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Distributed Transmit Beamforming: Design and

Demonstration From the Lab to UAVs
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Abstract— Cooperating radios can extend their communication
range by adjusting their signals to ensure coherent combining at
a destination radio. This technique is called distributed transmit
beamforming. Beamforming (BF) relies on the BF radios having
frequency synchronized carriers and phases adjusted for coherent
combining. Both requirements are typically met by exchanging
preambles with the destination. However, since BF aims to
increase the received power, the individually transmitted pream-
bles are typically at low SNR and their lengths are constrained by
the channel coherence time. These noisy preambles lead to errors
in frequency and phase estimation, which result in randomly
changing BF gains. To build reliable distributed BF systems, the
impact of estimation errors on the BF gains need to be considered
in the design. In this work, assuming a destination-led BF
protocol and Kalman filter for frequency tracking, we optimize
the number of BF radios and the preamble lengths to achieve
reliable BF gain. To do that, we characterize the relations between
the BF gains distribution, the channel coherence time, and design
parameters like the SNR, preamble lengths, and the number
of radios. The proposed relations are verified using simulations
and via experiments using software-defined radios in a lab and
on UAVs.

Index Terms— Distributed transmit beamforming, cooperative
communications, UAVs.

I. INTRODUCTION

D ISTRIBUTED transmit beamforming (BF) enables a

group of radios to act as a virtual antenna array when

cooperating to transmit a common message to a destina-

tion radio. By having N equal-power radios beamform, the

received power at the destination can increase by up to N2;

N -fold due to transmit power increase and N -fold due to

coherent combining [1]. The N2 increase can theoretically

provide up to N fold extension of communication range or,

for the same received power, reduce the transmitted power

from each radio by N [2]. Thus, BF can enable long-

range communications from cooperating low power devices,

unable to communicate individually with a remote desti-

nation or improve the energy efficiency by reducing the
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energy transmitted from individual radios.This can be use-

ful for applications like power-constrained internet of things

devices (IoT) whether deployed indoors or outdoors [3] or

remotely deployed UAVs [4] or ground robots performing

search and rescue [5]. Depending on the specific deploy-

ment environment, the propagation environment and channel

coherence time would vary, however, the cooperating radios

are typically in proximity of each other and far from the

destination.

For separate radios, having independent oscillators, to act

as one virtual array, they need to synchronize their carrier

frequencies and adjust the phases for coherent combining

at the destination. Since signals combine over-the-air, both

requirements need to be satisfied prior to transmitting the

payload. The satisfaction of these requirements is typically

performed by exchanging preambles with the destination for

channel phase estimation and carrier frequency synchroniza-

tion [2]. However, given that in a typical distributed BF

scenarios the radios have low power and/or the destination

is remote, the pre-BF SNR of individual radios is low, and

there are errors in both channel estimation and destination-

led frequency synchronization that cannot be neglected and

would result in phase errors in the combining signals. These

combining phase errors will lead to the BF gains being non-

deterministic and less than N2. The BF gain degradation

cannot always be mitigated, especially in high mobility radios

like UAV-mounted, where the channel coherence time limits

the preamble lengths and makes the combining phase errors

inevitable. To build a reliable BF system despite of these

errors, we need to specify the number of BF radios and the

preamble lengths such that a minimum desired post-BF SNR

is attained with a given probability.

Existing works have proposed many approaches for distrib-

uted BF leveraging different methods for over-the-air phase

adjustment and frequency synchronization [3] as wired solu-

tions are not suitable for independent radios [6]. Approaches

for phase adjustment include explicit channel feedback from

the destination [7], 1-bit feedback where the BF radios iter-

atively adjust their phase based on binary feedback from the

destination [8], and roundtrip message exchange among the

destination and BF radios [9]. Unlike the other approaches,

explicit channel estimation is non-iterative making it less

complicated and more reliable specially under fast varying

channels like those experienced by UAVs. For frequency

synchronization, some works have relied on external frequency

references like GPS [10], [11], out of band signaling [12], and

others relied on a destination preamble along with averaging
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filters like the the extended Kalman filter (EKF) for tracking

the carrier drift [13], [14]. Filtering based approaches do

not require additional bandwidth and do not rely on GPS

signals which can be unavailable to ground robots or UAVs

deployed indoor [15]. Also filtering based approaches have

the potential to provide higher accuracy synchronization than

GPS methods [16], [17]. While these works have proposed

interesting approaches, the relation between the BF gains and

the pre-BF SNR, necessary for designing a reliable BF system,

was not analyzed. In [18], the sources of phase noise in

reference oscillator were analyzed along with their impact on

the distributed beamforming performance, however, the impact

of the SNR of the exchanged preambles was not discussed.

Using the aforementioned approaches, several distributed

BF demonstrations were carried out; in controlled lab exper-

iments, 1-bit feedback was demonstrated using EKF for fre-

quency synchronization in [13], [14], and [19] and out-of-

band signaling in [12]. In [14], the BF procedure was designed

for wireless power transfer compatible with 802.11 standard.

Outdoor ground based demonstrations spanning several kilo-

meters using explicit channel feedback were performed in [10]

and [11] relying on GPS for frequency synchronization. Using

explicit feedback, in [17], BF was demonstrated from UAVs

with the synchronization performed over wires attached to

the flying UAVs. These works have shown the potentials for

distributed BF in signal combining, yet their results are hard

to generalize to different scenarios because they are mostly

empirical.

Other works have considered different distributed BF

approaches to avoid signal exchange with the destination.

In [20] and [21], distributed BF using radio locations was

proposed assuming the knowledge of the direction towards

the destination radio. However, these approaches are sensi-

tive to localization errors and require sub-wavelength level

localization accuracy [22], which might not be available and,

additionally, the direction of the destination might be unknown

for instance when a UAV is collecting measurements from BF

IoT devices [23]. Another approach avoids destination feed-

back by repeating transmissions relying on the randomness of

the combining gains [24]. However, this approach has a low

throughput. BF using destination feedback does not require

repeated transmissions and would work in a non-LOS channel

without requiring any location information. Other works have

also considered optimizing the BF radio locations [25], [26],

however, in many cases the BF radios locations are predeter-

mined and cannot be changed.

In this paper, we consider a destination-led BF protocol

using the Kalman filter (KF) for frequency synchronization

and explicit channel feedback. For that protocol, assuming

equal pre-BF SNRs, we propose an analytical framework

relating the statistical distribution of the BF gains, with the

system parameters including pre-BF SNR, the number of BF

radios, and the BF overheads (the duration of the exchanged

preambles). Using this framework, we can optimize some

of the system parameters to design a distributed BF system

attaining a minimum required SNR with a given probability.

To derive this framework, we derive the variance of the

combining phase errors, which depends on the preamble

lengths and the pre-BF SNR. Then, given the variance of

the combining phase errors, we approximate the distribution

of the BF gains. The proposed framework is verified using

simulations and experimentally using two BF software-defined

radios (SDRs) in a lab environment. After deriving and

verifying the framework, we consider two example design

applications; one applicable to large swarms of small UAVs

and the other for weather balloons. In the first example, for

fixed BF overheads, we find the minimum number of BF

radios to meet the required SNR. In the second example,

for a fixed number of radios, we determine the shortest BF

overheads that realize the SNR requirement. To the best of

our knowledge, we are the first to demonstrate fully wireless

distributed BF from flying UAVs without any wires attached.

Our main contributions are:

• We proposed an analytical framework describing the

relations between the BF gains and the pre-BF SNR, the

length of the preambles, and the number of BF radios

for a destination-led distributed BF protocol under the

assumption of equal pre-BF SNRs. These relations were

verified using simulations and experimentally using two

BF software-defined radios.

• We characterized the distribution of BF gains assuming

zero-mean normally distributed phase errors. We analyt-

ically derived a closed form expression for the variance

of the BF gains. For large N , using central limit theo-

rem, we proved that the BF gain distribution approaches

Gaussian. For small phase error variance, using Taylor

series, we approximated it using a Gamma distribution.

• Using the BF framework, we proposed approaches to

determine the minimum number of BF radios and the

shortest BF overheads to meet a required minimum post-

BF SNR with a given probability. These approaches

use mixed-integer convex optimization and bisection

and were verified to meet the SNR requirements using

simulations.

II. SYSTEM MODEL AND DISTRIBUTED BF PROTOCOL

A. System Model

Consider N identical radios collaborating to beamform a

common payload to a destination radio D in a narrowband

flat-fading channel. The BF radios can be remotely deployed

Internet-of-Things devices communicating with a gateway or

UAVs communicating with a ground station. The payload is

encoded in the complex baseband signal m(t) having unit

power and it is assumed to be shared among the BF radios. The

n-th radio transmits a signal zn(t) and the combined baseband

signal at the destination is given by

y(t) =

N
X

n=1

anzn(t) exp{j(2πfnt + φn)} + w(t) (1)

where between the destination and the n-th radio, an is the

channel amplitude, fn is the carrier frequency offset, and φn is

the phase offset. The white Gaussian noise process is given by

w(t) and has power spectral density N0/2. The phase and fre-

quency offsets result from the lack of synchronization between

the local oscillators of the radios, the wireless propagation
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environment, and the Doppler frequency offsets resulting from

the relative motion of radios. While these phenomena make the

phase and frequency offsets time varying, we assume that

the payload duration is shorter than the resulting channel

coherence time and we approximate them as constant per

payload.

For the signal m(t) to combine coherently at the destination,

the BF radios need to compensate for the phase and frequency

offsets before transmission. The compensated signal transmit-

ted by radio n, thus, is given by

zn(t) = m(t) exp{−j(2πf̂nt + φ̂n)} (2)

where f̂n and φ̂n are the n-th radio estimates of the frequency

and phase offsets obtained through the BF protocol, which is

described later. The received signal can be rewritten as

y(t) = m(t)

N
X

n=1

an exp{jφe
n(t)} + w(t) (3)

where the combining phase error from radio n at instant t is

given by

φe
n(t) = (2π(fn − f̂n)t + (φn − φ̂n)) (4)

Due to residual frequency errors, the combining phase error

increases with time and this makes the BF gains degrade with

time. However, similar to most existing works in the literature,

we only consider a single value for the BF gain per payload.

To do that, we consider the evaluation instance to be te seconds

after the start of phase estimation and we get φe
n = φe

n(te).
The beamforming gain at instant te can be defined as the ratio

between the energy of the combined signals to that of the

individual transmissions

G =
kPN

n=1 an exp{jφe
n}k2

PN
n=1 a2

n

(5)

Each BF radio is assumed to transmit at its maximum power

level PT , which is common to all radios. We also assume

that the BF radios experience similar signal attenuation, which

would be the case if the radios are deployed in proximity of

each other far from the destination. Given these assumptions,

we get an = a for all n, where a is the path loss. In that case,

G becomes independent of path loss and simplifies to [27]

G =
1

N

�

�

�

�

�

N
X

n=1

exp{jφe
n}

�

�

�

�

�

2

(6)

which measures the gain for coherent combining that can take

values up to N . The pre-BF SNR at the destination from one

radio is given by

γpreBF =
a2PT

N0
(7)

and the post-BF SNR of the combined signal from all N BF

radios is equal to

γpostBF = NGγpreBF (8)

which considers both the gain from coherent combining

(up to N ) and increase in Tx power with the number of equal

Fig. 1. Timing diagram of BF protocol. The destination is the master and
BF radios are the slaves.

power radios (equal to N ) and can be up to N2 times the

pre-BF SNR. The signals transmitted by the destination to the

BF radios experience an SNR given by

γDR =
a2PD

T

N0
(9)

where the destination has a transmit power PD
T . The destina-

tion transmit power is assumed to be equal to or larger than

that of the BF radios, which can be low power IoT devices

or lightweight UAV mounted radios, i.e, PD
T ≥ PT . Note that

the post-BF SNR follows the same distribution of G, which

we need to know to realize a minimum post-BF SNR with a

given probability. As for G, it depends on φe
n, which results

from the estimation errors during the BF protocol.

B. Beamforming Protocol

We start by describing the BF protocol, which aims to

provide each BF radio with estimates of its phase and fre-

quency offsets φ̂n and f̂n using the destination feedback.

We consider a master-slave beamforming protocol [2], [7];

the destination radio is used as a master since it has a larger

transmit power and the slaves are the beamforming radios.

The master initiates the beamforming procedure and sends a

preamble for frequency synchronization. After correcting their

frequencies, the slaves send a channel estimation preamble to

the master. The master calculates a phase estimate φ̂0
n and

transmits it back to the slaves that receive a slightly different

value φ̂n due to feedback errors. Once each slave knows φ̂n

and f̂n, they can start transmitting their payload.

In Fig. 1, we illustrate the transmitted signals. All the

signaling is performed on the same frequency band, hence,

all transmissions are received by all radios. The different

beamforming stages can be described as follows

1) Synchronization: The master sends a synchroniza-

tion (sync) preamble of duration tsyn. Using this signal

each slave estimates its frequency offset f̂n. The time of

arrival (TOA) of the sync preamble is used as a reference

for timing at the slaves [28]. A guard time of duration

tg1 is provided for the slaves to process the signals.

2) Channel Estimation: Each slave during a predetermined

time slot sends a channel estimation preamble of dura-

tion tph. The master estimates φ̂0
n from each slave.

A guard time tg2 is used.
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3) Channel Feedback: The master sends φ̂0
n back to the

slaves and due to feedback error each slave receives a

slightly different phase estimate φ̂n. A guard time tg3 is

used.

4) Cooperative Communication: After estimating f̂n and

receiving φ̂n, all slaves adjust their signals accordingly

and transmit their payload of duration tp.

The duration of the BF overheads incurred by the protocol is

given by

tov = tsyn + N(tph + tfb) + tg1 + tg2 + tg3 (10)

All the signal processing is assumed to be done in discrete

time domain, hence all the time durations are assumed to be

an integer multiple of the sampling time Ts. The time overhead

can be written in terms of samples as

Nov = Nsyn + N(Nph + Nfb) + Ng1 + Ng2 + Ng3 (11)

where Nov is defined as Nov = tov/Ts and the remaining

number of samples are defined similarly. As we can see

from (11), the beamforming overheads scale linearly with the

number of BF radios N . For short coherence time channels,

the overheads Nov are typically constrained, and to increase

N while keeping Nov constant, the duration of the preambles

needs to be reduced. A few things to notice: (1) We assume

that the payload is already shared among all the slaves. This

can be achieved using a network broadcasting protocol [29],

which we do not discuss in this work. (2) As for the guard

time, it is dependent on the implementation of the BF protocol.

A more optimized implementation using an FPGA for instance

would require shorter guard times than an implementation

using a general purpose processor. (3) Cooperative commu-

nication only requires the BF radios to be synchronized with

each other and not necessarily with the destination. However,

in order to use channel estimates from the destination, they

need to be synchronized with the destination. (4) The BF

protocol does not depend on our assumption of the BF radios

having similar path loss. This assumption is only used in our

analysis. (5) The time elapsed between the phase estimation

and the evaluation time is larger for slave 1 than slave N ,

since each slave uses a different time-slot for phase estimation.

To limit the error caused by this discrepancy, in our analysis,

we consider te to start from the phase estimation slot of the

middle slave as shown in Fig. 1 to the middle of the payload.

The resulting error is negligible as long as te � N
2 tph, which

is the case as long the payload is longer than preambles as it

is typically the case in practice. (6) Due to the time-slot base

phase estimation, our analysis does not apply if the evaluation

time te is chosen to correspond to the start of the payload

(te � N
2 tph does not hold). However, evaluating the BF gain

at the start of the payload does not represent the BF gain over

the entire payload and does not have a practical importance.

Since BF is used to improve the SNR where the individual

pre-BF SNR is low, the estimation errors within the protocol

can not be neglected and will lead to a combining phase error

φe
n as given by (4). At the evaluation time te, the variance of

the combining phase error σ2
e defined as var{φe

n} under the

assumption of independence of the three estimation errors is

given by

σ2
e = (2πte)

2σ2
f + σ2

ph + σ2
fb (12)

where the frequency estimation variance is given by σ2
f =

var{fn − f̂n}, the phase estimation and feedback variances

are given by σ2
ph = var{φn − φ̂0

n} and σ2
fb = var{φ̂0

n − φ̂n}
respectively.

For the estimation of the time of arrival (TOA), after the

detection of the sync preamble, correlation with a filter-bank

is used for sub-sample-time accuracy as described in [16].

However, timing synchronization only affects intersymbol

interference (ISI) at the destination without affecting the BF

gains [2], so we do not discuss it in details.

In the following Sections (III and IV), we discuss the

waveforms and estimators used for frequency estimation and

phase estimation & feedback respectively. These estimators

were chosen to have a low computational complexity suitable

for an SDR implementation. We provide expressions for their

error variances in terms of the pre-BF SNR and the preamble

lengths. We argue that the resulting phase errors follow

a zero-mean Gaussian distribution. For zero-mean Gaussian

distributed phase errors with variance σ2
e , we approximate the

distribution of the BF gain in Section V to complete the BF

framework. This framework is numerically and experimentally

verified in Section VI. After verifying the framework, we show

how it can be used for designing BF systems in Section VII.

The BF design procedures are illustrated using example sce-

narios in Section VIII.

III. FREQUENCY SYNCHRONIZATION

The objective of frequency synchronization is to eliminate

the frequency offset between the destination and the BF radios.

We start by discussing the signals used for synchronization

and the proposed oneshot estimator and its variance. Then

we discuss frequency tracking using Kalman filter assuming

multiple successive BF cycles.

A. Frequency Offset Estimation

For frequency synchronization, we use a preamble consist-

ing of NZC repetition of a Zadoff-Chu (ZC) sequence of length

M similar to [16], satisfying Nsyn = NZCM . The frequency

estimator calculates the auto-correlation statistic

ηf =

NZC−2
X

m=0

M−1
X

k=0

y∗
f [mM + k]yf [(m + 1)M + k] (13)

where yf [k] is the noisy received preamble with the fre-

quency offset, and ()∗ denotes the conjugate operator. The

frequency offset estimate at slave n is thus given by f̂n =
1

2πTsM ∠ηf where ∠(·) denotes the phase of a complex

number calculated using arctan. The term ∠ηf calculates the

phase difference between two successive sequence repetitions,

under the assumption that M is small such that no phase

wrapping occurs. The error variance for this estimator is given

by [30, eq.70]

σ2
fe =

�

1

M(NZC − 1)2γDR

+
1

2M(NZC−1)γ2
DR

�

1

(2πMTs)2

(14)
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TABLE I

KALMAN FILTER RELATIONS

This estimator is unbiased thus E{f̂n − fn} = 0 and was

derived using a linear approximation of the arctan assuming ηf

has a high SNR. By choosing M to be large, using the central

limit theorem, the distribution of ηf can be approximated

by Gaussian, thus making f̂n − fn, which is approximated

as linear in ηf , a zero mean Gaussian RV. However, at low

SNR of ηf , ∠ηf becomes uniform and the expression of σ2
fe

no longer applies. This regime can be avoided by increasing

NZC, otherwise, the BF gains will be too low to be of

practical importance. Note that in practice the frequency offset

is correlated among successive packets with short separation.

This estimator, referred to as a oneshot frequency estimator,

does not benefit from this correlation.

B. Interpacket Frequency Tracking Using Kalman Filter

If beamforming is performed periodically and the BF pro-

tocol is designed such that tcyc is shorter than the channel

coherence time, the frequency estimates between packets at

each slave are correlated. Kalman filter (KF), thus, can be used

to track the frequency to reduce the estimation variance. The

drift system model and the KF equations are given in Table I

for one BF radio following the conventional KF notation [31].

The frequency process drift and measurement models are given

by (15) and (16), respectively, where xk is the true frequency

value in Hz (previously denoted by fn) and zk is the measured

frequency at time ktcyc. The noise terms for the process wk and

the measurement vk are assumed to be zero mean Gaussian

RV and their variances are q and r respectively. For the KF

update equations, at step k, Kk is the Kalman gain, xk|k−1

is the prediction of x and pk|k−1 is the error variance given

zk−1. The value of xk|k is the predicted frequency offset and

pk|k is its error variance given zk.

By substituting (17) in (18) and using (20) we get

xk|k =
r

pk|k−1 + r
xk−1|k−1 +

pk|k−1

pk|k−1 + r
zk (22)

from which we can see that the KF creates a weighted average

between the previous prediction and the current measurement.

The weights of this average are based on the predicted process

variance pk|k−1 and the measurement variance r. The larger

the process variance relative to the measurement variance, the

more weight is given to the measured value and vice versa.

Since (22) is a linear equation, if zk is a zero mean Gaussian

RV, the output of KF will also be zero-mean and Gaussian.

For BF, we are interested in calculating the KF error variance.

Proposition 1: The steady state frequency estimation error

variance of KF from Table I is

σ2
fk =

−q + q
q

1 + 4 r
q

2
(23)

The proof is in Appendix A. Using (23) and assuming the

system variances are accurately known, we argue that KF

never increases the error variance. By rewriting (23), as σ2
fk =

−q+
√

q2+4qr

2 , we can see that σ2
fk is non-decreasing in q and

if q = 0, at convergence the error variance σ2
fk = 0 for

any r. For q � r, r/q is small and using the approximation
q

1 + 4 r
q ≈ 1 + 2 r

q , we get σ2
fk = r. Thus if q and r are

perfectly known, the error variance reduction due to KF is

higher for large r/q and, in the worst case scenario for small

r/q, KF will give the measurement variance σ2
fk = r, as if

we did not use KF. However, if the values of q and r used

in KF do not match the system, this result does not hold and

KF might deteriorate the frequency estimation. In practice,

the value of r is the oneshot frequency estimator variance,

which can be determined using an estimate of the SNR. The

process variance q can be determined either using the oscillator

datasheet [27] or empirically using measurements as described

in [19]. Note that the extended KF (EKF) can track both phase

and frequency and might yield a smaller variance than KF

which only tracks the frequency. However, EKF can diverge

due to phase wrapping [19], which is not desirable in a reliable

BF system, and thus was not considered in this work.

IV. PHASE ESTIMATION AND FEEDBACK

The objective of the phase estimation and feedback is

to have the slaves modify their signals to ensure coherent

combining at the destination. In the phase estimation stage,

each slave transmits a known signal xph[n] consisting of

Nph samples. The master receives the noisy signal yph[k].
The proposed estimator calculates the correlation ηph =
PNph−1

k=0 xph[k]∗yph[k], from which the phase estimate is cal-

culated using φ̂0
n = ∠ηph. The variance of this estimator can

be calculated using [32, eq 9] as follows

σ2
phe =

1

2NphγpreBF

(24)

where NphγpreBF is the SNR of ηph. The phase error φ̂0
n follows

a zero mean Gaussian distribution as long as the SNR of

ηph � 1 [32], which is the regime of interest.

As for the phase feedback, we use in-band feedback where

the value of φ̂0
n is encoded in the phase difference between two

identical preambles to counter hardware phase ambiguity. Let

the phase feedback preamble be given as a vector xfbp ∈ CNfb .

The master transmits the sequence

xfb = [xT
fbp xT

fbpe
jφ̂0

1 · · ·xT
fbpe

jφ̂0
n · · ·xT

fbpe
jφ̂0

N ]T (25)
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Once received as yfb[k] with added noise, slave n estimates

the phase difference between the first preamble and the n-th

preamble using the statistic ηfb =
PNfb−1

k=0 yfb[k]yfb[k + nNfb]

and calculates the angle φ̂n = ∠ηfb. The variance of the

feedback is similar to that used for frequency estimation

in (14) (with NZC = 2, M = Nfb) and is given by

σ2
fbe =

�

1

NfbγDR

+
1

2Nfbγ2
DR

�

(26)

Note that there are other ways to feedback the phase esti-

mates, however, this approach is simple to implement. Another

alternative was to encode the values of φ̂0
n as floating-point

numbers and transmit them using digital modulation. However,

since we are considering a low SNR and a mistake in one of

the most significant bits can be detrimental, we would need

to implement channel coding. This would add unnecessary

complexity to our protocol. Also note that the error variance of

proposed estimators in this section are derived assuming zero

residual frequency errors (fn− f̂n). In practice, frequency esti-

mation errors would increase the variance of phase estimation

and feedback. However, the impact of (fn − f̂n) is negligible

on σ2
e and σ2

fbe compared to (2πte)
2σ2

f under the assumption

that te � tph and te � tfb.

V. BEAMFORMING GAIN ANALYSIS

In this section, our objective is to approximate the distrib-

ution of G, assuming that the φe
n are independent Gaussian

random variables (RVs) with zero mean and variance σ2
e .

The Gaussian assumption applies to our protocol because the

errors of the proposed estimators are independent and can

be approximated by a zero-mean Guassian RVs. Hence, their

sum according to (4) is also zero-mean Gaussian. We start by

calculating the mean and variance of the distribution.

Proposition 2: For signals combining from N radios having

independent zero mean Gaussian phase with variance σ2
e , the

mean and the variance of the BF gains G are given by

E{G} = 1 + (N − 1)e−σ2
e (27)

var{G} =
(N − 1)

N
(1 − e−σ2

e )2
�

(1 − e−σ2
e )2 + 2Ne−σ2

e )
	

(28)

The proof is in Appendix B. Note that the mean was previously

derived in [27]. In Fig. 2a, we plot the average BF gain

using (27) as a function of σe with the error bars representing

the standard deviation (
p

var{G}). For σe = 0, we get a BF

gain of N as we ideally expect. As σe increases, the mean BF

gains decrease and their variances increase and this happens

faster for larger N . Thus when designing a BF system unless

N and σe are small, we can not assume a perfect N fold power

increase due to BF. To verify the derived mean and variance,

for each value of N and σe, we sampled 100,000 zero mean

Gaussian RVs of variance σ2
e for each radio and added them to

calculate G numerically. The simulations shown in Fig.2a as

thick dashed lines with dashed error bars overlap the derived

expressions verifying Proposition 2.

To better understand the variance behavior with N , for small

σ2
e , we simplify (28) to get var{G} ≈ 2Ne−σ2

e (1 − e−σ2
e )2.

Fig. 2. The relation between BF gain, N , and σ2
e .

Thus the variance increases linearly with the number of slaves

for small σ2
e . The linear relation between var{G} and N is

illustrated in Fig.2b. The higher the value of σ2
e , the larger

the slope. The large discrepancy in the values of the variance

with N shows the importance of considering the distribution

of G and not just its mean in the design of reliable BF systems.

Next, we approximate the distribution of G. First, we consider

the case of large N using the central limit theorem. Then,

we consider the case for a small N and small σ2
e and use the

Taylor series to derive the approximation.

Proposition 3: For large N , the distribution of G tends

to a Gaussian distribution with mean and variance given by

Proposition 2.

Proposition 4: For small combined phase error variance σ2
e

or for large N , the distribution of G can be approximated by

N −Xγ where Xγ is a random variable following the Gamma

distribution Xγ ∼ Γ(K, θ) with

K =
N(N − 1)

(1 − e−σ2
e )2 + 2Ne−σ2

e

(29)

θ =
1

N
(1 − e−σ2

e )
�

(1 − e−σ2
e )2 + 2Ne−σ2

e )
	

(30)

The proofs are in Appendices C and D respectively.

We start by plotting the empirical cumulative distribution

function (CDF) of G for small N and a small σe = 0.1 in

Fig. 3a. We can see that the distribution is not Gaussian and

is accurately approximated by the Gamma distribution. Then,

we consider a large N ≥ 30 and relatively large value of

σe = 1 in Fig. 3b. From that Figure, we can see that all three

CDFs overlap for large N and large σe verifying Prop. 3 and 4.

Based on these results, since the Gamma distribution applies

to a wider range of N and σ2
e , we use it later to approximate

the BF gain distribution. Note that neither approximation is
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Fig. 3. The distribution of G for different N and σ2
e .

accurate for small values of N and a large value of σ2
e ,

however, in this regime the BF gains are small with a large

variance, which is not of practical importance. It is important

to note that the derived variance and distribution approxima-

tion in this section apply to any BF protocol where the phase

error φe
n is independent for all n and can be approximated by

zero-mean Gaussian RVs. For our protocol, the value of σ2
e

can depend on N for scenarios where the BF overhead Nov is

constrained by the channel coherence time. In such scenarios,

the duration of each preamble decreases as N increases to

satisfy the fixed Nov. Thus the estimators error variances and

consequently σ2
e increase with N . The dependence between

N and σ2
e is considered when designing the BF preambles in

short coherence channels later in Section VIII-A.

VI. NUMERICAL AND EXPERIMENTAL VALIDATION

In this Section, after deriving the BF framework, we verify

it numerically and experimentally and we show that it can

be used to predict the BF gains at different SNRs. Using

UAV experiments and emulation over a UAV channel trace,

we evaluate the impact of the channel coherence time on the

BF gains.

A. Numerical Validation

We simulated the BF protocol between a destination radio

and N BF radios. During a BF cycle, signals transmitted from

BF radio n to the destination is multiplied by ej(2πfnt+φn)

with noise added to realize the SNR γpreBF. Any signal

transmitted the other way uses the negative value of fn with

noise added to realize the SNR γDR. At the start of each

BF cycle, for BF slave n, we sample uniform random phase

φn and fn is generated using a discrete Wiener process as

TABLE II

BEAMFORMING WAVEFORM SPECIFICATIONS

described in (15) having variance q. Since we are assuming

that the signal is transmitted within the channel coherence

time, both frequency and phase are assumed to be constant

during the same BF cycle.

The signals transmitted follow the BF protocol. For phase

estimation and feedback, we used the estimators discussed

in Section IV and for frequency offset we either used the

oneshot estimator from Section III-A alone or combined with

KF. To avoid errors in measuring the BF gain, the combined

signal magnitude was evaluated at time te before adding the

noise.

In our simulations, we considered N = 5 BF radios using

a sampling rate of 1MHz (Ts = 1µs). At this sampling

rate, since a typical near-urban air-to-ground channel has a

median root-mean-square delay spread of 11ns (�1µs) [33],

the narrowband flat-fading channel assumption is justified. The

exact duration of each preamble is given in the first row of

Table II and we used q = 0.18. The evaluation time te = 9ms
is in the middle of the payload. One million BF cycles were

simulated.

We start by discussing the results obtained when using the

oneshot frequency estimation. The average BF gain obtained

from simulations is plotted in Fig. 4a with the error bars

representing its standard deviation. For the oneshot results, the

theoretical value is obtained by calculating the variance of each

estimator using (14), (24), and (26), calculating σ2
e using (12),

then the BF gain mean and variance using Proposition 2. From

that Figure, we can see that the theoretical mean matches the

simulations to a large extent. As for the variances, they match

except for SNRs below 0dB. By plotting a breakdown of the

phase error for the slave n = 3 using (12) in Fig. 4b, we see

that at SNRs below 0dB the theoretical oneshot frequency

variance is overestimated. This happened because the phase

error becomes uniform and the Gaussian assumption no longer

holds leading to the discrepancy in Fig. 4a. At these low

SNRs, the BF gains are negligible and this is not a useful BF

design. From Fig. 4b, since the phase error from the frequency

estimation error is dominant, it would be beneficial to allocate

more time to frequency estimation or use the KF to reduce its

variance.

Next, we discuss the BF results when using KF using

the same Figures 4a and 4b. The theoretical KF variance is

calculated using (23) with the measurement variance r being

the oneshot variance and q perfectly known. From Fig. 4a,
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Fig. 4. Simulated BF Gains and phase errors at different SNRs for N =
5 using the waveform from Table II.

we can see that both theoretical and simulated curves overlap.

A small discrepancy exists at low SNR, which we attribute to

an insufficient number of BF cycles. Since KF is a recursive

filter, its output depends on all previous cycles and conver-

gence is slower for high measurement noise variance [34].

Compared to the oneshot BF, at low SNR, KF provides

significant BF gain improvements by reducing the frequency

estimation variance and the resulting phase errors as shown

in Fig. 4b. From that Figure, we also see that as the SNR

(above 0dB) becomes larger, the gap between oneshot and KF

decreases. This happens because as r decreases at high SNR,

the ratio r/q becomes small and the benefit from using KF

decreases.

B. Experimental Validation

The proposed BF protocol was implemented using three

USRP B205-mini software-defined radios (SDR); two were

used as BF radios and one as the destination radio. The

destination radio initiates a BF cycle by transmitting the

frequency synchronization preamble. The BF radios are always

running the autocorrelation given by (13) and using its output

power level to detect the preamble. Once detected, the fre-

quency offset is estimated (using oneshot or KF) and corrected.

Each BF radio transmits the phase estimation preamble in

a preassigned time slot. The destination radio estimates the

phase and feeds it back to the BF radios using the same

previously discussed waveforms and estimators. Once the

feedback is obtained, the radios transmit a known payload,

which is received and stored by the destination. The timing of

the phases estimation, feedback, and payload was implemented

Fig. 5. Experimental results collected using N = 2 BF software-defined-
radios in a lab along with the theoretical results predicted by the BF framework
and simulations.

using the USRP hardware driver (UHD) timing tags in ref-

erence to the sync preamble. The payload consists of three

parts; each of the two BF radio transmits individually at first,

then both BF radios transmit simultaneously. The magnitude of

each part of the payload is estimated by averaging, then the BF

gain is calculated by dividing the power of the simultaneous

transmission by the sum of the individual transmissions as

per (5). All the signal processing was implemented using

GNURadio [35] and timed burst transmissions were used for

the different stages of the protocol. The destination processing

was performed on a laptop and the BF radios on ODROID

XU4 single board computers (SBC). We conducted the exper-

iments in the lab and on UAVs at a frequency of 915MHz

with a sampling period of Ts = 1µs.

1) Lab Experiment: We started by verifying our simulations

on a small scale in a lab environment with a favorable channel.

The BF radios were placed in proximity from each other

to experience similar path loss as assumed in our analysis.

The destination was 2.5 meters away from the radios in

an undisturbed line-of-sight environment with a measured

coherence time of 0.3s1 and q = 0.18. Both the destination and

BF radios were set to use the same transmit gain, which was

varied in increments of 5dB to obtain different SNRs. At each

SNR, 900 beamforming cycles were performed. The timing

of the protocol is shown in Table II. Notice that the guard

times are much longer than in the simulations to allow the

1The coherence time was calculated as the time that satisfies |R(τc)| =
RL [36] where R(t) is the normalized channel correlation obtained through
measurements, and RL = 0.5 is the coherence level.

Authorized licensed use limited to: UCLA Library. Downloaded on August 31,2023 at 17:04:38 UTC from IEEE Xplore.  Restrictions apply. 



786 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 2, FEBRUARY 2023

Fig. 6. The UAV experiment consists of 2 BF UAVs with SDRs mounted
on-board. The UAVs were hovering freely and were not attached to the ground
by wires.

TABLE III

BF UAV RESULTS

BF signal processing to operate in real-time, which makes te
larger in (4), and thus increases σ2

e and degrades the BF gains.

The experimental results along with its simulated and the-

oretical equivalents are shown in Fig. 5a. We can see that the

measured results are close to the simulation and theoretical

results, which overlap. The improvement from using KF

follows a similar trend to what was observed in Fig. 5b.

This result experimentally verifies our simulation setup and

analysis.

2) UAV Experiment: Next, we move our setup from the lab

to UAVs. The BF radios, consisting of the SBC and USRPs

along with a battery, were mounted on two DJI Phantom

3 drones as shown in Fig. 6. The destination radio was placed

on the ground about 5m away from the UAVs which flew

at a height of about 4m. The wind speed at the day of the

experiment was 15Km/hr. Due to the wind and the noise of

the UAV sensors, the UAVs were not stable and drifted within

about a meter. The UAV operators frequently intervened to

stabilize them.

Based on channel estimation performed before the exper-

iment, the coherence time was estimated to be about τc =
85ms. Thus, the lab experiment BF cycle (tcyc = 180ms)

is too long for the UAV channel. For the BF to work from

the UAVs, the BF cycle was redesigned to have shorter guard

times and a 10 times shorter payload as detailed in Table II,

yielding a reduced tcyc = 75ms, which is shorter than τc

but only with a small margin. The experiment was performed

with three settings: 1) UAVs were on the ground and used

KF for frequency synchronization, 2) UAVs were flying and

used oneshot for frequency synchronization and 3) UAVs were

flying and used KF. The BF results are shown in Table III

along with the average SNR. The BF UAVs attained about 80%

of the ideal BF gains despite the low coherence time channel.

TABLE IV

BF EMULATION OVER UAV CHANNEL TRACE

These gains are lower than the ground scenario as expected

because of the shorter coherence time. As for the comparison

between KF and oneshot, there is no significant difference

because r/q is small; r is small because of the high SNR and

q is large because of the short coherence time.

C. Emulation

To overcome the large delays of the BF implementation and

have a fair comparison between KF and Oneshot, we emulated

BF over a channel trace. The channel trace was obtained by

capturing a repeating ZC sequence from a flying UAV over a

period of 100s. Using this trace, we emulated the BF protocol

as follows; we used a duration tsyn to estimate the frequency

offset and corrected for it, then we estimated the phase offset

after a delay equivalent to the protocol (tg1 + Ntph + tg2) and

corrected for it. The feedback stage was not emulated and was

assumed to be ideal. At the evaluation time te, we estimated

the phase error φe which for a static channel and perfect

estimation should equal zero. The variance of φe calculated

by emulation over the entire trace provides an estimate of σ2
e

if BF was applied in this channel. Note that the channel trace

was collected over one capture with a USRP operating in half-

duplex. Hence, the emulation over that trace does not capture

distortions due to burst transmissions and having both transmit

and receive chains powered on simultaneously in the protocol

implementation.

The measured phase errors are reported in Table IV. The

first row emulates the timing used in the UAV experiment

and using the value of τc = 85ms, which is the true one,

to calculate the KF q. The calculated phase error variance σ2
e

is shown for KF and oneshot, and the theoretically predicted

mean BF gain G using (27) and N = 2. Due to the

more favorable half-duplex capture and the ideal feedback,

the predicted emulation BF gains (≈1.7) are better than the

measured ones (≈1.6). For the relatively long BF packets at

a the high SNR of the capture, the predicted BF gains using

both oneshot and KF are very close (1.725 abd 1.723) similar

to our experimental results. Yet the BF gains are still below

2 due to the long BF cycle, so in row 2, we emulate the

protocol using a shorter cycle of 18ms by scaling down te
and the phase delay. Using this shorter cycle, the BF gains

increase significantly for both KF and oneshot and approach

the ideal gain of 2. This is the result we would expect using an

optimized implementation of the BF protocol having shorter

guard times. Due to the high SNR, both KF and oneshot still

give a similar performance. Then in row 3, we added Gaussian

noise to the channel trace to make its SNR drop to 0dB. The

expected BF gains for KF become significantly better than
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those from oneshot. This result shows that if we designed the

BF protocol such that tcyc � τc, KF can attain significantly

higher BF gains than oneshot for distantly deployed UAVs.

VII. BEAMFORMING SYSTEM DESIGN

After verifying the framework, we discuss how it can be

used in designing BF systems. To design a reliable BF system,

we need to specify the number of BF radios N and the duration

of the preambles to exceed a minimum post-BF SNR with a

given probability. The design procedure is over two steps; first

we determine N and σ2
e that meet the requirements and then

we design the preambles’ lengths to realize σ2
e at a given pre-

BF SNR. Later in Section VIII, we apply the proposed design

procedures for specific scenarios.

A. Specifying N and σ2
e

Although the pre-BF SNR (γpreBF) is assumed constant, due

to the phase error variance, the post BF SNR (γpostBF) varies

randomly. A reliable BF system has to exceed a specified

outage probability pout such that P (γpostBF < γmin) ≤ pout,

where γmin is the required minimum SNR. Using the gamma

approximation of the BF gain distribution and the post-BF

SNR definition (8), we can rewrite P (γpostBF < γmin) = 1 −
FXγ

�

N − γmin

γpreBFN

	

where FXγ
(x) is the CDF of the Gamma

distribution from Proposition 4 whose mean and variance

depend on N and σ2
e . Hence, our objective is to determine

N and σ2
e which satisfy

FXγ

�

N − γmin

γpreBFN

�

≤ 1 − pout (31)

We know the distribution of Xγ and how N and σ2
e affect it,

however, inverting (31) to obtain an explicit relation between

N and σ2
e is intractable. The fact that σ2

e can depend on

N under fixed BF overheads further complicates analytical

solutions. It is easy, however, to check whether a given choice

of N and the corresponding σ2
e satisfies the requirements

given by (31). Thus, we resort to numerical trial-and-error

methods to find N and σ2
e satisfying the requirements. The

exact method depends on the scenario and whether N is fixed

or not, and thus its discussion is deferred to Section VIII where

example scenarios are presented.

B. Beamforming Signals Design

For given values of N , γpreBF, and γDR, we want to optimize

the time allocated to each preamble for σ2
e to meet the

system requirements. We identify two problems of interest;

the first one is to minimize σ2
e for bounded BF overheads.

This problem formulation is suited for short coherence time

channels (relative to the payload), where the BF overheads

are constrained. In Sec. VIII-A, we use this formulation to

find the minimum number of BF radios meeting an SNR

requirement in a short coherence time channel. The second

problem is to minimize the BF overheads Nov to meet a

maximum allowable phase error variance. This problem is

suited for relatively large coherence time channels, where large

BF overheads are possible. In Sec. VIII-B, for a fixed N ,

we use this formulation to find the minimum BF overhead that

meets an SNR requirement in a large coherence time channel.

Next, we formulate both problems. The total overheads in

samples defined in (11) can be written as a function of the

duration of each stage Nov(Nsyn, Nph, Nfb). For fixed N , γpreBF

and γDR, the phase variance σ2
e becomes a function of the

number of samples allocated to each stage σ2
e(Nsyn, Nph, Nfb)

defined as

σ2
e(Nsyn, Nph, Nfb)=(2πte)

2σ2
f (Nsyn)+σ2

ph(Nph)+σ2
fb(Nfb)

(32)

The values of σ2
f , σ2

ph, and σ2
fb are dependent on the choice

of estimators and are a function of Nsyn, Nph, and Nfb

respectively. For our choice of estimators σ2
ph = σ2

phe defined

by (24), and σ2
fb = σ2

fbe defined by (26). As for the frequency

error variance, if we use oneshot estimation σ2
f = σ2

fe as

defined by (14) and if we use the KF σ2
f = σ2

fk as defined

by (23) with r = σ2
fe.

Note that for a chosen Zadoff-Chu sequence of a length M ,

we can only optimize the number of repetitions NZC to change

Nsyn. Hence, for fixed N , the problem P1 can be written as

P1 : minimize
NZC,Nph,Nfb

σ2
e(NZCM, Nph, Nfb) (33)

subject to Nov(NZCM, Nph, Nfb) ≤ δNov

NZC, Nph, Nfb ∈ Z
+, NZC ≥ 2 (34)

where δNov
is maximum overhead length which depends on the

channel coherence time, and Z+ is the set of positive integers.

For a maximum allowable phase error δσ2
e
, the second problem

P2 can be written as

P2 : minimize
NZC,Nph,Nfb

Nov(NZCM, Nph, Nfb) (35)

subject to σ2
e(NZCM, Nph, Nfb) ≤ δσ2

e

NZC, Nph, Nfb ∈ Z
+, NZC ≥ 2 (36)

Then, we argue that for our choice of estimators, both

problems are convex with respect to their variables and thus are

easy to solve. Except for the KF, all these estimators take the

form f(x) = c1

x + c2

x2 with respect to their variables for some

positive c1 and c2 where x is strictly positive, hence they are

all convex over their domain. As for the KF, when substituting

for r, it takes the form f(x) = c1 +
p

c2 + c3

x + c4

x2 with

respect to its positive variable x for some positive c1, c2, c3 and

c4. This can be rewritten as f(x) = c1 + kyk where y =

[
√

c2,
√

c3√
x

,
√

c4

x ]T . The norm is convex and non decreasing

and
√

c3√
x

and
√

c4

x are convex for positive x. By applying

the composition rule [37], the KF variance is convex. Hence,

σ2
e(NZCM, Nph, Nfb) is convex with respect to its arguments

for all of our estimators. As for Nov(NZCM, Nph, Nfb), it is an

affine combination of its arguments. This makes both problems

P1 and P2 integer convex problems, which can be optimally

solved using CVX with a mixed integer solver [38].

VIII. BEAMFORMING DESIGN SCENARIOS

The proposed BF framework and the derived relations can

be applied to many BF scenarios. In this ection, we discuss
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the design procedures for two example scenarios. In the first

example, we consider a large swarm of small UAVs; we want

to determine the minimum N to satisfy the SNR requirements.

Due to the UAVs’ high mobility, the channel coherence time

is small and the BF overheads are constrained. This example

maps to the problem P1. In the second example, we consider

N = 4 weather balloons sending short payloads. Due to the

long coherence time resulting from the balloons slow motion,

large BF overheads are possible. However, to avoid energy

wasted on unneeded transmission, our objective is to minimize

the BF overheads while satisfying the SNR requirement. This

example maps to the problem P2.

A. Swarm of Small UAVs

A swarm of Nub small UAVs is deployed in an urban envi-

ronment for an application like crowd monitoring [39]. A large

number of small UAVs is deployed and they continuously

transmit data. To avoid a large overhead in data sharing among

UAVs for BF, we want to determine the minimum number of

UAVs to beamform such that the destination SNR exceeds a

minimum of γmin = 5dB for 90% of the time (pout = 0.1).

For the urban channel, we consider a channel having a path

loss coefficient of 3.7 [40] and a coherence time of 10ms [41].

The maximum transmit power of each UAV is PT = 0dBm
and of the destination PD

T = 20dBm. Communication takes

place over a frequency of 915MHz using a sampling time of

Ts = 1µs and a BW of 1MHz and all radios have a noise figure

of 3dB. By performing the link budget calculation, the SNR

from an individual UAV at 1Km is close to −13dB, so the min-

imum required SNR improvement due to BF is Greq = 18dB.

Assuming ideal BF yielding an SNR improvement of N2,

only 8 BF radios are required. However, due to the short

coherence time, the entire BF packet is assumed to be limited

to 5ms and based on the payload required by the application

only 1ms of BF overhead is allowed. At this low SNR and

with this short BF overhead, the ideal beamforming gains are

not achievable and large BF variance is expected. We need to

use more than 8 BF radios so that the SNR exceeds 5dB for

90% of the time as required. Our objective is to determine the

minimum N and the duration of each preamble.

We use our analytical framework to find the minimum N .

Since for fixed overheads Nov, σ2
e depends on N , we need to

solve P1 to calculate σ2
e for each N . The proposed approach

is summarized in Algorithm 1 and it works as follows;

we start from the lower bound on N , which occurs when

assuming ideal BF Nlb =
�p

Greq

�

and increment N until the

requirement is satisfied. For each N , we solve the minimum

phase error problem P1 to obtain σ2
e . Using the resulting

σ2
e , we substitute in (31) to determine if the requirement is

satisfied or not. The first N satisfying the requirement is the

minimum N meeting the SNR requirements. If the maximum

number of available BF radios Nub was reached without

satisfying (31), another approach needs to be considered to

meet the requirements like increasing the BF overhead or

the transmit power of the radios. Since the BF is performed

periodically and tcyc < τc, we assume that KF is used for

frequency tracking.

Algorithm 1 Solving for minimum N

input : Nlb, Nub, Nov, pout, γmin

output: Solved, N , Nsyn, Nph, Nfb

Set Solved = False ;

for ni = Nlb to Nub do

Solve P1 to determine Nsyn, Nph, Nfb, σ
2
e ;

if ni and σ2
e satisfy (31) then

Set Solved = True; Set N = ni; Exit ;

end

end

The calculated N for different distances is shown in Fig. 7a

along with Nlb calculated assuming ideal BF gain. To verify

that the obtained solution meets our design criteria, we sim-

ulated 10K BF cycles of the BF protocol using using the

calculated N and the optimized waveforms obtained from

P1 at each distance. The destination SNR was measured and

its empirical CDF for the proposed N and the ideal Nlb are

plotted in Fig. 7b and 7c respectively. From these Figures,

we see that the required outage probability is met using the

proposed N . Thus, our problem solution and the underlying

analysis can be used to design reliable BF systems satisfying

the design requirements as verified by simulations. On the

other hand, relying on the ideal Nlb is expected to yield

lower BF gains than the desired ones in realistic deployment

scenarios.

Looking at Fig. 7a, we observe an interesting trend. For

the calculated N , the number of BF radios increases by

10 from 1KM to 1.1KM compared to only 4 from 900m

to 1Km, in contrast to ideal BF (Nlb), where number of BF

radios increase by a fixed rate of 1 radio. This faster rate

of increase is caused by the increasing number of exchanged

signals associated with the larger N and the decreasing pre-

beamforming SNR; to maintain fixed BF overheads, using

more radios corresponds to shorter preambles, which in turn

leads to degraded BF gains. Similarly, the pre-beamforming

SNR decreases with distance, which further degrades the

BF gains. Thus more BF radios are needed to counter the

degrading BF gains. This trend and the minimum needed

N cannot be trivially predicted from Nlb. For example using

Nlb + 5 or using 1.2Nlb will not yield the proposed N for all

distances and might result in using too many or too few radios.

This further justifies the need for our design framework.

B. Weather Balloons

Weather balloons are deployed at high altitudes to per-

form atmospheric measurements and report them back to

the ground. We consider N = 4 weather balloons deployed

at a distance of 50KM from the destination radio. Due to

their high altitude, the channel is dominated by line-of-sight

propagation and we consider a path loss coefficient of 2 and

a large channel coherence time exceeding 100ms. The large

channel coherence time allows for much longer BF overheads.

However, to economize the balloon payload battery power,

we want to minimize the transmission time. Our objective is

to determine the smallest BF overheads to attain a received
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Fig. 7. Results for minimizing N in a swarm of small UAVs assuming a fixed BF overhead. Using N obtained from our approach, the SNR requirement is
satisfied as verified by simulations.

Fig. 8. For N = 4 weather balloons, in a long coherence time channel,
the minimum overheads (Ov) obtained using our framework satisfy the SNR
requirements. Shorter Ov violate requirements and longer Ov exceed them.

SNR exceeding a minimum of γmin = 5dB for 90% of

the time (pout = 0.1). We use the same power, frequency,

bandwidth, and noise parameters as the previous scenario

except PT = 10dBm is larger. The SNR from a single radio

is -4.6dB and thus the required BF gain at 50KM distance

is 9.6dB. Assuming that the measurements are infrequent and

not periodic, we use oneshot frequency estimation.

To design this system, we find the minimum phase error

needed to satisfy the requirement (δσ2
e
), then we find the

shortest overhead to meet this phase error. Since, for fixed N ,

increasing σ2
e decreases the average BF gain and vice versa,

we determine δσ2
e

by applying the bisection method on (31).

Then, using δσ2
e
, we solve the problem P2 to determine the

minimum overhead. If the minimum overhead makes the BF

packet exceed the channel coherence time, the solution is not

valid and we need to consider another alternative like increas-

ing the transmit power. The minimum overheads obtained are

shown in Fig. 8a for different distances. Then, we simulated

the BF protocol at these SNRs using the waveforms obtained

from P2 and plotted the empirical CDF of the destination SNR

in Fig. 8b. We can see that the proposed solution approach

(shown as solid lines) meets the required outage probability,

which verifies the solution and all the underlying analysis.

For a distance of 50 Km, we simulated the BF protocol

using 0.8 the calculated minimum overheads (Ov) and 1.2 Ov,

shown in Fig. 8b as dotted and dashed lines respectively.

Shorter overheads violate the SNR requirements, and longer

overheads exceeded them. This shows that using arbitrary

waveform designs might either violate the requirements or use

unnecessarily longer overheads.

IX. CONCLUSION

In this work, we developed and verified a mathematical

framework to model the BF performance for a destination-

led BF protocol. To derive this framework, we related the

pre-BF SNR and preamble lengths to the combining phase

error and then to the BF gain distribution. The proposed

framework was verified experimentally using software-defined

radios in a lab. Further, we demonstrated that BF from UAV-

mounted-radios exceeded 80% of the ideal BF gains despite

the short coherence time channel. Using the framework, for

two example scenarios, we proposed approaches to design the

number of BF radios and the length of the BF overheads and

verified that they meet the requirements using simulations.

Even though we only considered a specific BF protocol

and only two example scenarios, the proposed framework

can support many protocol variations and use cases. For the

protocol, the framework is applicable to any other choice

of estimators as long as their phase error variance can be

expressed mathematically. As for the scenarios, heuristics
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can easily be developed to optimize over a combination of

the SNR, preamble lengths, and the number of BF slaves,

enabling the framework to adapt to many different deployment

scenarios.

APPENDIX

A. Proof of Proposition 1

The variance error of the KF output is given by pk|k and we

want to calculate its value. Substituting (17) into (21), we get

pk+1|k =
rpk|k−1

pk|k−1+r + q. At steady state pk+1|k = p for all k

and we get a simple form of the algebraic Riccati equation

p = rp
p+r + q [42]. Solving the equation, we get pk+1|k = p =

q+q
√

1+4 r
q

2 . Using (21), we get σ2
fk = pk|k =

−q+q
√

1+4 r
q

2 .

B. Proof of Proposition 2

G =
1

N

�

�

�

�

�

N
X

n=1

ejφe
n

�

�

�

�

�

2

=
1

N

N
X

n=1

ejφe
n

N
X

m=1

e−jφe
m

= 1 +
2

N

N
X

m=1

N
X

n=m+1

cos(φe
n − φe

m) (37)

Using the fact that for a zero mean Gaussian RV x,

E{cosx} = e−var{x}/2 [27], we get

E{G}
= 1 + (N − 1)e−σ2

e (38)

var{G}

=
4

N2
var{

N
X

m=1

N
X

i=m+1

cos(φe
i − φe

m)}

=
4

N2

N
X

m=1

N
X

i=m+1

var{cos(φe
i − φe

m)} (39)

+
8

N2

N
X

m=1

N
X

i=m+1

N
X

p=i+1

cov{cos(φe
i −φe

m), cos(φe
m−φe

p)}

(40)

=
(N − 1)

N
(e−σ2

e − 1)2
�

(e−σ2
e − 1)2 + 2Ne−σ2

e )
	

(41)

where cov{x, y} denotes the covariance of RVs x, y.

Line (40) was obtained using the fact that var{PM
m=1 xm} =

PM
m=1 var{xm} + 2

PM
m=1

PN
n=m+1 cov{xm, xn} for any

correlated M RVs xm and by simplifying the summations.

Line (41) uses the fact that for a zero mean Gaussian

RV var{cosx} = 1
2 (e−var{x}−1)2 [27] and using that

cov{cos(φe
i − φe

m), cos(φe
m − φe

p)} = 0.5e−3σ2
e + 0.5e−σ2

e −
e−2σ2

e as can be shown using the Gaussian RV relations

from [27], the definition of covariance, and some trigonometric

identities.

C. Proof of Proposition 3

We start be considering the simplified definition of G
from (37). We rewrite the elements of the summation as the

N × N matrix X, such that its element Xm,n = 2
N cos

(φm − φn). This yields G = 1 +
PN

m=1

PN
n=m+1 Xm,n. The

summation is over the upper diagonal elements of the matrix.

Fig. 9. Summation order for the matrix X.

Our objective is to rewrite the inner sum as independent RVs

of length proportional to N to invoke the central limit theory

(CLT). To achieve that, we must avoid reusing the same value

of φe
n in the inner sum, that is, the inner sum elements should

have unique column and row indices.

N
X

m=1

N
X

n=m+1

Xm,n =

N
X

n=2

n−1
X

m=1

Xm,n (42)

=

N
X

n=2

min(n−1,N−n+1)
X

m=1

Xm,n +

N
X

n=N/2+1

n−1
X

m=N−n+1

Xm,n

(43)

=

N
X

n=2







bn/2c
X

m=1

Xm,n−m+1+

bN+1−n
2 c

X

m=1

XN+1−(n−m+1),(N+1)−m







(44)

The summation in (42) rewrites the equation from column

wise to row wise. In Line (43), we split the elements of

the summation at the upward diagonal as illustrated in the

first image of Fig. 9 for an 8 × 8 matrix. In Line (44),

the inner summation is rewritten as two summations over the

upward diagonal elements as shown in different colors in the

second image of Fig. 9. From (44), each element of the inner

summation consists of about N/2 terms2 and none of the terms

have common rows or columns, thus consist of independent

RVs. We can rewrite the inner sum as the RV bn as follows

bn =

bn/2c
X

m=1

Xm,n−m+1+

b(N+1−n)/2c
X

m=1

XN+1−(n−m+1),(N+1)−m

(45)

The variable bn consists of identical independent RVs. Hence,

for large N , the distribution of bn converges to a Gaussian

distribution. Lastly, we can rewrite G as G = 1 +
PN

n=2 bn.

The variables bn are correlated Gaussian RVs, hence their sum

is Gaussian. This proves that for large N , G is Gaussian and

its mean and variance are given by Proposition 2.

D. Proof of Proposition 4

We start this proof by considering the case of small σ2
e and

then discuss the case of large N . Since φn are zero mean and

assuming small σ2
e , φm−φn is typically small and we can use

the Taylor expansion of cosine around zero to simplify Xm,n

(as defined in Appendix C) as Xm,n ≈ 2
N

�

1 − (φm−φn)2

2

	

.

Then, we can rewrite (45) as bn = 2 sn

N − χn where

2For odd N , the number of elements is either N/2 or N/2 − 1. This
difference is insignificant for large N .
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sn = bn/2c + b(N + 1 − n)/2c is the number of elements

of bn and χn = 1
N

Psn

r=1(φmr
− φnr

)2 with mr and nr

corresponding to the indexes from (45). The summation in χn

is over independent zero mean Gaussian RVs that are squared,

hence χn follows the Chi-squared distribution. We can rewrite

G as

G = 1 +
2

N

N(N − 1)

2
−

N
X

n=2

χn = N − Xγ (46)

where Xγ =
PN

n=2 χn is the sum of correlated Chi-squared

RVs. The distribution of the summation of correlated

Chi-squared RVs can be obtained using the Gamma distri-

bution [43]. The shape K and scale θ parametrization of the

resulting Gamma distribution can be calculated to realize the

mean and variance of Xγ [44]. Using the mean and variance

of G from Proposition 2, we get the following equations for

the mean and variance respectively

Kθ = N − 1 − (N − 1)e−σ2
e (47)

Kθ2 =
(N−1)

N
(1−e−σ2

e)2
�

(1−e−σ2
e)2+2Ne−σ2

e)
	

(48)

Solving these two equations, we get the values of K and θ
in (29) and (30). This proof is based on the assumption that

σ2
e is small. For large values of N , K becomes large, and the

Gamma distribution converges to a Gaussian distribution with

mean Kθ and variance Kθ2 [45], which is the true distribution

of G as shown in Proposition 3.
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