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ABSTRACT

Ecological predictions are necessary for testing whether processes hypothesized to regulate species population
dynamics are generalizable across time and space. In order to demonstrate generalizability, model predictions
should be transferable in one or more dimensions, where transferability is the successful prediction of responses
outside of the model data bounds. While much is known as to what makes spatially-oriented models transferable,
there is no general consensus as to the spatio-temporal transferability of ecological time series models. Here, we
examine whether the intrinsic predictability of a time series, as measured by its complexity, could limit such
transferability using an exceptional long-term dataset of Adélie penguin breeding abundance time series
collected at 24 colonies around Antarctica. For each colony, we select a suite of environmental variables from the
Community Earth System Model, version 2 to predict population growth rates, before assessing how well these
environmentally-dependent population models transfer temporally and how reliably temporal signals replicate
through space. We show that weighted permutation entropy (WPE), a model-free measure of intrinsic predict-
ability recently introduced to ecology, varies spatially across Adélie penguin populations, perhaps in response to
stochastic environmental events. We demonstrate that WPE can strongly limit temporal predictive performance,
although this relationship could be weakened if intrinsic predictability is not constant over time. Lastly, we show
that WPE can also limit spatial forecast horizon, which we define as the decay in spatial predictive performance
with respect to the physical distance between focal colony and predicted colony. Irrespective of intrinsic pre-
dictability, spatial forecast horizons for all Adélie penguin breeding colonies included in this study are sur-
prisingly short and our population models often have similar temporal and spatial predictive performance
compared to null models based on long-term average growth rates. For cases where time series are complex, as
measured by WPE, and the transferability of biologically-motivated mechanistic models are poor, we advise that
null models should instead be used for prediction. These models are likely better at capturing more generalizable
relationships between average growth rates and long-term environmental conditions. Lastly, we recommend that
WPE can provide valuable insights when evaluating model performance, designing sampling or monitoring
programs, or assessing the appropriateness of preexisting datasets for making conservation management de-
cisions in response to environmental change.
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1. Introduction

Predicting the abundance, dynamics, and distributions of species are
fundamental objectives in ecological studies and are essential for
informing conservation management decisions under global change
(Guisan and Thuiller, 2005; Ehrlén and Morris, 2015). Consequently,
efforts in the last decade to make ecology a more predictive science have
garnered considerable multi-disciplinary interest (Dietze et al., 2018;
Lewis et al., 2022). Predictive ecological models are often built by
relating an ecological response to one or more environmental factors.
Depending on the modeling goals and data availability, environmental
variability through space and/or time is used to explain variation in
some ecological response in the same dimension(s) (e.g. Keith et al.,
2008; Fordham et al., 2013; Gorzo et al., 2016; Pearce-Higgins et al.,
2015; Bateman et al., 2016; Wilson et al., 2018). This relationship can
then be transferred to predict ecological responses elsewhere in time (a
temporal transfer) or space (a spatial transfer) (e.g. Osborne and Sudrez-
Seoane., 2002; Wenger and Olden, 2012; Sequeira et al., 2018; Yates
et al., 2018). Evaluating how well predictive models transfer across time
and space is crucial to gauging their overall predictive performance and
the reliability of ecological inferences (Houlahan et al., 2017). In this
paper, we present an approach based on a recently developed metric for
measuring time series complexity to assess both the temporal and spatial
transferability of site-specific population models used to predict abun-
dances in the future, the past, and at new locations.

Temporal transfers can indicate the degree to which predictive
models accurately reflect the temporal dynamics structuring natural
systems (Houlahan et al., 2017). While many factors may affect the
temporal transferability of ecological models, time series complexity is
of particular importance for assessing the transferability of a model
given its negative correlation with predictability (Riedl et al., 2013;
Garland et al., 2014). More complex time series have less temporal
signals carried forward from past states and more diversity in their
temporal patterns. Time series complexity places an upper limit, called
intrinsic predictability, on the temporal predictive performance of
models fit to these time series (Beckage et al., 2011; Petchey et al., 2015;
Pennekamp et al., 2019).

In addition to temporal transfers, time series models fit at one or
more locations can be used to predict responses at new locations (e.g.
Jenouvrier et al., 2014; Ryu et al., 2016; Smith and Edwards, 2021). The
success of this kind of spatial transfer is conditional on the relationship
found between response and predictor(s) at the initial location(s) being
broadly applicable across space. This assumption is a frequent necessity
in ecology and conservation management, especially for species of
concern whose population dynamics are the subject of long-term
ecological monitoring programs that are often restricted in spatial
scope due to practical necessity (e.g. Menges, 2000; Morris et al., 2002;
US Fish and Wildlife Service, 2020). Despite their ubiquity, general
guidelines that are already well developed for determining when spatial
transfers are appropriate for spatially-oriented models (e.g. Roberts and
Hamann, 2012; Rapacciuolo et al., 2014; Soininen and Luoto, 2014;
Sequeira et al., 2018; Yates et al., 2018; Iturbide et al., 2018) are lacking
for assessing the spatial transferability of time series models. This is
problematic if the time series underlying a temporal relationship
modeled at a focal site, that is then used to predict time series at other
sites, is highly complex. Given this, intrinsic predictability may also
place an upper limit on spatial predictive performance, as well as the
degree to which spatial transferability decays as a function of distance
from the focal site.

Weighted permutation entropy (WPE) is a model-free metric recently
introduced to ecology for approximating time series complexity and
intrinsic predictability (Pennekamp et al., 2019). WPE can be useful as
an indicator for the spatio-temporal transferability of time series models.
For example, determining whether forecast performance is lower than
expected when compared to WPE can help decide whether the model or
the predictability of the data is the cause of low forecast performance
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(Beckage et al., 2011; Pennekamp et al., 2019). Such a forecasting
assessment framework has been demonstrated through simulations and
across time series of different species (Pennekamp et al., 2019). How-
ever, no studies have investigated the relationship between WPE and the
spatio-temporal transferability of time series of different populations of
the same species or used this framework diagnostically for wildlife
population modeling.

Here, we use long-term (1980-2018) time series of Adélie penguin
(Pygoscelis adeliae) breeding population abundances at 24 breeding sites
across Antarctica to test the spatio-temporal transferability of predictive
models that link Adélie population growth rates to environmental con-
ditions derived from Earth System Models (Fig. 1). We use intrinsic
predictability (as measured by WPE) to diagnose how well these pre-
dictive models transfer temporally and also how reliably temporal sig-
nals replicate through space. This case study is broadly applicable to
ecological forecasting in general, as the large aperiodic fluctuations in
abundance observed in Adélie penguin breeding populations, which
play an outsized role in affecting the success of spatial and temporal
transfers, are a feature of many natural systems for which ecological
predictions are sought (Doak et al., 2008; Anderson et al., 2017; Clark
and Luis, 2020).

2. Methods
2.1. Adélie colony growth rates and abundances

Adélie penguins have long been used as a sentinel species to measure
Antarctic ecosystem health; their sensitivity to environmental vari-
ability is often reflected by changes in breeding population abundance
and success, which can be monitored effectively given their gregarious
nature (Ainley, 2002; Boersma, 2008). Adélie population dynamics have
been studied intensively for nearly four decades, and while the Antarctic
Peninsula region has seen significant declines in abundance, populations
in eastern Antarctica and the Ross Sea have shown periods of increase
(Lynch et al., 2012; Lyver et al., 2014; Che-Castaldo et al., 2017). Using
Adélie nest count data from the Antarctic Penguin Biogeography Project,
a database containing all publicly available Adélie penguin abundance
and distribution data since 1979 (Che-Castaldo et al., 2023), we restrict
our analyses to those breeding colonies whose time series span at least
24 years and do not have a larger than 5 year gap between any two
counts. This criteria resulted in 24 colony-level time series of nest
counts, that range from 24 to 39 years in length and contain between 15
to 36 nest counts.

We modify the Adélie penguin global population model introduced
by Che-Castaldo et al. (2017) and expanded by Iles et al. (2020) to es-
timate annual nest abundance, for the 24 selected Adélie breeding col-
onies using a Bayesian framework (Fig. 1). This approach allows us to
model complete time series of true nest abundance, which is otherwise
unobservable due to observation error, from incomplete time series of
nest counts. After fitting, we restrict our modeled time series of true nest
abundance for each colony to begin and end with its first and last year of
nest counts (see Appendix S1 for details regarding this model). We keep
the colony growth rate posterior distribution means, hereafter called
colony growth rates, which serve as the response variable in the colony-
covariate models. Colony growth rates can be categorized as those with
corresponding nest counts for both transition years (68%), those with
nest counts for one of two transition years (21%), and those with no nest
counts (11%).

2.2. Colony-covariate models

Many studies have examined the extent to which environmental
conditions, principally sea ice as measured by passive microwave
satellite-based sensors, affect Adélie penguin population dynamics (e.g.
Fraser et al., 1992; Wilson et al., 2001; Croxall et al., 2002; Ainley et al.,
2003; Jenouvrier et al., 2006; Che-Castaldo et al., 2017; Iles et al.,
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2020). However, these efforts have been unavoidably limited by the
number of environmental variables that can be directly observed at
broad spatio-temporal scales. Earth system models (ESMs) provide an
alternate source of environmental data that overcomes several con-
straints associated with passive microwave and other satellite-derived
products. ESMs simulate moisture, energy, momentum, and carbon
fluxes within and between various components of the Earth system,
including the atmosphere, ocean, land, and sea ice (Kobayashi et al.,
2015). In addition to physical ocean variables, ocean biogeochemistry
and lower-trophic level ecosystem dynamics are simulated within the
ocean component, thus providing variables such as primary productivity
and zooplankton biomass, which often lack a complete observational
record, especially in remote places like the Antarctic. While ESM sim-
ulations are subject to model biases stemming from the simplification of
complex processes, they provide a complete record of numerous vari-
ables that could be important to Adélie population growth rates. As
such, we take advantage of ESMs to incorporate elements of the physical
ocean environment and food web that are not directly observable as
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model predictors.

With the goal of explaining spatio-temporal variation in colony
growth rates, we select 12 environmental variables simulated in a forced
ocean sea ice (FOSI) configuration of the Community Earth System
Model (CESM), version 2 (Danabasoglu et al., 2020) run at a nominal 1°
horizontal resolution and including ocean biogeochemistry (Long et al.,
2021, Table 1). We associate colony growth rates with these environ-
mental variables in the same year (a lag of 0) and with 4 lags ranging
from 3 to 6 years, because the effect of juvenile survival on colony
growth rates will become apparent only after surviving juveniles first
return to breed (Ainley, 2002). This results in a total of 60 environ-
mental variables. We normalize all variables at the colony-level, causing
each variable to represent anomalies from the average condition expe-
rienced at each colony over the course of its time series.

We fit colony-specific models that associate annual variability in
colony growth rates with the 60 ESM environmental variables. For each
colony, we do this in three steps by 1) regressing all environmental
variables on colony growth rates using regularized horseshoe priors, 2)
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Fig. 1. Locations of the 24 Adélie penguin breeding colonies whose time series were long enough to be included in this study organized by regions in Antarctica.
Weighted permutation entropy of colonies with longer than 30 year time series are shown with different shades of green. Regions are color coded, and this coloring
scheme is repeated throughout the remainder of the figures to denote Antarctic region.
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Table 1

Environmental variables from the Community Earth System Model version 2
(CESM2) used for variable selection in the colony covariate models. Times
selected is how many times a variable was selected with regularized horseshoe
regression as one of the top 3 variables across the 24 colonies.

Category Code Description Times
selected
sea ice aice area of sea ice (km?) 12
sea ice aicen area of sea ice thinner than 0.6 9
meters (km?)
sea ice ardg area of ridged sea ice (km?) 7
sea ice divu divergence of sea ice (%/day) 6
dynamics
sea ice shear shear of sea ice (%/day) 7
dynamics
atmosphere uatm eastward surface wind (m/s) 5
atmosphere vatm northward surface wind (m/s) 0
atmosphere rain rainfall rate (cm/day) 4
ocean 200C zooplankton biomass (mmol c/m?) 8
ocean HMXL mixed layer depth (m) 6
ocean photoC  net primary production (mmol C/m?/ 5
day)
ocean temp upper ocean temperature (top 10 m, 1
°C)

selecting the three environmental variables with the largest effects, and
3) regressing these three colony-specific environmental variables on
colony growth rates, replacing horseshoe priors with weakly informa-
tive ones (hereafter called colony-covariate models).

Regression modeling with horseshoe priors is a novel variable se-
lection framework that is particularly useful when there are many
possible explanatory variables but only a few with strong effects, a fairly
common situation in ecology (Piironen et al., 2017). With this approach,
we model the prior variances for covariate slope parameters as the
product of a global shrinkage term that pulls all slopes towards 0, and a
slope-specific parameter, that enables slopes to escape this pull (see
Appendix S1 for details regarding the colony covariate models). After
refitting these models with the three colony-specific environmental
variables having the largest absolute slope estimates we compute RMSE
and the traditional R? (square of Pearson’s correlation coefficient). We
also calculate RMSE for a null model for each colony, whose intercept is
the mean colony growth rate. We compare the RMSE of the colony-
covariate models and their respective null models to show how model
fit improves when including environmental variables.

2.3. Temporal transferability

To assess the temporal transferability of the colony-covariate
models, we create two training-test splits of each colony growth rate
time series; a forecast split where the last 30% of the time series is the
test set, and a hindcast split where the first 30% of the time series is the
test set. In both splits, the remaining 70% of the data form the training
sets. We refit the colony-covariate models, which were originally fit to
all available colony growth rates, using the training sets, before fore-
casting or hindcasting as appropriate. We bypass the step where regu-
larized horseshoe priors are used to determine which variables had the
largest effect on growth rates. Instead, we refit the colony-covariate
models to the training sets using the three best environmental vari-
ables originally selected for each colony.

Using model predictions of the two test sets, we calculate forecast
and hindcast RMSE to score the predictive performance of these tem-
poral transfers for each colony. We also compute the traditional R? for
the forecast and hindcast for each colony. Using the mean colony growth
rates from the training sets, we make null model forecasts and hindcasts
for each colony and compute RMSE for these predictions of the test sets.
Null models simply predict the average colony growth of the training set
for each prediction year. We have also tested the temporal trans-
ferability of models with density dependence, and regional multi-colony
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models where data for multiple colonies were pooled. In general, these
models did not improve the temporal transferability of colony-covariate
models (Appendix S2: Figs. S1 and S2, and Appendix S3: Fig. S1).

2.4. Spatial transferability

To assess the spatial transferability of the colony-covariate models,
we use the model for each colony (focal colony) to predict colony growth
rates for all other colonies (predicted colonies) within the Ross Sea. We
repeat this process with the null model for the focal colony (long term
average growth). We exclude colonies on the Antarctic Peninsula and
from eastern Antarctica due to, respectively, the limited number of
colonies in the region and the fact that colonies are located so close to
one another as to preclude variation in their environmental covariates
on the spatial scale used by CESM2. We do not evaluate these spatial
transfers directly using RMSE, as this metric is heavily dependent on
variability in colony growth rates for the predicted colonies, and is
therefore not suitable for exploring the effect of distance on spatial
predictive performance. For each focal colony, we instead compute the
RMSE ratio of the colony covariate model and its respective null model
for all predicted colonies. When the ratio is < 1, the colony-covariate
model has improved spatial transferability over the null model, and
vice versa. To determine how spatial transfers decay with distance from
focal to predicted colony, we use linear regression to estimate the slope
of the relationship between these spatial RMSE ratios and inter-colony
distances.

2.5. Intrinsic predictability

Following the methodology in Pennekamp et al. (2019), we estimate
the intrinsic predictabilities for the 14 colonies whose logged nest
abundance time series (Iz;; in Appendix S1, Eq. 1) are long enough to
compute weighted permutation entropy (WPE). There are several steps
to calculating WPE:

1. Permutations of successive time series elements are established for a
given “word” length (m). For example, if a time series consist of 7
elements (x; to x7) and word length is 3, these permutations would
start with x;,x2,x3, followed by x2,X3,x4, up until xs,xe,x7. For this
time series there would be 5 such time-ordered permutations.

2. Each permutation is ranked into an ordinal pattern before the rela-
tive frequencies of each of these possible permutations are calcu-
lated. For example, if x4 = 12,x5 = 5, and x¢ = 7, then its ordinal
pattern (from lowest to highest) would be 2(xs), 3(x7), 1(x4). For a
given word length there are m! possible permutations.

3. Unweighted and weighted permutation entropy (PE) are calculated
using the Shannon entropy rate. For unweighted PE, this is computed
as Y p(m)log,(p(r)), where r is the ordinal pattern and p(x) is its
relative frequency. Weighted PE weights each time-ordered element
with its variance to account for the degree of fluctuations in the time
series:

> var(X,) ’ M

pu(m)

where var(X;) is the variance of a given word and §(¢(X;), z) is an
indicator variable for cases where the ordinal pattern of ¢(X;)
matches a given ordinal pattern z. Weighted PE is then computed
using the Shannon entropy rate after replacing p(z) with p, (7).

4. The Shannon entropy rate is normalized by log,(m!) so that it is be-
tween 0 and 1. However, when there are ties in the ordinal patterns a
tie-breaking method needs to be used. Here, we average the ranking
of the tied elements, which increases the number of possible per-
mutations, so normalization is done via log,(2-m!).

5. A time delay may be added. For example, a time delay of 2 would
mean the first word of the time series would be x1, x3, x5 (instead of



B. Sen et al.

x1,x2,x3). We set the time delay to 1 as suggested by Pennekamp
et al. (2019).

A WPE of 0 indicates a perfectly predictable time series, while a WPE
of 1 signals that the time series is completely dominated by stochasticity.
The choice of word length is limited by the length of the time series
(Riedl et al., 2013). Here, we use a word length of 4 to estimate WPE, as
a maximum word length of 3 or 4 is suitable for most ecological studies.
We use correlation to quantify the relationship across colonies between
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WPE and 1) the forecast and hindcast RMSE computed for temporal
transfers described in Section 2.3 and 2) the rate of decay (slope) be-
tween RMSE ratio and physical distance computed for spatial transfers
described in Section 2.4.
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Fig. 2. R? of the 24 Adélie penguin colony covariate models computed from all data (A), the forecast test set (C), and the hindcast test set (E). Predictive performance
(RMSE) for the 24 Adélie penguin colony-covariate models (orange circles) computed from all data (B), the forecast test set (D), and the hindcast test set (F) when
compared to their long term average growth rate null model counterparts (white circles). Dark (light) gray lines show when a hindcast/forecast performs better
(worse) than its associated null model. Sites are grouped and color coded according to their Antarctic region (Fig. 1).
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3. Results
3.1. Variable selection

The set of environmental variables that best fit the data at each
colony differs between the 24 Adélie colonies included in this study. Ice
area was the most frequently selected variable, as it was one of top three
variables with the largest slope for 12 colonies, followed by thin ice area
and zooplankton biomass (Table 1, Appendix S4: Figs. S1-S21). These
variables were frequently selected with different lags and they exhibited
both positive and negative relationships with colony growth rates,
depending on the colony (Appendix S5: Figs. S1-S72). Appendix S4
describe in detail the results of the model selection (Figs. S1-S21).

The colony-covariate models fit to all available data had an average
R? of 0.45 (min = 0.21, max = 0.67). The R? values for colonies in
Eastern Antarctica were generally larger than other regions, while
Antarctic Peninsula colonies had the lowest R? values (Fig. 2A). All
colony-covariate models demonstrated improvements in RMSE over
their corresponding null model based on long-term average growth rate
(Fig. 2B).

3.2. Temporal predictive performance

For colony-covariate models fit to the training sets, the average R?
between temporal predictions and test data across the 24 colonies was
0.23 (min = 0, max = 0.66) for forecasts and 0.38 (min = 0, max =
0.88) for hindcasts (Fig. 2C,E). Forecasts for 45% of the colonies (11)
and hindcasts for 75% of the colonies (18) had improvements in the
RMSE of temporal predictions when compared to forecasts and hindcasts
made with their corresponding null model based on average growth
rates (Fig. 2D,F). Across sites that had lower RMSE than their null model
counterparts, RMSE was reduced, on average, by 24% (SD = 15%) in
forecasts and by 21% (SD = 12%) in hindcasts. Across sites that had
higher RMSE than their null model counterparts, RMSE increased, on
average, by 28% (SD = 29%) in forecasts, and by 14% (SD = 15%) in
hindcasts. Intrinsic predictability was a strong predictor of forecast
RMSE (p = 0.71, CI: 0.33,0.92) and a weaker predictor of hindcast
RMSE (p =0.41, CI: —0.09,0.78) (Fig. 3A,B). While colonies on Eastern
Antarctica were not used for WPE and temporal transferability com-
parison as their time series were shorter than 30 years, their inclusion
does not change the positive relationship between WPE and forecast and
hindcast RMSE although it weakens it (see Appendix S6: Fig.S1).

3.3. Spatial predictive performance

Ross Sea colony-covariate models fit to all available data tended to
predict colony growth rates of other colonies better when they were
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closer (Figs. 4 and 5). However, across Ross Island colonies, on average,
only 16% (SD = 19%) of the spatial predictions of colony-covariate
models showed any improvement over their null model counterparts
(Figs. 4 and 5). Additionally, none of the spatial predictions from the
colony covariate models for Beaufort Island (BEAU), two colonies on
Cape Bird (BRDS and BRDM), Cape Royds (ROYD), or Coulman Middle
(CMID) outperformed their respective null model counterparts (Figs. 4
and 5). Finally, WPE was positively associated with the slope of the
relationship between spatial RMSE ratio and distance (p = 0.62, CL:
0.09,0.91, Fig. 6), showing distance decay was stronger for sites with
lower intrinsic predictability (higher WPE).

4. Discussion

Predictive modeling provides a robust approach to determine what
(and if) we can learn from ecological systems (Houlahan et al., 2017;
Lewis et al., 2023) and whether we can make useful forecasts (Clark
et al., 2001). Without demonstrating transferability, models that simply
explain variation in the data do not provide sufficient evidence that their
modeled relationships are generalizable (Shmueli, 2010). Here, even
though all colony-covariate models fit to all the data have relatively high
R? values and perform better than models without environmental
covariates, only about 45% (75%) of the site-level forecasts (hindcasts)
show improvements (which are often minor) over their null model
counterparts (Fig. 2D,F). In addition, differences in the temporal
transferability of time series models are spatially variable. Specifically,
colony covariate models from Ross Island tended to be more limited in
their forecast or hindcast performances than those from other locations
(Fig. 3). Also, models from Ross Island colonies transfer poorly to other
colonies (have high distance decay, Figs. 4 and 5), meaning their tem-
poral signals did not replicate reliably through space.

Interestingly, this variation in realized predictive performance across
both time and space is correlated with intrinsic predictability (Figs. 3A,
6). To our knowledge, this is the first case where intrinsic predictability
is shown to be: 1) spatially variable across populations for a single
species and 2) associated with both the spatial and temporal transfer of
time series models for populations within a species. These two findings
reinforce the growing awareness that intra-specific variation in life
history traits is substantial and often overlooked (e.g. Fitzsimmons,
2013; Che-Castaldo et al., 2018; Luiz et al., 2022).

The use of intrinsic predictability to help guide forecasting decisions
and provide context for evaluating predictive outcomes is newly intro-
duced to ecology (Beckage et al., 2011; Petchey et al., 2015; Pennekamp
et al., 2019). Below we discuss the implications of this relationship be-
tween intrinsic predictability and realized predictive performance and
possible ecological and statistical reasons for the spatial and temporal
variability in WPE we observe across penguin colonies.
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Fig. 4. Distance decay measured as the relationship between RMSE ratio and inter-colony distance for Ross Island Adélie penguin colonies at Cape Crozier East
(CRZE), B) Cape Crozier West (CRZW), C) Cape Royds (ROYD), D) Cape Bird North (BRDN), E) Cape Bird Middle (BRDM), and F) Cape Bird South (BRDS). For a given
focal colony, the RMSE ratio for any predicted colony is the ratio of RMSE of predictions from the colony-covariate model and its respective null model. The shaded
areas show the 95% equal-tailed posterior credible intervals of the regression between RMSE ratio and inter-colony distance between focal and predicted site. The red
line show when the RMSE ratio is 1, indicating that the colony covariate model and its corresponding null model have the same predictive performance. When the
RMSE ratio is >1 the null model has better spatial transferability than the colony covariate model, and vice versa.

4.1. WPE as a predictor of spatial and temporal predictive performance

Intrinsic predictability (as calculated by WPE) provides a low-cost,
easy to calculate measure of population time series complexity. In
turn, WPE can set expectations as to the potential transferability of
models before they are developed and evaluate their realized predict-
ability after they are built. For example, when there is a positive rela-
tionship between WPE and the temporal predictive performance of site-
specific models (e.g. Fig. 3A), differences in the realized predictability
across sites are likely due to variation in the intrinsic predictabilities of
the site-level time series themselves. This does not mean that model
performances cannot be improved further. Instead, it is simply an
indication that when sites are modeled individually, as we have done in
this paper, those with higher WPE will tend to have lower predictive

performance compared to sites with lower WPE. A weak or no rela-
tionship (Fig. 3B) between WPE and temporal predictive performance
suggests that modeling of some sites are showing lower realized pre-
dictability than expected given their WPE values relative to sites with
higher WPE. This could be a sign that more model development is
necessary. Model improvement can take various shapes, such as adding
mechanistic processes such as density dependence, or using more rele-
vant variables or increasing their spatial resolution. After refining, the
relationship between WPE and temporal predictive performance can be
checked again. Ideally, this process should continue iteratively until a
positive relationship between intrinsic and realized predictability is
achieved.

The relationship we find between WPE and spatial predictive per-
formance (Fig. 6) implies that sites with more complex time series are
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Fig. 5. Distance decay measured as the relationship between RMSE ratio and inter-colony distance for Ross Sea Adélie penguin colonies at A) Coulman Middle
(CMID), B) Cape Hallet (CHAL), C) Beaufort Island (BEAU), and D) Inexpressible Island (INEX). For a given focal colony, the RMSE ratio for any predicted colony is
the ratio of RMSE of predictions from the colony-covariate model and its respective null model. The shaded areas show the 95% equal-tailed posterior credible
intervals of the regression between RMSE ratio and inter-colony distance between focal and predicted site. The red line show when the RMSE ratio is 1, indicating
that the colony covariate model and its corresponding null model have the same predictive performance. When the RMSE ratio is >1 the null model has better spatial

transferability than the colony covariate model, and vice versa.
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less spatially transferable with respect to the physical distance of the
transfer. This pattern is consistent with what (Petchey et al., 2015)
define as spatial forecast horizon when describing changes in commu-
nity similarity and spatial transferability of species distribution models
with respect to distance. Although we know of no ecological studies that
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Fig. 6. The positive relationship between the distance
decay of spatial transfers and weighted permutation
entropy (WPE) for the 10 Adélie penguin colonies on
Ross Sea whose time series are long enough to
calculate WPE. We estimate distance decay as the
slope of the linear regression between the RMSE ratio
and the inter-colony distance between focal and pre-
dicted site (Figs. 4 and 5). We show the 95% equal-
tailed posterior credible intervals for distance decay
for the 6 Ross Island colonies (circles) and 4 other
colonies in the Ross Sea (squares). We report the
posterior mean and 95% equal-tailed posterior cred-
ible interval for the correlation coefficient between
distance decay and WPE.

have used spatial forecast horizon to assess how well population dy-
namics from well-studied locations transfer across space, this definition
can be expanded to quantify how the spatial transferability of a time
series model at a focal site decays with distance when used to predict
time series at other sites. The relationship between WPE and spatial
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predictive performance raises two key concerns when developing sam-
pling programs or gauging the appropriateness of long-term monitoring
data for conservation or research purposes. The first is that generaliza-
tions to larger more policy-relevant spatial scales should not be based on
a few sites with low intrinsic predictability (high WPE), as other poorly
monitored or unvisited sites within the region of interest are likely to
show drastically different dynamics. Second, an understanding of spatial
forecast horizon as a function of WPE is critical when deciding how
many sites to monitor within a region of interest and their spacing
relative to one another. However, it is an unavoidable consequence of
the long generation time for many species that both these de-
terminations may require a significant investment in data collection.

When intrinsic predictability is low (high WPE), models that attempt
to explain inter-annual fluctuations in growth rates may struggle to
predict reliably across both space and time. In these cases, it may be
better to focus on models that capture long-term average population
dynamics, as these are more likely to be associated with climate or
environmental conditions that change over longer time scales. For
example, although the trajectories of some Adélie colonies suggest sto-
chastic dynamics, the average growth rates of these sites still show a
strong relationship with long-term winter sea ice concentrations (Iles
et al., 2020). Null models can produce predictions that are as good as, or
superior to, those from biologically-motivated population models, as
was often the case here (Figs. 2D,F, 4, 5). Humphries et al. (2018) reach
a similar conclusion when reporting on a data science competition
whose purpose was to forecast Antarctic penguin abundance. In this
competition, the top models included a mix of simple and sophisticated
models, suggesting that well-constructed null models might be the most
suitable choice for predictions of noisy systems, while also providing a
yardstick by which to judge the predictive performance of more complex
mechanistic models.

4.2. Geographic patterns in intrinsic predictability and the impact of black
swan events

Intrinsic predictabilities across the 14 colonies included in this study
whose time series were long enough to compute WPE follow a
geographic pattern, where sites clustered on Ross Island have higher
WPE values (lower intrinsic predictability) compared to colonies else-
where in the Ross Sea region, Pointe Géologie (PGEO), and along the
western Antarctic Peninsula (Fig. 2). Ross Island colonies also had
higher levels of inter-annual variability in colony growth rates
compared to other sites, and their time series were marked by large (and
sometimes extreme) aperiodic fluctuations in growth (Appendix S7).
Such fluctuations are not unique to Adélie penguins, but rather features
of many natural systems. For example, unpredictable extreme shifts in
abundance, also called black swan events, occur across a wide variety of
animal taxa and usually manifest themselves as population diebacks or
mass emigration events (Coulson et al., 2001; Anderson et al., 2017;
Youngflesh and Lynch, 2017). Despite their rarity, these “surprise
events” have been shown to be more common in ecology than previously
thought and are often associated with overlooked or complex species
interactions (Doak et al., 2008).

Ross Island colonies experienced what can be characterized as a
black swan event, when from 2001-2005 two massive icebergs unex-
pectedly reduced access to these sites, dramatically altered their local
environments while present, and affected Adélie metapopulation dy-
namics and vital rates (Robinson and Williams, 2012; Dugger et al.,
2014; Lyver et al., 2014). These mega-icebergs directly impacted colony
growth rates on Ross Island by causing large scale skip breeding events
and/or relocation of adults from one colony to another (Dugger et al.,
2010; LaRue et al., 2013). Skipped breeding, which occurs when adults
forgo breeding in a given season, either due to poor body condition at
the end of winter or adverse site conditions at the onset of the breeding
season, is relatively common in penguins and other seabirds (Ainley,
2002; Jenouvrier et al., 2005; Massom et al., 2006). Large skip breeding
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events cause extreme fluctuations in colony growth rates both in the
year breeding was skipped and the following year when adults return en
masse to breed (Talis et al., 2022). If the factors dictating large skip
breeding events are stochastic, as is the case with historically rare but
major ice calving episodes, time series of colony growth rates experi-
encing these events will have lower intrinsic predictability.

Skipped breeding is a specific case of demographic stochasticity
(Talis et al., 2022), and any event that is related to demographic or
environmental stochasticity, none of which occur in a predictable
manner across time or space, will lead to variability of WPE across
colonies. Ross Island colonies may be especially vulnerable to environ-
mental stochasticity in general, as individuals from these sites undergo
the longest annual migrations species-wide (Ballard et al., 2010), which
limits their ability to buffer against inter-annual variation in winter and
summer environmental conditions (Ainley, 2002; Dugger et al., 2014).
Given this, it is not surprising that Adélie growth rates from the colonies
at the leading latitudinal edge of their species range have the lowest
intrinsic predictability. Understanding the population dynamics of spe-
cies along range edges is a priority in ecology, as it can indicate how and
why species distributions may change under climate change (Mac-
Arthur, 1972; Brown, 1984; Sexton et al., 2009). Nonetheless, our re-
sults here suggest that understanding and predicting such dynamics may
be inherently limited by differences in intrinsic predictability between
core and edge populations, especially since edge populations should
experience higher levels of environmental and demographic stochas-
ticity (Snyder, 2003; Sexton et al., 2009) and extreme events (Lavoie
et al., 2021).

The spatial variability in WPE we report here also highlights how
statistical methodology and survey decisions can impact intrinsic pre-
dictability estimation. Adélie colonies vary in the frequency and manner
with which they are counted, leading to differences across colonies in
data gaps requiring interpolation and observation uncertainty (Appen-
dix S7). Bayesian state space models, which are widely used for wildlife
population modeling, address these issues by separating process from
observation error in order to estimate latent or “true” abundance for all
time steps (e.g. Ahrestani and Hebblewhite, 2013). Computing WPE for
growth rates derived from latent abundances, as opposed to raw counts,
offers the advantages of working with time series without missing
values, that have been adjusted to account for the “lost” information due
to observation error as defined by Pennekamp et al. (2019), and which
are ultimately of interest to population biologists. However, this
approach comes at the expense of WPE no longer being a model-free
evaluation of intrinsic predictability, but instead conditional on the
model used to estimate abundance. In this case, these models can lead to
time series of latent abundances that are smoother and, as a result, more
predictable than those of raw counts on which they are based, where the
level smoothing depends on the relative amounts of observation and
process error and data sparseness. This smoothing occurred for colonies
at Pointe Géologie (PGEQO), due to observation error, and Coulman
Middle (CMID) and Cape Hallett (CHAL), due to interpolation. As a
result, differences in intrinsic predictability between Ross Island col-
onies and other sites might also be due to spatial differences in the de-
gree of model-based smoothing, as well as ecological factors.

4.3. Intrinsic predictability of ecological time series may vary over time

The association between hindcast error and WPE, while still positive,
is weaker compared to forecast error (Fig. 3B). This discrepancy could be
caused by the violation of the assumption that intrinsic predictability is
constant across a time series, regardless of its length. No studies of
ecological predictability to date have investigated whether different
parts of a time series might be more predictable than others. Instead,
calculating WPE assumes that the process, or collection of processes,
that generates a time series is constant. This assumption may not hold
true, and different parts of time series may be more or less predictable
than what a WPE value indicates for the full time series. Here, the CRZE
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(Cape Crozier East) hindcast test set is more variable than the forecast
test set and contains an extreme value for colony growth rate in 1987
(Fig. 7A,B), leading to poorer predictive performance for the hindcast
relative to the forecast (Fig. 3). While a single WPE calculated from the
full time series is unlikely to capture differences in the population dy-
namics between the two test sets, neither the test or training sets are long
enough for the outright calculation of their own WPE value.

Heterogeneity in the intrinsic predictability of time series may be
caused by the fact that populations are usually regulated by different
exogenous (e.g. environmental factors) and endogenous factors (e.g.
density dependence), whose interactions can vary over time (e.g.
Coulson et al., 2001; Nater et al., 2016; Nater et al., 2018). Conse-
quently, these time-dependent interactions might alter the predictability
of dynamics in different parts of a time series. For example, the effect of
density dependence on the survival rates of African striped mouse
(Rhabdomys pumilio) populations is at a minimum at moderate levels of
food availability and increases when food is scarce or abundant (Nater
et al., 2016). Since stronger density dependence relative to environ-
mental stochasticity can lead to more predictable time series, as it is a
deterministic factor, the intrinsic predictability of a time series of its
abundance will change over time as food availability and, by extension,
density dependence strength vary.

For Adélie penguins, we currently lack the ability to identify the
relevant interactions that impact the intrinsic predictability of colony
growth rates and how they vary, as the factors affecting Adélie popu-
lation dynamics are complex and still an area of active research. Asso-
ciating different ecological factors with WPE values computed from
subsets of a time series requires time series longer than are currently
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available in this study. Nonetheless, such interactions are likely impor-
tant in this system given that both atmospheric conditions, which help
structure the physical environment, and competition between penguins
and other marine predators for prey vary on decadal scales (e.g Ainley
et al., 2005; Ainley et al., 2006; Ainley et al., 2007; Ainley et al., 2010;
Warwick-Evans et al., 2022).

4.4. Conclusion

In this study, we demonstrated that intrinsic predictability, as
measured by WPE, is a reliable predictor of the spatio-temporal trans-
ferability of environmentally-dependent population models. The rela-
tionship between intrinsic and realized predictability (or its lack
thereof) can indicate whether the primary limiting factor affecting
predictive performance is time series complexity or needed model im-
provements. Furthermore, spatial variability in intrinsic predictability
can reveal the underlying geographical heterogeneity of population
dynamics in an ecological system, as well as highlight populations that
may have experienced stochastic environmental events that affect
abundance. Similarly, temporal variability in intrinsic predictability
across a time series for a single population can show how different
regulatory mechanisms that are more predictable (e.g. density depen-
dence) become more dominant in specific parts of the time series
compared to others. We recommend that using WPE to approximate the
intrinsic predictability of a time series should be standard practice when
setting a priori expectations for model building and potential predictive
performance across populations or sites, as well as for designing large-
scale monitoring programs where spatial or temporal transfers are

2005 2015

2005

2015

Fig. 7. Colony growth rate time series for Cape Crozier East (CRZE) showing (A) higher forecast predictive performance and (B) lower hindcast predictive per-
formance. Training sets, test sets and forecasts/hindcasts are color coded separately. Pink is the training set, blue is the test set, and yellow is the prediction. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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inevitable due to logistic constraints.
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