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ABSTRACT: This study describes a hybrid framework for post-hazard building performance 
assessments. The framework relies upon rapid imaging data collected by regional scout teams 
being integrated into broader data platforms that are parsed by virtual teams of hazards engineers 
to efficiently create robust performance assessment datasets. The study also pilots a machine-in-
the-loop approach whereby deep learning and computer vision-based models are used to 
automatically define common building attributes, enabling hazard engineers to focus more of their 
efforts on precise damage quantification and other more nuanced elements of performance 
assessments. The framework shows promise, but to achieve optimal accuracy of the automated 
methods requires regional tuning. 
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1 INTRODUCTION 

Post-event reconnaissance has long played a critical role in natural hazards engineering, spur-
ring advancements in science, policy, and practice. Traditional approaches to reconnaissance have 
primarily utilized on-site assessments with high-resolution, GPS-enabled cameras and field notes 
capturing perishable information on select sample structures. Alternatively, for larger areas, coarse 
damage assessments have been conducted using remote sensing technologies such as medium and 
high-resolution aerial imagery (e.g., Massarra et al. 2019). Digital data collection and virtual as-
sessment platforms (e.g., Gurley and Masters, 2011; Kijewski-Correa et al. 2014; Roueche et al. 
2018) have also been developed and integrated into reconnaissance workflows. However, the re-
connaissance community currently has much greater capability to capture perishable field data 
than it does to efficiently parse and transform it into useful engineering data. The Structural Ex-
treme Events Reconnaissance (StEER) network was formed in 2018 to help address this challenge 
amongst others (Kijewski-Correa et al. 2021). The mission of StEER is to deepen the capacity of 
the Natural Hazards Engineering (NHE) community for coordinated and standardized assessments 
of the performance of the built environment following natural hazard events. To date, enhancement 
and standardization of the perishable data captured by field reconnaissance teams is largely a hu-
man effort. The need exists for hybridized human-in-the-loop or machine-in-the-loop approaches 
to effectively leverage automation in producing robust yet accurate reconnaissance datasets. The 
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objective of this study is to pilot a hybrid framework for post-hazard building performance assess-
ments used by the StEER network following Hurricane Ida (2021), and highlight advantages, chal-
lenges, and remaining gaps of this approach. 

2 METHODS 

2.1 Hurricanes Laura (2020) and Ida (2021) Data Collection 
Hurricanes Laura (Category 4, landfall on 27 August 2020) and Ida (Category 4, landfall on 29 

August 2021) were two of four hurricane landfalls in Louisiana in 2020 and 2021, causing over 
$100B in economic losses between them. Hurricane Laura caused the heaviest damage in Lake 
Charles, LA, where peak 3-second gusts (at 10 m height in open terrain) were measured at 59 m/s 
(132 mph), near design levels (Roueche et al. 2020). Hurricane Ida made landfall near Port Four-
chon, LA, before impacting Houma, New Orleans, and other communities in southeast LA. Peak 
gust wind speeds were estimated to be 57 m/s (128 mph) near landfall (Prevatt et al. 2021). In part 
by limitations caused by the ongoing COVID-19 pandemic, the StEER network responded to both 
events by activating a network of virtual assessment team members, while simultaneously deploy-
ing small scout teams led by the first and second authors equipped with rapid imaging techniques 
including vehicle-mounted street-level panoramic imaging platforms and Unmanned Aerial Sys-
tems (UAS). For Hurricane Laura, the scout teams also performed targeted forensic load path as-
sessments within select building clusters of interest. Additional street-level panoramas were cap-
tured by the University of Hawaii National Disaster Preparedness and Resilience Center and the 
NHERI RAPID Experimental Facility (Berman et al. 2020) and used in this study. All panoramic 
images were collected using NC Tech iStar Pulsar cameras, which captured a 360° by 160° field 
of view within an 11k stitched panorama (11000 by 5500 pixels) geotagged with ~2.5 m horizontal 
accuracy. A summary of the panoramic imagery collected by StEER following Hurricanes Laura 
(2020) and Ida (2021) is provided in Table 1.  

 
Table 1. Surface-level panoramas captured by StEER during Hurricanes Laura and Ida.  

 Hurricane Laura (2020) Hurricane Ida (2021) 
Total Length of Routes (km) 842 541 
Total Number of Panoramas 842,496 135,250 

2.2 Virtual Reconnaissance 
Following the deployments, imagery was archived on the DesignSafe-CI platform (Rathje et al. 

2017) and uploaded to cloud-based viewing platforms to facilitate easy access for remote assess-
ments. Surface-level panoramas were uploaded to the Mapillary imaging platform. UAS imagery 
was processed into 2D orthomosaics and 3D point clouds and hosted on a cloud-based platform 
using proprietary software with licenses available through the NHERI RAPID EF. A database of 
supplemental resources was also generated, including aerial imagery from NOAA, property ap-
praisal websites for affected parishes, and realtor websites. Building performance datasets were 
then constructed via remote assessments based on the various pre-storm and post-storm data 
sources. Samples were generated in clusters across the hazard gradient using pre-storm imagery to 
remove potential damage biases. Clusters were primarily selected in regions where overlapping 
terrestrial and aerial imagery was present, and, for Hurricane Laura (2020), where forensic load 
path assessments had been conducted that could be used to infer structural characteristics for sim-
ilar buildings within the cluster.  
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For Hurricane Laura (2020), 439 virtual assessments were conducted manually by a team of 
undergraduate students from Auburn University and the University of Notre Dame. For Hurricane 
Ida (2021), virtual assessments were conducted manually on a targeted dataset of 540 buildings. 
Targets were selected without prior knowledge of their damage levels, and were stratified based 
on occupancy, location with the hurricane wind field, and approximate year of construction. As a 
feasibility study, assessments focused on a limited subset (Table 2) of the full suite of data fields 
typically documented in StEER building performance datasets (Roueche et al. 2021). 

The virtual assessments were conducted by manually reviewing the available data sources, 
which included pre- and post-event aerial and surface-level panoramic imagery, oblique imagery 
from the Civil Air Patrol, and realtor websites. Review of multiple sources was often needed be-
cause each source had different geospatial and temporal extents, and resolution. For example, the 
NOAA post-event aerial imagery was typically collected the soonest after landfall (typically within 
24-48 hours), before repairs and most cleanup began, but coverage was not universal, and resolu-
tion was better in certain areas than others. Post-storm surface-level panoramas provided necessary 
views of the elevations of each target, and resolution was typically sufficient for precise damage 
quantification, but some of the data was collected after initial cleanup and roof tarping began, 
obscuring some of the key damage details, and all four elevations of the buildings were not always 
visible.  

For Hurricane Laura (2020), each virtual assessment took approximately 16 minutes to com-
plete on average. Much of the time required was in assembling the various sources for a given 
record and comparing between them. To help facilitate more rapid reconnaissance for Hurricane 
Ida, pre-populated fields were added to the Fulcrum app that automatically generated web links to 
pre- and post-event imagery wherever possible using the location of the target building and mod-
ified, location-specific URLs. The scope of the virtual assessments were also reduced slightly (ig-
noring roof slope, structural system, foundation type, and wall cladding). On average, the manual 
reconnaissance process took just over 9 minutes for each assessment for Hurricane Ida (2021).      

 
Table 2. Data fields prioritized for virtual reconnaissance common to both storms. 

Name Data Type Description 
Latitude, Longitude Numeric GPS coordinates for the centroid of the building footprint 
Investigator Text Name of the virtual investigator 
Address Text Physical address of the building 
Occupancy Single 

Choice 
Building occupancy class per the International Code Council 
building code 

Roof Shape Multi-
Choice 

Gable, Hip, Flat or combinations of the above 

Number of Stories Numeric Number of stories, ignoring ground floors of elevated build-
ings 

First Floor Elevation Numeric Hight above ground to the lowest horizontal structural mem-
ber 

Roof Structure Damage Percentage Roof framing members damaged  
Roof Substrate Damage Percentage Roof substrate (i.e., decking) damage (if present) 
Roof Cover Damage Percentage Roof cover damaged or missing 
Wall Structure Damage Percentage Wall framing members damaged or missing 
Wall Substrate Damage Percentage Wall substrate (i.e., sheathing) damaged or missing 
Wall Cladding Damage Percentage Wall cladding damaged or missing 
Foundation Failure Binary Indicator for whether failure occurred at the foundation level 
Wind Damage Rating Categorical Discrete damage levels based on component-level wind-in-

duced damage 
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Surge Damage Rating Categorical Discrete damage levels based on evidence of surge impacts 
   

2.3 Automated Attribute Assignment 
The Building Recognition using Artificial Intelligence at Large Scale (BRAILS) tool developed 

by the NHERI SimCenter (NHERI SimCenter 2022a) was employed to demonstrate the potential 
for automating attribute assignments within a hybridized, machine-in-the-loop reconnaissance 
framework. BRAILS was developed as a tool for building out exposure datasets to facilitate re-
gional simulations of the response of the built environment to natural hazards at the building scale. 
In alignment with its original purpose, BRAILS contains, amongst others, modules for detecting 
the roof shape and roof cover type, using pre-event aerial imagery as the input, and modules for 
classifying building occupancy, detecting number of floors, presence of raised foundations, gar-
ages, chimneys, and predicting building first-floor elevation, height, roof pitch and façade-to-win-
dow ratios using pre-event street-level imagery as the input. BRAILS utilizes machine learning, 
deep learning, and computer vision techniques for these modules, and is written in Python as an 
open-source tool for the research community.  

The baseline occupancy classifier in BRAILS (Wang 2021) is built on ResNet50, a residual 
deep learning neural network model with 50 layers, and is trained on 15,743 labeled images. The 
occupancy labels for this dataset were obtained from two sources: OpenStreetMaps and New Jer-
sey Department of Environmental Protection Building Footprints dataset, with 7,942, and 7,801 
images drawn from each data source respectively. The baseline roof shape classifier in BRAILS 
(Wang 2020) was also trained using ResNet50 architecture, with training data consisting of 6,000 
labeled images, 2,000 each of the three classes – flat, gable, and hip. The labels were assigned 
from OpenStreetMap and were manually reviewed to ensure they areaccurate and paired with im-
ages free from obstructions with clear views of the entire roof. The Number of Floors detector 
(Cetiner 2020) was trained on the EfficientDet-D4 architecture using a dataset of 80,000 building 
images from SimCenter testbeds in New Jersey and Louisiana. Finally, the Elevated Foundation 
classifier (Hornauer 2020) uses the ResNet-50 architecture and was trained on a dataset of 1,200 
building images manually labeled from an early version of StEER. For additional implementation 
details and information on rest of the BRAILS modules please see official BRAILS Documenta-
tion (NHERI SimCenter 2022b).  

For this pilot study, each of these four BRAILS modules were used on the Hurricane Ida dataset 
only, because (1) it contained a more diverse set of buildings relative to Hurricane Laura, which 
was primarily composed of single-story, single-family residential buildings; and (2) the input im-
agery from Google Satellite and Street View for the target buildings were extracted prior to the 
imagery being updated with post-storm conditions.  

The initial predictions for roof shape, occupancy, number of floors and elevated foundation 
using BRAILS involved the following steps: 

1) Pre-event aerial and ground-based imagery was downloaded for each building using the 
location of the building and the Google Maps and Google Street View APIs. 

2) Images were manually reviewed to discard any unsuitable images, such as those with 
blocked views of the target building due to trees, and blank images due to no Street View 
data being available. Predictions were only made on the remaining buildings. 

3) The BRAILS modules were executed on the input images using a local PC workstation. 
4) The manually tagged StEER data was mapped to the BRAILS classification options to eval-

uate the differences between the manual and predicted attribute classes. 
Regarding the final step, StEER protocols specify a more refined class list than what is currently 

implemented in BRAILS, and subsequently the more refined class list had to be mapped to the 
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BRAILS classification lists. The BRAILS Roof Type Classifier has a class for flat, gabled, and 
hipped roofs. Any StEER roof shape labeled hip, complex, or gable/hip combo, was labeled as hip 
for the BRAILS retraining. The remainder of the StEER classifications corresponded to gable or 
flat and were matched accordingly to the BRAILS classification. The Occupancy Classifier label 
COM1 was mapped to any non-residential structure in the dataset (i.e., school, other institutional, 
utilities buildings), RES1 was mapped to all single-family homes, and RES2 was mapped to all 
multi-family homes including duplexes. Number of stories did not require any re-mapping. For 
elevated foundations, StEER quantifies the first-floor elevation above ground level, while the 
BRAILS Elevated Foundation module is binary, indicating whether the building is elevated or not. 
It was assumed that any building in the StEER dataset with a first-floor elevation greater than 4 ft 
has an elevated foundation. 

2.4 Retraining BRAILS     
The BRAILS classifiers were originally trained on diverse datasets that may not be well-tuned 

to regional construction practices for a given target region. Therefore, a secondary goal of the 
study was to evaluate the effect on the prediction accuracy of BRAILS by retraining the modules 
on a portion of the Hurricane Ida dataset and using the retrained model to predict the attributes of 
the remaining portion of the dataset.  

As a pilot study, two of the four modules used in this analysis were therefore retrained using a 
subset of images and tested against the remaining images. The retraining splits for each module 
are summarized in Table 3. A weighted average was used to distribute the percentage of each 
module’s retraining images. An additional retraining split was used where an equal number of 
images from each class was used to train the module, as unbalanced training data has been shown 
to negatively impact the predictive capabilities of such classifiers (Buda et al. 2018).  

Table 3. Number of images used to retrain the BRAILS roof type and occupancy classifiers by retraining 
version. Version 1.0 refers to the pretrained classifiers. 

Module Classification Total No. 
of Images 

Version 2 
(10%) 

Version 3 
(25%) 

Version 4 
(50%) 

Version 5 
(75%) 

Version 6 
(Equal) 

Roof Type 
Classifier 

Flat 14 1 4 7 11 14 
Gable 224 22 56 112 168 14 
Hip 200 20 50 100 150 14 

Occupancy 
Classifier 

COM1 29 3 7 15 22 20 
RES1 225 23 56 113 169 20 
RES2 20 2 5 10 15 20 

3 RESULTS 

Using the pretrained BRAILS classifiers on the screened Hurricane Ida (2021) dataset produced 
mixed results when comparing to the manually-assigned labels. The occupancy and elevated foun-
dation classifier predictions matched 68% and 64% of the manual labels respectively, while the 
roof type and number of floors predictions only matched 57% and 56% of the manual labels. The 
F1-scores (calculated as the weighted average F1 score across all labels) are also provided in Table 
4. Disagreements between occupancy labels primarily centered around false positives, with the 
BRAILS occupancy classifier being overly aggressive in assigning COM labels to what were ac-
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tually RES1 occupancies (see Figure 4(a)). For Elevated Foundations, a review of the disagree-
ments between predicted and manual labels illustrates the confounding factor of breakaway walls. 
As illustrated in Figure xx, it can be challenging even for a human to classify whether a building 
is an elevated one-story building versus a two-story. Data librarians assigning manual tags are 
instructed to look for evidence such as exterior stairs, perimeter walls not completely surrounding 
the footprint of the ground floor, and location of the home (i.e., coastal buildings are typically 
elevated, with the ground floor consisting of breakaway walls that are not constructed to code). To 
a computer trained on identifying a structure constructed atop piers, it is therefore no surprise that 
elevated one-story homes with breakaway walls are classified as two-story, and indeed, for some 
applications, this may be an appropriate classification. For roof type, the pretrained BRAILS clas-
sifier matches hipped roof labels nearly 80% of the time (see Figure 4(a)) but struggled with gable 
and flat roofs. After reviewing the images, some of the challenges in roof shape classification may 
be related to the frequent use of metal roofs in coastal areas (the reflectivity of the surfaces and 
lack of patterns can wash out gable ridgelines), and the frequent presence of secondary roof sur-
faces (e.g., a roof over the front porch that ties into the main roof). Finally, for the number of 
floors, elevated homes again were a challenge, along with architectural dormers in one-story 
homes (Figure 1). The classifiers were more accurate with more regular construction. 
 

  
Figure 1. Two examples of homes with a manual label of one-story but predicted labels of two story, due 

to (left) an elevated foundation, and (right) the presence of architectural dormers.  

 
Given the apparent difficulties in recognizing some of the patterns in regional construction, par-
ticularly coastal regions, two of the BRAILS classifiers – specifically occupancy and roof shape – 
were retrained at different levels as described in Section 2.4. These two classifiers were chosen 
because they were the simpler of the two, and each represented one of the two input image types 
(aerial imagery vs street-level imagery).  
 
Regenerating the predictions using the retrained BRAILS roof shape and occupancy classifiers 
showed steady improvement for occupancy with additional training data (Figure 2, Table 5), but 
inconsistent results for roof type (Figure 3, Table 5). Confusion matrices for both classifiers and 
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all retraining regimens are given in Figure 4 and Figure 5. Retraining with a small proportion of 
the regional data resulted in fewer matches for occupancy, but a modest improvement for roof 
type, regardless of whether the retraining data was equally distributed between the labels (V6.0) 
or weighted based on the population distribution (V2.0). When 25% of the manually tagged dataset 
was used to retrain the classifiers, accuracy improved to over 70% for both classifiers. The best 
performance came with 75% of the data used for retraining. It should be noted that all of these 
results are deterministic, and given the relatively small sample sizes for this type of problem, a 
bootstrapping approach would be better suited for determining a more robust estimate of accuracy.    

Table 4: Pretrained BRAILS classifiers accuracy and weighted average F1-Score. 

 Occupancy 
Classifier 

Roof Type 
Classifier 

Number of 
Floors Detector 

Foundation 
Classifier 

N 274 438 270 262 
% Correct1 0.67 0.56 0.52 0.695 

F1-Score 0.713 0.664 0.543 0.695 
1 For purposes of this comparison, the manual labels are deemed correct, but the manual labels are also 
potentially in error, despite multiple checks, and some labels can be subjective.  
 

Table 5: Effect of increasing the number of retraining images on the accuracy of the occupancy and roof 
type classifiers. 

 
 

 

Version Training 
Percentage 

Occupancy Classifier Roof Type Classifier 

% Correct F1 Score % Correct F1 Score 

V1.0 0% 0.67 0.713 0.52 0.543 
V2.0 10% 0.71 0.748 0.62 0.593 
V3.0 25% 0.80 0.823 0.71 0.699 
V4.0 50% 0.87 0.875 0.70 0.687 
V5.0 75% 0.90 0.911 0.79 0.784 
V6.0 Equal 0.7 0.789 0.63 0.638 



 
 

 
 

Page 8 of 10 
 

Figure 2: Changes in (left) accuracy and (right) F1-score of the Occupancy Classifier with increasing train-
ing data. 

 

Figure 3: Changes in (left) accuracy and (right) F1-scor of the Roof Type Classifier with increasing training 
data. 

   

   

Figure 4: Confusion matrices for the Occupancy Classifier (a) Version 1, (b) Version 2, (c) Version 3, (d) 
Version 4, (e) Version 5, and (f) Version 6. In each confusion matrix, axis labels correspond to 0 = RES1, 1 = 
RES3, and 2 = COM. 
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Figure 5: Confusion matrices for the Roof Type Classifier (a) Version 1, (b) Version 2, (c) Version 3, (d) 
Version 4, (e) Version 5, and (f) Version 6. In each confusion matrix, axis labels correspond to 0 = Gable, 1 = 
Hip, and 2 = Flat. 

4 DISCUSSION AND CONCLUSIONS 

In summary, this study describes a hybridized reconnaissance workflow used following Hurri-
canes Laura (2020) and Ida (2021) that integrated a variety of data sources within a cloud-based 
environment to conduct virtual performance assessments on individual buildings. Post-storm, sur-
face-level imagery was essential to accurately quantifying component-level damage, although 
multiple data sources were typically relied upon to overcome limitations of each of the data sources 
related to resolution, coverage, and timing of data acquisition. On average, the virtual performance 
assessments took between 10 and 15 minutes to complete for each structure, depending on how 
many building attributes were quantified and the quality of the data available for each record.  

There is potential to integrate machine-in-the-loop processes into the workflow, as demon-
strated in this study by the use of the BRAILS tool developed by the NHERI SimCenter. However, 
the accuracy of the pretrained BRAILS classifiers on “in the wild” target structures for the Hurri-
cane Laura and Hurricane Ida dataset were still significantly lower (on the order of 20%) than 
those found by Wang et al. (2021) using larger, more regular datasets. This suggests that tuning to 
local construction may be necessary for future applications, but the impacts of retraining to local 
construction in this study were mixed and showed high variability. The variability is possibly re-
lated to the relatively small sample sizes employed, but there are also systematic challenges that 
may not be resolvable by simply using more data. For example, proper classification of elevated 
one-story buildings with breakaway walls is likely to remain a challenge. There is a need for con-
tinued evaluations of ideal retraining datasets, and the optimal distribution of classes within these 
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retraining datasets, to better tune pretrained models to local practices and in turn produce better 
accuracies.  
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