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Distributed Transmit Beamforming: Design and
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Abstract— Cooperating radios can extend their communication
range by adjusting their signals to ensure coherent combining at
a destination radio. This technique is called distributed transmit
beamforming. Beamforming (BF) relies on the BF radios having
frequency synchronized carriers and phases adjusted for coherent
combining. Both requirements are typically met by exchanging
preambles with the destination. However, since BF aims to
increase the received power, the individually transmitted pream-
bles are typically at low SNR and their lengths are constrained by
the channel coherence time. These noisy preambles lead to errors
in frequency and phase estimation, which result in randomly
changing BF gains. To build reliable distributed BF systems, the
impact of estimation errors on the BF gains need to be considered
in the design. In this work, assuming a destination-led BF
protocol and Kalman filter for frequency tracking, we optimize
the number of BF radios and the preamble lengths to achieve
reliable BF gain. To do that, we characterize the relations between
the BF gains distribution, the channel coherence time, and design
parameters like the SNR, preamble lengths, and the number
of radios. The proposed relations are verified using simulations
and via experiments using software-defined radios in a lab and
on UAVs.

Index Terms— Distributed transmit beamforming, cooperative
communications, UAVs.

I. INTRODUCTION

ISTRIBUTED transmit beamforming (BF) enables a

group of radios to act as a virtual antenna array when
cooperating to transmit a common message to a destina-
tion radio. By having N equal-power radios beamform, the
received power at the destination can increase by up to N?;
N-fold due to transmit power increase and N-fold due to
coherent combining [1]. The N? increase can theoretically
provide up to N fold extension of communication range or,
for the same received power, reduce the transmitted power
from each radio by N [2]. Thus, BF can enable long-
range communications from cooperating low power devices,
unable to communicate individually with a remote desti-
nation or improve the energy efficiency by reducing the
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energy transmitted from individual radios.This can be use-
ful for applications like power-constrained internet of things
devices (IoT) whether deployed indoors or outdoors [3] or
remotely deployed UAVs [4] or ground robots performing
search and rescue [5]. Depending on the specific deploy-
ment environment, the propagation environment and channel
coherence time would vary, however, the cooperating radios
are typically in proximity of each other and far from the
destination.

For separate radios, having independent oscillators, to act
as one virtual array, they need to synchronize their carrier
frequencies and adjust the phases for coherent combining
at the destination. Since signals combine over-the-air, both
requirements need to be satisfied prior to transmitting the
payload. The satisfaction of these requirements is typically
performed by exchanging preambles with the destination for
channel phase estimation and carrier frequency synchroniza-
tion [2]. However, given that in a typical distributed BF
scenarios the radios have low power and/or the destination
is remote, the pre-BF SNR of individual radios is low, and
there are errors in both channel estimation and destination-
led frequency synchronization that cannot be neglected and
would result in phase errors in the combining signals. These
combining phase errors will lead to the BF gains being non-
deterministic and less than N2. The BF gain degradation
cannot always be mitigated, especially in high mobility radios
like UAV-mounted, where the channel coherence time limits
the preamble lengths and makes the combining phase errors
inevitable. To build a reliable BF system despite of these
errors, we need to specify the number of BF radios and the
preamble lengths such that a minimum desired post-BF SNR
is attained with a given probability.

Existing works have proposed many approaches for distrib-
uted BF leveraging different methods for over-the-air phase
adjustment and frequency synchronization [3] as wired solu-
tions are not suitable for independent radios [6]. Approaches
for phase adjustment include explicit channel feedback from
the destination [7], 1-bit feedback where the BF radios iter-
atively adjust their phase based on binary feedback from the
destination [8], and roundtrip message exchange among the
destination and BF radios [9]. Unlike the other approaches,
explicit channel estimation is non-iterative making it less
complicated and more reliable specially under fast varying
channels like those experienced by UAVs. For frequency
synchronization, some works have relied on external frequency
references like GPS [10], [11], out of band signaling [12], and
others relied on a destination preamble along with averaging
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filters like the the extended Kalman filter (EKF) for tracking
the carrier drift [13], [14]. Filtering based approaches do
not require additional bandwidth and do not rely on GPS
signals which can be unavailable to ground robots or UAVs
deployed indoor [15]. Also filtering based approaches have
the potential to provide higher accuracy synchronization than
GPS methods [16], [17]. While these works have proposed
interesting approaches, the relation between the BF gains and
the pre-BF SNR, necessary for designing a reliable BF system,
was not analyzed. In [18], the sources of phase noise in
reference oscillator were analyzed along with their impact on
the distributed beamforming performance, however, the impact
of the SNR of the exchanged preambles was not discussed.

Using the aforementioned approaches, several distributed
BF demonstrations were carried out; in controlled lab exper-
iments, 1-bit feedback was demonstrated using EKF for fre-
quency synchronization in [13], [14], and [19] and out-of-
band signaling in [12]. In [14], the BF procedure was designed
for wireless power transfer compatible with 802.11 standard.
Outdoor ground based demonstrations spanning several kilo-
meters using explicit channel feedback were performed in [10]
and [11] relying on GPS for frequency synchronization. Using
explicit feedback, in [17], BF was demonstrated from UAVs
with the synchronization performed over wires attached to
the flying UAVs. These works have shown the potentials for
distributed BF in signal combining, yet their results are hard
to generalize to different scenarios because they are mostly
empirical.

Other works have considered different distributed BF
approaches to avoid signal exchange with the destination.
In [20] and [21], distributed BF using radio locations was
proposed assuming the knowledge of the direction towards
the destination radio. However, these approaches are sensi-
tive to localization errors and require sub-wavelength level
localization accuracy [22], which might not be available and,
additionally, the direction of the destination might be unknown
for instance when a UAV is collecting measurements from BF
IoT devices [23]. Another approach avoids destination feed-
back by repeating transmissions relying on the randomness of
the combining gains [24]. However, this approach has a low
throughput. BF using destination feedback does not require
repeated transmissions and would work in a non-LOS channel
without requiring any location information. Other works have
also considered optimizing the BF radio locations [25], [26],
however, in many cases the BF radios locations are predeter-
mined and cannot be changed.

In this paper, we consider a destination-led BF protocol
using the Kalman filter (KF) for frequency synchronization
and explicit channel feedback. For that protocol, assuming
equal pre-BF SNRs, we propose an analytical framework
relating the statistical distribution of the BF gains, with the
system parameters including pre-BF SNR, the number of BF
radios, and the BF overheads (the duration of the exchanged
preambles). Using this framework, we can optimize some
of the system parameters to design a distributed BF system
attaining a minimum required SNR with a given probability.
To derive this framework, we derive the variance of the
combining phase errors, which depends on the preamble

lengths and the pre-BF SNR. Then, given the variance of
the combining phase errors, we approximate the distribution
of the BF gains. The proposed framework is verified using
simulations and experimentally using two BF software-defined
radios (SDRs) in a lab environment. After deriving and
verifying the framework, we consider two example design
applications; one applicable to large swarms of small UAVs
and the other for weather balloons. In the first example, for
fixed BF overheads, we find the minimum number of BF
radios to meet the required SNR. In the second example,
for a fixed number of radios, we determine the shortest BF
overheads that realize the SNR requirement. To the best of
our knowledge, we are the first to demonstrate fully wireless
distributed BF from flying UAVs without any wires attached.
Our main contributions are:

o« We proposed an analytical framework describing the
relations between the BF gains and the pre-BF SNR, the
length of the preambles, and the number of BF radios
for a destination-led distributed BF protocol under the
assumption of equal pre-BF SNRs. These relations were
verified using simulations and experimentally using two
BF software-defined radios.

o We characterized the distribution of BF gains assuming
zero-mean normally distributed phase errors. We analyt-
ically derived a closed form expression for the variance
of the BF gains. For large N, using central limit theo-
rem, we proved that the BF gain distribution approaches
Gaussian. For small phase error variance, using Taylor
series, we approximated it using a Gamma distribution.

o Using the BF framework, we proposed approaches to
determine the minimum number of BF radios and the
shortest BF overheads to meet a required minimum post-
BF SNR with a given probability. These approaches
use mixed-integer convex optimization and bisection
and were verified to meet the SNR requirements using
simulations.

II. SYSTEM MODEL AND DISTRIBUTED BF PROTOCOL
A. System Model

Consider N identical radios collaborating to beamform a
common payload to a destination radio D in a narrowband
flat-fading channel. The BF radios can be remotely deployed
Internet-of-Things devices communicating with a gateway or
UAVs communicating with a ground station. The payload is
encoded in the complex baseband signal m(t) having unit
power and it is assumed to be shared among the BF radios. The
n-th radio transmits a signal z,,(¢) and the combined baseband
signal at the destination is given by

N
y(t) =D anza(t) exp{f2mfut + dn)} +w(t) (1)

where between the destination and the n-th radio, a,, is the
channel amplitude, f, is the carrier frequency offset, and ¢, is
the phase offset. The white Gaussian noise process is given by
w(t) and has power spectral density Ny /2. The phase and fre-
quency offsets result from the lack of synchronization between
the local oscillators of the radios, the wireless propagation
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environment, and the Doppler frequency offsets resulting from
the relative motion of radios. While these phenomena make the
phase and frequency offsets time varying, we assume that
the payload duration is shorter than the resulting channel
coherence time and we approximate them as constant per
payload.

For the signal m(t) to combine coherently at the destination,
the BF radios need to compensate for the phase and frequency
offsets before transmission. The compensated signal transmit-
ted by radio n, thus, is given by

Zn(t) = m(t) eXp{_j(Zﬂ'fnt + én)} 2)

where f,, and ¢,, are the n-th radio estimates of the frequency
and phase offsets obtained through the BF protocol, which is
described later. The received signal can be rewritten as

N
y(t) =m(t) Y anexp{jd; ()} + w(t) ©)

where the combining phase error from radio n at instant ¢ is
given by

o (t) = 27 (fn — fn)t + (0 — én)) (4)

Due to residual frequency errors, the combining phase error
increases with time and this makes the BF gains degrade with
time. However, similar to most existing works in the literature,
we only consider a single value for the BF gain per payload.
To do that, we consider the evaluation instance to be ¢, seconds
after the start of phase estimation and we get ¢ = ¢S (te).
The beamforming gain at instant ¢, can be defined as the ratio
between the energy of the combined signals to that of the
individual transmissions

o IS anexpliog )P

N2

Zn:l an
Each BF radio is assumed to transmit at its maximum power
level Pr, which is common to all radios. We also assume
that the BF radios experience similar signal attenuation, which
would be the case if the radios are deployed in proximity of
each other far from the destination. Given these assumptions,
we get a,, = a for all n, where a is the path loss. In that case,

G becomes independent of path loss and simplifies to [27]

N 2
=N Z exp{jo;, }
n=1

which measures the gain for coherent combining that can take
values up to N. The pre-BF SNR at the destination from one
radio is given by

)

(6)

a2PT
—_ 7
N ™

and the post-BF SNR of the combined signal from all N BF
radios is equal to

YpreBF =

“YpostBF = NG'YpreBF (8)

which considers both the gain from coherent combining
(up to V) and increase in Tx power with the number of equal
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Fig. 1. Timing diagram of BF protocol. The destination is the master and

BF radios are the slaves.

power radios (equal to N) and can be up to N? times the
pre-BF SNR. The signals transmitted by the destination to the
BF radios experience an SNR given by
aQPTQ
= 9
DR No )

where the destination has a transmit power P . The destina-
tion transmit power is assumed to be equal to or larger than
that of the BF radios, which can be low power IoT devices
or lightweight UAV mounted radios, i.e, PY > Pr. Note that
the post-BF SNR follows the same distribution of G, which
we need to know to realize a minimum post-BF SNR with a
given probability. As for G, it depends on ¢S, which results
from the estimation errors during the BF protocol.

B. Beamforming Protocol

We start by describing the BF protocol, which aims to
provide each BF radio with estimates of its phase and fre-
quency offsets dAJn and fn using the destination feedback.
We consider a master-slave beamforming protocol [2], [7];
the destination radio is used as a master since it has a larger
transmit power and the slaves are the beamforming radios.
The master initiates the beamforming procedure and sends a
preamble for frequency synchronization. After correcting their
frequencies, the slaves send a channel estimation preamble to
the master. The master calculates a phase estimate (2)'
transmits it back to the slaves that receive a slightly dlfferent
value ¢n due to feedback errors. Once each slave knows ¢7,
and f,,, they can start transmitting their payload.

In Fig. 1, we illustrate the transmitted signals. All the
signaling is performed on the same frequency band, hence,
all transmissions are received by all radios. The different
beamforming stages can be described as follows

1) Synchronization: The master sends a synchroniza-
tion (sync) preamble of duration ts,. Using this signal
each slave estimates its frequency offset fn. The time of
arrival (TOA) of the sync preamble is used as a reference
for timing at the slaves [28]. A guard time of duration
tq1 is provided for the slaves to process the signals.

2) Channel Estimation: Each slave during a predetermined
time slot sends a channel estimation preamble of dura-
tion Zy,. The master estimates q%l from each slave.
A guard time ty is used.
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3) Channel Feedback: The master sends é;l back to the
slaves and due to feedback error each slave receives a
slightly different phase estimate bn. A guard time #43 is
used.

4) Cooperative Communication: After estimating fn and
receiving én, all slaves adjust their signals accordingly
and transmit their payload of duration ¢,.

The duration of the BF overheads incurred by the protocol is
given by

toy = tsyn + N(tph + tfb) + tgl + th + tg3 (10)

All the signal processing is assumed to be done in discrete
time domain, hence all the time durations are assumed to be
an integer multiple of the sampling time 7. The time overhead
can be written in terms of samples as

NOV:qun+N(Nph+Nrb)+Ngl+Ng2+Ng3 (11)

where N,y is defined as Noy = toy/Ts and the remaining
number of samples are defined similarly. As we can see
from (11), the beamforming overheads scale linearly with the
number of BF radios N. For short coherence time channels,
the overheads N,y are typically constrained, and to increase
N while keeping N, constant, the duration of the preambles
needs to be reduced. A few things to notice: (1) We assume
that the payload is already shared among all the slaves. This
can be achieved using a network broadcasting protocol [29],
which we do not discuss in this work. (2) As for the guard
time, it is dependent on the implementation of the BF protocol.
A more optimized implementation using an FPGA for instance
would require shorter guard times than an implementation
using a general purpose processor. (3) Cooperative commu-
nication only requires the BF radios to be synchronized with
each other and not necessarily with the destination. However,
in order to use channel estimates from the destination, they
need to be synchronized with the destination. (4) The BF
protocol does not depend on our assumption of the BF radios
having similar path loss. This assumption is only used in our
analysis. (5) The time elapsed between the phase estimation
and the evaluation time is larger for slave 1 than slave IV,
since each slave uses a different time-slot for phase estimation.
To limit the error caused by this discrepancy, in our analysis,
we consider t. to start from the phase estimation slot of the
middle slave as shown in Fig. 1 to the middle of the payload.
The resulting error is negligible as long as ¢, > %tph, which
is the case as long the payload is longer than preambles as it
is typically the case in practice. (6) Due to the time-slot base
phase estimation, our analysis does not apply if the evaluation
time ¢, is chosen to correspond to the start of the payload
(te > %tph does not hold). However, evaluating the BF gain
at the start of the payload does not represent the BF gain over
the entire payload and does not have a practical importance.

Since BF is used to improve the SNR where the individual
pre-BF SNR is low, the estimation errors within the protocol
can not be neglected and will lead to a combining phase error
¢y, as given by (4). At the evaluation time ¢., the variance of
the combining phase error o2 defined as var{¢¢} under the
assumption of independence of the three estimation errors is

given by

ol = (2mte)’07 + opp + 0% (12)

where the frequency estimation variance is given by 0120 =
var{ f, — fn}, the phase estimation and feedback variances
are given by O'ZQ)h = var{¢,, — ¢!,} and J]%b = var{¢}, — ¢}
respectively.

For the estimation of the time of arrival (TOA), after the
detection of the sync preamble, correlation with a filter-bank
is used for sub-sample-time accuracy as described in [16].
However, timing synchronization only affects intersymbol
interference (ISI) at the destination without affecting the BF
gains [2], so we do not discuss it in details.

In the following Sections (III and IV), we discuss the
waveforms and estimators used for frequency estimation and
phase estimation & feedback respectively. These estimators
were chosen to have a low computational complexity suitable
for an SDR implementation. We provide expressions for their
error variances in terms of the pre-BF SNR and the preamble
lengths. We argue that the resulting phase errors follow
a zero-mean Gaussian distribution. For zero-mean Gaussian
distributed phase errors with variance o2, we approximate the
distribution of the BF gain in Section V to complete the BF
framework. This framework is numerically and experimentally
verified in Section VI. After verifying the framework, we show
how it can be used for designing BF systems in Section VII.
The BF design procedures are illustrated using example sce-
narios in Section VIII.

III. FREQUENCY SYNCHRONIZATION

The objective of frequency synchronization is to eliminate
the frequency offset between the destination and the BF radios.
We start by discussing the signals used for synchronization
and the proposed oneshot estimator and its variance. Then
we discuss frequency tracking using Kalman filter assuming
multiple successive BF cycles.

A. Frequency Offset Estimation

For frequency synchronization, we use a preamble consist-
ing of Ny repetition of a Zadoff-Chu (ZC) sequence of length
M similar to [16], satisfying Ngyn = NzcM. The frequency
estimator calculates the auto-correlation statistic

Nyc—2 M—1

np= Y > yilmM +klys[(m + )M + k]
m=0 k=0

13)

where yy[k] is the noisy received preamble with the fre-
quency offset, and ()* denotes the conjugate operator. The
frequency offset estimate at slave n is thus given by fn =
ﬁénf where /() denotes the phase of a complex
number calculated using arctan. The term /7, calculates the
phase difference between two successive sequence repetitions,
under the assumption that M is small such that no phase
wrapping occurs. The error variance for this estimator is given

by [30, eq.70]

1 1 1
2
OFe= +
/ (A4(A&C-—])270R 2A4(AQC—J)V%R> (2mMT5)?
(14)
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TABLE I
KALMAN FILTER RELATIONS

Model

15)
(16)

Xk = X1+ Wi

Zk = Xk + Vi

Update

Ky = Pklk-1

= 17
Pklk-1+T an

(18)
19)

Xk = Xreli—1 + K (26 = Xpjre-1)

Pk = (1 = Ki) prjx—1

Predict

(20)
2n

Xitl|k = Xk|k

Pk+l|k = Pklk ¥4

This estimator is unbiased thus E{f, — f,} = 0 and was
derived using a linear approximation of the arctan assuming 7y
has a high SNR. By choosing M to be large, using the central
limit theorem, the distribution of 7y can be approximated
by Gaussian, thus making fn — fn, which is approximated
as linear in 7y, a zero mean Gaussian RV. However, at low
SNR of 7y, Zn; becomes uniform and the expression of 0]20 .
no longer applies. This regime can be avoided by increasing
Nzc, otherwise, the BF gains will be too low to be of
practical importance. Note that in practice the frequency offset
is correlated among successive packets with short separation.
This estimator, referred to as a oneshot frequency estimator,
does not benefit from this correlation.

B. Interpacket Frequency Tracking Using Kalman Filter

If beamforming is performed periodically and the BF pro-
tocol is designed such that t.y. is shorter than the channel
coherence time, the frequency estimates between packets at
each slave are correlated. Kalman filter (KF), thus, can be used
to track the frequency to reduce the estimation variance. The
drift system model and the KF equations are given in Table I
for one BF radio following the conventional KF notation [31].
The frequency process drift and measurement models are given
by (15) and (16), respectively, where zy, is the true frequency
value in Hz (previously denoted by f,,) and zj, is the measured
frequency at time kt.y.. The noise terms for the process wy, and
the measurement vy, are assumed to be zero mean Gaussian
RV and their variances are ¢ and r respectively. For the KF
update equations, at step k, Ky, is the Kalman gain, xp;_;
is the prediction of = and py,_1 is the error variance given
2k—1. The value of xy;, is the predicted frequency offset and
Pk 18 its error variance given zg.

By substituting (17) in (18) and using (20) we get

r Prlk—1
47pMk—l*‘rxk_”k_l+_pMk—14‘er
from which we can see that the KF creates a weighted average

between the previous prediction and the current measurement.
The weights of this average are based on the predicted process

Tk (22)

variance py;—; and the measurement variance r. The larger
the process variance relative to the measurement variance, the
more weight is given to the measured value and vice versa.
Since (22) is a linear equation, if zj is a zero mean Gaussian
RV, the output of KF will also be zero-mean and Gaussian.
For BF, we are interested in calculating the KF error variance.

Proposition 1: The steady state frequency estimation error
variance of KF from Table I is

—q+q,/1+4;
2 _—

The proof is in Appendix A. Using (23) and assuming the
system variances are accurately known, we argue that KF
never increases the error variance. By rewriting (23), as 0120 =

i VA L ”2(12+4qr, we can see that aJ%k is non-decreasing in ¢ and
if ¢ = 0, at convergence the error variance aJ%k = 0 for
any r. For ¢ > r, r/q is small and using the approximation

1+4§ ~ 1+ 22, we get J]%k, = r. Thus if ¢ and r are
perfectly known, the error variance reduction due to KF is
higher for large /¢ and, in the worst case scenario for small
r/q, KF will give the measurement variance 012% =7, as if
we did not use KF. However, if the values of ¢ and r used
in KF do not match the system, this result does not hold and
KF might deteriorate the frequency estimation. In practice,
the value of r is the oneshot frequency estimator variance,
which can be determined using an estimate of the SNR. The
process variance ¢ can be determined either using the oscillator
datasheet [27] or empirically using measurements as described
in [19]. Note that the extended KF (EKF) can track both phase
and frequency and might yield a smaller variance than KF
which only tracks the frequency. However, EKF can diverge
due to phase wrapping [19], which is not desirable in a reliable
BF system, and thus was not considered in this work.

IV. PHASE ESTIMATION AND FEEDBACK

The objective of the phase estimation and feedback is
to have the slaves modify their signals to ensure coherent
combining at the destination. In the phase estimation stage,
each slave transmits a known signal xpy[n] consisting of
Npn samples. The master receives the noisy signal yp[k].
The proposed estimator calculates the correlation 7, =

gi};l xph k] *ypn[k], from which the phase estimate is cal-
culated using gf);, = Znpn. The variance of this estimator can
be calculated using [32, eq 9] as follows

9 1

P — (24)
phe 2Z\fph “YpreBF

where NphYpreBE 18 the SNR of 7,,. The phase error gf);, follows
a zero mean Gaussian distribution as long as the SNR of
7pn > 1 [32], which is the regime of interest.

As for the phase feedback, we use in-band feedback where
the value of ¢/, is encoded in the phase difference between two
identical preambles to counter hardware phase ambiguity. Let
the phase feedback preamble be given as a vector xp,, € CV®.
The master transmits the sequence

T idy ...

T T _jé! T _jd1T
Xfp = [bep Xibp xfbpeﬂ¢vL .. .bepemN] (25)
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Once received as ym|k] with added noise, slave n estimates
the phase difference between the first preamble and the n-th
preamble using the statistic ng, = Zév;ho_ Yy [K]ym [k 4+ nNp]
and calculates the angle qgn = /nm. The variance of the
feedback is similar to that used for frequency estimation
in (14) (with Nzc =2, M = Np,) and is given by

9 1 1

7fbe <Nfb'YDR N 2Nﬂﬂ%R> (26)
Note that there are other ways to feedback the phase esti-
mates, however, this approach is simple to implement. Another
alternative was to encode the values of é);l as floating-point
numbers and transmit them using digital modulation. However,
since we are considering a low SNR and a mistake in one of
the most significant bits can be detrimental, we would need
to implement channel coding. This would add unnecessary
complexity to our protocol. Also note that the error variance of
proposed estimators in this section are derived assuming zero
residual frequency errors (f,, — fn). In practice, frequency esti-
mation errors would increase the variance of phase estimation
and feedback. However, the impact of (f,, — f») is negligible
on o2 and U?be compared to (27rt6)20120 under the assumption
that 7. > t,n and £, > tp,.

V. BEAMFORMING GAIN ANALYSIS

In this section, our objective is to approximate the distrib-
ution of GG, assuming that the ¢¢ are independent Gaussian
random variables (RVs) with zero mean and variance 2.
The Gaussian assumption applies to our protocol because the
errors of the proposed estimators are independent and can
be approximated by a zero-mean Guassian RVs. Hence, their
sum according to (4) is also zero-mean Gaussian. We start by
calculating the mean and variance of the distribution.

Proposition 2: For signals combining from N radios having
independent zero mean Gaussian phase with variance o2, the
mean and the variance of the BF gains GG are given by

E{G} =1+ (N —1)e ™"

varfy = o ooty (- ety ane )
(28)

27)

N

The proof is in Appendix B. Note that the mean was previously
derived in [27]. In Fig. 2a, we plot the average BF gain
using (27) as a function of o, with the error bars representing
the standard deviation (y/var{G?}). For o, = 0, we get a BF
gain of IV as we ideally expect. As o, increases, the mean BF
gains decrease and their variances increase and this happens
faster for larger N. Thus when designing a BF system unless
N and o, are small, we can not assume a perfect /N fold power
increase due to BE. To verify the derived mean and variance,
for each value of N and o, we sampled 100,000 zero mean
Gaussian RVs of variance o2 for each radio and added them to
calculate G numerically. The simulations shown in Fig.2a as
thick dashed lines with dashed error bars overlap the derived
expressions verifying Proposition 2.

To better understand the variance behavior with NV, for small
o2, we simplify (28) to get var{G} ~ 2Ne*"5(1 - 6’03)2.

e

10
Sim
8 = == == Theory
@}
o, (rad)
(a) The mean BF Gain and its standard deviation as error bars.
0.3 : |
Sim
02 =0.1 )
o2 —02| L= © = Theory

var{G}

15 20

N
(b) The relation between the BF variance and N for fixed 0'2.

Fig. 2. The relation between BF gain, /N, and Ug.

Thus the variance increases linearly with the number of slaves
for small o2. The linear relation between var{G} and N is
illustrated in Fig.2b. The higher the value of o2, the larger
the slope. The large discrepancy in the values of the variance
with N shows the importance of considering the distribution
of GG and not just its mean in the design of reliable BF systems.
Next, we approximate the distribution of G. First, we consider
the case of large N using the central limit theorem. Then,
we consider the case for a small N and small o2 and use the
Taylor series to derive the approximation.

Proposition 3: For large N, the distribution of G tends
to a Gaussian distribution with mean and variance given by
Proposition 2.

Proposition 4: For small combined phase error variance o2
or for large N, the distribution of G can be approximated by
N — X, where X, is a random variable following the Gamma
distribution X, ~ I'(K, #) with

B N(N —1)
K= (1—e92)2 4+ 2Ne— ¢ 29)
]. 2 2 2
0= 01— ((1 —eT)2 4 2Ne*f’e)) (30)

The proofs are in Appendices C and D respectively.
We start by plotting the empirical cumulative distribution
function (CDF) of G for small N and a small o, = 0.1 in
Fig. 3a. We can see that the distribution is not Gaussian and
is accurately approximated by the Gamma distribution. Then,
we consider a large N > 30 and relatively large value of
o0e = 1 in Fig. 3b. From that Figure, we can see that all three
CDFs overlap for large N and large o, verifying Prop. 3 and 4.
Based on these results, since the Gamma distribution applies
to a wider range of N and o2, we use it later to approximate
the BF gain distribution. Note that neither approximation is
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Fig. 3. The distribution of G for different N and o2.

accurate for small values of N and a large value of 03,
however, in this regime the BF gains are small with a large
variance, which is not of practical importance. It is important
to note that the derived variance and distribution approxima-
tion in this section apply to any BF protocol where the phase
error ¢¢ is independent for all n and can be approximated by
zero-mean Gaussian RVs. For our protocol, the value of Ug
can depend on N for scenarios where the BF overhead N,y is
constrained by the channel coherence time. In such scenarios,
the duration of each preamble decreases as N increases to
satisfy the fixed Noy. Thus the estimators error variances and
consequently o2 increase with N. The dependence between
N and o2 is considered when designing the BF preambles in
short coherence channels later in Section VIII-A.

VI. NUMERICAL AND EXPERIMENTAL VALIDATION

In this Section, after deriving the BF framework, we verify
it numerically and experimentally and we show that it can
be used to predict the BF gains at different SNRs. Using
UAV experiments and emulation over a UAV channel trace,
we evaluate the impact of the channel coherence time on the
BF gains.

A. Numerical Validation

We simulated the BF protocol between a destination radio
and N BF radios. During a BF cycle, signals transmitted from
BF radio n to the destination is multiplied by e7(27frt+én)
with noise added to realize the SNR ~p.pr. Any signal
transmitted the other way uses the negative value of f,, with
noise added to realize the SNR ~pr. At the start of each
BF cycle, for BF slave n, we sample uniform random phase
¢n and f, is generated using a discrete Wiener process as

TABLE 11
BEAMFORMING WAVEFORM SPECIFICATIONS

Scenario Parameters
Simulation | Nzc = 10, M = 63, tyyn = 0.63ms, fph = 0.1ms,
tiy = 0.1ms, tg) = Iy = I3 = Ims, t, = 12ms,
te = 9ms, teye = S0ms
Lab Nzc =10, M = 63, tsyn = 0.63ms, Iph = 0.1ms,
t, = 0.lms, tg) = 6ms ty = 4ms ty3 = 16ms,
tp, = 10ms, teye = 180ms
UAV Nzc = 10, M = 63, tyyp = 0.63ms, tpn = 0.1ms,
ty, = 0.lms, tg) = 6ms tpn = 4ms tg3 = llms,
ty = lms, teye = 75Sms

described in (15) having variance q. Since we are assuming
that the signal is transmitted within the channel coherence
time, both frequency and phase are assumed to be constant
during the same BF cycle.

The signals transmitted follow the BF protocol. For phase
estimation and feedback, we used the estimators discussed
in Section IV and for frequency offset we either used the
oneshot estimator from Section III-A alone or combined with
KF. To avoid errors in measuring the BF gain, the combined
signal magnitude was evaluated at time ¢, before adding the
noise.

In our simulations, we considered N = 5 BF radios using
a sampling rate of IMHz (7T, = 1pus). At this sampling
rate, since a typical near-urban air-to-ground channel has a
median root-mean-square delay spread of 11ns (<1us) [33],
the narrowband flat-fading channel assumption is justified. The
exact duration of each preamble is given in the first row of
Table II and we used ¢ = 0.18. The evaluation time ¢, = 9ms
is in the middle of the payload. One million BF cycles were
simulated.

We start by discussing the results obtained when using the
oneshot frequency estimation. The average BF gain obtained
from simulations is plotted in Fig. 4a with the error bars
representing its standard deviation. For the oneshot results, the
theoretical value is obtained by calculating the variance of each
estimator using (14), (24), and (26), calculating af using (12),
then the BF gain mean and variance using Proposition 2. From
that Figure, we can see that the theoretical mean matches the
simulations to a large extent. As for the variances, they match
except for SNRs below 0dB. By plotting a breakdown of the
phase error for the slave n = 3 using (12) in Fig. 4b, we see
that at SNRs below 0dB the theoretical oneshot frequency
variance is overestimated. This happened because the phase
error becomes uniform and the Gaussian assumption no longer
holds leading to the discrepancy in Fig. 4a. At these low
SNRs, the BF gains are negligible and this is not a useful BF
design. From Fig. 4b, since the phase error from the frequency
estimation error is dominant, it would be beneficial to allocate
more time to frequency estimation or use the KF to reduce its
variance.

Next, we discuss the BF results when using KF using
the same Figures 4a and 4b. The theoretical KF variance is
calculated using (23) with the measurement variance r being
the oneshot variance and ¢ perfectly known. From Fig. 4a,
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Fig. 4. Simulated BF Gains and phase errors at different SNRs for N =
5 using the waveform from Table II.

we can see that both theoretical and simulated curves overlap.
A small discrepancy exists at low SNR, which we attribute to
an insufficient number of BF cycles. Since KF is a recursive
filter, its output depends on all previous cycles and conver-
gence is slower for high measurement noise variance [34].
Compared to the oneshot BF, at low SNR, KF provides
significant BF gain improvements by reducing the frequency
estimation variance and the resulting phase errors as shown
in Fig. 4b. From that Figure, we also see that as the SNR
(above 0dB) becomes larger, the gap between oneshot and KF
decreases. This happens because as r decreases at high SNR,
the ratio /g becomes small and the benefit from using KF
decreases.

B. Experimental Validation

The proposed BF protocol was implemented using three
USRP B205-mini software-defined radios (SDR); two were
used as BF radios and one as the destination radio. The
destination radio initiates a BF cycle by transmitting the
frequency synchronization preamble. The BF radios are always
running the autocorrelation given by (13) and using its output
power level to detect the preamble. Once detected, the fre-
quency offset is estimated (using oneshot or KF) and corrected.
Each BF radio transmits the phase estimation preamble in
a preassigned time slot. The destination radio estimates the
phase and feeds it back to the BF radios using the same
previously discussed waveforms and estimators. Once the
feedback is obtained, the radios transmit a known payload,
which is received and stored by the destination. The timing of
the phases estimation, feedback, and payload was implemented
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(a) BF gains using oneshot frequency estimation.
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(b) BF gains using KF for frequency estimation.
Fig. 5. Experimental results collected using N = 2 BF software-defined-

radios in a lab along with the theoretical results predicted by the BF framework
and simulations.

using the USRP hardware driver (UHD) timing tags in ref-
erence to the sync preamble. The payload consists of three
parts; each of the two BF radio transmits individually at first,
then both BF radios transmit simultaneously. The magnitude of
each part of the payload is estimated by averaging, then the BF
gain is calculated by dividing the power of the simultaneous
transmission by the sum of the individual transmissions as
per (5). All the signal processing was implemented using
GNURadio [35] and timed burst transmissions were used for
the different stages of the protocol. The destination processing
was performed on a laptop and the BF radios on ODROID
XU4 single board computers (SBC). We conducted the exper-
iments in the lab and on UAVs at a frequency of 915MHz
with a sampling period of T = 1us.

1) Lab Experiment: We started by verifying our simulations
on a small scale in a lab environment with a favorable channel.
The BF radios were placed in proximity from each other
to experience similar path loss as assumed in our analysis.
The destination was 2.5 meters away from the radios in
an undisturbed line-of-sight environment with a measured
coherence time of 0.3s! and ¢ = 0.18. Both the destination and
BF radios were set to use the same transmit gain, which was
varied in increments of 5dB to obtain different SNRs. At each
SNR, 900 beamforming cycles were performed. The timing
of the protocol is shown in Table II. Notice that the guard
times are much longer than in the simulations to allow the

IThe coherence time was calculated as the time that satisfies |R(7c)| =
Ry, [36] where R(t) is the normalized channel correlation obtained through
measurements, and Ry, = 0.5 is the coherence level.
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Fig. 6. The UAV experiment consists of 2 BF UAVs with SDRs mounted
on-board. The UAVs were hovering freely and were not attached to the ground
by wires.

TABLE III
BF UAV RESULTS

Setup Freq SNR (dB) | G Mean | G Stdev
Ground KF 26.9 1.825 0.319
Flying | oneshot 23.7 1.636 0.525
Flying KF 24.9 1.632 0.438

BF signal processing to operate in real-time, which makes ¢,
larger in (4), and thus increases o2 and degrades the BF gains.

The experimental results along with its simulated and the-
oretical equivalents are shown in Fig. 5a. We can see that the
measured results are close to the simulation and theoretical
results, which overlap. The improvement from using KF
follows a similar trend to what was observed in Fig. 5b.
This result experimentally verifies our simulation setup and
analysis.

2) UAV Experiment: Next, we move our setup from the lab
to UAVs. The BF radios, consisting of the SBC and USRPs
along with a battery, were mounted on two DJI Phantom
3 drones as shown in Fig. 6. The destination radio was placed
on the ground about Sm away from the UAVs which flew
at a height of about 4m. The wind speed at the day of the
experiment was 15Km/hr. Due to the wind and the noise of
the UAV sensors, the UAVs were not stable and drifted within
about a meter. The UAV operators frequently intervened to
stabilize them.

Based on channel estimation performed before the exper-
iment, the coherence time was estimated to be about 7., =
85ms. Thus, the lab experiment BF cycle (tce = 180ms)
is too long for the UAV channel. For the BF to work from
the UAVs, the BF cycle was redesigned to have shorter guard
times and a 10 times shorter payload as detailed in Table II,
yielding a reduced tce = 75ms, which is shorter than 7.
but only with a small margin. The experiment was performed
with three settings: 1) UAVs were on the ground and used
KF for frequency synchronization, 2) UAVs were flying and
used oneshot for frequency synchronization and 3) UAVs were
flying and used KF. The BF results are shown in Table III
along with the average SNR. The BF UAVs attained about 80%
of the ideal BF gains despite the low coherence time channel.

TABLE IV
BF EMULATION OVER UAV CHANNEL TRACE

# | SNR | foyc Te KF o2 [G] | Onesh. o2 [G]
1 | 24dB | 75ms | 85ms | 0.569 [1.725] | 0.567 [1.723]
2 | 24dB | 18ms | 85ms | 0.11 [1.99] 0.141 [1.98]
3| 0dB | 18ms | 85ms | 0.573 [1.85] 0.4 [1.72]

These gains are lower than the ground scenario as expected
because of the shorter coherence time. As for the comparison
between KF and oneshot, there is no significant difference
because r/q is small; 7 is small because of the high SNR and
q is large because of the short coherence time.

C. Emulation

To overcome the large delays of the BF implementation and
have a fair comparison between KF and Oneshot, we emulated
BF over a channel trace. The channel trace was obtained by
capturing a repeating ZC sequence from a flying UAV over a
period of 100s. Using this trace, we emulated the BF protocol
as follows; we used a duration ty, to estimate the frequency
offset and corrected for it, then we estimated the phase offset
after a delay equivalent to the protocol (fg; + Ntp, +tg2) and
corrected for it. The feedback stage was not emulated and was
assumed to be ideal. At the evaluation time t., we estimated
the phase error ¢¢ which for a static channel and perfect
estimation should equal zero. The variance of ¢¢ calculated
by emulation over the entire trace provides an estimate of o2
if BF was applied in this channel. Note that the channel trace
was collected over one capture with a USRP operating in half-
duplex. Hence, the emulation over that trace does not capture
distortions due to burst transmissions and having both transmit
and receive chains powered on simultaneously in the protocol
implementation.

The measured phase errors are reported in Table IV. The
first row emulates the timing used in the UAV experiment
and using the value of 7. = 85ms, which is the true one,
to calculate the KF ¢. The calculated phase error variance o2
is shown for KF and oneshot, and the theoretically predicted
mean BF gain G using (27) and N = 2. Due to the
more favorable half-duplex capture and the ideal feedback,
the predicted emulation BF gains (1.7) are better than the
measured ones (=1.6). For the relatively long BF packets at
a the high SNR of the capture, the predicted BF gains using
both oneshot and KF are very close (1.725 abd 1.723) similar
to our experimental results. Yet the BF gains are still below
2 due to the long BF cycle, so in row 2, we emulate the
protocol using a shorter cycle of 18ms by scaling down ¢,
and the phase delay. Using this shorter cycle, the BF gains
increase significantly for both KF and oneshot and approach
the ideal gain of 2. This is the result we would expect using an
optimized implementation of the BF protocol having shorter
guard times. Due to the high SNR, both KF and oneshot still
give a similar performance. Then in row 3, we added Gaussian
noise to the channel trace to make its SNR drop to OdB. The
expected BF gains for KF become significantly better than
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those from oneshot. This result shows that if we designed the
BF protocol such that t.y. < 7., KF can attain significantly
higher BF gains than oneshot for distantly deployed UAVs.

VII. BEAMFORMING SYSTEM DESIGN

After verifying the framework, we discuss how it can be
used in designing BF systems. To design a reliable BF system,
we need to specify the number of BF radios N and the duration
of the preambles to exceed a minimum post-BF SNR with a
given probability. The design procedure is over two steps; first
we determine N and o2 that meet the requirements and then
we design the preambles’ lengths to realize o at a given pre-
BF SNR. Later in Section VIII, we apply the proposed design
procedures for specific scenarios.

A. Specifying N and o

Although the pre-BF SNR (7prepr) is assumed constant, due
to the phase error variance, the post BF SNR (yp05mF) Vvaries
randomly. A reliable BF system has to exceed a specified
outage probability poy such that P('YpostBF < Ymin) < Pouts
where Yy is the required minimum SNR. Using the gamma
approximation of the BF gain distribution and the post-BF
SNR definition (8), we can rewrite P (YpostBF < Ymin) = 1 —

“Ymin

Fx, (N - N) where Fix_ (x) is the CDF of the Gamma

distribution from Proposition 4 whose mean and variance
depend on N and o2. Hence, our objective is to determine
N and o2 which satisfy

Fx, <N— 7L) <1 Pou

’YpreBFN

We know the distribution of X, and how N and Jg affect it,
however, inverting (31) to obtain an explicit relation between
N and o2 is intractable. The fact that o2 can depend on
N under fixed BF overheads further complicates analytical
solutions. It is easy, however, to check whether a given choice
of N and the corresponding o2 satisfies the requirements
given by (31). Thus, we resort to numerical trial-and-error
methods to find N and o2 satisfying the requirements. The
exact method depends on the scenario and whether N is fixed
or not, and thus its discussion is deferred to Section VIII where
example scenarios are presented.

€1V

B. Beamforming Signals Design

For given values of IV, vyregr, and ypr, we want to optimize
the time allocated to each preamble for o2 to meet the
system requirements. We identify two problems of interest;
the first one is to minimize o2 for bounded BF overheads.
This problem formulation is suited for short coherence time
channels (relative to the payload), where the BF overheads
are constrained. In Sec. VIII-A, we use this formulation to
find the minimum number of BF radios meeting an SNR
requirement in a short coherence time channel. The second
problem is to minimize the BF overheads N,, to meet a
maximum allowable phase error variance. This problem is
suited for relatively large coherence time channels, where large
BF overheads are possible. In Sec. VIII-B, for a fixed N,

we use this formulation to find the minimum BF overhead that
meets an SNR requirement in a large coherence time channel.

Next, we formulate both problems. The total overheads in
samples defined in (11) can be written as a function of the
duration of each stage Noy(Nsyn, Npn, Niw). For fixed N, Yprepr
and 7pr, the phase variance o2 becomes a function of the
number of samples allocated to each stage o2 (Ngyn, Npn, Nipy)
defined as

72 (Noyn; Nohs Niw) = (27?07 (Noyn) + 05, (Non) +0 7 (Niw)
(32)

The values of 0]20, agh, and ‘7}201) are dependent on the choice
of estimators and are a function of Ngy,, Npn, and Np,
respectively. For our choice of estimators U;th = aghe defined
by (24), and 0%, = 07, defined by (26). As for the frequency
error variance, if we use oneshot estimation o2 = aj%e as
defined by (14) and if we use the KF 0120 = J]%k, as defined
by (23) with r = J]%e.

Note that for a chosen Zadoff-Chu sequence of a length M,
we can only optimize the number of repetitions Nzc to change
Ngyn. Hence, for fixed N, the problem PI can be written as

P1: minimize 02(NzcM, Npn, Npy)
Nzc,Npn, N
subject to Nov(Nsz, Nph; Nﬂ)) < dn,

ov

Nzc, Nphs Npy € ZT, Ngc > 2 (34)

(33)

where 0, is maximum overhead length which depends on the
channel coherence time, and Z™ is the set of positive integers.
For a maximum allowable phase error d,z2, the second problem
P2 can be written as 4

P2 : minimize Noy(NzcM, Npn, Np) (35)

Nzc,Npn, Npy
subject to o2(Nzc M, Npp, Np,) < do2
Nzc, Nphs Npy € ZF, Nzc > 2 (36)

Then, we argue that for our choice of estimators, both
problems are convex with respect to their variables and thus are
easy to solve. Except for the KF, all these estimators take the
form f(x) = < + 25 with respect to their variables for some
positive ¢; and co where x is strictly positive, hence they are
all convex over their domain. As for the KF, when substituting
for r, it takes the form f(x) = ¢ + \/c2 + 2 + &4 with
respect to its positive variable x for some positive ¢y, co, c3 and
¢4. This can be rewritten as f(x) = ¢; + ||y|| where y =
[\V/c2, % , @]T The norm is convex and non decreasing
and ﬁ;’ and @ are convex for positive x. By applying
the composition rule [37], the KF variance is convex. Hence,
02(Nzc M, Npn, Np,) is convex with respect to its arguments
for all of our estimators. As for Noy (NzcM, Npn, Np), it is an
affine combination of its arguments. This makes both problems
P1 and P2 integer convex problems, which can be optimally
solved using CVX with a mixed integer solver [38].

VIII. BEAMFORMING DESIGN SCENARIOS

The proposed BF framework and the derived relations can
be applied to many BF scenarios. In this ection, we discuss
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the design procedures for two example scenarios. In the first
example, we consider a large swarm of small UAVs; we want
to determine the minimum N to satisfy the SNR requirements.
Due to the UAVs’ high mobility, the channel coherence time
is small and the BF overheads are constrained. This example
maps to the problem P1. In the second example, we consider
N = 4 weather balloons sending short payloads. Due to the
long coherence time resulting from the balloons slow motion,
large BF overheads are possible. However, to avoid energy
wasted on unneeded transmission, our objective is to minimize
the BF overheads while satisfying the SNR requirement. This
example maps to the problem P2.

A. Swarm of Small UAVs

A swarm of Ny, small UAVs is deployed in an urban envi-
ronment for an application like crowd monitoring [39]. A large
number of small UAVs is deployed and they continuously
transmit data. To avoid a large overhead in data sharing among
UAVs for BF, we want to determine the minimum number of
UAVs to beamform such that the destination SNR exceeds a
minimum of i, = 5dB for 90% of the time (poy = 0.1).

For the urban channel, we consider a channel having a path
loss coefficient of 3.7 [40] and a coherence time of 10ms [41].
The maximum transmit power of each UAV is Pr = 0dBm
and of the destination PP = 20dBm. Communication takes
place over a frequency of 915MHz using a sampling time of
T = 1us and a BW of IMHz and all radios have a noise figure
of 3dB. By performing the link budget calculation, the SNR
from an individual UAV at 1Km is close to —13dB, so the min-
imum required SNR improvement due to BF is Gyq = 18dB.
Assuming ideal BF yielding an SNR improvement of N2,
only 8 BF radios are required. However, due to the short
coherence time, the entire BF packet is assumed to be limited
to 5ms and based on the payload required by the application
only Ims of BF overhead is allowed. At this low SNR and
with this short BF overhead, the ideal beamforming gains are
not achievable and large BF variance is expected. We need to
use more than 8 BF radios so that the SNR exceeds 5dB for
90% of the time as required. Our objective is to determine the
minimum N and the duration of each preamble.

We use our analytical framework to find the minimum N.
Since for fixed overheads Ny, 03 depends on N, we need to
solve Pl to calculate o2 for each N. The proposed approach
is summarized in Algorithm 1 and it works as follows;
we start from the lower bound on N, which occurs when
assuming ideal BF Ny, = [\ /Greq] and increment N until the
requirement is satisfied. For each N, we solve the minimum
phase error problem P1 to obtain o2. Using the resulting
ag, we substitute in (31) to determine if the requirement is
satisfied or not. The first N satisfying the requirement is the
minimum N meeting the SNR requirements. If the maximum
number of available BF radios Ny, was reached without
satisfying (31), another approach needs to be considered to
meet the requirements like increasing the BF overhead or
the transmit power of the radios. Since the BF is performed
periodically and t.. < 7., we assume that KF is used for
frequency tracking.

Algorithm 1 Solving for minimum N

input : Ny, Nup, Nov, Pouts Ymin

output: Solved, N, Ny, Npn, Ny

Set Solved = False ;

for n; = Njp to Ny, do
Solve P1 to determine Ngyn, Nph, Ny, Jg;
if n; and Ug satisfy (31) then
| Set Solved = True; Set N = n;; Exit ;
end

end

The calculated N for different distances is shown in Fig. 7a
along with N}, calculated assuming ideal BF gain. To verify
that the obtained solution meets our design criteria, we sim-
ulated 10K BF cycles of the BF protocol using using the
calculated N and the optimized waveforms obtained from
P1 at each distance. The destination SNR was measured and
its empirical CDF for the proposed N and the ideal Ny, are
plotted in Fig. 7b and 7c respectively. From these Figures,
we see that the required outage probability is met using the
proposed N. Thus, our problem solution and the underlying
analysis can be used to design reliable BF systems satisfying
the design requirements as verified by simulations. On the
other hand, relying on the ideal NV}, is expected to yield
lower BF gains than the desired ones in realistic deployment
scenarios.

Looking at Fig. 7a, we observe an interesting trend. For
the calculated N, the number of BF radios increases by
10 from 1KM to 1.1KM compared to only 4 from 900m
to 1Km, in contrast to ideal BF (/V},), where number of BF
radios increase by a fixed rate of 1 radio. This faster rate
of increase is caused by the increasing number of exchanged
signals associated with the larger N and the decreasing pre-
beamforming SNR; to maintain fixed BF overheads, using
more radios corresponds to shorter preambles, which in turn
leads to degraded BF gains. Similarly, the pre-beamforming
SNR decreases with distance, which further degrades the
BF gains. Thus more BF radios are needed to counter the
degrading BF gains. This trend and the minimum needed
N cannot be trivially predicted from NVy,. For example using
Ny, + 5 or using 1.2Ny, will not yield the proposed N for all
distances and might result in using too many or too few radios.
This further justifies the need for our design framework.

B. Weather Balloons

Weather balloons are deployed at high altitudes to per-
form atmospheric measurements and report them back to
the ground. We consider N = 4 weather balloons deployed
at a distance of SOKM from the destination radio. Due to
their high altitude, the channel is dominated by line-of-sight
propagation and we consider a path loss coefficient of 2 and
a large channel coherence time exceeding 100ms. The large
channel coherence time allows for much longer BF overheads.
However, to economize the balloon payload battery power,
we want to minimize the transmission time. Our objective is
to determine the smallest BF overheads to attain a received
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Fig. 7. Results for minimizing N in a swarm of small UAVs assuming a fixed BF overhead. Using N obtained from our approach, the SNR requirement is

satisfied as verified by simulations.
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Fig. 8. For N = 4 weather balloons, in a long coherence time channel,
the minimum overheads (Ov) obtained using our framework satisfy the SNR
requirements. Shorter Ov violate requirements and longer Ov exceed them.

SNR exceeding a minimum of 7y, = 5dB for 90% of
the time (pour = 0.1). We use the same power, frequency,
bandwidth, and noise parameters as the previous scenario
except Pr = 10dBm is larger. The SNR from a single radio
is -4.6dB and thus the required BF gain at 50KM distance
is 9.6dB. Assuming that the measurements are infrequent and
not periodic, we use oneshot frequency estimation.

To design this system, we find the minimum phase error
needed to satisfy the requirement (d,2), then we find the
shortest overhead to meet this phase error. Since, for fixed NV,
increasing o2 decreases the average BF gain and vice versa,

we determine d,2 by applying the bisection method on (31).
Then, using 603, we solve the problem P2 to determine the
minimum overhead. If the minimum overhead makes the BF
packet exceed the channel coherence time, the solution is not
valid and we need to consider another alternative like increas-
ing the transmit power. The minimum overheads obtained are
shown in Fig. 8a for different distances. Then, we simulated
the BF protocol at these SNRs using the waveforms obtained
from P2 and plotted the empirical CDF of the destination SNR
in Fig. 8b. We can see that the proposed solution approach
(shown as solid lines) meets the required outage probability,
which verifies the solution and all the underlying analysis.
For a distance of 50 Km, we simulated the BF protocol
using 0.8 the calculated minimum overheads (Ov) and 1.2 Oy,
shown in Fig. 8b as dotted and dashed lines respectively.
Shorter overheads violate the SNR requirements, and longer
overheads exceeded them. This shows that using arbitrary
waveform designs might either violate the requirements or use
unnecessarily longer overheads.

IX. CONCLUSION

In this work, we developed and verified a mathematical
framework to model the BF performance for a destination-
led BF protocol. To derive this framework, we related the
pre-BF SNR and preamble lengths to the combining phase
error and then to the BF gain distribution. The proposed
framework was verified experimentally using software-defined
radios in a lab. Further, we demonstrated that BF from UAV-
mounted-radios exceeded 80% of the ideal BF gains despite
the short coherence time channel. Using the framework, for
two example scenarios, we proposed approaches to design the
number of BF radios and the length of the BF overheads and
verified that they meet the requirements using simulations.

Even though we only considered a specific BF protocol
and only two example scenarios, the proposed framework
can support many protocol variations and use cases. For the
protocol, the framework is applicable to any other choice
of estimators as long as their phase error variance can be
expressed mathematically. As for the scenarios, heuristics

Authorized licensed use limited to: UCLA Library. Downloaded on August 31,2023 at 17:04:38 UTC from IEEE Xplore. Restrictions apply.



790

can easily be developed to optimize over a combination of
the SNR, preamble lengths, and the number of BF slaves,
enabling the framework to adapt to many different deployment
scenarios.

APPENDIX
A. Proof of Proposition 1

The variance error of the KF output is given by py;, and we
want to calculate its value. Substituting (17) into (21), we get
Prtile = % + q. At steady state pjq), = p for all k
and we get a simple form of the algebraic Riccati equation
[42]. Solving the equation, we get pp iy =p =
—q+q,/1+4Z

2

p - p+
TV o Ta V2 Using (21), we get Ufk = Pkl =

B. Proof of Proposition 2

N 2

1 e 1 on e "
_ = Jjon | — jor, —idm,
G N nz:le sz:e zz:le
233

m—l n=m-+1

m ) (37)

Using the fact that for a zero mean Gaussian RV z,
E{cosz} = e v{=}/2 [27], we get

E{G}

S (N- e 9
var{G}

1 Sl
_ ﬁvar{z Z cos(¢f — ¢7,)}
m= l’i m—+1
= N2 Z Z var{cos(¢; — ¢;,)} (39)
m=1i=m+1

g NN N
_QZ Z Z cov{cos(¢; —¢y,), cos(¢y, —p)}

m=1i=m+1 p=i+1
(40)

(N-1), an

e GRS Vil (R

where cov{z,y} denotes the covariance of RVs =z, .
Line (40) was obtained usmg the fact that Var{zm_ T} =
Z%_l var{z,,} + 2Zm 1Zn g1 COV{Tm, T, ) for any
correlated M RVs z,, and by simplifying the summations.
Line (41) uses the fact that for a zero mean Gaussian
RV var{cosz} = 2i(e7{®}=1)2 [27] and using that
cov{cos(¢f — ¢, ), cos(dg, — ¢5)} = 0.5¢737% + 0.5e77¢ —
e~29¢ as can be shown using the Gaussian RV relations
from [27], the definition of covariance, and some trigonometric
identities.

1)2 + 2Ne*“3))

C. Proof of Proposition 3

We start be considering the simplified definition of G
from (37). We rewrite the elements of the summation as the
N x N matrix X, such that its element X,,, = % cos
(6m — dn)- This yields G =1+ 30 _ SN X, .. The
summation is over the upper diagonal elements of the matrix.
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el X X X X X X}

Fig. 9. Summation order for the matrix X.

Our objective is to rewrite the inner sum as independent RVs
of length proportional to N to invoke the central limit theory
(CLT). To achieve that, we must avoid reusing the same value
of ¢¢, in the inner sum, that is, the inner sum elements should
have unique column and row indices.

N n—1

DI MR SHES 3) e

m=1n=m-+1 n=2m=1

N min(n—1,N—n+1) N n—1
Xm,n + § § Xm,n

n=N/2+1m=N—n+1

(42)

(43)

N [ln/2] | 5

—Z men m+1+ Z XN+1 (n—m+1),(N+1)—

n=2\ m=1
(44)

The summation in (42) rewrites the equation from column
wise to row wise. In Line (43), we split the elements of
the summation at the upward diagonal as illustrated in the
first image of Fig. 9 for an 8 x 8 matrix. In Line (44),
the inner summation is rewritten as two summations over the
upward diagonal elements as shown in different colors in the
second image of Fig. 9. From (44), each element of the inner
summation consists of about N/2 terms? and none of the terms
have common rows or columns, thus consist of independent
RVs. We can rewrite the inner sum as the RV b,, as follows

[n/2] L(N+1-n)/2]
b= me,nferl"_ Z XN+1—(n—m+1),(N+1)—m
m=1 m=1

(45)

The variable b,, consists of identical independent RVs. Hence,
for large N, the distribution of b,, converges to a Gaussian
distribution. Lastly, we can rewrite G as G = 1 + Zgﬁ bn
The variables b,, are correlated Gaussian RVs, hence their sum
is Gaussian. This proves that for large N, G is Gaussian and
its mean and variance are given by Proposition 2.

D. Proof of Proposition 4

We start this proof by considering the case of small o2 and
then discuss the case of large N. Since ¢,, are zero mean and
assuming small 02, ¢,,, — ¢y, is typically small and we can use
the Taylor expansion of cosine around zero to simplify X,, ,

(as defined in Appendix C) as X, , = % (1 — M)

Then, we can rewrite (45) as b, = 2% — Xn Where

2For odd N, the number of elements is either N/2 or N/2 — 1. This
difference is insignificant for large N.
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S$n = |[n/2] + [(N +1—mn)/2] is the number of elements
of b, and X, = %+ 30" (¢m, — ¢n,)? with m, and n,
corresponding to the indexes from (45). The summation in .,
is over independent zero mean Gaussian RVs that are squared,

hence ,, follows the Chi-squared distribution. We can rewrite
G as

2 N(N —1)

G=l+5—7 Y xn=N-X,  (46)

where X, = 22;2 Xn 18 the sum of correlated Chi-squared
RVs. The distribution of the summation of correlated
Chi-squared RVs can be obtained using the Gamma distri-
bution [43]. The shape K and scale # parametrization of the
resulting Gamma distribution can be calculated to realize the
mean and variance of X, [44]. Using the mean and variance
of G from Proposition 2, we get the following equations for
the mean and variance respectively

KO=N-1—(N—1)e % (47)
K§* = 7(]%\_71)(1—@—"3)2 ((1—6—"3)2+2Ne‘”3)) (48)

Solving these two equations, we get the values of K and 0
in (29) and (30). This proof is based on the assumption that

Jg is small. For large values of IV, K becomes large, and the

Gamma distribution converges to a Gaussian distribution with
mean K6 and variance K 62 [45], which is the true distribution
of GG as shown in Proposition 3.

REFERENCES

[1] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of
distributed beamforming in wireless networks,” IEEE Trans. Wireless
Commun., vol. 6, no. 5, pp. 1754-1763, May 2007.

[2] R. Mudumbai, D. R. B. Iii, U. Madhow, and H. V. Poor, “Distributed
transmit beamforming: Challenges and recent progress,” IEEE Commun.
Mag., vol. 47, no. 2, pp. 102-110, Feb. 2009.

[3] S. Jayaprakasam, S. K. A. Rahim, and C. Y. Leow, “Distributed and
collaborative beamforming in wireless sensor networks: Classifications,
trends, and research directions,” IEEE Commun. Surveys Tuts., vol. 19,
no. 4, pp. 2092-2116, 4th Quart., 2017.

[4] G. Skorobogatov, C. Barrado, and E. Salami, “Multiple UAV systems:
A survey,” Unmanned Syst., vol. 8, no. 2, pp. 149-169, Apr. 2020.

[5] A. Muralidharan and Y. Mostofi, “Energy optimal distributed beamform-
ing using unmanned vehicles,” IEEE Trans. Control Netw. Syst., vol. 5,
no. 4, pp. 1529-1540, Dec. 2018.

[6] L. Bertizzolo, E. Demirors, Z. Guan, and T. Melodia, “CoBeam:
Beamforming-based spectrum sharing with zero cross-technology signal-
ing for 5G wireless networks,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Jul. 2020, pp. 1429-1438.

[71 Y.-S. Tu and G. J. Pottie, “Coherent cooperative transmission from
multiple adjacent antennas to a distant stationary antenna through
AWGN channels,” in Proc. IEEE 55th Vehicular Technol. Conf. (VIC
Spring), vol. 1, May 2002, pp. 130-134.

[8] R. Mudumbai, J. Hespanha, U. Madhow, and G. Barriac, “Distributed
transmit beamforming using feedback control,” IEEE Trans. Inf. Theory,
vol. 56, no. 1, pp. 411-426, Jan. 2010.

[9] D. R. Brown, III, and H. V. Poor, “Time-slotted round-trip carrier syn-

chronization for distributed beamforming,” IEEE Trans. Signal Process.,

vol. 56, no. 11, pp. 5630-5643, Nov. 2008.

S. Leak et al., “Distributed transmit beamforming expanding the capacity

and range of tactical communications,” in Proc. Mil. Commun. Inf. Syst.

Conf. (MilCIS), Nov. 2018, pp. 1-6.

D. Kramarev et al., “Event-triggered synchronization for mobile dis-

tributed transmit beamforming,” in Proc. IEEE Mil. Commun. Conf.

(MILCOM), Nov. 2019, pp. 343-348.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

M. M. Rahman, H. E. Baidoo-Williams, R. Mudumbai, and
S. Dasgupta, “Fully wireless implementation of distributed beamforming
on a software-defined radio platform,” in Proc. ACM/IEEE 1lth Int.
Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2012, pp. 305-316.

F. Quitin, U. Madhow, M. M. U. Rahman, and R. Mudumbai, “Demon-
strating distributed transmit beamforming with software-defined radios,”
in Proc. IEEE Int. Symp. World Wireless, Mobile Multimedia Netw.
(WoWMoM), Jun. 2012, pp. 1-3.

S. Mohanti, E. Bozkaya, M. Y. Naderi, B. Canberk, G. Secinti, and
K. R. Chowdhury, “WiFED mobile: WiFi friendly energy delivery with
mobile distributed beamforming,” IEEE/ACM Trans. Netw., vol. 29,
no. 3, pp. 1362-1375, Jun. 2021.

Y. Khosiawan and 1. Nielsen, “A system of UAV application in indoor
environment,” Prod. Manuf. Res., vol. 4, no. 1, pp. 2-22, Jan. 2016.
H. Yan, S. Hanna, K. Balke, R. Gupta, and D. Cabric, “Software
defined radio implementation of carrier and timing synchronization
for distributed arrays,” in Proc. IEEE Aerosp. Conf., Mar. 2019,
pp. 1-12.

S. Mohanti et al., “AirBeam: Experimental demonstration of distributed
beamforming by a swarm of UAVs,” in Proc. IEEE MASS, Nov. 2019,
pp. 162—-170.

S. R. Mghabghab and J. A. Nanzer, “Impact of VCO and PLL phase
noise on distributed beamforming arrays with periodic synchronization,”
IEEE Access, vol. 9, pp. 56578-56588, 2021.

F. Quitin, M. M. U. Rahman, R. Mudumbai, and U. Madhow, “A scal-
able architecture for distributed transmit beamforming with commodity
radios: Design and proof of concept,” IEEE Trans. Wireless Commun.,
vol. 12, no. 3, pp. 1418-1428, Mar. 2013.

J. Kong, F. T. Dagefu, and B. M. Sadler, “Simultaneous beamforming
and nullforming for covert wireless communications,” in Proc. IEEE
91st Vehicular Technol. Conf. (VIC-Spring), May 2020, pp. 1-6.

S. M. Ellison, S. R. Mghabghab, and J. A. Nanzer, “Multi-node open-
loop distributed beamforming based on scalable, high-accuracy ranging,”
IEEE Sensors J., vol. 22, no. 2, pp. 1629-1637, Jan. 2021.

H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh, “Collaborative beam-
forming for distributed wireless ad hoc sensor networks,” IEEE Trans.
Signal Process., vol. 53, no. 11, pp. 41104124, Nov. 2005.

T. Feng, L. Xie, J. Yao, and J. Xu, “UAV-enabled data collection for
wireless sensor networks with distributed beamforming,” IEEE Trans.
Wireless Commun., vol. 21, no. 2, pp. 1347-1361, Feb. 2022.

G. Sklivanitis, K. Alexandris, and A. Bletsas, ‘“Testbed for non-coherent
zero-feedback distributed beamforming,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 2563-2567.

J. George, A. Parayil, C. T. Yilmaz, B. L. Allik, H. Bai, and
A. Chakrabortty, “Multi-agent coordination for distributed transmit
beamforming,” in Proc. Amer. Control Conf., Jul. 2020, pp. 144-149.
S. Hanna, E. Krijestorac, and D. Cabric, “Destination-feedback
free distributed transmit beamforming using guided directionality,”
IEEE Trans. Mobile Comput., early access, Jul. 5, 2022, doi:
10.1109/TMC.2022.3188602.

D. R. Brown, P. Bidigare, and U. Madhow, “Receiver-coordinated
distributed transmit beamforming with kinematic tracking,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2012,
pp. 5209-5212.

J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” ACM SIGOPS Operating Syst. Rev.,
vol. 36, pp. 147-163, Dec. 2003.

B. Williams and T. Camp, “Comparison of broadcasting techniques
for mobile ad hoc networks,” in Proc. 3rd ACM Int. Symp. Mobile
ad hoc Netw. Comput. (MobiHoc), New York, NY, USA, 2002,
pp. 194-205.

G. W. Lank, I. S. Reed, and G. E. Pollon, “A semicoherent detection
and Doppler estimation statistic,” IEEE Trans. Aerosp. Electron. Syst.,
vol. AES-9, no. 2, pp. 151-165, Mar. 1973.

N. A. Thacker and A. Lacey, “Tutorial: The Kalman filter,” Imag.
Sci. Biomed. Eng. Division, Med. School, Citeseer, Univ. Manchester,
Manchester, U.K., 1998, p. 61.

S. Tretter, “Estimating the frequency of a noisy sinusoid by linear
regression (corresp.),” IEEE Trans. Inf. Theory, vol. I1T-31, no. 6,
pp- 832-835, Nov. 1985.

D. W. Matolak and R. Sun, “Air—ground channel characterization for
unmanned aircraft systems—Part III: The suburban and near-urban
environments,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 6607-6618,
Aug. 2017.

Authorized licensed use limited to: UCLA Library. Downloaded on August 31,2023 at 17:04:38 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TMC.2022.3188602

792

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 2, FEBRUARY 2023

L. Cao and H. M. Schwartz, “Exponential convergence of the Kalman
filter based parameter estimation algorithm,” Int. J. Adapt. Control Signal
Process., vol. 17, no. 10, pp. 763-783, 2003.

GNU Radio Website. GNU Radio. Accessed: Sep. 2021. [Online].
Available: https://gnuradio.org/

V. Va and R. W. Heath, Jr, “Basic relationship between channel
coherence time and beamwidth in vehicular channels,” in Proc. IEEE
VTC, Sep. 2015, pp. 1-5.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

M. Grant and S. Boyd. (Mar. 2014). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx

A. Trotta, U. Muncuk, M. Di Felice, and K. R. Chowdhury, “Persistent
crowd tracking using unmanned Aerlal vehicle swarms: A novel frame-
work for energy and mobility management,” IEEE Veh. Technol. Mag.,
vol. 15, no. 2, pp. 96-103, Jun. 2020.

A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

Y. Chakkour, H. Ferndndez, V. M. R. Pefiarrocha, L. Rubio, and J. Reig,
“Coherence time and Doppler spread analysis of the V2V channel in
highway and urban environments,” in Proc. IEEE Int. Symp. Antennas
Propag. USNC/URSI Nat. Radio Sci. Meeting, Jul. 2018, pp. 373-374.
D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1.
Belmont, MA, USA: Athena Scientific, 2000.

N. H. Gordon and P. F. Ramig, “Cumulative distribution function of
the sum of correlated chi—Squared random variables,” J. Stat. Comput.
Simul., vol. 17, no. 1, pp. 1-9, Jan. 1983.

A. Ferrari, “A note on sum and difference of correlated chi-squared
variables,” 2019, arXiv:1906.09982.

A. DasGupta, Normal Approximations and the Central Limit Theorem.
New York, NY, USA: Springer, 2010, pp. 213-242.

Samer Hanna (Member, IEEE) received the B.Sc.
degree in electrical engineering and the M.Sc. degree
in engineering mathematics from Alexandria Univer-
sity, Alexandria, Egypt, in 2013 and 2017, respec-
tively, and the Ph.D. degree from the University
of California, Los Angeles, CA, USA, in 2021.
His research interests include the applications of
machine learning in wireless communications and
coordinated communications using unmanned aerial
vehicles.

Danijela Cabric (Fellow, IEEE) received the M.S.
degree in electrical engineering from the University
of California, Los Angeles (UCLA), in 2001, and
the Ph.D. degree in electrical engineering from UC
Berkeley in 2007. She is a Professor in electrical
and computer engineering with UCLA. Her research
interests include millimeter-wave communications,
distributed communications and sensing for the
Internet of Things, and machine learning for wireless
networks co-existence and security. She received the
Samueli Fellowship in 2008, the Okawa Foundation
Research Grant in 2009, the Hellman Fellowship in 2012, the National Science
Foundation Faculty Early Career Development (CAREER) Award in 2012,
and the Qualcomm Faculty Award in 2020 and 2021. She was an Associate
Editor of IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND
NETWORKING, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE Signal Processing
Magazine, and IEEE ComSoc Distinguished Lecturer.

Authorized licensed use limited to: UCLA Library. Downloaded on August 31,2023 at 17:04:38 UTC from IEEE Xplore. Restrictions apply.



