
Article
B-factor prediction in prot
eins using a sequence-
based deep learning model
Highlights
d A sequence-based learning model is developed for the

prediction of the B factor proteins

d It is shown that the primary sequence is sufficient for the B

factor prediction
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THE BIGGER PICTURE B factor is a measure of atom’s displacement about their mean position, and it pro-
vides critical insights into the flexibility, solvent accessibility, thermal stability, and activity of the region in
protein. In this work, we develop a sequence-based deep learning model that can predict the B factor of Ca

atoms in proteins. The developed model is tested on 2,442 proteins, and it outperforms the state-of-the-art
model by 30%. Using the developed model, we find that the B factor of a site is prominently affected by
atoms within a 12–15 Å radius and in excellent agreement with cutoffs based on protein network models.
In the future, this model can be used for the prediction of mechanical properties of protein-basedmaterials,
identifying active regions in the protein for chemical as well as pharmaceutical applications. Moreover,
since ourmodel can predict B factor just based on the primary sequence, it can be used to assist the design
of de novo proteins for specific applications.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
B factorsprovidecritical insight intoprotein dynamics.PredictingB factorsof anatom innewproteins remains
challenging as it is impacted by their neighbors in Euclidean space. Previous learning methods developed
have resulted in low Pearson correlation coefficients beyond the training set due to their limited ability to cap-
ture the effect of neighboring atoms. With the advances in deep learning methods, we develop a sequence-
based model that is tested on 2,442 proteins and outperforms the state-of-the-art models by 30%. We find
that themodel learns that the B factor of a site is prominently affected by atomswithin a 12–15 Å radius, which
is in excellent agreementwith cutoffs fromprotein networkmodels. The ablation study revealed that theB fac-
tor can largely be predicted from the primary sequence alone. Based on the abovementioned points, our
model lays a foundation for predicting other properties that are correlated with the B factor.
INTRODUCTION

The B factor, also known as the Debye-Waller factor or temper-

ature factor, is an important property of the atoms in protein

signifying the displacement of atoms about their mean position.

Experimentally, it is defined as the attenuation of X-ray scat-

tering; the lower the attenuation rate, the higher the B factor. In

the literature, the B factor has been used as the indicator of pro-

tein’s flexibility and dynamic properties.1,2 In addition, the B fac-

tor has also been used to develop structural bioinformatics,3

identify the active regions,4 and study the thermal stability5 of

proteins. More broadly, B factor and Debye-Waller factor are
This is an open access article und
profoundly important parameters for understanding soft matter

physics related to glass formation, dynamical heterogeneity,

andmechanical behavior, as well as training and validatingmulti-

scale models.6–8 In this sense, for understanding protein dy-

namics and how it relates to functions, it is critically important

to learn both what governs the B-factor values and how to pre-

dict them in the absence of experimental data.

There has been lots of progress over the past few decades in

physics-based models for reproducing the B factors of proteins

and these methods need structural information of proteins. A

common idealization is to model proteins as bead-spring sys-

tems with elastic spring constants tailored to match fluctuations
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or distance-based criteria. This is based on the premise that, for

each atom, the B factor is highly dependent on its interaction

with the neighboring atoms, with nearby atoms having a greater

role as they tend to have stronger physical interactions with the

atom. Normal mode analysis (NMA) uses a Hamiltonian matrix

for atomic interactions and eigenvalues of the system are corre-

lated with the B factors.9–12 The anisotropic network model was

proposed to simplify NMA by using a one-parameter spring

interaction potential and was still able of capturing the important

features of NMA.6,13 In a similar vein, a Gaussian network

model14 uses the Kirchhoff matrix to depict the interaction be-

tween alpha carbon (Ca) atoms, offering advantages in computa-

tional efficiency relative to NMA. More recently, the use of flexi-

bility and rigidity (FRI) methods,15 where the interaction graphs

are generated based on radial basis functions, improved the pre-

diction of the B factor. Various versions of FRI were introduced to

make the method faster and more feasible to predict anisotropic

motion and capture multiscale interactions.16–18

Physics-based models are advantageous as they offer impor-

tant insights for a specific protein. However, they need structural

information of the protein and do not generalize well outside the

training dataset.19 Several approaches have tried to address the

shortcomings of physical models with machine learning (ML)

techniques.20–22 One of the state-of-the-art (SOTA) models for

predicting B factors is based on multiscale weighted colored

graphs (MWCGs).23 The MWCG method generates three 2D

matrices (channels) for each atom in the protein based on its

interaction with the heavy atoms carbon, nitrogen, and oxygen.

These three channels of data are then combined with global fea-

tures based on the quality of the atomic model obtained from

crystallographic data in the Protein Data Bank (PDB), namely

the R value, and resolution for the prediction of the B factor.

These transformed features are then fed to a convolution neural

network for prediction. The authors19 tested the MWCG on 364

proteins using a leave-one-out strategy and obtained an average

Pearson correlation coefficient (PCC) of 0.66, considering only

Ca atoms for predictions.

In previous studies, it has been reported that the B factor is not

an absolute property as its magnitude depends on factors such

as degree of resolution, solvent content, and overall quality of

data,24 which can lead to errors or differences in reported B-fac-

tor values for a given protein. A more reliable approach to getting

insight into thedynamicsof different regions is to normalize theB-

factor data for each protein before comparing any two proteins.

Normalized B factor is regularly used in various computational

analyses aswell asprotein crystallography2 and is abetter choice

for calibrating and validating ML models. A couple of ML ap-

proaches that focused on predicting normalized B factors with

methods such as support vector regression (SVR) have reported

PCC in the range of 0.53–0.61. The test datasets25,26 reported

were limited in size, encompassing roughly 300–800 proteins.

Given that today we have approximately 192k proteins in the

PDB, it is important to test anyproposedmodel on a large test da-

taset to demonstrate generalizability. In addition, in these

methods, input features of all the atoms are mostly feature-engi-

neered, i.e., the embedding for each residue in the protein is

generated by searching for the multiple sequence alignment us-

ing PSI-BLAST.27 It would bemore desirable to have amodel that

can access the whole protein simultaneously and predict the B
2 Patterns 4, 100805, September 8, 2023
factors of all the Ca atoms with minimum feature engineering.

Last, but not the least, with the advancements in the area of

deep learning (DL) models, we envision that the PCC can be

improved further. To help address these issues, here we present

aDLmodel employing a long short-termmemory (LSTM) network

to predict theB factor aswell as the normalizedB-factor values of

any protein. The key elements of our contribution include:

(1) The use of a sequence-based DL model (LSTM) for the

prediction of the B factor.

(2) The broadest testing dataset comprised of 2,442 proteins

for demonstrating generalizability.

(3) Systematic studies to identify a minimalist approach to

predicting protein fluctuations with greater efficiency, ac-

curacy, and without empirical input. This will involve the

analysis of the relative importance of primary sequence

(PS), secondary structure (SS), Ca atom coordinates

(CoI), and chain information (ChI) for the prediction of

the B factor.

(4) Systematic studies to quantify the radius within which one

atom influences the B factor of another atom significantly

(e.g., a cutoff threshold).
RESULTS AND DISCUSSIONS

Prediction of normalized B factor
In this section, wepresent the results for the prediction of normal-

ized B-factor values using the method described in experimental

procedures. Before training and testing, the B-factors of all pro-

teins are normalized using Equation 5a. The training and valida-

tion error is shown in Figure 1A and it shows that the change in

the validation error after 200 epochs is negligible. This also dem-

onstrates that the model does not overfit the data, which would

manifest in an increase in the validation error with the increasing

number of epochs. The model optimized is tested on 2.4k pro-

teins and the comparison between the predicted normalized B

factor and actual normalized B-factor graph is shown in Fig-

ure 1B. The averaged PCC,which is used for checking the quality

of the fit, is calculated to be 0.8 on the test dataset. As pointed out

in experimental procedures, to check the robustness of the

model, it was trained and tested using four different seeds, and

we observed minimal variation in the average PCC between

0.795 and 0.80. To the best of our knowledge, the PCC of 0.8

for the normalized B factor is the highest ever reported in the liter-

ature. At the time of writing this paper, the average PCC values

reported by the SOTA models25,26 are between 0.53 and 0.61.

Both of the SOTA models use an SVR technique and report the

average PCC within a similar range. For the training/prediction

of the normalized B factor of an atom in a protein, SOTA models

used the PS information in window sizes of 9 and 15. For one-on-

one comparison, we trained our model without the proteins that

were used for testing the SOTA model25 as the data were easily

available. We obtain an average PCC of 0.7 which is 30% higher

than the SOTA average PCC of 0.54.
Importance of input features
The results presented until now use PS, SS information, CoI, and

the start/end of ChI as input features. But, as in the case of any



Figure 2. Impact of various input features on average PCC

The above acronyms are expanded as follows: PS, primary sequence; SS,

secondary structure information; ChI, chain information; CoI, Ca coordinate

information; and LSTM, long short-term memory.

Figure 1. Deep learning model training and testing details

(A) Training and validation error trend for normalized B factor model.

(B) Predicted versus actual normalized B factor of atoms in 2.4k proteins in the test dataset.
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MLmodel, some features are more important than others. In this

section, we examine the importance of each feature. To study

the importance of a feature, it is just removed from the input fea-

tures and the whole model is trained and tested again. Models

with different features are considered for this study and their de-

tails and results (average PCC) are shown in Figure 2.

The x-label in Figure 2 indicates which input features are

included in themodel. Comparingmodels 2, 3, and 4, it is evident

that models that include PS and CoI exhibit indistinguishable

PCC scores. The comparison of model 6 with models 4 and 5 in-

dicates that the addition of CoI and SS to PS results in the in-

crease of PCC score by 3.5% and 2.5%, respectively. This com-

parison places CoI above SS in the importance matrix. At the

same time, when only PS is considered, as in model 6, the <

5% drop in the PCC score compared with models 1–5 is mar-

ginal. For many proteins, PS is the only known feature, so devel-

oping a strong predictive algorithm that depends minimally on

CoI, SS, and ChI is a critical contribution of this work. This also

points to the fact that, if the DLmodel is robust, it can learn struc-

tural information such as coordinate information20 and SS28

based only on the PS. In addition, the developedmodel can offer

insights into designing de novo proteins using in silico models,

which mostly take only the PSs as the input.

Models 7 and 8 were run to check the importance of LSTM in

our model. In model 7, all possible input features are used

without the LSTM and, in model 8, only the PS feature is used

without LSTM. Removing the LSTM from the model transforms

it into a simple feedforward neural network model. The only dif-

ference inmodels 6 and 8 is the absence of LSTM,which leads to

a drastic drop of 55% in the average PCC. This emphasizes that

PS information without LSTM is inadequate for the prediction of

the B factor. This also informs us that the B factor depends not

only on amino acid type but also on dseq and deuc. The extent

of this impact is discussed in result interpretability. Models 1

and 7 use all input features, but model 7 lacks LSTM. The PCC

score in model 7 is 0.59, which is 26% lower than model 1, but

73% higher than model 8. The difference in the PCC score of

models 7 and 8 is attributed to the fact that SS and CoI in model
7 inform the DL model about the atom’s surroundings. To check

if in model 7 the model has learned something meaningful, we

look at the actual versus predicted cBi in Figure 3. The difference

in theR2 value ofmodels 1 and 7 shows thatmodel 7model lacks

generalizability. Based on these observations, it can be stated

that neighboring atoms prominently influence the B factor and

that the LSTM-based model is sufficient to capture those

impacts.

We also want to stress that, out of all the models that use

LSTM (models 1–6), only model 6 is a purely PS-based model

as it does not use any structural information about the protein.

Models 1–5 are hybrid sequence- and structural-based models
Patterns 4, 100805, September 8, 2023 3



Figure 3. Quality of fit with and without LSTM

(A) Actual versus predicted normalized B factor on the test dataset when trained with all input features with LSTM (model 1).

(B) Actual versus predicted normalized B factor on the test dataset when trained with all input features without LSTM (model 7).

Figure 4. Effect of window length Ws on B-factor prediction

Effect of variation of PCC, of five proteins of varying sequence length, as a

function of Ws considered for the prediction.
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as they use some form of structural information for the

prediction.

Result interpretability
Based on the validation of the model on our test dataset and its

superior performance relative to SOTA models, we conclude

that our model is robust. In this section, we use this model to

extract some meaningful information such as the impact of

dseq, deuc, type of amino acid, and type of SS on the prediction

of bBi.

Impact of window size Ws

As pointed out in experimental procedures, to study the effect of

dseq in the PS, we first study the impact of window sizeWs on the

PCC. To do so, we randomly selected five proteins (1MUW,

1ARU, 1UAQ, 1KM2, and 1DUP) and used our trained model

to predict cBi by considering different Ws values. The trend of

the PCC with respect to the Ws considered for prediction is

shown in Figure 4 for all five proteins. It can be seen that, for

all five proteins analyzed, PCC increases sharply with Ws up to

the critical value ofWc
s and, forWs >Wc

s , the PCC remains nearly

invariant. The data indicate that the accuracy of the model con-

verges aboveWc
s and thatWc

s is specific to each protein, ranging

from 45 for 1ARU to 70 for 1KM2. Previously the models have

used Ws up to 15 for cBi prediction.
25,26 We suspect that this

value might be too low and this would explain the lower PCC

values attained with the SOTA methods. Since Wc
s is not the

same for all the proteins, it is difficult tomake one fully connected

neural network that will perform best for all the proteins. This jus-

tifies the use of a sequence-based model (LSTM) in this study as

it can deal with the varyingNwithout changing the number of pa-

rameters in the model. We also note from Figure 4 that for some

proteins PCC versus Ws is sigmoidal as the PCC value plateaus

at low Ws but, for others, this trend is not observed.

Estimating cutoff radius Rcut

Figure 4 demonstrates the limits of dseq on predictive accuracy

since PCC does not change significantly beyond Wc
s . However,

to correctly predict cBi , it is also important to get a clear idea

about the impact of deuc. Before presenting the results, we

declare a variable called cutoff radius Rcut, which indicates that
4 Patterns 4, 100805, September 8, 2023
for the calculation of cBi we only consider the impact of atoms

that are at deuc % Rcut.

As discussed in algorithm to study the impact of neighboring

atoms,we first plot the variationof PCC
PCCall

with respect toRcut in Fig-

ure 5A, where PCCall is the PCC of the protein when all the atoms

in the protein are considered for the calculation of cBi . From Fig-

ure 5A, we observe that PCC
PCCall

increases with the increase in

Rcut. As the number of atoms considered for the calculation of

the B factor increases, the PCC of the protein also increases

and converges to the value of PCCall. However, Figure 5A does

notgive aclear ideaabout the relative importanceof vicinal atoms

and whether there is a cutoff distance that can be identified.

Therefore, as discussed in the algorithm section, we plot the vari-

ation of DPCC
DAtoms with respect to the Euclidean distance deuc to find

the contribution per atom at various deuc in Figure 5B. Based on

the variation of DPCC
DAtoms in Figure 5B, we identify three zones of



Figure 5. Identifying a cutoff radius Rcut

(A) PCC
PCCall

with respect to Rcut .

(B) Variation of DPCC
DAtoms with respect to the cutoff deuc.

(C) Variation of PCC and bn (Rcut = 12 Å) with respect to Ws.

(D) Variation of PCCn, comparing the trend of the blue and orange line in (C), with respect to Rcut .
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influence forcBi . Zone 1 is in between 0 and 15 Å and atoms in this

zone contribute the most in the prediction of cBi . Zone 2 is in be-

tween 15 and 36 Å and the atoms in this zone contribute approx-

imately equally to the prediction of cBi . Anything beyond 36 Å is

defined as zone 3 and the contribution from this zone is nearly

negligible.

Based on the above observations, we conclude that atoms

generally lying within z15 Å of each other are more likely to

impact one another more profoundly than atoms further out.

To further strengthen the claim of this result, we carry out a sec-

ond study regarding Rcut. To clarify this analysis we first intro-

duce a variable called the normalized number of Ca Atoms (bn)
that lie within a given cutoff distanceRcut from an atom. To calcu-

late bn for a Rcut value, for each of the N amino acids in a protein,

first, the average number (n) of Ca atoms within the cutoff radius

is calculated using the Equation 1a, where ni is the number of Ca

atoms within the cutoff radius Rcut of the ith Ca atom. Then, bn is

calculated using Equation 1b.
n =

PN
i = 1ni

N
(Equation 1a)

bn =
n

N � 1
(Equation 1b)

As part of the second study, we first calculate bn as a function of

Ws for 23different proteins from the test datasetwithN varying be-

tween 60 and 500. The variation of bn and PCC with respect toWs

for protein 1KM2 is shown in Figure 5C, from which we observe

that there is some correlation between bn and the PCC curve. To

quantify this correlation, we calculate the Pearson correlation co-

efficient between the bn curve (magenta curve) and the PCC curve

(blue curve) in Figure 5C. Let us indicate this Pearson correlation

coefficient as PCCn. Since, bn is the function of the cutoff distance

Rcut, the PCCn is also the function of Rcut. Therefore, we calculate

PCCn for differentRcut values for all 23 proteins. The trend of aver-

agedPCCn (PCCn) with respect toRcut is shown inFigure5D. It can
Patterns 4, 100805, September 8, 2023 5



Figure 6. Impact of type of the amino acid and the secondary structure on the B factor

(A) Variation of normalized B factor with respect to the amino acids.

(B) Variation of normalized B factor with respect to the secondary structures.
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be observed that PCCn first increases with Rcut and then de-

creases after reaching a maximum value around the Rcut of 12–

15 Å.Basedon the study inFigure5,weclaim that theatomswithin

15 Å of Euclidean distance have the greatest impact per atom on

B-factor calculation, but information of atoms at further distances

is still necessary to achieve a high PCC.

Impact of the type of amino acid on the normalized B

factor

Fromtheabovestudies,weobserved that theB factorofanatomis

highlydependentonWs anddeuc. Toprovidemore insight intohow

chemical detailsmight influenceB factors, we turn our attention to

the influence of amino acid type on B-factor prediction. For this

purpose,weplotted themeannormalizedB factor (actual andpre-

dicted), with an error bar, for every amino acid using the test data-

set. The plot is shown in Figure 6A and it can be observed that the

mean predicted normalized B-factor variation with respect to the

amino acid follows the same trend as the mean actual normalized

B factor.However, it canalsobeseen that thestandarddeviation is

consistently under-predicted as our developed model predomi-

nantlyunder-predicts theB factor,which isevident fromFigure1B.

B-factor standarddeviationsare shown inFigure6A toquantify the

breadth of the distribution of both predicted and actual values

when clustered for each type of amino acid. Given that the amino

acid type alone does not accurately describe its B factor, we

observe large standard deviations in both the actual and the pre-

dicted results. This isbecause theB factorof anaminoacid ishigh-

ly dependent on its position in the 3D protein structure. This fact is

further emphasized by our study in Figure 5 that the atoms within

15 Å radius have the greatest impact on each other’s B factor.

Therefore, the primary contributor to the B factor of a residue in a

protein is its location and vicinal residues. The chemical nature of

the residue does influence its own B factor, but it is not the sole

contributor. For the same reason, when we predict the B factor

of an amino acid based on its type and without an LSTM in model

8 in Figure 2, this results in the lowest PCC value.

Even though the standard deviations are high, we can make a

couple of observations about the impact of amino acid type on

the B factor.

d Hydrophobic types of amino acids such as A, V, F, I, and L

mainly exhibit lower B factor as they are mostly buried
6 Patterns 4, 100805, September 8, 2023
within the densely packed core of the protein. Due to the

densely packed core, the region is quite ordered; hence

the smaller B factor. This is corroborated by the fact that

hydrophobic amino acids pack into the core to form b

sheet and a helix SSs predominantly. These SSs are

more ordered and typically exhibit lower B factor as shown

in Figure 6B. Similarly a study in the literature29 shows that

hydrophobic amino acids A, V, F, I, and L do exhibit higher

mean B-factor values. This trend is further supported by

another study30 that shows that the low B-factor regions

are rich in amino acids A, V, F, I, and L.

d Charged amino acids such as D, E, and K mainly exhibit

higher B factor in the protein as they are mostly on the sur-

face and predominantly form coils and sometimes a heli-

ces. Unlike b sheets and a helices, coils are disordered,

thus exhibiting higher B factor as shown in Figure 6B. This

trend is further corroborated by other studies, which show

that charged amino acids do exhibit highermeanB factor29

and are more likely to be found in high B-factor regions.30
Conclusion
The B factor is an important indicator of a protein’s dynamic

behavior, but making a generalizable predictive model for it has

been challenging. The challenge for the predictive models arises

because the B factor of an atom is highly dependent on its sur-

rounding and it is essential to capture its impact efficiently. In

this work, we overcome this challenge by developing an LSTM-

based DL model, a bidirectional sequence model that is capable

of capturing long-range dependencies more effectively. LSTM

helped in capturing the impact of dseq and deuc effectively in pro-

teins of varying sizes without any feature engineering. The devel-

oped model when tested on 2.4k unseen proteins, resulted in an

average PCC of 0.8 and 0.73 for normalized B factor and un-

normalized B factor respectively.

Our analysis of the impact of each input feature on the predic-

tion of the B factor indicates that using just the PS as the input

feature is sufficient for the prediction of the B factor. This sug-

gests that if the model is adequately robust, it can implicitly ac-

count for key structural contributors such as SS and atomic po-

sitions from the PS andB-factor data used in training. In addition,



Figure 7. Deep learning model architecture

This figure captures the process of data preparation, details of the deep-learning model, and the process of backpropagation for optimization.
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we used our tested model to study the impact of window sizeWs

on the prediction and concluded that differentWs values are suit-

able for different proteins. To expand our knowledge about the

Euclidean distance within which atoms impact each other’s B

factor, we used our model and found that within the Rcut value

of 12–15 Å the impact is prominent. Thus, our model can be

used to not only effectively predict the B factor but also to extract

meaningful physical information about the proteins.

In the future, this model can be used for the prediction of other

mechanical properties of protein-based materials, identifying

active regions in the protein for chemical as well as pharmaceu-

tical applications. Moreover, since our model can predict B fac-

tor just based on the PS, it can be used to assist the design of de

novo proteins for specific applications.

EXPERIMENTAL PROCEDURES

The central objective of this work is to precisely predict B-factor values for Ca

atoms in proteins by training a DL model on existing experimental B-factor

data. Once trained, the model should be able to predict B factors of each Ca

atom from provided input features of a protein that was not included in the

training/validation datasets. In the scope of this work, these input features

can be any particular one or any combination of PS, SS, CoI, and ChI. In this

work by ChI feature, we indicate the start and end of the polypeptide chain.

Key questions to address are which of these features are redundant? And

what is theminimumamount of required features necessary to have reasonable

accuracy in the predictions?

Dataset

Protein data are extracted from PDB using PyPDB API,31 which is made to

effortlessly perform an advanced search of PDB. Using PyPDB, PS, CoI,

and ChI are extracted. Biotite,32 a python package, is used for extracting SS

information. Currently, PDB has these data for 192k proteins but, in this study,

we excluded some proteins based on the following criteria:

d If any Ca atom in the protein has a B factor above 80, given that such

extreme values of B factor are indicative of an experimental error in

data or large uncertainty.33

d If any amino acid in the protein has a B factor less than or equal to 0,

since this is unphysical.

d If all the amino acids in the protein have the exact same B factor, as this

is also unphysical.

d If the total number of amino acids in the protein exceeds 500. The num-

ber 500 was heuristically chosen to keep the cost of training and testing

relatively low. After rejecting the data from PDB based on the above

three criteria, approximately 70% of the remaining proteins have a total

number of amino acids (N) below 500; hence covering more than the

majority of proteins in this study.
We note that the last criterion can be revisited to see whether the model ar-

chitecture proposed in this work can be used for training proteins with any

number of amino acids. Since our focus is primarily on assessing the perfor-

mance of sequence-based models for accurate prediction of B factors of Ca

atoms, we leave the expansion of the scope to larger proteins to future work.

Based on theabove conditions, our dataset containsz61,000proteins.Out of

these61kproteins, 56kproteinsareused for training,2.4kareusedasavalidation

dataset, and 2.4k are used as a test dataset. To the best of our knowledge, this is

the widest dataset on which a model for the prediction of the B factor has been

tested, which is important for assessing the generalizability of the model.

DL model

Our DL algorithm for predicting the B factor of all the Ca atoms in proteins must

address the question of how other residues in the protein sequence influence

the B factor of a given atom. A key challenge here is that atoms that might be

distant in sequence dimension may in fact be vicinal spatially, as determined

by the folded structure of the protein. It is anticipated that, since B factors are

most strongly affected by caging effects induced by nearby atoms, capturing

these structural aspects and their relation to input sequences is indispensable

for the success of the model. For this purpose, we have developed a

sequence-based DL model. Sequence modeling is the modeling technique in

ML that is used to analyze ordered input such as time series data. It is shown

in the literature that sequence models such as gated recurrent unit and LSTM

have captured long-range dependencies efficiently.34 Sequence length is

definedas the total numberof residues inaprotein.Betweenanypair of residues,

we identify twomeaningful distances. The sequential distance dseq is defined as

the distancebetween two residues in the PS,while the Euclidean distancedeuc is

defined as the distance between them in 3D space. It is important to capture the

long-range dependencies because two residues that are distant in the PS (high

dseq) can be closer in the 3D space (low deuc) due to the folded structure. There-

fore, in the current model, we use LSTM for capturing the impact ofdseq and deuc

on the prediction of theB factor for eachCa atom in proteins. In addition, the pro-

tein isnotacausalsystem, i.e., thepropertyofanyaminoacidcanbe impactedby

any amino acid in the protein depending on its position in the 3D structure. If we

useunidirectionalLSTMfor aproteinwitha total ofNaminoacids, itgenerates the

embedding for the ith amino acid, which is only dependent on the 1st to ith amino

acids.However, the embedding fromthebidirectional LSTM is the concatenation

of the effect from the 1st to ith as well as the Nth to ith amino acids due to the for-

ward and reverse flow of information simultaneously. Hence, bidirectional LSTM

makes a strong and novel case for this application.

The architecture of the developed DL model is shown in Figure 7. The total

number of tunable parameters in the DLmodel for the prediction of un-normal-

ized and normalized B factor is 3.33 and 4.65 million, respectively, as shown in

Table S1 in supplemental experimental procedures. This network was finalized

after fine-tuning the number of parameters in the encoder and LSTM’s hidden

layer as they are critical in any sequence-based models.35,36 The input to the

model is a sequenceof input vectorswhereeachvector Ii, of size2831,defines

theCa atom. The first 21 elements of the vector Ii represent a one-hot encoding

for a typeof amino acid; 20positions for commonly occurring aminoacids and 1

for uncommon amino acids. The next 3 positions in the input vector is a one-hot
Patterns 4, 100805, September 8, 2023 7
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encoding for the SS (b sheet, a helix, and coil structure) and the following 3 po-

sitions are for x, y, z coordinates of theCa atom. The last element (28th) defines

the start/end of a polypeptide chain; it is 1 at a position where a chain starts/

ends in the protein. Since within the elements of the vector Ii only coordinates

take on any real number other than 0 or 1, it is advantageous to normalize the

coordinates. Moreover, it was noted during the development phase of the

model that normalizing the coordinates, within the same protein, improved

the convergence of the model. Thus, in our approach, Cartesian coordinates

(Xi, Yi , and Zi ) of each atom in a protein are normalized using the mean (mX ,

mY , and mZ ) and standard deviation (sX , sY , and sZ ) of the coordinates in the

same protein according to Equation 2. In Equation 2, bXi , bYi , and bZi are the

normalized coordinates of ith atom in the protein. Using this approach, the pro-

tein’s relative distance/positional information is also conserved.

bXi =
Xi � mX

sXbYi =
Yi � mY

sYbZi =
Zi � mZ

sZ

(Equation 2)

The overall architecture of the model can be divided into three segments: an

encoder, LSTM, and a decoder. First, the encoder, which is a simple feedfor-

ward neural network, transforms all the input vector Ii to vector Ei. Next, the

LSTM segment transforms the tensor E into tensor L. It is important to note

here that the LSTM output Li not only depends on Ei but possibly on all Ej,

where j = 0.1, ., N, and N is the number of amino acids in a protein. Finally,

in the decoder segment, the output vectors Li from LSTM are transformed to

Bp
i . B

p
i is the predicted B factor of Ca at position i and its dimension is 1 3 1

and the dimension of tensor Bp is N 3 1. Functional mapping across all the

segments is shown in Equation 3 as:

Ei = fencoderðIiÞ
L = flstmðEÞ
Bp

i = fdecoderðLiÞ
where; i = 1; 2;.N and

(Equation 3)

To optimize all the parameters, the mean square error loss function in Py-

torch 1.12 is used as the objective/loss function. The loss function is shown

in Equation 4 and Bp
i , B

e
i are defined as the predicted and actual B factor of

Ca at ith position. In addition, to check the robustness of the proposed model

architecture, the model is trained and tested using four different seeds, and

variation in the quality of fit is observed.

MSE =

PN
i = 1

�
Bp

i � Be
i

�2
N

(Equation 4)

Un-normalized and normalized B factor

Previous models developed have focused on predicting either the un-normal-

ized or normalized B-factor values. Un-normalized B factor here is referred to

the B-factor value, which is directly obtained from experiments, and which can

have high uncertainty depending on experimental limitations or particularly in

more disordered and dynamic regions of a protein.2 It has been shown in the

literature2 that the low X-ray resolution of 3–5 Å can lead to absurd B-factor

values as high as 100–200�A
2
. Even with the fine resolution of 1.5 Å, the uncer-

tainty in the B factor can be as high as 15%.37 Hence, to compare the B-factor

values across different proteins/structures, it is important to normalize it.24 It is

appropriate to normalize the B factor using Equation 5a, where cBi , Bi are the

normalized and un-normalized B-factor values of an amino acid i in a protein

with total N amino acids, respectively. mB, sB are the mean and standard de-

viation of un-normalized B-factor value within the same protein calculated

using Equations 5b and 5c, respectively. As pointed out above, the B factor

(un-normalized or normalized) is treated more as a relative property, so it is

important to accurately capture the variation of the B factor within the protein.

To verify if the correct trend of the B factor is captured, researchers have used

PCC between the actual and predicted B factor over all residues in the protein

sequence. Thus, PCC is used here as the metric for assessing the accuracy of

our model.
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cBi =
Bi � mB

sB

(Equation 5a)

mB =

PN
i = 1Bi

N
(Equation 5b)

sB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1ðBi � mBÞ2

N

s
(Equation 5c)

In previous studies, the prediction of both kinds of B-factor data (un-

normalized and normalized) has been reported. For completeness, we

have trained and tested our model for both scenarios. Since the normalized

B factor has been proven to be more robust against experimental noise,2

all results presented in the main text use normalized B-factor data. Results

related to the un-normalized B factor are presented in supplemental experi-

mental procedures in prediction of un-normalized B factor.
Algorithm to study the impact of neighboring atoms

The B factor of an atom is known to be impacted by its neighboring atoms (in

the PS and in the 3D space). To capture this effect, SOTA models25,26 have

considered the information of neighboring amino acids in the PS within a

certain window. The size of the window (Ws) is defined as the dseq between

the first and the last amino acid in the window. To study the impact of Ws on

the overall prediction of the B factor, we perform sensitivity analysis using

five different proteins. This analysis is to determine if there is one common

Ws that can be used for all the proteins.

The study with Ws only reveals the impact of dseq but does not shed light

on the impact of deuc on the B factor. To study the impact of deuc on predic-

tions, cBi values are calculated considering only the data from Ca atoms,

which are within a certain deuc value. The variation of PCC with deuc is stud-

ied to identify an appropriate deuc value for the proper prediction of the B fac-

tor. It should be noted that just studying the variation of PCC with deuc may

be misleading because the number of atoms within the cutoff deuc is propor-

tional to the cube of the cutoff deuc value. Hence, to find the impact of each

atom within a cutoff deuc, we study the variation of the ratio of the change in

the PCC value (DPCC) for each increment of the cutoff value and total in-

crease in the number of atoms (D Atoms) with respect to the cutoff deuc.

To find the cutoff deuc, we perform the above study with 115 randomly cho-

sen test proteins.
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Materials availability
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Data and code availability
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