and/or interpretability of our approach, given the potential human impact of
its application in this high—stakes domain. Although our approach can indeed
provide explanation (i.e. reason) for its prediction based on the identified next
step in the most similar trajectory and in future, it was not explicitly designed
to state the reasons behind its predictions. We therefore plan to rigorously

21
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Table 3 Accuracy (ACC) and Mean Recall (mR) at k =9

Model mR@9 | ACCQ9

TRACE2 0.25 0.56
MetaTier-TRACE 0.28 0.56
MetaTier—p. — NB 0.28 0.60
MetaTier—p. — Next 0.25 0.52
MetaTier-p. — NB 0.28 0.60
MetaTier—qny — NB 0.28 0.59
MetaTier-Sim—attenuate 0.29 0.60

Table 4 Mean Recall (mR) of meta and MetaTier models at k = 9 for exit and HF
project types

Model Meta | MetaTier
TRACE2 0.66 -
MetaTier-TRACE; 0.62 0.61
MetaTier-p. — NB 0.72 0.70
MetaTier-p. — Next 0.47 0.56
MetaTier-p. — NB 0.72 0.70
MetaTier—-qny — NB 0.50 0.69
MetaTier—Sim—attenuate 0.73 0.70

evaluate this quality of TRACE. Finally, we plan to further improve the com-
putation of similarity between project types by better incorporating domain
semantics, such as for example that an emergency shelter is more similar to a
day shelter as compared to transitional housing).
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