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Abstract—Neurophysiological measurements suggest that hu-
man information processing is evinced by neuronal activity.
However, the quantitative relationship between the activity of
a brain region and its information processing capacity remains
unclear. In this paper, we introduce an information conservation
law for regional brain activation, and establish a mathematical
model to quantify the relationship between the information
processing capacity, input storage capacity, the arrival rate of
exogenous information, and the neuronal activity of a brain
region—referred to as the brain information processing capacity
(IPC) model. We apply the IPC model to event related fMRI data
from a flanker test, designed to determine age-related differences
in brain activation. Our analysis demonstrates the predictive
validity of the model in terms of providing accurate account of
fMRI responses, and shows that for a given cognitive task, higher
information processing capacity leads to lower neuronal activity
level and faster response. Relying solely on the information
conservation law, the IPC model provides a framework for
modeling distributed neuronal processing—and can be applied to
different data types and scales: i.e., single neurons, brain regions,
and networks.

I. INTRODUCTION

Exploring the information processing and storage capacity
limits of the human brain is a central task in cognitive
psychology and neuroscience [1]-[3]. In literature, most of
the existing research has been focused on the capacity limit
of short-term working memory, or how well an individual can
manage the complexity of information processing demands
when several tasks have to be executed simultaneously [4],
[5]. It was shown that our visual short-term memory can
maintain representations of three to four objects at any given
moment [6]. Along this line, in [7], the information processing
capacity was mapped to the computational capacity of a
dynamic system and characterized as the total number of
linearly independent functions of its stimuli the system can
compute.

Previous research in neurophysiology suggests that human
information processing is closely related to neuronal activity
[8]-[10]. It was shown that the amplitude of neuronal activity
is modulated by the input information flow or the number
of objects being held in the memory at the time before it
approaches an asymptotic limit [8], [9], and automation of
cognitive functions can increase the information processing
capacity and lead to a decline in the neuronal activity [10].

In literature, mathematical characterization of neuronal ac-
tivity has been studied extensively, and existing neuronal activ-
ity models provide a panoramic coverage on brain dynamics,
from single neurons [11], [12], to localized neural populations
[13], and to brain networks [14]. However, until today, the
quantitative relationship between the activity of a brain unit
and its information processing capacity remains unclear.

In this paper, as an effort to address this problem, we aim to
model neuronal activity and information processing capacity
from an information-theoretic perspective. Our starting point
is the information conservation law. It serves as the corner
stone and enables us to link the brain information processing
and input storage capacities of a brain region, its the neuronal
activity, and the arrival rate of the exogenous information all
through a first-order differential equation, referred to as the
brain information processing capacity (IPC) model. Relying
solely on the information conservation law, the IPC model
allows us to evaluate the relative information processing and
storage capacities, and the brain circuit response time of
any brain unit that has information processing and storing
capability. Potentially, it provides a framework for multi-scale
brain dynamic modeling in terms of information processing,
and can be applied to the studies of predictive coding and
Bayes-optimal decision-making.

II. THE INFORMATION CONSERVATION LAW

When information arrives at a brain region, there are two
possibilities: (i) the region is lossless, i.e., no information is
lost; (ii) the region is lossy, i.e., there is an information loss.
Here we introduce the information conservation law for both
lossless and lossy brain regions.

In an abstract or functional sense, we can say that each brain
region has a processing unit and an input storage unit, which
can vary across time and/or on-going cognitive activities. Let
1(t) denote the overall information fed to a brain region during
time period [0, t], I,,(¢) the information taken by the processing
unit to process during [0,¢] , and I, (¢) the information saved
in the input storage unit of the brain region at time instant ¢
waiting to be processed.

We start with the lossless situation first. In this case, the
information arrival rate is less than or equal to the information
processing rate of the brain region and there is no information
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loss or overflow, we have: the total information fed to the
region equals the sum of the information taken for processing,
and the information saved in the input storage unit waiting to
be processed. That is,

I(t) = Ip(t) + I (1), (1)

assuming that they are all in bits. We refer to this as the
information conservation law at a lossless region.

However, when the information arrival rate is higher than
the processing rate, information loss or overflow occurs at the
brain region. In this case, we have the generalized information
conservation law:

c(OI(t) = Ip(t) + In(1), 2)

where 0 < ¢(t) < 1 denotes the portion of the information
that is not lost by the region. If ¢(t) = 1, it means that no
information is lost in the region; if ¢(¢) = 0, it means that all
the information is lost.

It should be emphasized that our input storage unit here
holds only the input information waiting to be processed, and
is just a functional model used to simplify our analysis. The
memory request that occurs during the processing operations
is considered to be part of the processing, and happens within
the processing unit rather than the input storage unit. As we
will see later, the information conservation law—a simple
but fundamental principle—serves as the link that bridges
the information processing and storage capacities of a brain
region, its neuronal activity level, and the input information
arrival rate.

III. THE BRAIN INFORMATION PROCESSING CAPACITY
(IPC) MODEL

In this section, we derive the brain information processing
model based on the information conservation law. We start
with the lossless case first, and then extend the results to lossy
case.

IPC model in the lossless case Taking derivatives with
respect to ¢ on both sides of equation (1), we get

H(t) = Hp(t) + Hm(t)a (3)

where H(t) = dI(t)/dt is the information arrival rate,
H,(t) = dI,(t)/dt the information processing rate and
H,,(t) = dI,,(t)/dt the instantaneous information changing
rate in the input storage unit, all in bits per second.

Let p(t) represent the processing capacity, defined as the
maximal information processing rate (in bit/s) of the region
with respect to a particular cognitive task. Let m(t) represent
the input storage capacity, defined as the total amount of input
information storage resource (in bits) available to or allocated
by the region. Now we try to represent the neuronal activity in
terms of information processing and input storage capacities.

Note that the neuronal activity x(¢), which measures the
activeness or the effort level of the local neuronal population
in fulfilling a cognitive task or function, can be understood as
the instantaneous percentage of the “workforce” being utilized
in the unit. From the information processing perspective, the

neuronal population activity level can be defined as the ratio of
the instantaneous processing rate and the maximum processing

rate:
_ Hy(t)
=) = p(t)

Similarly, from the storage perspective, the neuronal activity
level can be defined as:

“4)

In(t)
which is the ratio between the actual input information saved
in the input storage unit and the overall allocated storage
capacity. Following equations (4) and (5), it can be seen that
0<z(t)<1.

Consider a single state brain region, that is, a region with
one neuronal activity level, which implies that the input storage
unit and processing unit have the same neuronal activity level.
Moreover, when the task itself has a very short duration, we
could assume that the processing capacity and the storage
capacity remain approximately unchanged throughout the task.

From equations (4) and (5), we have z(t) = H”T(t), and
do(t)  1dl,(t) 1

It then follows that the neuronal activity of an individual brain
region can be modeled as:
d%it) - —%x(t) + %H(t). %

As can be seen, we obtained a first-order linear differential
equation model that connects the neuronal activity level of a
brain region with its information processing, storage capacities
and the arrival rate of the input information. We name this
model as the Information Processing Capacity (IPC) model.

Following equations (6) and (7), we can see that the
physical meaning of the IPC model lies in that: (i) the gap
between the information arrival rate H(t) and the information
processing rate H,(t) directly influences the changing rate
of the neuronal activity level. When H(t) > H)p(t), that is,
when the arrival rate is larger than the processing rate, then the
neuronal activity level increases; otherwise, it decreases. This
observation is consistent with existing findings where it was
shown that the amplitude of neuronal activity is modulated by
the input information flow or the number of objects being held
in the memory at the time before approaching an asymptotic
limit [8], [9], and automation of cognitive functions can
increase processing capacity and lead to a decline in the
neuronal activity [10], only that the processing capacity there
was defined as the number of objects that can be held in our
visual short-term memory. (ii) On the other hand, larger input
information storage capacity m can alleviate the demand on
neuronal activity level when the arrival rate H(t) increases.
This reflects the self-adjustment capability of the brain.

In the special case when I(t) = au(t) is a step input, where
u(t) is the unit step function, we have H(t) = ad(t), where
d(t) is the Dirac delta function, and then

x(t) = min{%e_%tu(t), 1}.
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We can see that, 2(0_) = 0 and 2(0) = min{2,1}, that
is, there is an abrupt change of the neuronal activity level at
t = 0. This is consistent with the existing findings that the
brain activity level changes abruptly instead of smoothly.

Following the circuit theory, the IPC model in equation (7)
can be affiliated with a resistor-capacitor (RC) circuit as shown
is Fig. 1, where Vr and Ry denote the T"hévenin equivalent
voltage and resistance, respectively. z(¢) can be regarded as
the current that goes through the RC circuit (instead of being
the voltage across the capacitor), since z(t) experiences an
abrupt change at £ = 0, and the voltage across the capacitor is a
continuous variable and cannot have abrupt changes. Compare
equation (7) and the differential equation corresponding to the
RC circuit, if V(t) = I(t), then we have Ry = m,C = 1/p,
and the time constant of the circuit is 7. = RrC = m/p,
which implies that x(¢) converges or decays essentially to zero
after about 57,.. Note that the time constant of the circuit is
related to the response of the system, we can see that higher
information processing capacity p leads to shorter response
time.

RT =m

L) ==

v(t) = C =

+ 1
vr(t) <_> - p

.
i) = ¢ dl’l(:), RyC di;z(:) +o(t) = vr(t)
RrC di;f) +it)=C d”;(t)

Fig. 1. The corresponding circuit of the IPC model.

Recall that based on experimental observations of the neu-
ronal networks, the neurons constantly add up the excitatory
and inhibitory input in time and over the area of the dendrites
receiving synaptic contacts. Recent studies indicate that excita-
tion—inhibition balance (E-I balance) is a form of homeostatic
plasticity that helps to maintain neuronal activity within a
narrow, safe range [15].

To reflect the synaptic integration of the excitatory and
inhibitory neuronal activity, let Ig(t) = I(t) denote the
excitatory input information as before, and I;(¢) the inhibitory
control signal, then we have Vp = Ig(t) — I;(t). We start
with a simple case where Vr(t) = au(t) — Bu(t — Tpy). The
physical meaning here is that, under a stimulus, the excitatory
input information lasts a period of Tj seconds before it is
intervened by an inhibitory control signal. The first transition
in Vi (t) happens at t = 0, is considered as the recognition or
interaction of the internal dynamics with the input stimulus;
the latter is considered as an operation to clear the previous
input data and prepare for new input, and is driven by a

negative feedback control mechanism to prevent the brain from
excessive activation [16].

Based on the superposition property of linear circuits, the
overall neuronal activity can be represented as z:(t) = zg(t) —
x7(t), where

is the excitatory activity and

zr(t) = %e_w%(t_T”)u(t —To)

is the inhibitory activity. Note that driven by spontaneous
neuronal activities, both the excitatory inputs and inhibitory
control signals could occur multiple times [17].Therefore, we
can further extend the excitatory and inhibitory activity to

Mo

2Ty,
rp(t) = Z pus B T Du(t — T,

=0

and

respectively. In general, the actual representation of z(t) is
determined by the input information arrival rate H(¢), which
is related to the cognitive task, and the way the information
is encoded by the brain.

IPC model with information loss When information loss is
involved, following the Generalized Information Conservation
Law in equation (2), the IPC model can be generalized as

O _ Pty 4 S, ®
where 0 < ¢ < 1 denotes the portion of the information that
is not lost by the region. This generalized model may help
us evaluate the information losses in brain regions, especially
those involved in faulty decision making due to information
overflow or abnormal conditions such as Alzheimer’s disease
or seizures.

IV. SIMULATION RESULTS

We applied the IPC model in (3) to analyze neuronal activity
and information processing capacity based on experimental
fMRI data obtained from a flanker test, which was used
to study the aging-associated decline in selective attention
and executive functions [18]. Twenty-three young adults and
twenty-six older adults participated in this study. In the exper-
iment, the subjects were presented with three conditions:

e The Congruent (C) condition (“>>>>>>>" or
RO CCCC TR
e The Incongruent (IC) condition (“>>><>>>" or
frg><<<L);
o The Neutral condition (“JOJO > OO0 or “000 <
Qo).
Each trial was presented for 2.5 sec, during which time the
subjects were asked to identify the direction of the central
arrowhead and press the corresponding button for each trial.
The rapid event-related design was chosen so that the subjects’
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TABLE I
RESULTS FOR RIGHT MFG, HERE p/a AND m/a DENOTE THE RELATIVE
INFORMATION PROCESSING CAPACITY AND STORAGE CAPACITY,
RESPECTIVELY; T, = m/p DENOTES THE TIME CONSTANT OF THE
REGIONAL BRAIN CIRCUIT.

Right MFG m/a p/a T.=m/p
Old IC 2.5436 7.2636 0.35018
Young IC 4.0838 14.169 0.28822
Old C 3.5179 11.382 0.30907
Young C 6.9985 27.527 0.25424

general attentiveness level was kept relatively invariant. In
[18], it was reported that compared to young adults, older
adults had more difficulty responding to Incongruent cues
during the flanker task. For comparison purpose, here we focus
on Congruent(C) and Incongruent (IC) conditions.

Recall that the BOLD signal (denoted as y(¢)) is generally
modeled as a convolution y(t) = x(t) x h(t), where h(t) is the
hemodynamic response function. Our analysis was conducted
in three steps:

o Step 1: Estimating the neuronal activity x(t) from the

BOLD signal.

e Step 2:Estimating the relative information processing
capacity p/a, input storage capacity m/a, and the time
constant 7.. Due to the simplicity of the experiment
tasks, we approximated the information arrival rate cor-
responding to the Congruent and Incongruent conditions
as H(t) = acd(t) and H(t) = arcd(t), respectively,
and estimated the desired parameters based on z(t) =
Z‘E(t) — SL’[(f).

o Step 3: With the parameters estimated in the previous
step, we can reconstruct the estimated neuronal activity
Zest(t) and hence the BOLD signal based on IPC model.
We can then evaluate the performance by comparing the
estimated BOLD signal and the original BOLD signal.

We analyzed all the active regions identified by FreeSurfer,
including the middle frontal gyri (MFG), the inferior frontal
gyrus (IFG), the inferior occipital gyru (I0G)s, the middle
occipital gyrus (MOG) and the superior frontal gyrus (SFG).
The simulation results for the right MFG was shown in the
table and Fig. 2. The results for other regions are similar.

From the simulation result, it can be seen that: (i) Under the
same cognitive task, higher information processing capacity
leads to lower neuronal activity and smaller time constant
in individual brain regions. (ii) Within each group, the In-
congruent task imposes a higher information arrival rate, and
hence higher neuronal activity than the Congruent task. (iii)
The younger group has higher relative information processing
capacity and a smaller time constant (or faster response) than
the older group under the same task. It can also be observed
that the IPC model can predict the BOLD signal with high
accuracy.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we first introduced the information conser-
vation law, and then established and verified a mathematical

Es(t)iinated neuronal activity using the Least Square method
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Fig. 2. Results for right MFG: (a) Estimated neuronal activity; (b) True
BOLD signals versus the estimated signals based on the IPC model.

model for brain information processing capacity, named the
IPC model, which characterizes the relationship of the neu-
ronal activity of a brain region to its information processing
and input storage capacities, and the arrival rate of the input
information. Our analysis indicated that for a given cognitive
task, higher information processing capacity leads to lower
neuronal activity level and faster response. This observation
is consistent with the findings reported in literature that high-
capacity individuals generally have lower neuronal activity [8].
The TPC model can be applied to any data type from which
neuronal activity can be extracted. Moreover, relying on the
information conservation law, the IPC model can serve as a
unified framework for multiscale modeling of brain dynamics,
from neuron to region, and to the whole brain. It links neuronal
activity to information processing capacity and provides a new
perspective in computational brain analysis.

REFERENCES

[1]1 S. J. Luck and E. K. Vogel, “The capacity of visual working memory
for features and conjunctions,” Nature, vol. 390, p. 279-281, 1997.
[Online]. Available: https://doi.org/10.1038/36846

Authorized licensed use limited to: Michigan State University. Downloaded on August 31,2023 at 17:06:50 UTC from IEEE Xplore. Restrictions apply.



[2] C. Bick and M. 1. Rabinovich, “Dynamical origin of the
effective storage capacity in the brain’s working memory,” Phys.
Rev. Lett., vol. 103, p. 218101, Nov 2009. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.103.218101

[3] T. Li, Y. Zheng, Z. Wang, D. C. Zhu, J. Ren, T. Liu, and K. Friston,
“Brain information processing capacity modeling,” Scientific reports,
vol. 12, 2022. [Online]. Available: https://doi.org/10.1038/s41598-022-
05870-z

[4] K. Shapiro, The limits of attention: Temporal constraints in human
information processing. Oxford University Press, 2001.

[5] R. Marois and J. Ivanoff, “Capacity limits of information processing in
the brain,” Trends Cogn Sci., pp. 296-305, Jun. 2005.

[6] J. Todd and R. Marois, “Capacity limit of visual short-term memory in
human posterior parietal cortex,” Nature, vol. 428, p. 751-754, 2004.
[Online]. Available: https://doi.org/10.1038/nature02466

[7]1 J. Dambre, D. Verstraeten, B. Schrauwen, and et al., “Information
processing capacity of dynamical systems,” Sci Rep, vol. 2, p. 514,
2012. [Online]. Available: https://doi.org/10.1038/srep00514

[8] E. Vogel and M. Machizawa, “Neural activity predicts individual differ-
ences in visual working memory capacity,” Nature 428, 748-751 (2004).
https://doi.org/10.1038/nature02447.

[9] E. Salinas and T. Sejnowski, “Correlated neuronal activity and the flow
of neural information,” Nat Rev Neurosci.

[10] N. F. Ramsey, J. M. Jansma, G. Jager, T. Van Raalten, and R. S. Kahn,
“Neurophysiological factors in human information processing capacity,”
Brain, vol. 127.

[11] A. Hodgkin and A. Huxley, “A quantitative description of ion currents
and its applications to conduction and excitation in nerve membranes,”
J Physiol, vol. 117, p. 500-544.

[12] R. Jolivet, T. J. Lewis, and W. Gerstner, “Generalized integrate-
and-fire models of neuronal activity approximate spike trains of
a detailed model to a high degree of accuracy,” Journal of
neurophysiology, vol. 92, p. 959-976, 2004. [Online]. Available:
https://doi.org/10.1152/jn.00190.2004

[13] G. Deco, V. Jirsa, P. Robinson, M. Breakspear, and K. Friston, “The
dynamic brain: from spiking neurons to neural masses and cortical
fields,” PLoS Comput. Biol., vol. 4, p. €1000092, 2008.

[14] K. J. Friston, K. H. Preller, C. Mathys, H. Cagnan, J. Heinzle,
A. Razi, and P. Zeidman, ‘“Dynamic causal modelling revisited,”
Neurolmage, vol. 199, p. 730-744, 2019. [Online]. Available:
https://doi.org/10.1016/j.neuroimage.2017.02.045

[15] R. Rosenbaum and B. Doiron, “Balanced networks of spiking
neurons with spatially dependent recurrent connections,” Phys.
Rev. X, vol. 4, p. 021039, May 2014. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevX.4.021039

[16] A. Badimon, H. Strasburger, P. Ayata, and et al., “Negative feedback
control of neuronal activity by microglia,” Nature, vol. 586, p. 417-423,
2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2777-8

[17] C. M. Kim, U. Egert, and A. Kumar, “Dynamics of multiple
interacting excitatory and inhibitory populations with delays,” Phys.
Rev. E, vol. 102, p. 022308, Aug 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.102.022308

[18] D. Zhu, Z. R.T., and S. J.M., “Brain activation during interference
resolution in young and older adults: an fmri study. neuroimage,” vol. 50,
p. 810, 2010.

Authorized licensed use limited to: Michigan State University. Downloaded on August 31,2023 at 17:06:50 UTC from IEEE Xplore. Restrictions apply.



