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Abstract—Cooperative target localization using unmanned
aerial vehicles (UAVs) swarm is gaining popularity in many
applications such as disaster detection, crowd surveillance, and
rescue operation. In this paper, a UAV swarm, featuring a single
antenna R F  transceiver per UAV, is considered and regarded as a
distributed MIMO radar system for a problem of target localiza-
tion. To reduce the number of measurements and computational
complexity, the compressive sensing based (CS-based) algorithm is
applied. In most of the existing works in radar community, the
assumption of fixed radar positions is adopted. Here, by
exploiting the mobility of the UAV swarm, we propose two UAV
placement optimization algorithms to improve the performance
of CS-based target localization. Simulation results show that
compared to the random UAV placement, the mutual coherence of
the measurement matrix is reduced and the localization root
mean square error (RMSE) is significantly improved under the
proposed UAV placement. Moreover, the RMSE performance can
be further improved by increasing the number of UAVs.

Index Terms—Unmanned aerial vehicle (UAV), compressive
sensing, MIMO radar, localization

I. INTRODUC T I ON

Cooperative unmanned aerial vehicles (UAVs) swarm is a
promising technology to detect and localize targets over large
areas [1]-[3]. The target localization capability of UAV swarm
plays an important role in many applications such as disaster
detection, crowd surveillance, and rescue operation. In the
literature, most of the works consider UAVs equipped with
cameras [4][5]. However, the sensing capability of cameras
suffers great degradation under bad weather or in the night. In
contrast to cameras, UAV swarm equipped with RF  transceivers
can sense the environment day and night, regardless of the
weather conditions. Moreover, since the RF  transceivers are
widely separated by the UAV swarm, the UAV sensing system
forms a distributed multiple-input multiple-output (MIMO)
radar system. It has been shown in literature [6] that the
distributed MIMO radar system can improve the performance
of target detection and localization by exploiting the spatial
diversity of target’s radar cross section (RCS). Therefore, in
this paper, the UAV swarm equipped with RF  transceivers is
considered.

According to compressed sensing (CS) theory, a sparse
signal can be reconstructed from far fewer measurements than
that required in the conventional sampling theory. Therefore, if
we assume that only very few targets are present in the region
of interest (ROI), the CS  theory can be utilized to reconstruct
the scenario and localize the targets. In the literature, several
CS-based localization methods for distributed MIMO radar

system have been proposed [7]-[11]. Researchers studied vari-
ous design parameters to further improve the target localization
performance, for example, the measurement matrix [8], the
power allocation [9], and the transmitted waveforms [10].
However, since no mobile platforms are adopted in [7]-[10],
all the mentioned works considered fixed antennas placement.

In this paper, CS-based target localization is adopted for
UAV swarm based distributed MIMO radar. By exploiting
the mobility of UAV swarm and optimizing the placement
of UAVs, we reduce the mutual coherence of the dictionary
matrix and improve the localization performance of CS-based
method. Two algorithms are proposed to adapt UAV placement
to achieve higher target localization performance. The first one
is an intuitive heuristic search algorithm, and the other one
is based on a gradient descent. The algorithms try to find
the optimal UAV swarm placement in a given region so that
the mutual coherence of the dictionary matrix is minimized.
Compared to the random UAV placement, the localization root
mean square error (RMSE) is significantly improved under the
proposed UAV placement. Simulation results also show that
under proposed UAV placement, the RMSE performance can
be further improved by increasing the number of UAVs.

I I . S I G NA L AND S Y S T E M MODE L

While the concepts developed for CS-based localization are
quite general, for concreteness, we consider Linear Frequency
Modulated Continuous Wave (LFMCW) chirp waveforms,
which are one of the most widely used modulation schemes
for radars because of the simplicity of hardware and signal
processing. In this section, we first describe the signal model of
LFMCW waveforms, and then introduce our system model.

A. LFMCW Signal Model

In LFMCW radar, the radar transmitter radiates a continuous
sinusoidal waveform whose frequency changes linearly with
respect to time. The transmitted signal can be described as

s(t) =  ej 2πϕ (t)  =  e j 2π ( f c t + 1  s t 2 ) , 0 <  t ≤  T, (1)

where f  is the carrier frequency, and T is the chirp duration.
The frequency of s(t) is dϕ(t) =  f c  +  st, which is linearly
increased. The frequency modulation slope is s.

Consider a point scatter placed at a distance d from a co-
located transmit and receive radar antenna. The transmitted
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signal is reflected back to the receive antenna from the point
scatter. The received signal becomes

r(t) =  
d2 s(t −  τ ) =  

d2 e
j 2π ( f c ( t − τ ) + 2  s ( t− τ ) 2 ) , (2)

where τ =  2d/c, c is the speed of light, and α is the reflectivity
of the target. At the LFMCW receiver, the received signal r(t)
is mixed with the transmitted s(t). The resulting signal is called
intermediate frequency (IF) signal and can be expressed as

I F ( t )  =  
α 

e j 2π ( f c τ + s τ t − 1  sτ 2 ) . (3)

Since τ is small, 1 sτ2 in (3) can be omitted. As a result, we
have

I F ( t )  =  
d2 e

j 2π  ( f c + s t )  d. (4)

This IF  signal is then used for target detection and range
estimation.

B. System Model

Given the LFMCW signal model, now we can introduce
our system model where each UAV is equipped with either a
LFMCW transmitter or receiver. Consider a UAV swarm of U
UAVs. The number of transmitters and receivers are N T  and
N R ,  where N R  +  N T  =  U. Since one UAV can fly far away
from others, the UAV swarm can be regarded as a distributed
MIMO radar system and can be used to localize multiple
targets. Denote the position of the mth transmitter UAV by
pTx � R3  where m � {1, 2, . . . , NT }  and the position of the nth
receiver UAV by pRx � R3  where n � {1, 2, . . . , NR }. We
assume that K  targets are present in a two dimensional region
of interest (ROI), Ptarget. The position of the kth target is
denoted as t k  � Ptarget where k � {1, 2, . . . , K }.

To simplify the design of the receiver, the transmitted signals
from different transmitters are designed to be orthogonal to
each other. The orthogonality can be either imposed in time or
frequency domain. Let sm (t) be the signal transmitted from the
mth transmitter. The transmitted signals are reflected by the
targets and captured by the receivers. The signal arriving at the
nth receiver can be written as

rn (t) =  
X  X  αm , n  sm (t −  

dm , n , k  ) (5)
m = 1  k = 1       m , n , k

where αm , n  denotes the reflectivity corresponding to the mth
transmitter, nth receiver, and kth target. dm , n , k      =  ||p −
tk||2 +||pRx−tk||2. It is worthwhile to note that the reflectivity
is dependent on the transmitter-receiver indices. This is due to
the fact that the antennas are spread widely, so the illuminated
surfaces of the target from different antennas are not the same.
For a co-located MIMO scenario, the reflectivity would be the
same for all transmitter-recevier indices.

Under the orthogonality design of the waveforms, the signals
from the mth transmitter at nth receiver can be separated and
expressed as rm , n (t)  = k = 1  

α m , n  sm (t −  d m , n , k  )  +  n(t),
where n(t) is the additive white Gaussian (AWGN) noise. The
received signal is then mixed with sm (t) to obtain the IF signal,

and passed through the Analog-to-Digital converter (ADC) to
get discrete time samples ym,n [p]. As a result, we have

ym,n [p] =  
X  αm , n  ej 2π  ( f c + s p T s )  d m , n , k  +  n[p]
k = 1       m , n , k

K

= α̂k 
,n ej 2π  c  d m , n , k p T s  +  n[p] (6)

k = 1

where p and Ts denote the sampling index and the sampling
interval. p =  1, 2, ..., P.

To simplify the expression of the received samples
with a matrix form, we define the reflection vector α
= [α̂1,1, α̂1,2, · · · , α̂1 , · · · , α̂ K ]T � C N T  N R K ,
and the measurement matrix Ψ with dimension
N T  N R P  ×  N T  N R K ,  where Ψ =       [Ψ1,Ψ2, · · · , ΨK ],
Ψk =  [Φk (1), Φk (2), · · · , Φk (P )]T , k =  1, ..., K , and

Φk (p) =  diag(ej2π c  d 1 , 1 , k p T s  , · · · , ej 2π  c  d N T  , N R , k p T s  ), (7)

where p =  1, ..., P . The notation diag(e1, e2, · · · , eN )  denotes
a diagonal matrix with diagonal elements e1, e2, · · · , eN . Col-
lecting N T  N R P  samples ym,n [p] from all receivers and de-
noting y  =  [y1,1[1], y1,2[1], · · · , yN T  , N R  [1], · · · , yN T  , N R  [P ]]T ,
we have

y  =  Ψα  +  n, (8)

where n  is the noise vector.

I I I . C S - BA S E D TA R G E T L O C A L I Z AT I O N METHOD

The idea of CS-based localization has been elaborated in
[7]. Considering its advantages of sample reduction and great
localization performance, we adopted it and applied it to our
UAV swarm sensing system.

In CS-based localization, the region of interest (ROI) Ptarget
is first discretized into G  grid points, each of which can be
regarded as a candidate of the position estimate of the target.
The position of the gth grid is denoted as tgrid where g �
{1, 2, . . . , G}. Then, the N  N  × G  dictionary matrix Ψgrid is
constructed as Ψgrid =  [Ψgrid,Ψgrid, · · · ,Ψgrid], where Ψgrid =
[Φgrid(1),Φgrid(2), · · · , Φgrid (P )]T , k =  1, ..., G, and

Φgrid(p) =  diag(ej 2π s  d 1 , 1 , k p T s  , · · · , ej 2π  s  dN
d  

, N R , k p T s  ), (9)

where p =  1, ..., P and dm,n,g =� pTx −  tgrid �2 +  � pRx −
tg �2. When K  � G, according to the compressed sensing
theory, we can reconstruct the y  in (8) with the dictionary
matrix Ψgrid by finding a sparse vector x .  That is, a sparse
vector x  exists such that � y−Ψg r i d x �2 is as small as possible.
Note that since Ψgrid is formed by the concatenation of G
diagonal matrices, each of which corresponds to one grid point
in the ROI, the reconstructed x  will be meaningful only if x
is block-sparse. That is, x  =  [ x T  , x T  , · · · , x T  ]T , where g =
1, ..., G, x g  � C N T  N R      and only few of x g  are nonzero.
Combining the above statements, the target can be localized
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by solving the following CS-based optimization problem:

min � x  �0

s.t. � y  −  Ψgridx �2≤  ϵ, x  is block-sparse (10)

Once we acquired the block-sparse vector x ,  the positions of
the non-zero elements in x  give us the target localization
estimation because each non-zero x g  in x  corresponds to one
single grid point in the dictionary. To solve the block sparse
reconstruction problem, the block orthogonal matching pursuit
(BOMP) [13] is adopted in our localization.

Based on the CS  theory, a dictionary with a smaller mutual
coherence can guarantee a better reconstruction performance.
The mutual coherence of our dictionary matrix is defined as

 
grid H grid

µ(Ψgrid) =  max 
� Ψgrid �F  � Ψgrid �F

(11)

Since Ψgrid is a function of transmitters’ and receivers’ posi-
tions, the mutual coherence is also a function of transmitters’
and receivers’ positions. In those previous CS-based localiza-
tion works [7]-[10], the radar is fixed to the ground. However,
UAV swarms are mobile. The mobility, as a newly-introduced
design degree of freedom, allows us to further improve the
reconstruction performance of CS-based method.

I V. UAV P L A C E M E N T O P T I M I Z AT I O N

The goal is to minimize the mutual coherence by optimizing
the UAV placement. In practice, the positions of UAVs are
limited in a certain space SUAV . Therefore, the optimization
problem can be formulated as

min µ(Ψgrid) (12)
pTx ,· · ·  , p T x

T  
,pR x , · · ·  , p R x

R  
�SU

A
V

Solving the optimization in (12) is very difficult. Instead, we
propose two algorithms, Heuristic search (HS) and Gradient
descent (GD), to find the suboptimal solution.

A. Heuristic Search (HS) placement optimization

The UAV space SUAV     is uniformly discretized into Q
separate grid points. Every grid point is regarded as a
candidate of the UAV postion and saved in the set S Q .
Then, a simple iterative search method is adopted to find
the suboptimal solution of (12). At every iteration, each
transmitter/receiver searches and tries all the possible grids
in S Q  and chooses the one which minimizes the objective
function in (11). The iterative HS algorithm is summarized in
the following pseudo-code:

1) Initialization:
Construct     the     set     S  .     Then     initialize     P ( 0 ) =
[pTx, · · · , pTx , pRx, · · · , pRx ] =  [p(0) , . . . , p(0)             ].

2) Iteration (Ni t  is the number of iteration):
Fo r  i  =  1, 2, . . . , Nit do the following.

Fo r  k =  1, 2, . . . , NT +  N R ,  do the following.

(i) let P ( i ) (w )  =  [p(i) , p( i ) , . . . , p(i )  
1 , w, p(i−1) ,

p( i−1) , . . . , p( i−1 )  
R  

]T .

(ii) Find w =  arg min µ(Ψgrid).
Q

(iii) Update p ( i )  =  w.

E n d Fo r
E n d Fo r

B. Gradient Descent (GD) based Placement Optimization
In GD based placement algorithm, the iterative structure is

the same as that of HS placement algorithm. The difference is
that instead of searching the whole set S Q  for each transmit-
ter/receiver, we calculate the gradient of µ(Ψgrid) with respect
to pTx or pRx . Then the position of transmitter/receiver at the
ith iteration, p( i ) ,  moves to p ( i )  =  p ( i − 1 )  −  b( i )  �µ(Ψgrid),
where b( i )       is the step size and b( i )       =  db( i−1) . d <  1 is a
decay factor. The gradient �µ(Ψgrid) with respect to pTx is

�pTx µ(Ψgrid)

=  max
4πsTs      −� � (Ψgrid)HΨgrid �F        p sin(a)

m,p

+  � � (Ψgrid)HΨgrid �F        p cos(a)
Tx Tx

×  (
� pTx −  t j  � 

−  
� pTx −  t i  �

), (13)

where a =  2π spT s  (� pTx − t j  � −  � pTx − t i  � +  � pRx − t j  �
−  � pRx −  t i  �), t i  is the position of the ith target and t j  is
the position of the j th target. Similarly, the gradient �µ(Ψgrid)
with respect to pRx is computed by replacing pTx in (13) with
pRx .

The iterative GD algorithm is listed as follows:

1) Initialization:
Initialize P ( 0 )       =  [pTx, · · · , pTx , pRx, · · · , pRx ]T       =
[p(0) , p(0) , . . . , p(0) ]T .

2) Iteration:
Fo r  i  =  1, 2, . . . , Nit times, do the following.

Fo r  k =  1, 2, . . . , NT +  N R ,  do the following.

(i) Calculate �µ =  �µ(Ψgrid (P(i−1) ))with

respect to     p ( i −1 )

(ii) Update p ( i )  =  p ( i − 1 )  −  b( i )  �µ.

E n d Fo r
E n d Fo r

V. S I M U L AT I O N R E S U LT S

Monte-Carlo simulation is adopted to showcase the localiza-
tion performance under two proposed placement optimization
algorithms. The total number of Monte-Carlo simulation MC  is
104. The ROI Starget is an 1 m ×  1 m 2D plane, and there are 2
targets inside it. We discretize the ROI into 10 × 10 grid
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Fig. 1. The RMSE performance of 2 fixed targets, at positions [0.2 0.2], and
[0.8 0.8]
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-5 0 5 10 15

SNR(dB)

Fig. 2. The RMSE performance of 2 targets, which are randomly placed in
the ROI

points so that the distance between two adjacent grids is 0.1 m.
The number of UAVs U is chosen from 4 to 12. The UAVs are
allowed to move in a 3D space SUAV , the dimension of which
is 3 m ×  3 m ×  3 m, and the location of which is 4 m above the
ROI. For the LFMCW, the carrier frequency f c  is 60 GHz. The
frequency modulation slope of the LFMCW signal is set to
60 MHz/µs and the bandwidth is 1.5 GHz. The number of
samples used for processing is 256. The performance of
localization is evaluated by the root mean square error (RMSE)
of the estimation which is defined as

RMSE =

P
i , k  � t k  −  t k  �2 

, (14)
C

where t i  is the kth target estimation in the ith Monte-Carlo
trials, and t i  is the kth target position in the ith Monte-Carlo
trials. K  is the number of targets.

Fig. 1 shows the RMSE performance of the CS-based local-
ization for 2 fixed targets under 3 different UAV placements:
random placement, heuristic search placement, and gradient
descent placement. 4 UAVs are considered here, with 2 of
them being transmitters and 2 of them being receivers. The

Num of UAVs

Fig. 3. Computational complexity comparison, in terms of the required number
of calculation of µ

targets are located at [0.2m, 0.2m] and [0.8m, 0.8m], which
are exactly the grid points of our dictionary. Therefore, both
proposed placements can exactly estimate the target locations
at high SNR regime, while random placement cannot.

In Fig. 2, the targets are randomly placed in the entire ROI
and varied across different Monte-Carlo trials. Results show
that both proposed placements still outperform the random
placement significantly. Here we use a big number of grid
points in the search space of our heuristic search algorithm Q
=  104 such that the heuristic search placement is even
slightly superior to the gradient descent placement and has the
best performance.

Fig. 3 shows the comparison of the computational com-
plexity between the two proposed algorithms. Based on the
algorithm details described in Section IV, we can see that the
most of the computational load for each algorithm results from
the calculation of the mutual coherence (11). Therefore, we use
the number of calculation of µ as the metric for the comparison
of complexity. Since the heuristic search needs to search the
minimum µ in each iteration, the number of calculation of
µ grows much faster than that of gradient descent when the
number of UAVs increases.

Fig. 4 and 5 illustrate the effect of the number of the UAVs
to the performance of mutual coherence and RMSE. As we
can see from the figures, the more UAVs are used, the better
localization performance can be achieved. This is because
with more UAVs measurements, the number of rows of the
dictionary matrix Ψgrid becomes larger, which makes it easier
for Ψgrid to achieve a lower mutual coherence. As a result, after
the UAV placement is carefully selected by our algorithms, the
mutual coherence of Ψgrid is further reduced and the RMSE
performance gets improved.

In our simulation, we assume that the UAV can locate itself
and move to an assigned position pTx/Rx. However, in practice,
position error might occur due to the inaccuracy of the on-
board sensors. When that happens, the UAV ends up stopping at
position pTx/Rx +  epos, instead of at pTx/Rx. Therefore, the
effect of position error should be taken into consideration.
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Fig. 4. The relationship between the localization performance (RMSE perfor-
mance) and the number of UAVs
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Fig. 5. The relationship between the mutual coherence of the dictionary and
the number of UAVs

Fig. 6 shows the effect of the position error to the perfor-
mance of mutual coherence and RMSE. The UAV swarms can
have vibration which cause small position errors while they are
flying in the air. The position errors are modeled as random
Gaussian variables with standard deviation σpos and are added
to all x, y, and z dimension. The number of UAVs is 8, with
four transmitters and four receivers. The SNR is set to 10
dB. We can see that the performance of two proposed UAV
placements outperform random placement, regardless of the
value of σpos.

V I . CO N C L U S I O N

In this paper, we proposed two algorithms that optimize
the placement of UAVs to improve the CS-based target lo-
calization. Based on simulation results, the UAV placements
provided by both algorithms achieve much lower localization
RMSE than random placement. The heuristic search based al-
gorithm provides the best localization performance but requires
higher computational resources. The gradient descent based
algorithm achieves comparable performance to the heuristic
search based algorithm but has lower computational complex-
ity. The proposed placements can still provide performance

Fig. 6. The effect of the position error

improvement even with a certain degree of UAV position
errors. Moreover, we show that the RMSE performance can
be further improved by increasing the number of UAVs.
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