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THE BIGGER PICTURE B factor is a measure of atom’s displacement about their mean position, and it pro-
vides critical insights into the flexibility, solvent accessibility, thermal stability, and activity of the region in
protein. In this work, we develop a sequence-based deep learning model that can predict the B factor of C,,
atoms in proteins. The developed model is tested on 2,442 proteins, and it outperforms the state-of-the-art
model by 30%. Using the developed model, we find that the B factor of a site is prominently affected by
atoms within a 12-15 A radius and in excellent agreement with cutoffs based on protein network models.
In the future, this model can be used for the prediction of mechanical properties of protein-based materials,
identifying active regions in the protein for chemical as well as pharmaceutical applications. Moreover,
since our model can predict B factor just based on the primary sequence, it can be used to assist the design

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

B factors provide critical insight into protein dynamics. Predicting B factors of an atom in new proteins remains
challenging as it is impacted by their neighbors in Euclidean space. Previous learning methods developed
have resulted in low Pearson correlation coefficients beyond the training set due to their limited ability to cap-
ture the effect of neighboring atoms. With the advances in deep learning methods, we develop a sequence-
based model that is tested on 2,442 proteins and outperforms the state-of-the-art models by 30%. We find
that the model learns that the B factor of a site is prominently affected by atoms within a 12-15 A radius, which
is in excellent agreement with cutoffs from protein network models. The ablation study revealed that the B fac-
tor can largely be predicted from the primary sequence alone. Based on the abovementioned points, our

model lays a foundation for predicting other properties that are correlated with the B factor.

INTRODUCTION

The B factor, also known as the Debye-Waller factor or temper-
ature factor, is an important property of the atoms in protein
signifying the displacement of atoms about their mean position.
Experimentally, it is defined as the attenuation of X-ray scat-
tering; the lower the attenuation rate, the higher the B factor. In
the literature, the B factor has been used as the indicator of pro-
tein’s flexibility and dynamic properties. ' In addition, the B fac-
tor has also been used to develop structural bioinformatics,®
identify the active regions,” and study the thermal stability® of
proteins. More broadly, B factor and Debye-Waller factor are

profoundly important parameters for understanding soft matter
physics related to glass formation, dynamical heterogeneity,
and mechanical behavior, as well as training and validating multi-
scale models.®® In this sense, for understanding protein dy-
namics and how it relates to functions, it is critically important
to learn both what governs the B-factor values and how to pre-
dict them in the absence of experimental data.

There has been lots of progress over the past few decades in
physics-based models for reproducing the B factors of proteins
and these methods need structural information of proteins. A
common idealization is to model proteins as bead-spring sys-
tems with elastic spring constants tailored to match fluctuations
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or distance-based criteria. This is based on the premise that, for
each atom, the B factor is highly dependent on its interaction
with the neighboring atoms, with nearby atoms having a greater
role as they tend to have stronger physical interactions with the
atom. Normal mode analysis (NMA) uses a Hamiltonian matrix
for atomic interactions and eigenvalues of the system are corre-
lated with the B factors.”'? The anisotropic network model was
proposed to simplify NMA by using a one-parameter spring
interaction potential and was still able of capturing the important
features of NMA.%'® In a similar vein, a Gaussian network
model'* uses the Kirchhoff matrix to depict the interaction be-
tween alpha carbon (C,) atoms, offering advantages in computa-
tional efficiency relative to NMA. More recently, the use of flexi-
bility and rigidity (FRI) methods,'® where the interaction graphs
are generated based on radial basis functions, improved the pre-
diction of the B factor. Various versions of FRI were introduced to
make the method faster and more feasible to predict anisotropic
motion and capture multiscale interactions.'®~'®

Physics-based models are advantageous as they offer impor-
tant insights for a specific protein. However, they need structural
information of the protein and do not generalize well outside the
training dataset.'® Several approaches have tried to address the
shortcomings of physical models with machine learning (ML)
techniques.?®? One of the state-of-the-art (SOTA) models for
predicting B factors is based on multiscale weighted colored
graphs (MWCGs).?® The MWCG method generates three 2D
matrices (channels) for each atom in the protein based on its
interaction with the heavy atoms carbon, nitrogen, and oxygen.
These three channels of data are then combined with global fea-
tures based on the quality of the atomic model obtained from
crystallographic data in the Protein Data Bank (PDB), namely
the R value, and resolution for the prediction of the B factor.
These transformed features are then fed to a convolution neural
network for prediction. The authors'® tested the MWCG on 364
proteins using a leave-one-out strategy and obtained an average
Pearson correlation coefficient (PCC) of 0.66, considering only
C, atoms for predictions.

In previous studies, it has been reported that the B factor is not
an absolute property as its magnitude depends on factors such
as degree of resolution, solvent content, and overall quality of
data,?* which can lead to errors or differences in reported B-fac-
tor values for a given protein. A more reliable approach to getting
insight into the dynamics of different regions is to normalize the B-
factor data for each protein before comparing any two proteins.
Normalized B factor is regularly used in various computational
analyses as well as protein crystallography” and is a better choice
for calibrating and validating ML models. A couple of ML ap-
proaches that focused on predicting normalized B factors with
methods such as support vector regression (SVR) have reported
PCC in the range of 0.53-0.61. The test datasets®>*° reported
were limited in size, encompassing roughly 300-800 proteins.
Given that today we have approximately 192k proteins in the
PDB, itisimportant to test any proposed model on alarge test da-
taset to demonstrate generalizability. In addition, in these
methods, input features of all the atoms are mostly feature-engi-
neered, i.e., the embedding for each residue in the protein is
generated by searching for the multiple sequence alignment us-
ing PSI-BLAST.?’ It would be more desirable to have a model that
can access the whole protein simultaneously and predict the B
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factors of all the C, atoms with minimum feature engineering.
Last, but not the least, with the advancements in the area of
deep learning (DL) models, we envision that the PCC can be
improved further. To help address these issues, here we present
a DL model employing along short-term memory (LSTM) network
to predict the B factor as well as the normalized B-factor values of
any protein. The key elements of our contribution include:

(1) The use of a sequence-based DL model (LSTM) for the
prediction of the B factor.

(2) The broadest testing dataset comprised of 2,442 proteins
for demonstrating generalizability.

(3) Systematic studies to identify a minimalist approach to
predicting protein fluctuations with greater efficiency, ac-
curacy, and without empirical input. This will involve the
analysis of the relative importance of primary sequence
(PS), secondary structure (SS), C, atom coordinates
(Col), and chain information (Chl) for the prediction of
the B factor.

(4) Systematic studies to quantify the radius within which one
atom influences the B factor of another atom significantly
(e.g., a cutoff threshold).

RESULTS AND DISCUSSIONS

Prediction of normalized B factor

In this section, we present the results for the prediction of normal-
ized B-factor values using the method described in experimental
procedures. Before training and testing, the B-factors of all pro-
teins are normalized using Equation 5a. The training and valida-
tion error is shown in Figure 1A and it shows that the change in
the validation error after 200 epochs is negligible. This also dem-
onstrates that the model does not overfit the data, which would
manifest in an increase in the validation error with the increasing
number of epochs. The model optimized is tested on 2.4k pro-
teins and the comparison between the predicted normalized B
factor and actual normalized B-factor graph is shown in Fig-
ure 1B. The averaged PCC, which is used for checking the quality
of the fit, is calculated to be 0.8 on the test dataset. As pointed out
in experimental procedures, to check the robustness of the
model, it was trained and tested using four different seeds, and
we observed minimal variation in the average PCC between
0.795 and 0.80. To the best of our knowledge, the PCC of 0.8
for the normalized B factor is the highest ever reported in the liter-
ature. At the time of writing this paper, the average PCC values
reported by the SOTA models®>*® are between 0.53 and 0.61.
Both of the SOTA models use an SVR technique and report the
average PCC within a similar range. For the training/prediction
of the normalized B factor of an atom in a protein, SOTA models
used the PS information in window sizes of 9 and 15. For one-on-
one comparison, we trained our model without the proteins that
were used for testing the SOTA model®® as the data were easily
available. We obtain an average PCC of 0.7 which is 30% higher
than the SOTA average PCC of 0.54.

Importance of input features
The results presented until now use PS, SS information, Col, and
the start/end of Chl as input features. But, as in the case of any
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Figure 1. Deep learning model training and testing details
(A) Training and validation error trend for normalized B factor model.

¢? CellPress

OPEN ACCESS

w

Average Pearson Correlation Coefficient=0.8

Predicted Normalized Beta factor

-5 0 5 10
Actual Normalized Beta factor

(B) Predicted versus actual normalized B factor of atoms in 2.4k proteins in the test dataset.

ML model, some features are more important than others. In this
section, we examine the importance of each feature. To study
the importance of a feature, it is just removed from the input fea-
tures and the whole model is trained and tested again. Models
with different features are considered for this study and their de-
tails and results (average PCC) are shown in Figure 2.

The x-label in Figure 2 indicates which input features are
included in the model. Comparing models 2, 3, and 4, it is evident
that models that include PS and Col exhibit indistinguishable
PCC scores. The comparison of model 6 with models 4 and 5 in-
dicates that the addition of Col and SS to PS results in the in-
crease of PCC score by 3.5% and 2.5%, respectively. This com-
parison places Col above SS in the importance matrix. At the
same time, when only PS is considered, as in model 6, the <
5% drop in the PCC score compared with models 1-5 is mar-
ginal. For many proteins, PS is the only known feature, so devel-
oping a strong predictive algorithm that depends minimally on
Col, SS, and Chl is a critical contribution of this work. This also
points to the fact that, if the DL model is robust, it can learn struc-
tural information such as coordinate information®® and SS*°
based only on the PS. In addition, the developed model can offer
insights into designing de novo proteins using in silico models,
which mostly take only the PSs as the input.

Models 7 and 8 were run to check the importance of LSTM in
our model. In model 7, all possible input features are used
without the LSTM and, in model 8, only the PS feature is used
without LSTM. Removing the LSTM from the model transforms
it into a simple feedforward neural network model. The only dif-
ference in models 6 and 8 is the absence of LSTM, which leads to
a drastic drop of 55% in the average PCC. This emphasizes that
PS information without LSTM is inadequate for the prediction of
the B factor. This also informs us that the B factor depends not
only on amino acid type but also on dseg and dgyc. The extent
of this impact is discussed in result interpretability. Models 1
and 7 use all input features, but model 7 lacks LSTM. The PCC
score in model 7 is 0.59, which is 26% lower than model 1, but
73% higher than model 8. The difference in the PCC score of
models 7 and 8 is attributed to the fact that SS and Col in model

7 inform the DL model about the atom’s surroundings. To check
if in model 7 the model has learned something meaningful, we
look at the actual versus predicted 57 in Figure 3. The difference
in the R? value of models 1 and 7 shows that model 7 model lacks
generalizability. Based on these observations, it can be stated
that neighboring atoms prominently influence the B factor and
that the LSTM-based model is sufficient to capture those
impacts.

We also want to stress that, out of all the models that use
LSTM (models 1-6), only model 6 is a purely PS-based model
as it does not use any structural information about the protein.
Models 1-5 are hybrid sequence- and structural-based models

With LSTM Without LSTM

Average Pearson Coefficient
© © o o o o o
N w H w o ~ [o0]

e
a
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o
"

Figure 2. Impact of various input features on average PCC

The above acronyms are expanded as follows: PS, primary sequence; SS,
secondary structure information; Chl, chain information; Col, C, coordinate
information; and LSTM, long short-term memory.
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(A) Actual versus predicted normalized B factor on the test dataset when trained with all input features with LSTM (model 1).
(B) Actual versus predicted normalized B factor on the test dataset when trained with all input features without LSTM (model 7).

as they use some form of structural information for the
prediction.

Result interpretability

Based on the validation of the model on our test dataset and its
superior performance relative to SOTA models, we conclude
that our model is robust. In this section, we use this model to
extract some meaningful information such as the impact of
Jseq, deuc, type of amino acid, and type of SS on the prediction
of é,‘.

Impact of window size Wy

As pointed out in experimental procedures, to study the effect of
dseq inthe PS, we first study the impact of window size W on the
PCC. To do so, we randomly selected five proteins (1MUW,
1ARU, 1UAQ, 1KM2, and 1DUP) and used our trained model
to predict B; by considering different Ws values. The trend of
the PCC with respect to the W; considered for prediction is
shown in Figure 4 for all five proteins. It can be seen that, for
all five proteins analyzed, PCC increases sharply with Ws up to
the critical value of W¢ and, for Ws > W¢, the PCC remains nearly
invariant. The data indicate that the accuracy of the model con-
verges above W¢ and that W¢ is specific to each protein, ranging
from 45 for 1ARU to 70 for 1TKM2. Previously the models have
used Ws up to 15 for B; prediction.”>?® We suspect that this
value might be too low and this would explain the lower PCC
values attained with the SOTA methods. Since W is not the
same for all the proteins, it is difficult to make one fully connected
neural network that will perform best for all the proteins. This jus-
tifies the use of a sequence-based model (LSTM) in this study as
it can deal with the varying N without changing the number of pa-
rameters in the model. We also note from Figure 4 that for some
proteins PCC versus W; is sigmoidal as the PCC value plateaus
at low W; but, for others, this trend is not observed.
Estimating cutoff radius R.;

Figure 4 demonstrates the limits of dseq On predictive accuracy
since PCC does not change significantly beyond W¢. However,
to correctly predict B;, it is also important to get a clear idea
about the impact of dg,. Before presenting the results, we
declare a variable called cutoff radius R, which indicates that
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for the calculation of § we only consider the impact of atoms
that are at dgyc < Reut-

As discussed in algorithm to study the impact of neighboring
atoms, we first plot the variation of%cca” with respectto Rgy in Fig-
ure 5A, where PCC, is the PCC of the protein when all the atoms
in the protein are considered for the calculation of E From Fig-

ure 5A, we observe that %CC” increases with the increase in

Rcut- As the number of atoms considered for the calculation of
the B factor increases, the PCC of the protein also increases
and converges to the value of PCC,;. However, Figure 5A does
not give a clearidea about the relative importance of vicinal atoms
and whether there is a cutoff distance that can be identified.
Therefore, as discussed in the algorithm section, we plot the vari-
ation of AFCC. with respect to the Euclidean distance deyc to find
the contribution per atom at various dg,c in Figure 5B. Based on

the variation of :APCC_ in Figure 5B, we identify three zones of

e
o
.

Pearson Coefficient
o o
o ~
f :

1MUW (Total length = 386)

—e— 1ARU (Total length = 336)
0.5 —e— 1UAQ (Total length = 302)
—e— 1KM2 (Total length = 211)
0.4 —e— 1DUP (Total length = 136)

150 200 250 300 350 400

Window size, Ws

0 50 100

Figure 4. Effect of window length /s on B-factor prediction
Effect of variation of PCC, of five proteins of varying sequence length, as a
function of Ws considered for the prediction.
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(C) Variation of PCC and A (Reut = 12 A) with respect to Ws.
(

influence for E Zone 1 isin between 0 and 15 A and atoms in this

zone contribute the most in the prediction of /B7 Zone 2 is in be-
tween 15 and 36 A and the atoms in this zone contribute approx-
imately equally to the prediction of é\, Anything beyond 36 Ais
defined as zone 3 and the contribution from this zone is nearly
negligible.

Based on the above observations, we conclude that atoms
generally lying within =15 A of each other are more likely to
impact one another more profoundly than atoms further out.
To further strengthen the claim of this result, we carry out a sec-
ond study regarding Rc,. To clarify this analysis we first intro-
duce a variable called the normalized number of C, Atoms (n)
that lie within a given cutoff distance R,; from an atom. To calcu-
late 7 for a R, value, for each of the N amino acids in a protein,
first, the average number (n) of C, atoms within the cutoff radius
is calculated using the Equation 1a, where n; is the number of C,
atoms within the cutoff radius R, of the i" C, atom. Then, n'is
calculated using Equation 1b.
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N
A= Z’;Im' (Equation 1a)
~ n .
n = N_1 (Equation 1b)

As part of the second study, we first calculate n as a function of
W for 23 different proteins from the test dataset with N varying be-
tween 60 and 500. The variation of i and PCC with respect to W
for protein 1KM2 is shown in Figure 5C, from which we observe
that there is some correlation between n and the PCC curve. To
quantify this correlation, we calculate the Pearson correlation co-
efficient between the n curve (magenta curve) and the PCC curve
(blue curve) in Figure 5C. Let us indicate this Pearson correlation
coefficient as PCC,. Since, n is the function of the cutoff distance
Rcut, the PCC,, is also the function of R..:. Therefore, we calculate
PCC,, for different R, values for all 23 proteins. The trend of aver-
aged PCC,, (PCC,) with respectto Rt is shownin Figure 5D. ltcan
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(A) Variation of normalized B factor with respect to the amino acids.
(B) Variation of normalized B factor with respect to the secondary structures.

be observed that PCC, first increases with R, and then de-
creases after reaching a maximum value around the R, of 12—
15A. Based onthe study in Figure 5, we claim that the atoms within
15 A of Euclidean distance have the greatest impact per atom on
B-factor calculation, but information of atoms at further distances
is still necessary to achieve a high PCC.
Impact of the type of amino acid on the normalized B
factor
Fromthe above studies, we observed that the B factor of anatomis
highly dependent on W and de,c. To provide more insight into how
chemical details might influence B factors, we turn our attention to
the influence of amino acid type on B-factor prediction. For this
purpose, we plotted the mean normalized B factor (actual and pre-
dicted), with an error bar, for every amino acid using the test data-
set. The plot is shown in Figure 6A and it can be observed that the
mean predicted normalized B-factor variation with respect to the
amino acid follows the same trend as the mean actual normalized
B factor. However, it can also be seen that the standard deviation is
consistently under-predicted as our developed model predomi-
nantly under-predicts the B factor, which is evident from Figure 1B.
B-factor standard deviations are shownin Figure 6A to quantify the
breadth of the distribution of both predicted and actual values
when clustered for each type of amino acid. Given that the amino
acid type alone does not accurately describe its B factor, we
observe large standard deviations in both the actual and the pre-
dicted results. This is because the B factor of an amino acid is high-
ly dependent on its position in the 3D protein structure. This fact is
further emphasized by our study in Figure 5 that the atoms within
15 A radius have the greatest impact on each other’s B factor.
Therefore, the primary contributor to the B factor of a residue in a
protein is its location and vicinal residues. The chemical nature of
the residue does influence its own B factor, but it is not the sole
contributor. For the same reason, when we predict the B factor
of an amino acid based on its type and without an LSTM in model
8 in Figure 2, this results in the lowest PCC value.

Even though the standard deviations are high, we can make a
couple of observations about the impact of amino acid type on
the B factor.

@ Hydrophobic types of amino acids suchas A, V, F, I, and L
mainly exhibit lower B factor as they are mostly buried

6 Patterns 4, 100805, September 8, 2023

within the densely packed core of the protein. Due to the
densely packed core, the region is quite ordered; hence
the smaller B factor. This is corroborated by the fact that
hydrophobic amino acids pack into the core to form B
sheet and o helix SSs predominantly. These SSs are
more ordered and typically exhibit lower B factor as shown
in Figure 6B. Similarly a study in the literature®® shows that
hydrophobic amino acids A, V, F, |, and L do exhibit higher
mean B-factor values. This trend is further supported by
another study®° that shows that the low B-factor regions
are rich in amino acids A, V, F, |, and L.

® Charged amino acids such as D, E, and K mainly exhibit
higher B factor in the protein as they are mostly on the sur-
face and predominantly form coils and sometimes «. heli-
ces. Unlike B sheets and a helices, coils are disordered,
thus exhibiting higher B factor as shown in Figure 6B. This
trend is further corroborated by other studies, which show
that charged amino acids do exhibit higher mean B factor®®
and are more likely to be found in high B-factor regions.*°

Conclusion

The B factor is an important indicator of a protein’s dynamic
behavior, but making a generalizable predictive model for it has
been challenging. The challenge for the predictive models arises
because the B factor of an atom is highly dependent on its sur-
rounding and it is essential to capture its impact efficiently. In
this work, we overcome this challenge by developing an LSTM-
based DL model, a bidirectional sequence model that is capable
of capturing long-range dependencies more effectively. LSTM
helped in capturing the impact of dseq and de,c effectively in pro-
teins of varying sizes without any feature engineering. The devel-
oped model when tested on 2.4k unseen proteins, resulted in an
average PCC of 0.8 and 0.73 for normalized B factor and un-
normalized B factor respectively.

Our analysis of the impact of each input feature on the predic-
tion of the B factor indicates that using just the PS as the input
feature is sufficient for the prediction of the B factor. This sug-
gests that if the model is adequately robust, it can implicitly ac-
count for key structural contributors such as SS and atomic po-
sitions from the PS and B-factor data used in training. In addition,
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This figure captures the process of data preparation, details of the deep-learning model, and the process of backpropagation for optimization.

we used our tested model to study the impact of window size W
on the prediction and concluded that different W; values are suit-
able for different proteins. To expand our knowledge about the
Euclidean distance within which atoms impact each other’s B
factor, we used our model and found that within the R.,; value
of 12-15 A the impact is prominent. Thus, our model can be
used to not only effectively predict the B factor but also to extract
meaningful physical information about the proteins.

In the future, this model can be used for the prediction of other
mechanical properties of protein-based materials, identifying
active regions in the protein for chemical as well as pharmaceu-
tical applications. Moreover, since our model can predict B fac-
tor just based on the PS, it can be used to assist the design of de
novo proteins for specific applications.

EXPERIMENTAL PROCEDURES

The central objective of this work is to precisely predict B-factor values for C,
atoms in proteins by training a DL model on existing experimental B-factor
data. Once trained, the model should be able to predict B factors of each C,
atom from provided input features of a protein that was not included in the
training/validation datasets. In the scope of this work, these input features
can be any particular one or any combination of PS, SS, Col, and Chl. In this
work by Chl feature, we indicate the start and end of the polypeptide chain.
Key questions to address are which of these features are redundant? And
what is the minimum amount of required features necessary to have reasonable
accuracy in the predictions?

Dataset

Protein data are extracted from PDB using PyPDB API,>" which is made to
effortlessly perform an advanced search of PDB. Using PyPDB, PS, Col,
and Chl are extracted. Biotite,*” a python package, is used for extracting SS
information. Currently, PDB has these data for 192k proteins but, in this study,
we excluded some proteins based on the following criteria:

e If any C, atom in the protein has a B factor above 80, given that such
extreme values of B factor are indicative of an experimental error in
data or large uncertainty.**

e If any amino acid in the protein has a B factor less than or equal to O,
since this is unphysical.

e If all the amino acids in the protein have the exact same B factor, as this
is also unphysical.

e [f the total number of amino acids in the protein exceeds 500. The num-
ber 500 was heuristically chosen to keep the cost of training and testing
relatively low. After rejecting the data from PDB based on the above
three criteria, approximately 70% of the remaining proteins have a total
number of amino acids (N) below 500; hence covering more than the
majority of proteins in this study.

We note that the last criterion can be revisited to see whether the model ar-
chitecture proposed in this work can be used for training proteins with any
number of amino acids. Since our focus is primarily on assessing the perfor-
mance of sequence-based models for accurate prediction of B factors of C,,
atoms, we leave the expansion of the scope to larger proteins to future work.

Based on the above conditions, our dataset contains = 61,000 proteins. Out of
these 61k proteins, 56k proteins are used for training, 2.4k are used as a validation
dataset, and 2.4k are used as a test dataset. To the best of our knowledge, this is
the widest dataset on which a model for the prediction of the B factor has been
tested, which is important for assessing the generalizability of the model.

DL model

Our DL algorithm for predicting the B factor of all the C, atoms in proteins must
address the question of how other residues in the protein sequence influence
the B factor of a given atom. A key challenge here is that atoms that might be
distant in sequence dimension may in fact be vicinal spatially, as determined
by the folded structure of the protein. It is anticipated that, since B factors are
most strongly affected by caging effects induced by nearby atoms, capturing
these structural aspects and their relation to input sequences is indispensable
for the success of the model. For this purpose, we have developed a
sequence-based DL model. Sequence modeling is the modeling technique in
ML that is used to analyze ordered input such as time series data. It is shown
in the literature that sequence models such as gated recurrent unit and LSTM
have captured long-range dependencies efficiently.>* Sequence length is
defined as the total number of residues in a protein. Between any pair of residues,
we identify two meaningful distances. The sequential distance dsq is defined as
the distance between two residues in the PS, while the Euclidean distance de,c is
defined as the distance between them in 3D space. It isimportant to capture the
long-range dependencies because two residues that are distant in the PS (high
dseq) can be closer in the 3D space (low de,c) due to the folded structure. There-
fore, inthe current model, we use LSTM for capturing the impact of dseq and deue
on the prediction of the B factor for each C,, atom in proteins. In addition, the pro-
teinis not a causal system, i.e., the property of any amino acid can be impacted by
any amino acid in the protein depending on its position in the 3D structure. If we
use unidirectional LSTM for a protein with a total of N amino acids, it generates the
embedding for the it" amino acid, which is only dependent on the 15t to /" amino
acids. However, the embedding from the bidirectional LSTM is the concatenation
of the effect from the 1%t to /' as well as the N™" to /" amino acids due to the for-
ward and reverse flow of information simultaneously. Hence, bidirectional LSTM
makes a strong and novel case for this application.

The architecture of the developed DL model is shown in Figure 7. The total
number of tunable parameters in the DL model for the prediction of un-normal-
ized and normalized B factor is 3.33 and 4.65 million, respectively, as shown in
Table S1in supplemental experimental procedures. This network was finalized
after fine-tuning the number of parameters in the encoder and LSTM’s hidden
layer as they are critical in any sequence-based models.***® The input to the
modelis asequence of input vectors where each vector /;, of size 28 x 1, defines
the C, atom. The first 21 elements of the vector /; represent a one-hot encoding
for atype of amino acid; 20 positions for commonly occurring amino acids and 1
for uncommon amino acids. The next 3 positions in the input vector is a one-hot
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encoding for the SS (8 sheet, a helix, and coil structure) and the following 3 po-
sitions are for x, y, z coordinates of the C,, atom. The last element (28" defines
the start/end of a polypeptide chain; it is 1 at a position where a chain starts/
ends in the protein. Since within the elements of the vector /; only coordinates
take on any real number other than 0 or 1, it is advantageous to normalize the
coordinates. Moreover, it was noted during the development phase of the
model that normalizing the coordinates, within the same protein, improved
the convergence of the model. Thus, in our approach, Cartesian coordinates
(Xi, i, and Z) of each atom in a protein are normalized using the mean (wy,
uy, and pz) and standard deviation (ox, oy, and a7) of the coordinates in the
same protein according to Equation 2. In Equation 2, )?, )7,», and 2 are the
normalized coordinates of /" atom in the protein. Using this approach, the pro-
tein’s relative distance/positional information is also conserved.

)?1 _ Xi — px
ax

Y = Yi—wy (Equation 2)
ay

2 _ Zi — g
oz

The overall architecture of the model can be divided into three segments: an
encoder, LSTM, and a decoder. First, the encoder, which is a simple feedfor-
ward neural network, transforms all the input vector /; to vector E;. Next, the
LSTM segment transforms the tensor E into tensor L. It is important to note
here that the LSTM output L; not only depends on E; but possibly on all E;,
where j = 0.1, ..., N, and N is the number of amino acids in a protein. Finally,
in the decoder segment, the output vectors L; from LSTM are transformed to
BP. B? is the predicted B factor of C, at position i and its dimension is 1 x 1
and the dimension of tensor B, is N x 1. Functional mapping across all the
segments is shown in Equation 3 as:

EI = encoder(lr’)

L = fistm (E)

Bf = fdecoder(L/')
where,i =1,2,...Nand

(Equation 3)

To optimize all the parameters, the mean square error loss function in Py-
torch 1.12 is used as the objective/loss function. The loss function is shown
in Equation 4 and B, B? are defined as the predicted and actual B factor of
C, at i position. In addition, to check the robustness of the proposed model
architecture, the model is trained and tested using four different seeds, and
variation in the quality of fit is observed.

S (B - BY)?

MSE =
S N

(Equation 4)

Un-normalized and normalized B factor

Previous models developed have focused on predicting either the un-normal-
ized or normalized B-factor values. Un-normalized B factor here is referred to
the B-factor value, which is directly obtained from experiments, and which can
have high uncertainty depending on experimental limitations or particularly in
more disordered and dynamic regions of a protein.” It has been shown in the
literature® that the low X-ray resolution of 3-5 A can lead to absurd B-factor
values as high as 100-200 Az. Even with the fine resolution of 1.5 A, the uncer-
tainty in the B factor can be as high as 15%.°” Hence, to compare the B-factor
values across different proteins/structures, it is important to normalize it.> It is
appropriate to normalize the B factor using Equation 5a, where E B; are the
normalized and un-normalized B-factor values of an amino acid i in a protein
with total N amino acids, respectively. ug, o5 are the mean and standard de-
viation of un-normalized B-factor value within the same protein calculated
using Equations 5b and 5c, respectively. As pointed out above, the B factor
(un-normalized or normalized) is treated more as a relative property, so it is
important to accurately capture the variation of the B factor within the protein.
To verify if the correct trend of the B factor is captured, researchers have used
PCC between the actual and predicted B factor over all residues in the protein
sequence. Thus, PCC is used here as the metric for assessing the accuracy of
our model.
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B; B~ #o (Equation 5a)
[}
N

Ug = % (Equation 5b)

N 2
op = UW (Equation 5c)
In previous studies, the prediction of both kinds of B-factor data (un-
normalized and normalized) has been reported. For completeness, we
have trained and tested our model for both scenarios. Since the normalized
B factor has been proven to be more robust against experimental noise,”
all results presented in the main text use normalized B-factor data. Results
related to the un-normalized B factor are presented in supplemental experi-
mental procedures in prediction of un-normalized B factor.

Algorithm to study the impact of neighboring atoms

The B factor of an atom is known to be impacted by its neighboring atoms (in
the PS and in the 3D space). To capture this effect, SOTA models®>*® have
considered the information of neighboring amino acids in the PS within a
certain window. The size of the window (WWs) is defined as the dseq between
the first and the last amino acid in the window. To study the impact of Ws on
the overall prediction of the B factor, we perform sensitivity analysis using
five different proteins. This analysis is to determine if there is one common
W; that can be used for all the proteins.

The study with Ws only reveals the impact of dseq but does not shed light
on the impact of deyc On the B factor. To study the impact of deyc on predic-
tions, E, values are calculated considering only the data from C, atoms,
which are within a certain de,c value. The variation of PCC with deyc is stud-
ied to identify an appropriate de, value for the proper prediction of the B fac-
tor. It should be noted that just studying the variation of PCC with de,c may
be misleading because the number of atoms within the cutoff de,c is propor-
tional to the cube of the cutoff de,c value. Hence, to find the impact of each
atom within a cutoff de,c, we study the variation of the ratio of the change in
the PCC value (APCC) for each increment of the cutoff value and total in-
crease in the number of atoms (A Atoms) with respect to the cutoff deyc.
To find the cutoff de,c, we perform the above study with 115 randomly cho-
sen test proteins.

Resource availability
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Materials availability

This study did not generate new unique materials.

Data and code availability

The authors did not generate any new data for this study but rather used the
data from PDB. The codes and files necessary for training as well as testing
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SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/].
patter.2023.100805.

ACKNOWLEDGMENTS

S.K. acknowledges funding from an NSF GCR grant (award no. 2219149).
W.C. acknowledges the funding from the Center for Hierarchical Materials
Design (ChiMaD NIST 70NANB19HO005). The authors acknowledge support
from the Department of Mechanical Engineering at Northwestern University.
J.G. was supported by the NSF Graduate Research Fellowship (grant no.
DGE-1842165) and the Ryan Fellowship organized through the International
Institute for Nanotechnology at Northwestern University.


mailto:s-keten@northwestern.edu
https://doi.org/10.1016/j.patter.2023.100805
https://doi.org/10.1016/j.patter.2023.100805

Please cite this article in press as: Pandey et al., B-factor prediction in proteins using a sequence-based deep learning model, Patterns (2023), https://
doi.org/10.1016/j.patter.2023.100805

Patterns

AUTHOR CONTRIBUTIONS

A.P., E.L., J.G., and S.K. conceived the idea. A.P. performed all implementa-
tions. E.L. performed the data preparation. A.P., J.G., S.K., and W.C. contrib-
uted to the manuscript writing.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 28, 2023
Revised: May 23, 2023
Accepted: July 7, 2023
Published: August 4, 2023

REFERENCES

10.

11.

12.

13.

. Frauenfelder, H., Sligar, S.G., and Wolynes, P.G. (1991). The Energy

Landscapes and Motions of Proteins. Science 254, 1598-1603. https://
doi.org/10.1126/science.1749933.

. Sun, Z., Liu, Q., Qu, G., Feng, Y., and Reetz, M.T. (2019). Utility of

B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and
Internal Motion and Engineering Thermostability. Chem. Rev. 119, 1626—
1665. https://doi.org/10.1021/acs.chemrev.8b00290.

. Liu, Q., Li, Z., and Li, J. (2014). Use B-factor related features for accurate

classification between protein binding interfaces and crystal packing con-
tacts. BMC Bioinf. 15, S3. https://doi.org/10.1186/1471-2105-15-S16-S83.

. Li, X., Anderson, M., Collin, D., Muegge, |., Wan, J., Brennan, D., Kugler,

S., Terenzio, D., Kennedy, C., Lin, S., et al. (2017). Structural studies un-
ravel the active conformation of apo RORt nuclear receptor and a common
inverse agonism of two diverse classes of RORt inhibitors. J. Biol. Chem.
292, 11618-11630. https://doi.org/10.1074/jbc.M117.789024.

. Parthasarathy, S., and Murthy, M.R. (2000). Protein thermal stability: in-

sights from atomic displacement parameters (B values). Protein Eng. 13,
9-13. https://doi.org/10.1093/protein/13.1.9.

. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., and

Bahar, I. (2001). Anisotropy of Fluctuation Dynamics of Proteins with an
Elastic Network Model. Biophys. J. 80, 505-515. https://doi.org/10.
1016/S0006-3495(01)76033-X.

. Xia, W., Hansoge, N.K., Xu, W.-S., Phelan, F.R., Keten, S., and Douglas,

J.F. (2019). Energy renormalization for coarse-graining polymers having
different segmental structures. Sci. Adv. 5, eaav4683. https://doi.org/10.
1126/sciadv.aav4683.

. Giuntoli, A., Hansoge, N.K., van Beek, A., Meng, Z., Chen, W., and Keten,

S. (2021). Systematic coarse-graining of epoxy resins with machine
learning-informed energy renormalization. npj Comput. Mater. 7, 168.
https://doi.org/10.1038/s41524-021-00634-1.

. Ma, J. (2005). Usefulness and Limitations of Normal Mode Analysis in

Modeling Dynamics of Biomolecular Complexes. Structure 13, 373-380.
https://doi.org/10.1016/j.str.2005.02.002.

Tasumi, M., Takeuchi, H., Ataka, S., Dwivedi, A.M., and Krimm, S. (1982).
Normal vibrations of proteins: Glucagon. Biopolymers 271, 711-714.
https://doi.org/10.1002/bip.360210318.

Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan,
S., and Karplus, M. (1983). CHARMM: A program for macromolecular en-
ergy, minimization, and dynamics calculations. J. Comput. Chem. 4,
187-217. https://doi.org/10.1002/jcc.540040211.

Levitt, M., Sander, C., and Stern, P.S. (1985). Protein normal-mode dy-
namics: Trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol.
Biol. 1817, 423-447. https://doi.org/10.1016/0022-2836(85)90230-X.

Bahar, I., Atilgan, A.R., Demirel, M.C., and Erman, B. (1998). Vibrational
Dynamics of Folded Proteins: Significance of Slow and Fast Motions in
Relation to Function and Stability. Phys. Rev. Lett. 80, 2733-2736.
https://doi.org/10.1103/PhysRevLett.80.2733.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

¢? CellPress

OPEN ACCESS

Bahar, I., Atilgan, A.R., and Erman, B. (1997). Direct evaluation of thermal
fluctuations in proteins using a single-parameter harmonic potential. Fold.
Des. 2, 173-181. https://doi.org/10.1016/S1359-0278(97)00024-2.

Xia, K., and Wei, G.-W. (2013). Stochastic model for protein flexibility analysis.
Phys. Rev. E 88, 062709. https://doi.org/10.1103/PhysRevE.88.062709.

Opron, K., Xia, K., and Wei, G.-W. (2014). Fast and anisotropic flexibility-
rigidity index for protein flexibility and fluctuation analysis. J. Chem.
Phys. 7140, 234105. https://doi.org/10.1063/1.4882258.

Opron, K., Xia, K., and Wei, G.-W. (2015). Communication: Capturing pro-
tein multiscale thermal fluctuations. J. Chem. Phys. 7142, 211101. https://
doi.org/10.1063/1.4922045.

Nguyen, D.D., Xia, K., and Wei, G.-W. (2016). Generalized flexibility-rigidity
index. J. Chem. Phys. 144, 234106. https://doi.org/10.1063/1.4953851.

Bramer, D., and Wei, G.-W. (2018). Blind prediction of protein B-factor and
flexibility. J. Chem. Phys. 149, 134107. https://doi.org/10.1063/1.5048469.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,
Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al. (2021).
Highly accurate protein structure prediction with AlphaFold. Nature 596,
583-589. https://doi.org/10.1038/s41586-021-03819-2.

Gao, W., Mahajan, S.P., Sulam, J., and Gray, J.J. (2020). Deep Learning in
Protein Structural Modeling and Design. Patterns 7, 100142. https://doi.
org/10.1016/j.patter.2020.100142.

Xu, Y., Verma, D., Sheridan, R.P., Liaw, A., Ma, J., Marshall, N.M.,
Mclntosh, J., Sherer, E.C., Svetnik, V., and Johnston, J.M. (2020). Deep
Dive into Machine Learning Models for Protein Engineering. J. Chem.
Inf. Model. 60, 2773-2790. https://doi.org/10.1021/acs.jcim.0c00073.

Bramer, D., and Wei, G.-W. (2018). Multiscale weighted colored graphs for
protein flexibility and rigidity analysis. J. Chem. Phys. 148, 054103. https://
doi.org/10.1063/1.5016562.

Schlessinger, A., and Rost, B. (2005). Protein flexibility and rigidity pre-
dicted from sequence. Proteins 67, 115-126. https://doi.org/10.1002/
prot.20587.

Yuan, Z., Bailey, T.L., and Teasdale, R.D. (2005). Prediction of protein
B-factor profiles. Proteins 58, 905-912. https://doi.org/10.1002/prot.20375.

Yang, J., Wang, Y., and Zhang, Y. (2016). ResQ: An Approach to Unified
Estimation of B-Factor and Residue-Specific Error in Protein Structure
Prediction. J. Mol. Biol. 428, 693-701. hitps://doi.org/10.1016/j.jmb.2015.
09.024.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller,
W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids Res. 25,
3389-3402. https://doi.org/10.1093/nar/25.17.3389.

Wang, S., Peng, J., Ma, J., and Xu, J. (2016). Protein Secondary Structure
Prediction Using Deep Convolutional Neural Fields. Sci. Rep. 6, 18962.
https://doi.org/10.1038/srep18962.

Rackovsky, S., and Scheraga, H.A. (2020). The structure of protein dy-
namic space. Proc. Natl. Acad. Sci. USA 117, 19938-19942. https://doi.
0rg/10.1073/pnas.2008873117.

Radivojac, P., Obradovic, Z., Smith, D.K., Zhu, G., Vucetic, S., Brown,
C.J., Lawson, J.D., and Dunker, A.K. (2004). Protein flexibility and
intrinsic disorder. Protein Sci. 13, 71-80. https://doi.org/10.1110/ps.
03128904.

Gilpin, W. (2016). PyPDB: a Python API for the Protein Data Bank.
Bioinformatics 32, 159-160. https://doi.org/10.1093/bioinformatics/
btv543.

Kunzmann, P., and Hamacher, K. (2018). Biotite: a unifying open source
computational biology framework in Python. BMC Bioinf. 19, 346.
https://doi.org/10.1186/s12859-018-2367-z.

Carugo, O. (2018). How large B-factors can be in protein crystal structures.
BMC Bioinf. 19, 61. https://doi.org/10.1186/s12859-018-2083-8.

Hochreiter, S., and Schmidhuber, J. (1997). Long Short-Term Memory.
Neural Comput. 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Patterns 4, 100805, September 8, 2023 9



https://doi.org/10.1126/science.1749933
https://doi.org/10.1126/science.1749933
https://doi.org/10.1021/acs.chemrev.8b00290
https://doi.org/10.1186/1471-2105-15-S16-S3
https://doi.org/10.1074/jbc.M117.789024
https://doi.org/10.1093/protein/13.1.9
https://doi.org/10.1016/S0006-3495(01)76033-X
https://doi.org/10.1016/S0006-3495(01)76033-X
https://doi.org/10.1126/sciadv.aav4683
https://doi.org/10.1126/sciadv.aav4683
https://doi.org/10.1038/s41524-021-00634-1
https://doi.org/10.1016/j.str.2005.02.002
https://doi.org/10.1002/bip.360210318
https://doi.org/10.1002/jcc.540040211
https://doi.org/10.1016/0022-2836(85)90230-X
https://doi.org/10.1103/PhysRevLett.80.2733
https://doi.org/10.1016/S1359-0278(97)00024-2
https://doi.org/10.1103/PhysRevE.88.062709
https://doi.org/10.1063/1.4882258
https://doi.org/10.1063/1.4922045
https://doi.org/10.1063/1.4922045
https://doi.org/10.1063/1.4953851
https://doi.org/10.1063/1.5048469
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/j.patter.2020.100142
https://doi.org/10.1016/j.patter.2020.100142
https://doi.org/10.1021/acs.jcim.0c00073
https://doi.org/10.1063/1.5016562
https://doi.org/10.1063/1.5016562
https://doi.org/10.1002/prot.20587
https://doi.org/10.1002/prot.20587
https://doi.org/10.1002/prot.20375
https://doi.org/10.1016/j.jmb.2015.09.024
https://doi.org/10.1016/j.jmb.2015.09.024
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1038/srep18962
https://doi.org/10.1073/pnas.2008873117
https://doi.org/10.1073/pnas.2008873117
https://doi.org/10.1110/ps.03128904
https://doi.org/10.1110/ps.03128904
https://doi.org/10.1093/bioinformatics/btv543
https://doi.org/10.1093/bioinformatics/btv543
https://doi.org/10.1186/s12859-018-2367-z
https://doi.org/10.1186/s12859-018-2083-8
https://doi.org/10.1162/neco.1997.9.8.1735

Please cite this article in press as: Pandey et al., B-factor prediction in proteins using a sequence-based deep learning model, Patterns (2023), https://
doi.org/10.1016/j.patter.2023.100805

¢ CellPress Patterns

OPEN ACCESS

35. Hermans, M., and Schrauwen, B. (2013). Training and analysing deep  37. Kuriyan, J., Karplus, M., and Petsko, G.A. (1987). Estimation of uncer-
recurrent neural networks. Adv. Neural Inf. Process. Syst. 26. tainties in X-ray refinement results by use of perturbed structures.
36. Cho, K., van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Proteins 2, 1-12. https://doi.org/10.1002/prot.340020102.
Schwenk, H., and Bengio, Y. (2014). Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation. In Proceedingsof ~ 38. Pandey, A., Liu, E., Graham, J., Chen, W., and Keten, S. (2023). Codes for
the 2014 Conference on Empirical Methods in Natural Language Processing B-factor Prediction in proteins using a sequence-based deep learning
(EMNLP) (Doha), pp. 1724-1734. https://doi.org/10.3115/v1/D14-1179. model. OSF. https://doi.org/10.17605/0OSF.|I0/9SVDX.

10 Patterns 4, 100805, September 8, 2023


http://refhub.elsevier.com/S2666-3899(23)00160-5/sref35
http://refhub.elsevier.com/S2666-3899(23)00160-5/sref35
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.1002/prot.340020102
https://doi.org/10.17605/OSF.IO/9SVDX

	PATTER100805_proof.pdf
	B-factor prediction in proteins using a sequence-based deep learning model
	Introduction
	Results and discussions
	Prediction of normalized B factor
	Importance of input features
	Result interpretability
	Impact of window size Ws
	Estimating cutoff radius Rcut
	Impact of the type of amino acid on the normalized B factor

	Conclusion

	Experimental procedures
	Dataset
	DL model
	Un-normalized and normalized B factor
	Algorithm to study the impact of neighboring atoms
	Resource availability
	Lead contact
	Materials availability
	Data and code availability


	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References



