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The confluent hypergeometric equation, also known as Kummer's equation, is one of the most important dif-
ferential equations in physics, chemistry, and engineering. Its two power series solutions are the Kummer func-
tion, M (a, b, z), often referred to as the confluent hypergeometric function of the first kind, and A7I(a, b,7) =
2P M(1+a—b,2-b,z), where g and b are parameters that appear in the differential equation. A third
function, the Tricomi function, U(a, b, z), sometimes referred to as the confluent hypergeometric function of
the second kind, is also a solution of the confluent hypergeometric equation that is routinely used. Contrary to
common procedure, all three of these functions (and more) must be considered in a search for the two linearly
independent solutions of the confluent hypergeometric equation. There are situations, when a, b, and a—b are
integers, where one of these functions is not defined, or two of the functions are not linearly independent, or one
of the linearly independent solutions of the differential equation is different from these three functions. Many of
these special cases correspond precisely to cases needed to solve problems in physics. This leads to significant
confusion about how to work with confluent hypergeometric equations, in spite of authoritative references such
as the NIST Digital Library of Mathematical Functions. Here, we carefully describe all of the different cases one
has to consider and what the explicit formulas are for the two linearly independent solutions of the confluent
hypergeometric equation. The procedure to properly solve the confluent hypergeometric equation is summa-
rized in a convenient table. As an example, we use these solutions to study the bound states of the hydrogenic
atom, correcting the standard treatment in textbooks. We also briefly consider the cutoff Coulomb potential.
We hope that this guide will aid physicists to properly solve problems that involve the confluent hypergeometric
differential equation.
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1. Introduction

We are taught how to solve second-order linear differential equations early in our study of physics.
The procedure is straightforward, but sometimes may be complicated to carry out. We identify the two
linearly independent solutions, and then use either initial conditions, or boundary conditions to select
the proper solution being sought. However, when one works with equations of the hypergeometric type
(and here, we focus on the confluent hypergeometric equation), there is no general way to identify the
two linearly independent solutions for all values of the parameters in the differential equation. This
means that the general solution strategy will not work so easily, and requires extra care to be carried out
correctly. This point is a subtle one, and is missed, for example, in essentially all quantum mechanics
textbooks in the description of how to solve the energy eigenvalues and wavefunctions for the Coulomb
problem of the hydrogen atom (and many other problems as well). In this work, we carefully describe
how the general procedure is modified to enable solving the confluent hypergeometric equation for
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boundary value problems and we present the proper (and complete) treatment of the Coulomb problem
for hydrogen [1-3].

We begin with the basic definitions of the Kummer and Tricomi functions, M (a, b, z) and U(a, b, 7),
respectively. We note that, contrary to more-or-less common practice, the two power series solutions
of Kummer’s equation (also known as the confluent hypergeometric equation), namely M(a, b,z) and
M/a, b, z), defined in equation (2.4), absolutely must be included in the considerations. We discuss in
detail the circumstances in which these three solutions are, and are not, defined, and are, and are not,
linearly independent, emphasizing the complicated ways in which the characters of a and b and the
constraints on a — b are all-important. We stress the great care that is needed in determining how these
three solutions are to be used to obtain two linearly independent solutions of Kummer’s equation and the
circumstances in which they cannot, where additional functions must be used.

The confluent hypergeometric equation, or Kummer’s equation, is given by

d*w

dw
zd—Z2+(b—z)d—Z—aw:O, (L.1)

with a and b constants. This differential equation is in the Laplace form [4, 5], where the coefficients of
the different terms are at most linear functions in z, although we will not be using the Laplace method
in this work. The confluent hypergeometric equation is an important differential equation that is used in
many areas of classical and quantum physics, chemistry, and engineering [6]. The underlying reason for
this importance is that many of the special functions of mathematical physics can be expressed in terms
of confluent hypergeometric functions and many of the differential equations of physics, chemistry, and
engineering can be reduced to the confluent hypergeometric equation and thus solved in terms of confluent
hypergeometric functions. This is particularly true for quantum mechanics [6—17], where, for example, the
bound state problems for the simple harmonic oscillator in one, two and three dimensions, the Coulomb
problem in two and three dimensions, and the Cartesian one-dimensional Morse potential can all be solved
in terms of confluent hypergeometric functions. In addition, continuum problems, such as the free particle
in one, two, and three dimensions, the one-dimensional Cartesian linear potential, the continuum of the
Coulomb problem in two and three dimensions, and the continuum of the Cartesian one-dimensional
Morse potential, can also be solved using confluent hypergeometric functions. Moreover, we note that there
is a very nice discussion of Landau levels that also employs confluent hypergeometric functions [18]. The
confluent hypergeometric equation also arises in optics [15, 19-22], classical electrodynamics [6, 19, 23],
classical waves [7, 24, 25], diffusion [26], fluid flow [27], heat transfer [28], general relativity [29-32],
semiclassical quantum mechanics [33], quantum chemistry [34, 35], graphic design [36], and many other
areas. The solutions of the confluent hypergeometric equation depend in an essential way on whether or
not a, b, and a — b are integers and the standard references (see below) do not present these solutions,
with appropriate qualifications, in a user-friendly way.

The primary purpose of this paper is to properly organize the solutions of the confluent hypergeometric
equation, so as to allow one to navigate the challenging and convoluted labyrinth of possible combinations
of a and b, and to discuss the associated subtleties. Our principal results in this regard are summarized
in table 1 in section 3. We expect this table to be very useful in determining the correct solutions of the
confluent hypergeometric equation for problems in physics, other sciences, engineering, and mathematics.
We also expect that working through the analysis in the Appendix that results in table 1 would go a long
way toward relieving any unfamiliarity with confluent hypergeometric functions.

A comprehensive discussion of the history of the hypergeometric function, from which confluent
hypergeometric functions are descended, has been written by Dutka [37]. In particular, unlike most other
special functions, which were defined as the solutions of their corresponding differential equation, the
hypergeometric functions were first defined in terms of their power series, and the differential equation
that they satisfy was discovered later. Since the hypergeometric functions are not defined or are not
distinct for some integer values of their parameters, this introduces challenges with describing all of the
linearly independent solutions of the corresponding differential equation. This difficulty spills over to the
confluent hypergeometric functions, which are a special case of the hypergeometric functions. It turns
out that for many physics applications, we need the solutions of the confluent hypergeometric equation
precisely for cases where a, b, or a — b are integers where the analysis becomes more nuanced.
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Our principal references on the confluent hypergeometric functions are the NIST Digital Library of
Mathematical Functions (DLMF) [1], the precursor volume, The Handbook of Mathematical Functions,
by Abramowitz and Stegun (AS) [2], Confluent Hypergeometric Functions, by Slater [3], and Higher
Transcendental Functions, edited by Erdélyi [38]. Some other useful sources of information about
confluent hypergeometric functions are Mathematical Methods for Physicists, by Arfken, Weber, and
Harris [15], Methods of Theoretical Physics, by Morse and Feshbach [7], A Course of Modern Analysis,
by Whittaker and Watson [39], Special Functions in Physics with MATLAB, by Schweizer [40], the
Wolfram MathWorld website [41-44], and a beautiful dynamic calculator of the Kummer function,
M (a, b, z), and the Tricomi function, U(a, b, z), on the Wolfram website [45]. There is also a Wikipedia
entry titled “Confluent hypergeometric functions” [46]. In addition, we particularly note two papers
which consider the general solution of the stationary state Schrodinger equation in terms of confluent
hypergeometric functions [11, 14], two textbooks which employ confluent hypergeometric functions in
a discussion of the bound and continuum states of the hydrogen atom and other problems in quantum
mechanics [9, 16], and a paper which considers the use of confluent hypergeometric functions in
determining the bound states of the attractive Coulomb potential [17].

This paper is organized as follows. In section 2, we present and discuss the basic definitions and
properties of the three standard solutions of the confluent hypergeometric equation. In section 3, we
present table I in which the linearly independent solutions of the confluent hypergeometric equation are
organized according to the possible values of a and b and the constraints on a — b, thereby imbuing the
labyrinth of values of @ and b with some order. In section 4, we present the limiting values, as z — 0
and z — oo, of the Kummer function, M (a, b, z) and the Tricomi function, U(a, b, 7). As a noteworthy
example, for which integral values of b are germane, we consider in section 5 the quantum-mechanical
treatment of the bound states of the hydrogenic atom. We show that a careful and complete treatment
is more complex than the standard approach found in quantum mechanics textbooks. In section 6, as an
example that emphasizes the care that must be used in working with confluent hypergeometric functions,
we briefly consider the cutoff Coulomb potential discussed by Othman, de Montigny, and Marsiglio [17],
illustrating some of the subtle issues not discussed in their work. In section 7, we provide our conclusions.
In the Appendix, we present the detailed analysis that results in table 1.

2. Basic definitions and properties

In some problems in quantum mechanics, the first index of the confluent hypergeometric equation,
a, is a non-positive integer . For example, in solving the Schrodinger equation for the bound states of
hydrogen we ﬁnd that a = £+ 1 — n, where n > ¢ is the principal quantum number and the eigenvalues

of L2 where L is the orbital angular momentum operator, are £(£ + 1)%?, and £ is a non-negative integer.
In this instance, that is, when a is a non-positive integer, U(a, b, 7) is a polynomial in z, and provided b
is not a non-positive integer, M (a, b, z) exists and U(a, b, z) «< M(a, b, 7).

In addition, it frequently occurs in applications of confluent hypergeometric functions that the second
index of M (a, b, z) and U(a, b, 7), b, is an integer. For example: when we solve the Schrodinger equation
in plane polar coordinates, b can take on the values 1 — 2|sii| and 1 + 2|sit|, where the eigenvalues of L,
the z-component of the orbital angular momentum operator, are 7, and /7 is an integer; and when we
solve the Schrodinger equation in spherical coordinates, b can take on the values —2¢ and 2(¢ + 1) (we
use 71 because we are reserving the symbol m for another purpose).

In what follows, we will use the symbols Z, Z<°, Z>°, and Z>? to designate the sets of integers,
non- pos1t1ve integers, positive integers, and 1ntegers > 2, respectively. Furthermore, the symbol € means

“is in” or “belongs to”, the symbol ¢ means “is not in” or “does not belong to”, and the symbol V means
“for all”.

When b € Z, there are three classes of problems with regard to the solutions of the confluent
hypergeometric equation. To reveal these problems, we consider the standard Frobenius (generalized
power series) method of solution for a linear, ordinary differential equation, which is valid for an
expansion about a point which is a regular point or a regular singular point [15, §7.5] and [47-50] of the
differential equation. Since the confluent hypergeometric equation has a regular singularity at z = 0, we
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can attempt a solution of the form given by
w(a,b,z) = Z C,z, 2.1)
s=0

where A is a pure number to be determined. Substitution of this putative solution into the confluent
hypergeometric equation reveals that the two possible values of A are 0 and 1 — b. The corresponding first
and second power series solutions of the confluent hypergeometric equation are denoted by M (a, b, z) and
M(a, b, z) [Which is defined in equation (2.4)], respectively. Here, M (a, b, 7) is Kummer’s function, which
is sometimes referred to as the confluent hypergeometric function of the first kind, and is also denoted
by 1 F|(a; b; z) and | F|[a; b; z] [see 13.1.10 of AS and equation (1.1.7) of Slater [51], respectively]. Its
power series definition is given by

(a)s z°

M(a,b,z) = —. 2.2)
25, 5

The Pochhammer symbol (which is also known as the Pochhammer function, the Pochhammer poly-
nomial, the rising factorial, the rising sequential product, and the upper factorial) [46, 52] is given by

I'(a+ys)

[(a) ’
where I" denotes the standard gamma function (see 13.2.2 of DLMF and 13.1.2 of AS). The Kummer
function, M (a, b, 7), is an entire function of z and a, and is a meromorphic function of » (see 13.2.4 of
DLMEF).

Some additional information about the Pochhammer symbol may be useful. In this list,m, n, s, m—s €
z>0.

(ay=1,(a)y =a, and (a)s=a(a+1)...(a+s—1)= fors ez, (2.3)

1. (a)s is defined if and only if s € Z>°. Morever, a can be any real or complex number.

2. Fora ¢ Z<°, (a), # 0.

w

.Fors>m+1, (-m); =0.

_ (=n+m-1)!

4. Forn<s<m, (—n+8)y,_s = Cars—DT which is also valid in the limitn — s.

5. Form>nzs, (—n+8)u_s=0,

6. Forn > m > 5, (= +$)us = (1) =25,

7. Form > sanda ¢ Z,ora>m > sanda € Z7°, (1 — a + §)m—s :%.

8. Since (a)s = rﬁ‘(‘;’% (a)s =0ifa € Z<%anda+s € Z°°. Also,a € Z<® and a + s € Z<° = (a),

is indeterminate.

In addition, in table 2.1 on page 19, Seaborn [6] gives several identities involving Pochhammer
symbols.

From here on, because z'™” M(1 +a — b,2 — b, z) occurs so frequently, and because M (a, b, z),
7P M(1+a-b,2-0b,z),and U(a, b, z) should be regarded as an essentially the same footing as far
as solutions of Kummer’s equation, we define

M(a,b,2)=7""" M1 +a-b,2-b,7); (2.4)

that is, we use M(a, b, z) and M (a, b, z) for, respectively, the first and second power series solutions of
the confluent hypergeometric equation.

Using M (a, b, z) as given by equation (2.2), we can immediately see the three classes of problems
that occur when b € Z. First, from equations (2.2) and (2.3), when b € Z<°, (b); is 0 for some value
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of s € Z?°. This means that M(a, b, z) is not defined for b € Z<°. (Alternatively, it can be said that
M(a, b, z), regarded as a function of b, has simple poles for b € 759 [3].) Second, if b = 1, then
M(a,b,z) =M ~(a, b, z),1.e., the two power series solutions of Kummer’s equation are the same. Third if
b € Z>2, then M(a, b, 7) is not defined. Since the confluent hypergeometric equation is a second order,
linear, ordinary, differential equation, and it has no new singular behavior when b € Z, it must have two
linearly independent solutions even when b € Z. The key point that we emphasize here is that the fact that
one of the confluent hypergeometric functions is not defined does not mean that the differential equation
no longer has two linearly independent solutions. What it means is that the two linearly independent
solutions must be determined with care. This is a point that can be easily misunderstood and which
can lead to erroneous conclusions when solving problems that reduce to the confluent hypergeometric
equation.

According to 13.2.3 of DLMF, “M (a, b, z) does not exist when b is a non-positive integer”. However,
AS includes in 13.1.3 a short table about the character of M (a, b, z), which includes an explicit indication
that M (a, b, z) can be defined when b € Z<9, and the circumstances under which it is not defined. We
consider the entries in this table, other than the first two and the last, to be dubious. Moreover, there are
other entries in Chapter 13 of AS, particularly 13.6.2 and 13.6.5, that can be interpreted as indicating that
M(a, b, z) with b € Z<" can be defined. Reference [7] also indicates, albeit somewhat indirectly, on page
605, that M (a, b, z) is not defined if b € Z<°. Reference [15] explicitly states on page 917 that M (a, b, z)
is not defined if b € Z<°. Reference [3] also indicates on pages 2 and 3 that M (a, b, 7) is not defined for
beZ0 In§ 6.7.1, of [38], it is noted that M (a, ¢, z) .. . fails to be defined at ¢ = 0, —1, -2, ...”. Last,
but not least, what is written on pages 347 and 348 of [39] can be interpreted as stating that M (a, b, 7)
is not defined if b € Z<0.

The full hypergeometric function, or just the hypergeometric function, F(a, b; c; z) (see Chapter 15
of DLMF and Chapter 15 of AS), also is not defined when ¢ € Z<°. Both DLMF and AS discuss alternate
solutions in this situation.

In 13.2.2 and 13.2.3, DLMF presents the Kummer function, M (a, b, z), and Olver’s function, as “The
first two standard solutions” of Kummer’s equation. It would appear that the solution to the problem that
Kummer’s function, M (a, b, z), is not defined for b € Z<°, is simply to instead use Olver’s function.
Unfortunately, Olver’s function is not always a non-trivial solution of the confluent hypergeometric
equation. Accordingly, we shall not use Olver’s function in our considerations and thus we say no more
about it.

The second standard solution of the confluent hypergeometric equation is often taken to be the Tricomi
function, today generally denoted by U(a, b, z), and sometimes denoted as the solution of the second
kind. This solution can be defined, when b ¢ Z, as a linear combination of the two power series solutions
of the confluent hypergeometric equation, according to

U(a,b,z) = % M(a,b,z) + % 2P MU +a-b2-b7), beZ (2.5)
(See 13.2.42 of DLMF and §1.3 of [3]; this relation is not given in AS.) More generally, U(a, b, z) is the
solution defined uniquely by the property

U(a,b,z) ~77% asz—o oo, for —m<argz<m. (2.6)

(See 13.2.6 of DLMF and 13.1.8 of AS.) The function U(a, b, z) has a branch point at z = 0, and we
choose the principal branch to have a branch cut along (—co, 0], corresponding to the principal branch of
77%. [See 13.2.6 of DLMF. Note that arg(z) refers to the phase of the generally complex number, z, and
that DLMF uses ph instead of arg.]

Since (see 5.5.3 of DLMF and 6.1.17 of AS)

T(u) T(1 = u) = @ foru ¢z, 2.7

we can use equation (2.5) to write for b ¢ Z

T M(a,b,z) 1op M(14+a—-5b,2-b,7)
sin(zb) | T +a—-b) T(b) ~ T(a) T(2 - b)

U(a,b,z) = (2.8)
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This relation is given as 13.1.3 in AS, equation (1.3.5) in Slater[3], and equation 18.4.2 of Arfken et
al. [15], but is not given in DLMF. More to the point, AS and Slater [3] assert that it can be defined in

the limit as

b approaches an integer, although neither shows the corresponding calculation.

To be clear, we indicate explicitly how U(a, b, z) can be obtained:

1. For b ¢ Z, U(a,b,z) is given by equation (2.5) or (2.8), or DLMF 13.2.42, or AS 13.1.3. If
a € Z<9, we can also use DLMF 13.2.7.

2. For b € Z<9;

For a ¢ Z, we use DLMF 13.2.11 followed by DLMF 13.2.9, or we can also use DLMF
13.2.30.

For a € Z<°, we can use DLMF 13.2.7.

Fora € Z<" and a > b, or equivalently, a € Z<° and a — b # —(1 + ¢) where g € Z>°, we
can also use DLMF 13.2.7 or DLMF 13.2.32.

Fora € Z<% and a < b, or equivalently, a € Z<° and a — b = —(1 +n) where n € Z>°, we can
use DLMF 13.2.7 or DLMF 13.2.8. (In discussing the constraints on a — b elsewhere, we use
q instead of n; we use n here only because DLMF 13.2.8 does.)

For a € Z79, we can use DLMF 13.2.11 followed by DLMF 13.2.9, or we can use DLMF
13.2.30.

Anytime DLMF 13.2.7isused and b € 79, the contents between the two =’s must be deleted,
since M (a, b, z) is not defined for b € Z<°.

3. For b € Z79:

For a ¢ Z, we can use DLMF 13.2.9 or DLMF 13.2.27.
For a € Z<°, we can use DLMF 13.2.7 or DLMF 13.2.10F.

Fora € Z>% and a > b, or equivalently a € Z>° and a — b # —(1 + ) where ¢ € Z>°, we can
use DLMF 13.2.9 or DLMF 13.2.27.

Fora € Z>% and a < b, or equivalently a € Z>° and a — b = —(1 + g) where ¢ € Z>°, we can
use DLMF 13.2.9 or DLMF 13.2.29.

4. For a € Z<° , and Vb, U(a, b, z) is given by DLMF 13.2.7. Of course, for b € Z<, the contents
between the two =’s in DLMF 13.2.7 must be deleted.

5. 13.2.27 of DLMF (with b = 14+nanda—n # —q, where g € Z>°) = (=1)"n! I'(a—n)U(a, 1+n, z).

6. 13.2.29 of DLMF (witha=1+m,b=14+nmeZ’°n e 72’ m <n) =

m!

(n-m-1)!

Ul +m,1+n,z).

7. 13.2.30 of DLMF (witha ¢ Z<% = —n, n € Z°°) = (-1)"*'(n + 1)! T'(a) U(a, -n, 2).

8. 13.2.32 of DLMF (with a = —m, b = —n,m € Z°°,n € Z2°,m < n) = 2L U(~m, -n, z).

m

9. DLMF 13.2.28 and 13.2.31 do not yield Tricomi functions.

10. Aslongasa—n ¢ 7<% 13.2.9 of DLMF contains In z terms. DLMF 13.2.27, 13.2.28, 13.2.30, and
13.2.31 also contain In z terms.

11. AS 13.1.6 does yield DLMF 13.2.9, but AS 13.1.6, apparently inadvertently, omits the requirement
that a ¢ Z<°.
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Much of this is noted in table 1.

Just as there are issues with the Kummer function, M (a, b, z), so there are also issues with the
Tricomi function, U(a, b,z). When a € Z<° and b ¢ Z<°, U(a, b, z) is proportional to M (a, b, z), i.e.,
the Tricomi function is proportional to the first power series solution. (See 13.2.7 and 13.2.10 of DLMF.)
In addition, when a — b = —(1 + g), where g € Z>° (or equivalently 1 +a — b € Z<°), and 2 - b ¢ Z<°,
then U(a, b, 7) is proportional to M(a, b, 7), i.e., the Tricomi function is proportional to the second
power serises solution (see 13.2.8 of DLMF). An additional complication is the occurrence of solutions
of the confluent hypergeometric equation which contain logarithmic terms. In §6.7.1, [38] notes that
“Whenever c is an integer”, M(a, ¢, z) and M(a — c + 1,2 — ¢, z) “provide one solution, and the second
solution will contain logarithmic terms”. It appears that this is not always true. As we will see, in only
six of the eight cases where b € Z is there a In z term; in Case 1.B, Case 1.C, Case 5.B, and Case 5.C,
the In z terms enter via U; in Case 4.B and Case 4.C, the In z terms enter via the non-standard second
solution; in Case 3.B and 6.C, U is one of the solutions and yet there are no In z terms. Reference [3]
also carefully discusses, in §1.5 and §1.5.1, the “logarithmic solutions when b is an integer”. Of course,
such solutions are usually not compatible with the boundary conditions appropriate for most problems
in physics.

_ Weare going to be more or less continually concerned with the circumstances under which M (a, b, z),
M(a,b,c),and U(a, b, 7) exist and whether we have two linearly independent solutions. The salient facts
are as follows:

1. When b € Z, M(a, b, ) and M(a, b, z) = only one solution. Specifically:

* b €Z° = M(a, b, () is not defined [see equation (2.2)].
e b=1= M(a,b,z) = M(a, b, 7) [see equation (2.4)].
s b €7 = M(a,b,z) is not defined [see equations (2.2) and (2.4)].

2.a€Z9 b¢Z0 = U(a,b,z) « M(a,b,z) [b ¢ ZX° = M(a, b, z) is defined. See 13.2.7 of
DLME.].

3. a-b=—-(1+q)orequivalently b = 1+a+q withqg € Z*°, and 1 —a—q ¢ Z<°* = U(a, b, z) «
M(a,b,2) lp=14arq= 29D M(-q, 1 -a-q,2) [l —a-q ¢ Z° = M(-q,1-a—q,z)is
defined. See 13.2.8 of DLMF.].

4. a ¢ 7<% b ¢ Z° = M(a, b,z) and U(a, b, z) are linearly independent solutions [a ¢ Z<" =
U(a,b,z) &« M(a,b,z),b ¢ Z<° = M(a, b, z) is defined].

5.b¢Z— M(a,b,z) and M(a, b, z) are linearly independent solutions [b ¢ 750 = M(a, b, z)
is defined, b # 1 = M(a,b,z) #+ M(a,b,z),b ¢ Z°> = M(a, b, 7) is defined].

6. beZ?2 b # l+a+q withg € 7?% = U(a, b, z) and M(a, b, z) are linearly independent solutions.
[b not an integer > 2 = M(a, b, z) is defined, b # 1 +a+qg = U(a, b, z) ¢« M(a, b, 7)].

7. Ua,b,z) = z'"? U(1 +a — b,2 — b, 7). This is the second of the Kummer transformations (see
13.2.40 of DLMF and 13.1.29 of AS).

The first three points are particularly crucial and must be kept in mind at all times; they tell us when at
most two of the three standard solutions are available for linearly independent solutions. The primary
implication of point 7 is that while determining whether M (a, b, z) and M (a, b, z) are linearly independent
solutions is straightforward, determining two forms of U that are linearly independent solutions is not
straightforward. Such information is given by 13.2.24 and 13.2.25 of DLMF, and 13.1.16-13.1.19 of AS,
but this information is apparently not needed for our purposes.

The constraintsa —b # —(1 +g)orb # l+a+qg,anda—-b =—(1l+¢g) or b = 1+a+ q, where
g € 7220, complicate matters. Let us consider the second requirement, b = 1 +g+aora—b = —(1 +¢q).

« From points 1 and 2 above, we see that, with a = —m, m € Z>°, b € Z>°, both M(-m, b, z) and
U(-m, b, 7) exist, but are not linearly independent solutions. This is relevant because a = —m with
m € Z2% and b € Z>0 ensure that a — b = —(1 + g) is satisfied.
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* From point 3, we see thata —b = —(1 +q) orb = 1+a+qgand 1 —a—-q ¢ Z<0, with
qeZ?°, = U(a,1+a+q,z) and M |p= 11a4q= 2“9 M(-q, 1 —a - q, z) are also not linearly
independent solutions.

. b=1+a+q,withqeZ>°meansthata¢Z<=>beZ,andaeZ<=>beZ.

eIfa-b=—-(1+¢q), withg € Z>0, then a = —m = b = —m + (1 + g), in which case
beZ® = m > 1+¢q.Thus,a = —m, withm > 1 +q = b € Z<°, or equivalently, a € Z<* and
a<—-(1+q) = bezZ.

 Moreover, ifa—b = —(1+¢g) withg € Z>°, thena = —m and b € Z°° = m < ¢, so thata = —m,
withm < ¢ = b € Z>°, or equivalently,a € Z<° and a > —g = b € Z>°.

e Ifa—b=—(1+gq) withq € Z°°, thena € 2°° = b € Z°°.

3. Navigating the labyrinth of values of aand b

On the one hand, one might expect that navigation through the labyrinth of values of a and b would
be facilitated by dividing up both a and b into three categories: not an integer, or equivalently, ¢ Z;
non-positive integer, or equivalently, € Z<; positive integer, or equivalently, € Z>°. On the other hand,
if one does that for b, the categorization of the values of a becomes more complicated. For each of the
three categories of a, there are two possibilities: a — b # —(1 + ), or equivalently, | +a — b ¢ Z<;
a—b=—(1+gq),orequivalently, 1 +a - b € Z<Y. These two different constraints on @ — b stem from
the definition of M, equation (2.4) and DLMF 13.2.8. (Here, as elsewhere, g € Z>°.)

The rational for this scheme stems from the entries, near the end of the previous section, in our
enumeration of the circumstances under which M(a, b, z), M(a, b, ¢), and U(a, b, z) exist and whether
they furnish two linearly independent solutions.

We designate the categories of a, i.e., the last six rows in table 1, in this section, below, with the
positive integers 1-6, as indicated in table 1. We designate the categories of b, i.e., the rightmost three
columns in table 1, with the capital letters A, B, C. We thus see that there are 18 distinct cases to be
considered. The detailed analysis of these cases, which results in table 1, is in the Appendix. We expect
that it is absolutely necessary to take the time and effort to follow and understand the reasoning of the
analysis in the Appendix in order to make intelligent and efficient use of table 1. To put it another way,
working through the Appendix should sufficiently sensitize the reader to the intricacies of the confluent
hypergeometric functions in order to facilitate the effective use of table 1.

We use table 1 in section 5 in our discussion of the bound states of the hydrogenic atom, and in
section 6 in our brief discussion of the cutoff Coulomb potenial, and we discuss it briefly in section 7.

We emphasize that of the eight cases where b € Z, only six, indicated by m in table 1, have solutions
with Inz terms. In Case 3.B, 13.2.7 and 13.2.32 of DLMF indicate no possibility of a Inz term in
U(a, b, 7). In Case 6.C, 13.2.9 indicates the possibility of a In z term in U(a, b, z), buta —n < 0, and so
there is no In z term.

We also note that of the 12 twelve distinct cases that occur, not counting the DNO (do not occur)
cases, only two, indicated by A in table 1, require solutions that are not one of the three standard solutions,
M(a,b,z), M(a,b,z),and U(a, b, z). We find it interesting, and perhaps curious, that these are the two
cases that give rise to the standard results for the bound states of the hydrogenic atom, although it is not
the non-standard solutions that are relevant.

In addition, in nine of the 12 cases that occur, there is more than one way of choosing two linearly
independent solutions (all of this is included in the table except for the fact that when b = 1, M = M):

1. Case 1.A. M, M ,and U are all valid, and so we can use any two of them.

2. Case 1.C. For b =1, M = M, and we can use M and U or M and U; otherwise, M is undefined
and we must use M and U.

3. Case 2.A. U M, and so we can use either M and U or M and M.
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Table 1. Labyrinth of values of a and b for the solutions of the confluent hypergeometric equation. The
symbols Z, Zéo, Z>0, and Z>0 refer to the sets of integers, non-positive integers, non-negative integers,
and positive integers, respectively. NB: ¢ € Z>. An & separates two linearly independent solutions.
DNO means that the case Does Not Occur. B means that one of the solutions contains a In z term. A means
that one of the solutions is not one of the standard solutions. M is given by equation (2.2), and M is given
by equations (2.2) and (2.4). U is given by equation (2.5) and DLMF 13.2.42 when b ¢ Z and otherwise
by the numbers in parentheses which refer to DLMF.

COLUMN A B C
ROW a\b beZ | bez bez>®
1 a¢’Z M&U | M&U (13.2.11) | M&U (13.2.9),
a-b#-(1+q) | M&M | and (13.2.9),0or | or (13.2.27)
M&U | (13230) = n
2 a¢’Z M&U | DNO DNO
a-b=-(1+q) | M&M
3 aezZ0 M&M | M&U (13.2.7), DNO
a-b+—-(1+q) | M&U | or (13.2.32)
4 aezs0 DNO | MorU(13.2.7), | MorU (13.2.7)
a-b=-(1+¢q) or (13.2.8) or (13.2.10)
2nd sol. (13.2.31) | 2nd sol. (13.2.28)
H A H A
5 aez™ M&U | M&U (13.2.11) | M&U (13.2.9)
a-b#-(1+q) | M&M | and (13.2.9),0or | or (13.2.27)
M&U | (13.230) m n
6 aez® DNO | DNO M&U (13.2.9),
a-b=-(1+gq) or (13.2.29)

4. Case 3.A. U «< M, and so we can use either M and M or U and M.

5. Case 4.B. M is not defined and U « M, so that we can use either M or U plus a non-standard

second solution, given by 13.2.31 of DLMF.

6. Case 4.C. U < M, M = M~for b =1, and M is not defined for b > 2; it follows that for b = 1
we can use any one of M, M, and U; for b > 2, we can use either M or U; in both cases, we also
require a non-standard second solution, given by 13.2.28 of DLMF.

7. Case 5.A. M, 1\7, and U are all valid, and so we can use any two of them.

8. Case 5.C. M = M for b = 1 and M is not defined for b > 2; so we can use either M or M plus U

for b = 1; we must use M and U for b > 2.

9. Case 6.C. M = M for b = 1 and M is not defined for b > 2; so we can use either M or M plus U

for b = 1; we must use M and U for b > 2.

Finally, we note that 13.2.27-13.2.32 of DLMF yield, respectively, U(a, b, z) for Case 1.C, the second
solution for Case 4.C, U(a, b, z) for Case 6.C, U(a, b, z) for Case 1.B and Case 5.B, the second solution
for Case 4.B, and U(a, b, z) for Case 3.B, aside from multiplicative constants.

The preferred way to use table 1 for a given problem is straightforward:

1. Based on the relevant values of a and b, determine what cases can apply for the problem.

2. For each case, investigate whether the possible solutions satisfy the relevant boundary conditions.

33203-9



W. N. Mathews Jr., M. A. Esrick, Z. Y. Teoh, J. K. Freericks

4. Identities and limits

In section 2, we have discussed the definitions and basic properties of the confluent hypergeometric
functions. In section 3, we have investigated the labyrinth of values of a and b and subjugated it to
produce table 1, which guides us in the choice of the solutions of Kummer’s equation. There are three
additional topics necessary for the effective use of confluent hypergeometric functions.

The first topic is the wealth of identities involving just confluent hypergeometric functions and the
equally large set of identities involving confluent hypergeometric functions and their derivatives. These
are presented clearly in §13.3 (i) and §13.3 (ii), respectively of the DLMF, and in §13.4 of AS.

The second topic is the identification of the confluent hypergeometric functions with the various
special functions. This is done clearly and completely in §13.6 of DLMF and §13.6 of AS (except that
13.6.2 and 13.6.5 of AS are, of course, wrong if b € Z<0).

The final topic that is absolutely necessary for the effective use of confluent hypergeometric functions
in determining whether a putative solution satisfies the correct boundary conditions, is the limiting values
of the confluent hypergeometric functions.

Throughout the discussions of M(a, b, z) that follow, b ¢ 759, since M (a, b, z) is not defined for
b ez

From equation (2.2) it follows that

M(a,b,z) ~%ezza_b [1 + O(|z|_1)] , asz— oo, for|arg(z)| < g, fora ¢ Z<°, 4.1

that is, for Rez > 0 and a ¢ Z<°. (See 13.2.4 and 13.2.23 of DLMF, and 13.1.4 of AS. Recall that arg(z)
refers to the phase of the generally complex number, z, and that DLMF uses ph instead of arg.) More
generally,

z a-b

r'(b) r'(b)
T ° "T-a

+ina _—a
Z

M(a,b,z) ~

[1 +0 (z‘l)] , asz— oo, 4.2)
T 3n <0 <0
for -5 < targ(z) < > unless a € 28" and b —a € Z>".

(See 13.2.4 and 13.7.2 of DLMF.) The requirements on arg(z) correspond to branch cuts on the negative
imaginary axis and on the positive imaginary axis, respectively. (This is mostly, but not exactly, as given
in 13.1.4, 13.1.5, and 13.5.1 of AS, and on page 60 of Slater [3].) We explicitly state equation (4.1) even
though it is included in equation (4.2) because it is the form most often needed. In addition, for a € Z<°,
or equivalently for a = —m with m € Z>°,

M(-m,b,z) ~ 7", forz— oo, 4.3)

since M (—m, b, 7) is a polynomial in z of m-th degree (see 13.2.7 of DLMF and the second entry in the
table of 13.1.3 of AS). More-or-less in connection with equation (4.2), we note the first of the Kummer
transformations,

M(a,b,z) =e* M(b —a,b,—7). (4.4)

(See 13.2.39 of DLMF and 13.1.27 of AS.)
For the limiting behavior of U(a, b, 7) as z — oo, we have

Ula,b,z) ~7¢ [1+0(z‘1)], for Jarg(2)] < . (4.5)

(See the comment after equation (2.6), 13.2.6 of DLMF, and 13.1.8 of AS.)
From equation (2.2), it is obvious that

M(a,b,z) > 1, asz—0. 4.6)

(See 13.2.13 of DLMF and 13.5.5 of AS.)
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The limiting behavior of U(a, b, z) as z — 0 is rather more complicated than that of M (a, b, 7). The
simple part is

U(_m’ b’ Z) = (_l)m(b)m + O(Z)7 as z — O’ (47)
and
U(~q+b-1,b,2)=(-1)412-b), """ +0 (z”) , asz—0, (4.8)
where m € Z%° and q € 779 (see 13.2.14 and 13.2.15 of DLMF). In all other cases:
-1
a. Ula,b,z)= % =t 10 (Zz_Reb), asz— 0, for Reb>2,b+#2. 4.9)
b. U(a,2,2) = mz_l +0(Inz), asz— 0. (4.10)
-1 ,,  T(d-b) 2-Reb
) b,7) = ——= _ ¢ 4.11
c. U(a,b,z2) ra) Z +F(1+a—b)+0(z ), asz — 0, 4.11)
for] <Reb <2, b+1.
1
d. Ual,z)= T [Inz+y(a)+2y] +0(zlnz), asz— 0, 4.12)
where ¥ (x) =T"(x)/T'(x) is the digamma function and y is Euler’s constant.
ra-»
e. Ula,b,z)= m +0 (z“Re"), asz — 0, for0 <Re(b) < 1. 4.13)
1
f. U(a,0,2) = F(+a) +0(zInz), asz— 0. (4.14)
ra-»
g. Ua,b,z)= ﬁ +0(z), asz >0, for Reb<0,b#0. (4.15)

(See 13.2.16-13.2.22 of DLMF and, except for the third equation above, 13.5.6 —13.5.12 of AS.)

5. Application to the bound states of the hydrogenic atom

As an example for which solutions with ¢ € Z<% and b € Z are relevant, we consider the quantum-
mechanical treatment of the bound states of the hydrogenic atom. We know that the electron wavefunction
has the usual separation of variables form for problems with spherical symmetry:

Yem(r,0,8) = Re(r) Yem(0, 9), (G.D

where (r, 0, ¢) are the standard spherical coordinates and Y7 ,,,(6, ¢) denotes the usual spherical har-
monics. The radial wavefunction, R, (r), satisfies the second order, linear, ordinary differential equation,

d%xe(r) 2M N Ze? _€(€+1)h2
dr? h? 4regr 2Mr?

xe(r) =0, (5.2)

where
xe(r) occr Re(r). 5.3)

Here, M is the reduced mass of the electron, 7 is Planck’s constant, E is the internal energy of the atom,
Z is the atomic number of the nucleus, and we use SI units.
We take
z =ckr, 54

where c is a pure number and k is a wavenumber. For bound states, we take

R k?
E = —m. (55)
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We thus obtain
d2 1 . £(€ + 1
Xt (r) Y ( )

a2 2t a2 e =0, (5.6)
where vy
e (5.7
records the strength of the Coulomb interaction, and
B 4reoh?
ao == (5.8)

is the reduced Bohr radius (which uses the reduced mass of the electron). We readily find that
xe(r) ~e*¢, as z — oo, (5.9)

and
xe(r) ~z% witha=€+1 or —¢, asz— 0. (5.10)

Thus, without loss of generality, we take
xe(r) =e*/¢ 2% we(z), witha=€+1 or —¢. (5.11)

Upon substituting this into equation (5.6), we readily obtain

d d
. wg+2(ai£)ﬂ+(%izﬂ)w£=o. (5.12)
dZ2 C dz c
We choose the “~” sign and ¢ = 2, so that this reduces to the confluent hypergeometric equation, in
equation (1.1), with
b Z
a==—-— andb=2(C+1) orb=-2¢ (5.13)
2 ka()
Then we have
Ye(r) = e%/2 ;b2 we(z), withb=2(£+1) or —2¢. (5.14)

Although it may be tempting to reject b = —2¢ on the grounds that it indicates that y, / 0 as
7z — 0, we choose not to do so, at least not until we see how w,(z) behaves as z — 0. Equation (1.1) is
a second-order, linear, ordinary differential equation, which thus has two linearly independent solutions,
and we must use the boundary conditions to determine the proper solutions to solve the problem. A typical
strategy, that is taught in quantum mechanics classes and employed in quantum mechanics textbooks, is
to pick M and U as the linearly independent solutions and then systematically eliminate solutions that fail
to satisfy the boundary conditions. However, this approach is fundamentally flawed in that M and U are
not always linearly independent solutions, because sometimes U « M, and even worse, we sometimes
are faced with values of b such that M is not even defined. As we have seen in the analysis leading to
table 1, the proper starting position is to consider M, U, and M as possible solutions, note that a priori
any two of them may be linearly independent solutions, and use the values of a and b to determine if we
can use two of them as the linearly independent solutions, and if so, which two. In this process, we also
learn that it is sometimes necessary to use yet another function as a linearly independent solution. Hence,
one must proceed very carefully, avoiding errors in logic, in order to solve the problem in full generality.

Asindicated, we are allowed two linearly independent solutions of Kummer’s equation. The immediate
issue is how to label the solutions. The first label is of course ¢, the orbital angular momentum quantum
number. Since there are two possible sets of values for a and b in equation (5.12) (with the “~” sign
and ¢ = 2), as indicated in equation (5.13), we use a second subscript, v, with values 1 and 2, to denote
these two different choices for the parameters a and b, which correspond to different entries in table 1.
We then use a third and final subscript, which also takes on the values 1 and 2, to denote the two linearly
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independent solutions. Accordingly, we write our general solution, for given values of ¢ and v, and
showing all the labels and arguments, as

X[y(ay, b,, Z) = C_z/szv/z[Ch}lw[vl(dv, by, Z) +C€U2w€112(avs by, Z)]s v=1or2, (5.15)

where Cy,1 and Cy, are constants,

Z

VA
ar=€C+1—- —, b1=2(€+1) and ap = € — —,
ka()

by = =2¢, (5.16)
ka()

and wyy1(ay, by, 7) and weyn(ay, by, z) are the two linearly independent solutions for the given values of
¢ and v. We are very careful to note that we have two linearly independent solutions here, as there is no
general notation we can use to explicitly specify them a priori, due to the issues that we discussed above.
Instead, we need to refer to table 1 in making our way through the labyrinth of values of a and b.

We first consider v = 1. Since b; = 2(£ + 1) is a positive integer, we are required to consider cases
1.C, 4.C, 5.C, and 6.C. Since M(a, b, z) and U(a, b, z) are solutions for all of these cases, except that
they are not distinct solutions for Case 4.C, it makes sense that we take

weii(ay, b1,z) = M(ay, b1, 2). (5.17)

We know from equation (4.1), and 13.2.4 and either 13.2.23 or 13.7.2 of DLMF, or 13.1.4 of AS, that
fora ¢ Z<0,

I'(b
M(a,b,z) ~ %Za_bez, as z — oo, (5.18)
so that )
e 20 20011 (ar, by, 2) ~ 772/R0672 ) as 7 — oo, (5.19)

This means we cannot satisfy the requirement of a normalizable and everywhere finite wavefunction
when a; ¢ Z<°. Hence, we must have a; € Z<°. Accordingly, we choose

Z
a=€f+1—-— =-n,, (520)
ka()

where n, € Z>O.~This immediately limits us to Case 4.C. The second solution then is not given by
U(ay,by,z) or M(ay, by, z), but rather by 13.2.28 of DLMF. However, since (a)y = (-n,)y = 1,
13.2.28 of DLMF always has a In z term, and so the second solution of Case 4.C is unacceptable, which
consequently requires Cyjo = 0. We next define the principal quantum number,

n=n,+{+1, (521
and note that since n, € Z>°, n > £ + 1. Equations (5.20) and (5.21) with k — k,, yield

V4
kndo

=n. (5.22)

Consequently, from equations (5.5) and (5.22), we obtain

1 ZZ 2
E,=-—— 2% (5.23)
n? 8mepdy

This is, of course, the usual result for the bound state energies of the hydrogenic atom. The radial
wavefunctions are then given by

Ry (r) e ™™ (kyr) M (=n + €+ 1,2€ + 2, 2k,r). (5.24)
According to 13.6.19 of DLMF and 13.6.9 of AS,

M(=n+€+1,2€+2,2k,r) o L2 2k,0r), (5.25)
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where the Lflz_[;_ll) are the associated Laguerre functions. Consequently,

Rue (r) = Nuee ™" (k) L 2k 1), (5.26)

where the NV, are the normalization constants. Equations (5.23) and (5.26) are the usual results.

We note that instead we could have used U(ay, b1, z) as our first attempt at a solution. In that case,
it is the behavior of U(ay, by,z) as r — 0, as given by equations (4.9) and (4.10), that forces us to
take a; € Z<° and restrict our considerations to Case 4.C. This yields the usual spectrum, and since
U(a,b,z) « M(a,b,z) whena € 759 and b ¢ Z<9, the usual wavefunctions also follow with the same
argument as given above.

Usually, a physicist would stop at this point, since a solution that satisfies all the requirements has
been obtained. However, it is instructive to consider the remaining possibilities. The obvious remaining
possibility is the solution for v = 2. However, we cannot be assured that we have even finished with
the solution for v = 1. For Case 1.C, 5.C, and 6.C, M(ay, by, z) cannot be prevented from diverging as
r — oo, and for Case 1.C and Case 5.C, U(ay, b1, z) contains In z terms. However, the second solution
for Case 6.C is potentially acceptable and so we really should consider it.

Since a; ¢ Z<° for Case 6.C, C1; = 0 and

wei2(ar, b1, z) =U(ay, by, 2). (5.27)
Since a € Z° for Case 6.C, we take ¢ — k%o = m, where m € Z>°, which gives a; = 1 + m . Then
wmz(al,bl,z) ZU(] +m,2€+2,z). (528)

According to equations (4.8)—(4.10), and DLMF 13.2.15-13.2.17, or AS 13.5.6 and 13.5.7,

wea(1+m,20+2,2) ~z77% asz—0, (5.29)
so that
Xea(r) ~e 22 g0 71720 — o722 =8 4y 0 as 7 — 0. (5.30)
Consequently, this case does not yield an acceptable solution.
We thus turn to v = 2 and the second set of values, a, and b,. We have b, = —2¢, which € Z<9.

Thus, we must consider cases 1.B, 3.B, 4.B, and 5.B. Since for all of these cases, both 1\7I(a2, b», z) and
U(ay, by, 7) are solutions, but not distinct solutions for Case 4.B, it makes sense to take

wei(az, b2,2) = M(az, b2, 2), (5.31)
or, more explicitly, with the use of equation (2.4),
wea1(az, b2, 2) = 2P M(1 +ay = by, 2 = by, 7). (5.32)

The reason that we should not reject y, « z% with @« = —€ as z — 0 now becomes clear. With
equations (5.14) and (5.32), x¢ ~ 702127002 = 41 49 7 5 (. Thus, it would have been wrong to reject
the asymptotic behavior y, ~ z* witha = - as z — 0.

According to 13.2.4 and either 13.2.23 or 13.7.2 of DLMF, we have, for 1 +a; — b, ¢ A

I'(2-b2)

1+ay—2b; .z 5.33
T tar—ba)° e’, asz— oo, (5.33)

weai(az, by, z) ~

so that, for | + a, — by ¢ Z<9,

e—Z/2Zb2/2 1+a2—3b2/2ez/2’

we21(az, by, z) ~ z as 7 — oo, (5.34)

So the only way that we can have a wavefunction that is normalizable and everywhere finite is for the
excluded case, 1 + ay — by € Z<°. Of course,

VA VA
l+ay-by=1-€——+20=C+1—- —. (535)
ka() ka()
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So we can take 1 +as — by = —n,, with n, € Z<°, which implies the energy quantization condition given
in equation (5.23). Then we have

M(1+ap; —by,2—-Dby,27) = M(-n,,2+2,7), (5.36)
which also yields equation (5.26). We note that
l+ar-by=-n, = a,=-1-20-n,, (5.37)
showing that a, € Z<°. Furthermore,
a—by, =—=(1+n,), (5.38)

These two constraints dictate Case 4.B. The second solution is given by 13.2.31 of DLMF with a = a;
andn =2{¢. Thena +n+ 1 = —n,, and since (—n, )9 = 1, this solution always has a In z term and must be
rejected. Thus the second choice of parameters, a, and b,, yields the same result as the more commonly
used first choice.

We note that just as for v = 1, we could have instead used U (a», b», z) as our first attempt at a solution.
In that case, it is again the behavior of U(a», b3, z) as r — 0 that forces us to take a; € 7Z<0 and restrict
our considerations to Case 4.B. This yields the usual spectrum, and since U(a, b, z) «« M(a, b, z) when
a € Z<% and b ¢ Z<, the usual wavefunctions again follow.

Just as there was a second possibility for v = 1, so there is a second possibility for v = 2. Since
1 +ay — by ¢ Z<9 for Case 1.B, Case 3.B, and Case 5.B, M cannot be prevented from diverging for
these cases; moreover, the second solutions for Case 1.B and 5.B contain In z terms. What remains is the
second solution of Case 3.B. Thus, we take Cpp; = 0 and

wexn(az, by, z) = U(az, by, 2). (5.39)

We take a, = —m, where m € Z>°. Then,

weaz(az, ba,z) = U(-m, =2(, z). (5.40)
According to equations (4.7), or DLMF 13.2.14,
weaz(az, ba, z) = (=1)"(=20)m + O(2). (5.41)

The requirement a;—by # —(1+¢), where ¢ € Z°°, = —m+2¢ > 0, —2(+m < 0,and —2f+m—1 < -1,
so that (=2¢),,, # 0. Then,
xor(r) ~e?2 770 50 asz— 0. (5.42)

Thus, Case 3.B cannot yield an acceptable solution.

We emphasize that one should exhaust all of the possibilities in the table for a given value of b,
including looking at the first and second solutions, before moving on to the next value of b.

This completes the analysis for the solution of the hydrogenic atom problem in quantum mechanics.
Note that the two choices for b, namely 2(¢ + 1) and —2¢, result in the same energy spectrum and the
same wavefunctions. In other words, there is no basis for rejecting @ = —¢ in equation (5.11). This is a
fact that is not noted in most, perhaps all, quantum mechanics textbooks.

It is remarkable and curious that the two cases that yield the standard results, Case 4.C for b = 2(£+1)
and Case 4.B for b = —2¢, are the two cases where the second linearly independent solution is not one of
M(a,b,z),M(a,b,z),orU(a,b,z).

Note how systematically and smoothly, and even spectacularly, table 1 guides and facilitates this
analysis.

In addition, the use of the confluent hypergeometric functions to explain the Rydberg series goes
further than just explaining the spectrum of hydrogen. In a series of four seminal papers [53-56], Hartree
worked out how the systematics of the Rydberg series for other atoms could be understood quantitatively
in terms of the properties of confluent hypergeometric functions. This work led to the origin of quantum
defect theory [57], in which the integer that appears in the formula for the hydrogen spectrum is replaced
for the alkalis by a fractionally shifted integer, something which had already been observed in experimental
data in the 1920s.
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6. The cutoff Coulomb potential

As an interesting and instructive example of the care that is necessary in working with confluent hy-
pergeometric functions, let us consider the cutoff Coulomb potential discussed by Othman, de Montigny,
and Marsiglio [17]. The potential is given by

6.1)

V(r) —e? /4negrg, for 0 < r < ro, region I,
r =
—e?J4neyr, forr > rg, region II,

where we again use SI units. The authors take

xe(p) = p*ePu(p), (6.2)

where y¢(p) is denoted as u(r) in reference [17], and p = kr. They show that in region II, v satisfies the
confluent hypergeometric equation with a = € + 1 — po/2, where pg = 2/kag with ag the Bohr radius,
b =2(£+1),and z = 2p. They then restrict their considerations to ¢ = 0, which simplifies, but does not
detract from the subsequent analysis.

The authors correctly note that @ must be reserved for matching the wavefunctions and their derivatives
with respect to r at rg, and consequently one is not free to choose a € Z<° to prevent M(a, b, z) from
diverging as 7 — co. The authors assume that a ¢ 759 and accordingly drop M (a, b, z7) anduse U(a, b, z)
in region II. They find that matching the wavefunctions and their derivatives with respect to r at r( results
in a ¢ Z, which corresponds to Case 1.C in the table. This indicates that the assumption that a ¢ Z< is
correct.

The authors then show that in the limit o — 0, pg — 2n, where n is the principal quantum number,
and consequently @ — an element of Z<, so that the usual energy spectrum follows. Moreover, the
Tricomi function is rendered finite at » = 0. The authors then note that the Tricomi function is an
associated Laguerre function, and thus the standard results for the bound state wavefunctions follow.
Since they are taking a limit, they always remain in Case 1.C.

However, solving the problem at ry = 0 requires a different analysis. One can continue to use an ansatz
that the solution is a linear combination of M and U for all cases except Case 4.C. After discovering that
none of those solutions satisfy the boundary conditions, one finds it necessary to use Case 4.C, for which
the ansatz is different. Even though the solutions found for 7o = 0 and for ry — 0 are exactly the same,
the ansatz and the procedure for obtaining them are different. Curiously, as the authors take the limit as
ro — 0, they find that ¢ — an element of Z<9, and M(a, b, z) and U(a, b, z) are the same aside from an
irrelevant multiplicative factor that is independent of z. Hence, there should be no surprise that the usual
results for hydrogen follow when ro — 0.

The authors conclude from their results that ““. . . even when we consider the usual Coulomb potential
without a cutoff we should include the Tricomi function as well as the Kummer solution.”. However,
even this is in general inadequate, in that initially one should consider M (a, b, 7), which is the Kummer
function, the first power series solution of the confluent hypergeometric equation, U(a, b, z), the Tricomi
function, and M (a, b, z), which is the second power series solution of the confluent hypergeometric
equation, as potential solutions. Morever, as we discussed in the previous section, for the hydrogenic
atom, even after dispensing with M (a, b, z), which is the same as M (a, b, z) for b = 1 and undefined for
b € 772, this initial approach indicates that cases 1.C, 5.C, and 6.C must be excluded. One thus settles
on the necessity of using Case 4.C, and finds that since the Tricomi function and the Kummer function
are proportional to one another, it is necessary to find an additional solution that is not one of the three
standard solutions for use in the ansatz. As a consequence, one is led to consider the solution given by
13.2.28 of DLMF. Since that solution diverges at r = 0, it can be excluded.

Our final point is that most, perhaps all, discussions of hydrogen and closely related systems do not
consider

xe(p) = p~fe ™ u(p). (6.3)

As we have seen in the previous section, both of equations (6.2) and (6.3) follow from the behavior of
xe(p) as r — co and r — 0. Equation (6.3) leads to the confluent hypergeometric equation for v with
a =—{ - pg/2 and b = —=2£. Much the same complications that occur when equation (6.2) is used also
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occur when equation (6.3) is used. The main difference is that since b € Z<9,itis M(a, b, z) rather than
M that must be excluded at the start. Moreover, equations (6.2) and (6.3) both lead to the standard bound
state energies and wavefunctions.

All of these considerations are fully taken into account in table 1 and the analysis in the Appendix,
which results in table 1. Accordingly, we see in a very clear and concrete way that when working with
confluent hypergeometric functions, one must carefully note the character of @ and b (¢ Z, € Z<°, € Z>°,
€ Z2?) and the constraintona — b [a — b # —(1 + g) ora — b = —(1 + g), where ¢ € Z>°] and choose
the two linearly independent solutions accordingly.

7. Summary and discussion

We have carefully and thoroughly discussed the definitions and basic properties of the confluent
hypergeometric functions that are necessary to effectively employ them in the solution of many problems
in physics, as well as in other areas of science, engineering, and even mathematics. We presented the
basic definitions of the Kummer and Tricomi functions, M (a, b, z) and U(a, b, z), respectively. We noted
that M (a, b,z) and M(a,b,z) = z' M1 +a — b,2 — b, z) are the two power series solutions of the
confluent hypergeometric equation and, together with U(a, b, z), are the three standard solutions with
which it is most convenient to begin considerations. We discussed in detail the circumstances in which
these three solutions are or are not defined, and are and are not distinct, emphasizing the complicated ways
in which the characters of a and b and the constraints on a — b are all-important. We emphasized the great
care that is needed in determining how these three standard solutions can be used to obtain two linearly
independent solutions and the circumstances in which they cannot. We noted that the numerous identities
involving just these functions and those involving these functions and their derivatives are presented
very clearly in the DLMF and AS. We also noted that the identification of the confluent hypergeometric
functions with the various special functions is presented clearly and completely in DLMF and, for the
most part, in AS. We also presented the limiting values as z — oo and as z — 0 that are needed to ensure
that the boundary conditions of the problem being considered are obeyed.

We believe that the most striking and useful result of our efforts is our navigation of the convoluted
and complicated labyrinth of values of a and b in which we emphasized the determination of two linearly
independent solutions of the confluent hypergeometric equation, how to obtain U(a, b, 7) when it is one
of the two linearly independent solutions, and what to do when only a single one of the three standard
solutions is distinct or survives. We present the details of this effort in the Appendix and the results of
this effort in section 3 in the form of a very comprehensive table 1, which we expect to be of considerable
use in the employment of the confluent hypergeometric functions.

We carefully apply all of this to what for many is a very familiar example, the problem of the quantum-
mechanical bound states of the hydrogenic atom. Our treatment of this problem is complete in that we
do not reject the case where y, ~ 770 asr — 0. That is, we consider both b = 2¢+ 1 and b = —2¢, and
we also consider the nonstandard second solutions in both cases. We find that the extent to which table 1
facilitates the use of confluent hypergeometric functions in solving the Schrodinger equation is startling.
We would expect this to be the case in other problems involving confluent hypergeometric functions.

We also considered the discussion of the bound state energies and wavefunctions of the cutoff
Coulomb potential considered by Othman, de Montigny, and Marsiglio [17]. We saw that this problem
emphasizes that considerable care is necessary in working with confluent hypergeometric functions.

We have endeavored to prepare this guide so that it will substantially aid the instruction and research
that involves Kummer’s differential equation and the confluent hypergeometric functions, especially for
energy eigenvalue problems in quantum mechanics, but also for other areas in science, engineering, and
even mathematics.
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Appendix: Analysis of the labyrinth of values of @ and b

What follows gives the reasoning that results in table 1, which is in section 3. We would expect that
taking the time and effort to follow and understand this reasoning would facilitate the intelligent and
efficient use of the table. This is, at least in part, because working through this Appendix should serve to
sensitize the reader to the intricacies of confluent hypergeometric functions.

We begin with the first category of a and work through the three categories of b that go with it. We
then proceed to the second category of a and go through the three categories of b, etc.

For each case, i.e., for each set of values of a and b, we proceed as follows:

1. If the constraint on a — b indicates that the case does not occur, so note.

2. Note any further consequences of the constraint on a — b.

3. Note which of the standard solutions, M (a, b, z), 1\71((,1, b,z),and U(a, b, 7), survive.
4. If U(a, b, z) is one of the surviving solutions, note how to determine it.
5

. If only one of the three standard solutions survives, or if only two of the standard solutions survive,
but they are not linearly independent, note how to obtain a second linearly independent solution.

6. For column A of the table, where multiple choices for the two linearly independent solutions are
possible, rank order the possible choices. For columns B and C, note the preferred choice for the
two linearly independent solutions.

Our criteria for determining the preferred choice for the two linearly independent solutions to use are:
1. If M(a, b, z) and U(a, b, 7) are both defined and linearly independent of one another, we use them.
2. IfU(a,b,z) x M(a,b,z), weuse M(a,b,z).

3. IfU(a,b,z) x M(a, b, z), we use M(a, b, 7).
4. Ifb=1,weuse M(a,b,z).

Case .A.a¢Zwitha—b+# —(1+qg),and b ¢Z

a-b# —(1+q) = eithera—b ¢ Z, or a > b. Thus, this case complements Case 2.A, for
which a < b. _

Allof M(a, b, z), M(a,b,z),and U(a, b, z) are solutions and are linearly independent of one another.

U(a, b, 7) is given by equation (2.5) or (2.6), or 13.2.42 of DLMF, or 13.1.3 of DLMF.

We can use any two of the solutions. Most often today, one uses M(a,b,z) and U(a, b, z), but
M(a,b,z) and M(a, b, 7) are also used, and of course M (a, b, z) and U(a, b, z) could also be used.

Case 1.B.a ¢ Zwitha —b # —(1 +¢), and b € Z=°

a¢Zandb € Zensuresa — b # —(1 +q). B

b € Z5° = M(a,b,z) is not defined; ¢ ¢ Z and b € Z<° = M is defined and is linearly
independent of U(a, b, 7), which is also defined.

U(a, b, z) is given by 13.2.11 and 13.2.9 of DLMF, or by 13.2.30 of DLMF, or with care by 13.1.7
and 13.1.6 of AS. Note that U(a, b, z) contains In z terms.

Thus, with b = —n, where n € Z>°, we use M (a, —n, z) and U(a, —n, z).
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Case 1.C.a ¢ Zwitha—b # —(1+¢),and b € Z*°

a¢Zandb €~Z>0 ensures a — b # —(1 + q). _

beZ%= M(a,b,z) = M(a,b,z)forb =1,and M(a, b, z) is not defined for b € Z>2. M(a, b, z)
and U(a, b, z) are linearly independent solutions.

Ul(a, b, 7) is given by 13.2.9 and also 13.2.27 of DLMF, or by 13.1.6 of AS. Note that it contains In z
terms.

With b = 1 +n, where n € Z>°, we take M (a, 1 +n,z) and U(a, 1 +n, 2).

Case2. A.a¢Zwitha—b=—-(1+qg),andb ¢ Z
a—b=—(1+q) = a < b. Thus, this case complements Case 1.A, for whicha > b ifa - b € Z.
Since b = 1 + a + g, according to 13.2.8 of DLMF, U(a, b, z) « M(a, b, 7).
U(a, b, 7) is given by equation (2.5) or 13.2.8 and 13.2.42 of DLMF.
We choose M(a, b,z) and U(a, b, z), with b = 1 + a + q. Of course, we could also use M(a, b, 7)
and M(a,b,z) .

Case2.B.a ¢ Zwitha —b=—(1+q),b € Z<°
This case does not occur, because a ¢ Z and b € Z<° precludes a — b = —(1 + q).

Case 2.C.a ¢ Zwitha—b=—-(1+¢q),b € Z>°
This case also does not occur, because a ¢ Z and b € Z>° precludes a — b = —(1 + q).

Case3.A.a € Z'witha—b # —-(1+¢),and b ¢ Z

acZYand b ¢ Zensures thata — b # —(1 + q).

ae€Z%and b ¢ Z<° = U(a, b, 7) <« M(a, b, ), according to 13.2.7 of DLMF.

U(a, b,z) is given by 13.2.7 or 13.2.42 of DLMF. _

With a = —m, where m € 779, we use M(—m, b, z) and M(—m, b, z). We could also use U(—m, b, z)
and M (—m, b, 7). Of course, since U(-m, b, 7) «« M(—m, b, z), the two choices are essentially the same.

Case 3.B.a € Z<® witha —b # —(1 + ¢), and b € Z=°

With @ = —m and b = —n, where m € Z>° and n € Z>, the constraint on @ — b implies m < n. Thus,
this case complements Case 4.B. _

We know that b € 79 = M(a, b, z) is not defined and M (a, b, z) is defined. Thus, U(a, b, z)
and M (a, b, 7) are linearly independent solutions.

Also, a € Z<9,b € Z<° = U(a, b, 7) is given by 13.2.7 of DLMF, with the contents between the
two =’s deleted, or by 13.2.32 of DLMF. Note despite the fact that b € Z, U(a, b, z) does not contain
any In z terms. _

It follows that we can use M (—m, —n, z) and U(-m, —n, 7).

Case 3.C.a € Z< witha — b # —(1 + ¢), and b € Z>°
Of course, a € Z<° and b € Z>° precludes a — b # —(1 + ¢). Thus, this case does not occur.

Case 4.A.a € Z'witha—b=—(1+q),and b ¢ Z
Since a € Z<° and b ¢ Z precludes a — b = —(1 + q), this case does not occur.

Case 4B.a € Z< witha —b =—(1+¢),and b € Z<°

With a = —m and b = —n, the constraint on a — b implies m > n. Thus, this case complements
Case 3.B.

b € Z<9 = M(a, b, 7) is not defined. Moreover, the constrainta —b = —(1+¢q) = b =1+a+gq,
so that according to 13.2.8 of DLMF, U(a, b, ) o M(a, b, z). Thus, out of our three standard solutions,
we have only one remaining, either U(a, b, z) or M(a, b, 7).

For U(a, b, z), we use 13.2.7 or 13.2.8 of DLMF.

We take the first solution to be M (—m, —n, z), although we could use U(a, b, 7).
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Moreover, since m > 1 +n, 13.2.31 of DLMF allows us to take as our second solution

n+l
nl (n+D(s-1!
¢ {;(n—s+1)!(m—n)xZ

- AZO (_rz;:_—nzil)é—[lnz+w(m—n—s) Y(l+s)—y2+s+n)]
man = (-m+n+s)!z°
+(—]) (m—n—])!s:;_nwg}, m21+n. (A.1)

Note the presence of the In z terms. Note that this is not U(-m, —n, 7).
This is the first case where we have needed to go beyond the three standard solutions to obtain a
second linearly independent solution.

Case 4.C.a € Z<° witha—b =—(1+¢),and b € Z*°

Witha = —m and b = 1 + n, where m € Z*° and n € Z>°, we have a — b = —1 — (m + n), and so
a—b =—(1+gq) is ensured.

According to 13.2.7 of DLMF,a € Z<°, b ¢ Z<° = U(a, b, z) o« M(a, b, z). Moreover, b € 270 =
forb =1,M(a,b,z) = M(a,b,z)andforb € Z>2, M(a, b, z) is not defined. So we have only one distinct
solution left from our three usual solutions, either M (a, b, z) or U(a, b, 7).

We could get U(a, b, z) from 13.2.7 or 13.2.10 of DLMF,

We take M (—m, 1 + n, z) as our first solution, although we could use U(—m, 1 + n, 7).

Since a = —m and b = 1 = n, we can use 13.2.28 of DLMF,

nl(s —1)! s
Z (n— (1 +m)sZ

_Z(( m)s z lnz+w(]+m_s)_w(1+s)—w(]+s+n)]

1 +n) st

(s-1-m!z
+(=1)"*"m! - (A2)
i _; (n+1); s!
as our second solution. Note the presence of the In z terms. Note that this is not U(-m, 1 + n, 7).

This is the second case where we have needed to go beyond the three standard solutions to obtain a

second linearly independent solution.

Case 5.A.a € Z%witha-b £ —(1+q), b ¢7Z

Obviously,a € Z>°, b ¢ Z ensures a — b # —(1 + g).

It should be clear that all three of our usual solutions are valid.

Since b ¢ Z , we can obtain U(a, b, z) from equation (2.5) or (2.6), or 13.2.42 of DLMF or 13.1.3
of AS.

Consequently, with @ = 1 +m, we can take M (1 +m, b, z) and U(1 + m, b, z) as our two solutions.
We could, of course, use any two of M (1 +m,b,z), M(1 +m,b,z),and U(1 +m, b, 7).

Case 5B.a € Z70 witha—b # —(1 +¢q), b € Z<°

Witha = 1+m and b = —n, where m € Z>° and n € Z>°, we have @ — b = 1 + m + n, and so the
constraint is ensured.

Asusual, b € Z<° = M (a, b, 7) is not defined.

U(a, b, z) follows from 13.2.11 and 13.2.9, or 13.2.30, of DLMF, or with care by 13.1.7 and 13.1.6
of AS. Note carefully that both gamma functions in 13.2.9 will be finite, and so there will be In z terms.

Accordingly, we take M (1 + m,—n, z) and U(1 + m, —n, 7) as our two solutions.
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Case 5.C.a € Z70 witha—b # —(1+q),b € Z°°

Obviously, a — b # —(1 + q) & a > b. Thus, this case complements Case 6.C.

b € Z7° = we can dispense with M (a, b, z).

U(a, b, 7) can be obtained from 13.2.9 or 13.2.27 of DLMEF, or 13.1.6 of AS. Note that there will
be In z terms.

Wecanputa = 1+mand b = 14+n, where m € Z>° andn € Z>°, withm > n, and take M (1+m, 1+n, z)

and U(1 +m, 1 +n, z) as our solutions.

Case 6.A.a € Z7%witha—b=-(1+q),b ¢Z
Obviously, a € Z>° and b ¢ Z ensures a — b # —(1 + ¢), and so this case does not occur.

Case 6.B.a € Z70 witha —b =—(1+¢q), b € Z<°

Clearly a € Z>°, b € Z<0 ensures that a — b = —(1 + ¢) cannot be satisfied. Thus, this case also does
not occur.

Case 6.C.a € Z70 witha—b=—-(1+¢q), b e 72>

We see that a — b = —(1 + q) requires thata < b — 1, or witha = 1 +m and b = 1 +n, where m € Z>°
and n € Z>%, we must have m < n. Thus, this case complements Case 5.C.

As we know all too well, b € Z>° = M (a, b, z) can be dispensed with.

U(a, b,z)isgivenby 13.2.9 or 13.2.29 of DLMF, or 13.1.6 of AS. Since I'(a—n) = I'(m—n+1) — oo,
even though b € Z, there are no In z terms in U(a, b, 7).

Thus, witha = 1+ m,b = 1 + n, we can take M (a, b, z) and U(a, b, z) as our two solutions.

As we have noted, all of these results are summarized in table 1, which can be found in section 3.
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JoBiagHVK ¢i3nKa 3 po3B’A3yBaHHA piBHAHHA Kymepa Ta
KOHGNEHTHUX rinepreoMmeTpuUYHUX GYHKL N

Y. H. MeTbto3 mon.", M. A. E3pik’, 3. Teo?, Ax. K. ®pipikc '

T disnunuii dakynbTeT, JXKOPXKTAYHCbKWA YHIBEPCUTET, NiBHIYHO-3axigHi 37-a i O ByA., BawwiHrToH, okpyr
Konym6is, CLLA 20057-0995

2 MatematnuHuit dakynbTeT, CAMeHbCbKMI YHiBepcuTeT Manaiisii, pkanaH CyHcypisi, BaHgap CyHcypisi, CenaHr,
43900, CenaHro, Manaiisisa

KoHntoeHTHe rinepreomeTpuyHe piBHAHHSA, TaKOX BioMe K PiBHAHA Kymepa, € 04HWM 3 HallBaXKNUBILLNX AW-
depeHLianbHUX piBHAHL Gi3vkuy, XiMii Ta iHxXeHepHNX gncunnaid. Moro gBoma NOAIHOMHUMU PO3B'A3KaMM €
obyHkuis Kymepa M (a, b, z), Ky 4acTo Ha3MBaOTL KOHGNOEHTHOIO TiNepreoMeTpuUHo GyHKLiE nepLIoro
poay, a Takox A7I(a, b,z) = b M(1+a—b,2-D,z), ae aib -napametpu, Wo BXOAATb y AndepeHLiansHe
PiBHSIHHA. 3a3BMYali BUKOPVCTOBYIOTb TakoX i TPETHO PyHKLito (GpyHKLto Tpikomi), U (a, b, z), Ky Aekonu Hasun-
BatOTb KOHP/IOEHTHOIO rinepreoMeTpUYHOI GpYHKLIEN APYroro poAy, fika TakoX € po3B'a3koM KOHGAOEHTHOro
rinepreoMeTp1YHOro piBHAHHA. Ha BiAMiHY Bij 3aranbHONPUAHATOI NPaKTUKKW, NPW NOLLYKY ABOX NiHIAHO He-
3aNeXHUX Po3B'A3KiB KOHGIOEHTHOrO rinepreoMeTpUYHOro PiBHAHHS CAig pPo3rasgati Ak MiHIMyM yci Ui Tpn
oyHkuji. [cHyOTb cuTyauii, konn a, b i a — b € uinnmn yncnamu, ge ofHa 3 Uux OYHKLi € HEBU3HAYEHOH,
abo ABi 3 LMX PyHKLI He € NiHIHO He3anexHUMK, abo OAMH 3 NiHIHO He3aNeXHUX pPo3B'A3KiB Lboro agnde-
peHLianbHOro PiBHAHHA BiAPi3HAETLCA Bif LX TPbOX GYHKLiA. barato Takmx 0co61MBMX BUNAAKIB € B TOYHOCTI
TakuMWU, AKi BUHWMKaKOTb NpW po3B'a3yBaHHs $i3nyHMX 3a4ay. Lle Bce Npu3BoAMTL 4O BENKMX HEMOPO3YMiHb
LLI0AO0 TOTO, fIK CaMe C/1iA NiAXOANTN A0 PO3B'A3yBaHHA KOHPIOEHTHYX rinepreoMeTpuyHNX PiBHAHb, He3BaxXa-
HOUM Ha HAsIBHICTb aBTOPUTETHUX AOBIAKOBUX AKepen, Taknx ik Lmdpoa bibnioTeka MaTeMaTUUHNX YHKLLA
HavioHanbHOro iHCTUTYTY CTaHAAPTIB | TEXHONOTIA. Y AaHi CTaTTi MU KOPEKTHO OMMUCYEMO YCi Lii BUNaAKw, a Ta-
KOX Te, AKMMU € ABHI GOPMYNN ANA ABOX NiHINHO HE3a1eXHWX PO3B'A3KiB KOH(IHOEHTHOrO rinepreoMeTpUYHOro
piBHSIHHSA. [poLieypy KOPEKTHOro Po3B'A3yBaHHA KOHGAOEHTHOTO rinepreoMeTpMYHOro PiBHAHHA NijcyMoBa-
HO Yy BUIAsAAI 3py4HOI Tabaunui. B akocTi npurknagdy Ui po3s’a3Kku BUKOPUCTAHO ANS AOCNIAXKEHHS 3B'A3aHNX CTaHiB
BOJHEeNOAiGHOro aToMa, BUMPaBASoYUM CTaHAAPTHUIA NiAXi4, onucaHuii y nigpyvHukax. Mum Takox KOpoTko po3-
rNsAaEMo 06pi3aHNi KYNOHIBCbKMIA NoTeHLian. Mu cnogiBaeMocs, Lo BUKNAAEHI METOANKM ByayTb KOPUCHUMN
Ana Gi3nKiB Npy po3B'A3yBaHHI 3a4ayY, B AKNX BUHUKAE KOH(IIOEHTHE rinepreoMeTpryHe gndepeHLianbHe pis-
HAHHS.

KntouoBi cnoBa: piBHAHHA Kymepa, KOHPNHOEHTHE rinepreoMeTpuyHe piBHAHHA, QyHKUis Kymepa, ¢yHKyis
Tpikomi
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