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Abstract

Learning how multicellular organs are developed from single cells to different cell types is a fundamental problem in biol-
ogy. With the high-throughput scRNA-seq technology, computational methods have been developed to reveal the temporal
dynamics of single cells from transcriptomic data, from phenomena on cell trajectories to the underlying mechanism that
formed the trajectory. There are several distinct families of computational methods including Trajectory Inference (T1),
Lineage Tracing (LT), and Gene Regulatory Network (GRN) Inference which are involved in such studies. This review sum-
marizes these computational approaches which use scRNA-seq data to study cell differentiation and cell fate specification
as well as the advantages and limitations of different methods. We further discuss how GRNSs can potentially affect cell fate

decisions and trajectory structures.
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Introduction

Single-cell multi-omics measurements have opened up tre-
mendous opportunities to study the temporal dynamics of
cells. Sequencing experiments, such as scRNA-seq, pro-
vide a “snapshot" of cells’ transcriptomic profiles. These
snapshots can potentially contain cells at different devel-
opmental stages, allowing us to characterize the entire
cellular dynamic process. Computational algorithms have
been developed to uncover biological artifacts of cells, such
as cell type, state transitions, and lineages, as well as of
genes, such as differential expressions and gene regulatory
networks (GRNs). The unprecedented diversity and resolu-
tion of single-cell multi-omics analysis have revolutionized
modern computational biology, and the field continues to
evolve with new technologies and algorithms.

Various downstream analyses have been widely studied,
centered around scRNA-seq technology. With the assump-
tion that the sequenced samples contain cells from all dif-
ferent developmental stages, scRNA-seq data allows us to
infer the so-called developmental trajectory of the cells,

M Xiuwei Zhang
xzhang954 @ gatech.edu

School of Computational Science and Engineering, Georgia
Institute of Technology, Atlanta, GA 30332, USA

Published online: 04 August 2023

which ideally records the changes in cell states. This tra-
jectory represents how cells’ overall transcriptomic profiles
shift throughout cell differentiation, without uncovering the
details of the lineage of each cell (Wagner and Klein 2020),
or the interactions between specific genes. Specific regula-
tory interactions between genes can be inferred from the
data as well to create a GRN, where each node represents
a gene and the edges between nodes represent gene regula-
tions. Meanwhile, the cells’ lineage history can be recorded
using sequencing-based lineage tracing technologies that
generate barcodes with unique marks denoting cells’ clonal
information.

This review focuses on three major aspects of studying
temporal dynamics from single-cell multi-omics sequenc-
ing technologies: Trajectory Inference (TI), Lineage Tracing
(LT), and Gene Regulatory Network (GRN) Inference. TI
and LT methods aim to learn cell temporal changes along
either a “pseudotime” or real time, whereas GRN methods
aim to learn the underlying mechanisms that govern the
observed gene expression profiles and their dynamics. Both
TI and GRN inference can be performed with only scRNA-
seq datasets, while the reconstruction of the cell lineage is
usually performed based on lineage barcodes. We discuss
the assumptions and biological interpretations of each infer-
ence task, various computational approaches to solve the
problem, and their advantages and limitations. A summary
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of these three computational tasks is in Table S1. Moreover,
we specially discuss efforts to jointly model multiple aspects
of temporal dynamics, which are often solved independently
for the state-of-the-art. We aim to provide an overview of the
commonalities and differences between different approaches
and to highlight future directions for the integration of the
three analyses and the comprehensive understanding of
cells’ temporal dynamics.

Learning cell developmental trajectories
using Tl methods

Trajectory inference (TI) methods are commonly used to
learn the cell differentiation or developmental trajectories
from scRNA-seq data (Fig. 1a). TI methods aim to find the
trajectory backbone representing the major cell states and
the dynamic paths between the states, and then “sort” the
cells onto the backbone structure into a temporal ordering,
and each cell is assigned a pseudotime. The trajectories rep-
resent how different cell states are connected. The inferred
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cell trajectories from the TI methods can vary in topology:
linear, tree-shaped, and more complex ones such as cyclic
and disconnected graphs. Numerous TI methods have been
developed, with most methods focusing on inferring a spe-
cific type of topology. However, more recent methods aim
to infer different types of topology using a single model
without restricting the inferred trajectory’s topology. These
methods tend to use more than one scRNA-seq dataset or
incorporate other modalities besides transcriptomes (Hao
et al. 2021; Lange et al. 2022; Welch et al. 2017; Zhang et al.
2022b; Zhang and Zhang 2021).

The majority of trajectory inference methods are not
applied directly to the input cell by the observed gene count
matrix. Dimensionality reduction methods, such as princi-
ple component analysis (PCA) and independent component
analysis (ICA), are applied to reduce the number of dimen-
sions before learning the trajectory of cells. On the reduced
dimensions of the dataset, some methods aim to infer an
accurate pseudotime ordering of cells, which can, in turn,
be translated to a linear trajectory (Saelens et al. 2019), such
as scShaper (Smolander et al. 2021), SCORPIUS (Cannoodt
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Fig. 1 Inferring developmental trajectories from single-cell omics
data. a Trajectory inference using a single batch of scRNA-seq data.
b Trajectory inference using RNA velocity information. With the
input of both single-cell spliced and unspliced RNA counts, RNA
velocity can be calculated and can be used to infer the developmental
trajectory. ¢ Trajectory inference using scRNA-seq time series data.
Given cell-by-gene matrices measured at different time points, the
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developmental trajectory of cells covering more developmental stages
is inferred. d Trajectory inference using single-cell multimodal data
such as scRNA-seq and scATAC-seq data. With multiple cell-by-
feature (gene expression, chromatin accessibility, protein abundance,
etc.) matrices, a joint developmental trajectory that combines the dif-
ferent modalities is inferred
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et al. 2016) and MATCHER (Welch et al. 2017). Some other
methods, including Slingshot (Street et al. 2018) and PAGA-
Tree (Wolf et al. 2019), are able to infer tree-shaped trajecto-
ries where specific cell states can develop into multiple pos-
sible states. However, such methods do not take into account
cyclic trajectories (cell cycle) and instead connect all cell
states under a single tree graph. Some methods sought to
resolve cell cycles from the single cell transcriptomic data
such as reCAT (Liu et al. 2017). A few methods are able to
detect most of the trajectory types, i.e. PAGA (Wolf et al.
2019) and StemID (Griin et al. 2016), but their performance
can be inconsistent for different topology structures. Com-
prehensive comparisons of these methods (Saelens et al.
2019) indicate that there is no universal superior method
for trajectory inference on all scRNA-seq datasets, due to the
diversity and complexity of the underlying developmental
trajectory. However, they provide a detailed method selec-
tion guide called dynguidelines to help select the best meth-
ods for different types of topologies. For example, PAGA
and slingshot are two of the best-performing methods for
tree topologies while SCORPIUS is better for lineage topol-
ogies. The authors also claimed that new methods should
focus on improving the unbiased inference of trees, cyclic
graphs, and disconnected topologies, which would allow the
TI methods to perform well on experimental datasets with
unknown developmental trajectories.

Recent developments in trajectory inference methods
have expanded beyond the traditional deterministic modeling
of the developmental trajectory. Probabilistic methods such
as Palantir (Setty et al. 2019) and CSHMM (Lin and Bar-
Joseph 2019) introduce uncertainty about the pseudotime of
cells or their belonging to certain branches of the trajectory.
In these models, each cell’s pseudotime can be drawn from a
random variable, and different probabilistic models, such as
the hidden Markov model, are used to represent the develop-
mental trajectory of the cells. Meanwhile, some methods aim
to use data types in addition to the mRNA counts in sScCRNA-
seq data to build cell trajectories (Fig. 1b-d). First, with the
abundance of unspliced and spliced mRNAs, the change in
mRNA abundance, termed RNA velocity, can be inferred
(Bergen et al. 2020; Manno et al. 2018). RNA velocity of all
genes in a cell provides insights into the future state of the
cell. Methods like CellRank (Lange et al. 2022) and CellPath
(Zhang and Zhang 2021) utilize RNA velocity information
to infer the developmental trajectories (Fig. 1b). CellRank is
able to infer the developmental trajectory as well as cell fate
specification probabilities. On the other hand, CellPath is
able to infer multiple disconnected trajectories. A common
advantage of methods that use RNA velocity is that they can
learn the direction of the trajectories, compared to methods
using only the spliced mRNA counts. However, RNA veloc-
ity inference methods also suffer from the high technical
noise in scCRNA-seq data (especially in unspliced counts)

and model violations (Bergen et al. 2021). Recent methods,
such as UniTVelo (Gao et al. 2022) and CellDancer (Li et al.
2023a), were developed with more realistic model assump-
tions, aiming to infer cell-specific, or temporal-regulated
RNA velocity. Another type of approach to learning the
directions of trajectories is to use time-series SCRNA-seq
data (Fig. 1c). By sequencing cells at different time points,
multiple cell-by-gene matrices can be obtained to cover
states of different developmental stages. Tempora (Tran and
Bader 2020) and CSHMM (Lin and Bar-Joseph 2019) are
methods developed for time-series data.

Single-cell multi-omics data, such as jointly profiled
transcriptome and epigenome data, or jointly profiled tran-
scriptome and proteome data, have been used to infer shared
cell trajectories across modalities (Fig. 1d). Methods such
as MATCHER (Welch et al. 2017) attempt to use manifold
alignment to integrate different modalities, while other
methods such as scDART (Zhang et al. 2022b) and Seurat
v4 (Hao et al. 2021), learn a common embedding of the data
and other TI methods can be applied to obtain the devel-
opmental trajectory. MultiVelo (Li et al. 2022) uses paired
scRNA-seq and scATAC-seq data to infer RNA velocity as
well as the temporal relationships between chromatin states
changes and transcription kinetics. These methods have the
potential to build a more accurate and comprehensive devel-
opmental trajectory by utilizing multimodal information.

Inferring the underlying developmental trajectory from
a scRNA-seq dataset remains a challenging task, and suc-
cessful trajectory inference relies on several assumptions:
(1) The biological differentiation process must be dynamic,
with gradual changes in gene expression during cell differ-
entiation; (2) the dataset must contain enough cells with
sufficient sampling depth to capture all transient states along
the developmental trajectory. Furthermore, many trajectory
methods require prior information, such as starting cells or
clusters, to determine the directionality of the trajectory.
With the increase of methods that use multi-modal data to
perform TI, benchmarking studies are needed to compare the
performance of such methods using different types of infor-
mation with methods that use only mRNA counts. It is also
important to explore the connection between cells’ pseu-
dotime and other dynamic processes, such as cell divisions
and gene regulatory programs, as these areas of research
continue to develop.

Tracing lineage barcodes with scRNA-seq
using CRISPR/Cas9 gene editing

Different from trajectory inference methods, which use
the assumption of pseudotime, and require the datasets to
contain cells at all developmental stages, lineage tracing
techniques directly record cellsA€™ true temporal orderings:
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the cell division histories. While traditional lineage tracing
technologies can only measure a limited number of cells
with low resolution, recent high-throughput single-cell
sequencing technologies can jointly profile the transcrip-
tomes and lineage information of cells at the same time.
CRISPR/Cas9 is one well-known system for inducing guided
genetic mutations on the target genome. By designing a tar-
get sequence and guide RNAs that bind the target sequence
while attaching the Cas9 protein, the Cas9 protein can cut
the target sequence at specific sites (Fig. 2 Step A). Then,
the cell’s own DNA repair machinery will add or delete
pieces of genetic material and these insertions or deletions
are termed CRISPR/Cas9-induced mutations. The lineage
tracing starts with injecting the target sequences, Cas9 pro-
teins, and guide RNAs into the root cell, and the CRISPR/
Cas9-induced mutations will occur during cell divisions.
The induced genetic mutations can be passed down and
accumulate during generations of cell divisions (Fig. 2 Step
B). The mutated target sequence, or so-called lineage bar-
codes, can be sequenced together with the transcriptome
using scRNA-seq technology. This framework allows us to
obtain paired gene expression and clonal information on a
single-cell level. It is worth mentioning some recent work
on single-cell lineage tracing using endogenous mutations
such as mitochondrial mutation variants (Lareau et al. 2020;

Miller et al. 2022; Xu et al. 2019). However, such endog-
enous mutations are relatively noisy and uncontrollable. In
comparison to the inferred lineages using CRISPR/Cas9
genetic barcodes, the inferred lineages from endogenous
mutations tend to have much fewer internal nodes and worse
resolution. Therefore, in this review, we will mainly focus on
lineage tracing techniques based on CRISPR/Cas9-induced
mutations.

Works have been done to engineer the target sequence and
other experimental setups to perform lineage tracing on vari-
ous systems using CRISPR/Cas9-based lineage barcodes.
scGESTALT (Raj et al. 2018) (single-cell Genome Editing
of Synthetic Target Arrays for Lineage Tracing) uses multi-
ple contiguous CRISPR/Cas9 targeting arrays to record the
lineage of zebra fish and its brain development. scarTrace
(Alemany et al. 2018), targets transgenic tandem fluores-
cent proteins and traces the lineages of different systems of
zebrafish, while at the same time evaluating the efficiency
of barcode generation using fluorescence intensity. CRISPR/
Cas9 lineage tracing is also applied to other species such as
mice (embryo (Chan et al. 2019), pancreatic cancer (Sime-
onov et al. 2021), etc.). With the joint profiles of lineage
barcodes and gene expressions, a comprehensive cell fate
map can be established by overlapping cell types onto the
cell lineage tree.
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Fig.2 Lineage reconstruction from CRISPR/Cas9 induced barcodes.
Step A The lineage tracing system uses Cas9 proteins to generate
double-stranded breaks that result in heritable insertions or deletions
(mutations) after repair. Indels are induced at specific target sites of
the barcode. Step B At the root, an unedited barcode, together with
the Cas9 proteins and guide RNAs, is injected into the starting cell.
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Throughout generations of cell divisions, the Cas9 protein can bind
to the designed barcode and induce mutations that are inherited and
accumulated. Step C With the scRNA-seq experiment, the mutated
barcodes of the present-time cells (leaf cells on the lineage tree) are
sequenced. Step D Inferring the hidden lineage tree topology given
the mutated barcodes of the leaf cells using computational methods
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The CRISPR/Cas9 lineage tracing system can potentially
trace the lineage and transcriptomes of millions of single
cells. Theoretically, the number of target sites and the num-
ber of mutations for each target site provide sufficient diver-
sity to uniquely label every cell division in a lineage tree of
thousands of leaves. However, in practice, perfectly tracing
every cell division on the cell lineage tree is extremely chal-
lenging, due to the dynamic and uneven speed of cell divi-
sions. Even under the assumption of a constant cell division
rate, tuning the mutation rate of the CRISPR/Cas9 lineage
tracing system to optimally generates a unique mutation
pattern for every cell division is not realistic with current
protocols. Other drawbacks of the CRISPR/Cas9 lineage
tracing system (Salvador-Martinez et al. 2019), including
excision dropouts (target deletion when two or more Cas9
proteins bind to neighboring target sites), biased distribu-
tion of mutated states, the limited capture efficiency of the
sequencing experiment (which also causes dropout in the
barcode data), etc., further add to the difficulties of inferring
the correct lineage tree from the barcodes.

The lineage barcode of a cell can be represented compu-
tationally as a character vector of length equal to the num-
ber of target sites as designed by the CRISPR/Cas9 lineage
recorder. Each character represents a state of the target
site, which can be a mutated state, an unmutated state, or
a dropout state. Therefore, the lineage barcode data can be
represented as a cell-by-character matrix (Fig. 2 Step C).
The objective is to infer the correct lineage tree that gener-
ates the barcode data observed at the leaf cells (Fig. 2 Step
D). Different computational algorithms have been devel-
oped to infer the correct lineage tree from the CRISPR/
Cas9-induced barcode data. Recently, a DREAM challenge
was held to gather the community effort to compare the
state-of-the-art lineage tree inference methods (Gong et al.
2021). DCLEAR (Gong et al. 2022) is a distance-based
method that first calculates the pairwise distance between
cells and then reconstructs the cell lineage using bottom-
up (agglomerative) algorithms such as Neighbor-Join-
ing (NJ) (Saitou and Nei 1987) or FastME (Lefort et al.
2015). Cassiopeia (Jones et al. 2020) is a parsimony-based
method that aims at minimizing the number of mutations
occurred on the reconstructed lineage tree. These methods
were tested on both experimental and simulated datasets in
the DREAM challenge and achieved the best performance
benchmarked using Robinson-Foulds distance(Robinson
and Foulds 1981) and Triplet distance, as described in
Gong et al. (2021). More recently, integrated methods
that combine lineage barcode and gene expression data
are emerging, aiming to further improve the accuracy of
cell lineage reconstruction. LinTIMaT (Zafar et al. 2020)
develops a combined likelihood function and uses a local
search framework to search for the tree with the maximum
likelihood. LinRace (Pan et al. 2023) is another integrated

method that first builds the lineage backbone using lineage
barcode data and then refines subtrees using gene expres-
sion data and a likelihood-based local search program.

Using simulation tools and limited real datasets, we
can compare how the integrated methods perform with the
state-of-the-art barcode-based methods (Pan et al. 2022).
These results showed the hypothetical optimal mutation
rate to generate the barcode data and achieve the high-
est reconstruction accuracy. Even under ideal settings of
mutation rate, barcode length, and other factors, the line-
age reconstruction methods are still far from fully recon-
structing the true lineages, mainly due to the large search
space of possible tree structures with thousands of leaves
(single cells). Meanwhile, although current methods can
not reconstruct trees with high accuracy, the reconstructed
trees are able to reflect the distributions of cell states under
various subtrees.

Applying the CRISPR/Cas9-based lineage tracing sys-
tems to multiple species and resolving the gene expres-
sion distribution on the lineage tree led to the observation
that in the reconstructed lineage tree, although a propor-
tion of cells with the same cell type located in the same
subtree, some cells of the same cell type are located in
different subtrees, and the same subtree can have mul-
tiple cell types (Chan et al. 2019; Raj et al. 2018). This
phenomenon, the partial consistency between transcrip-
tome similarity and lineage similarity, is also observed in
lineage-resolved species such as C. elegans (Tintori et al.
2016). Such inconsistency can be explained by asymmet-
ric divisions of multipotent cells that develop into two
daughter cells with different cell fates. Besides asym-
metric divisions, varying differentiation speeds can also
lead to diverse cell type distributions on the lineage tree.

The theoretical relationships between the pseudotime
from TI methods and the lineage, however, are rarely
discussed (Wagner and Klein 2020). A fully resolved
lineage tree of C. elegans (Packer et al. 2019) demon-
strates that the lineage and the transcriptomic trajectory
can diverge and then converge at different developmental
stages. Some methods have attempted to computationally
model how cell state changes on the lineage tree, and uti-
lize this model for various computational tasks, such as
LinRace (Pan et al. 2023) (reconstructing cell division
tree), CoSpar (Wang et al. 2022c) (learning cell transition
map and predicting cell fate) and PhyloVelo (Wang et al.
2022a) (learning the phylogenetic velocity field which
shows cell state trajectories). Moreover, LineageOT (For-
row and Schiebinger 2021) provides a unified framework
of lineage and trajectory using optimal transport meth-
ods, but it is difficult to validate the model biologically.
Overall, there is still much to uncover regarding different
scenarios of coupling between cell divisions and transcrip-
tomic trajectories.
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Understanding temporal dynamics
at molecular levels using GRNs

The developmental trajectories inferred from scRNA-seq
or single-cell multi-omics data provide an understand-
ing on cell state transitions, and the lineage trees inferred
from lineage tracing barcodes show clonal relationships
between cells from various cell states. Neither of these two
explains the underlying molecular determinants of these
dynamics, that is, what are the factors that regulate cell
state transitions and determine the cell trajectories. It is
commonly understood that the gene regulatory networks
(GRNs) which represent relationships between genes are
key to interpreting biological processes at molecular lev-
els, and GRNs play a crucial role in forming cell states
and cell trajectories (Guillemin and Stumpf 2020; Moris
et al. 2016). It is also considered that these networks have
dynamic interactions which regulate gene expression of
different cell types in different developmental stages in a
spatiotemporal manner (Cvekl and Zhang 2017; Kim et al.
2012), where GRNSs can also vary depending on the spatial
location of cells.

However, it is very difficult and time-consuming to exper-
imentally measure GRNS, therefore, computational methods
have been developed to infer GRNs from gene expression
data, assuming that the regulatory dynamics can be observed
through the changes in the gene expressions. With single-
cell sequencing data quantifying the expression level of
every gene in every cell, ideally, GRNs can be reconstructed
on a whole-genome level. However, due to the complexity
of the computational problem, all GRN inference methods
start with a gene filtering step, to consider only a subset of
genes of interest, or to remove genes that are hardly or lowly
expressed in most of the cells. Then with the input of the
filtered cell by gene matrix, GRN methods return a graph
of directed or undirected connections between transcription
factors and genes. GRN inference methods can be sum-
marized into a few major categories (Nguyen et al. 2020):
Boolean models (Hamey et al. 2017; Lim et al. 2016; Wood-
house et al. 2018) that model gene regulations as logical
operations. These methods tend to use certain thresholds to
binarize the gene expression levels, therefore require fewer
parameters and can potentially avoid overfitting; Differen-
tial equation-based methods (Matsumoto et al. 2017; Ocone
et al. 2015) that describe a gene’s expression as a function
of other genes, and usually utilize pseudotime inferred by TI
methods or time-series data, to characterize the causal rela-
tionships between genes; Correlation-based methods (Aibar
etal. 2017; Chan et al. 2018; Liu et al. 2016) that calculates
pairwise correlation metrics for the genes and build edges
based on the rankings of each pair; and correlation ensem-
bles with pseudotime (Deshpande et al. 2022; Gao et al.

@ Springer

2017; Specht and Li 2016; Xu et al. 2022) that calculates
correlation scores in small windows of the pseudotime to
take into account the temporal changes of the GRNs, and
then combine the correlation matrices using ensemble strate-
gies. More recently, methods have been developed to infer
different GRNs for different cell types (Wang et al. 2022b;
Zhang et al. 2023) or single cells (Zhang et al. 2022a).

Due to the lack of well-established and commonly
acknowledged ground truth of GRNs, simulators were
developed to generate simulated single-cell gene expres-
sion data with ground truth GRNs (Cannoodt et al. 2021;
Dibaeinia and Sinha 2020; Li et al. 2022). The develop-
ment of simulators enabled supervised learning methods
to infer GRNs with models trained with simulated data
(Shrivastava et al. 2022). Previous benchmarking works
(Pratapa et al. 2020) used simulated datasets in addition
to real datasets to compare the GRN inference methods in
terms of accuracy, stability, and consistency for different
runs. The benchmarking results suggest that for different
kinds of datasets, the best-performing algorithms can be
different, while the best overall performing methods are
PIDC, GENIE3 and GRNBoost2 at the moment. However,
even the top-performing methods have low accuracy, indi-
cating that GRN inference is a challenging problem.

With the availability of single-cell multi-omics data,
researchers are able to consider additional layers of the
regulatory mechanisms besides transcription factors, such
as epigenomics, translation, cell-cell interactions, and
so on. There have been methods designed to infer GRNs
from single-cell multi-omics data, especially sScRNA-seq
and scATAC-seq data. CellOracle (Kamimoto et al. 2023)
infers a base network based on regulatory candidate genes
by scanning for TF binding motifs within the regulatory
DNA sequences (promoter/enhancers) of open chromatin
sites, and then use the transcriptome profiles to further infer
the actual GRN. Other methods such as sScMEGA (Li et al.
2023b), FigR (Kartha et al. 2022), and Pando (Fleck et al.
2022) apply a similar strategy that first identifies candidate
regulatory regions and then infers the relations between
target genes, TF expression, and binding-site accessibil-
ity. In Velorama (Singh et al. 2022), RNA velocity is used
instead of cell pseudotime to help improve GRN inference,
especially for complex developmental trajectories. With
the growing abundance of single-cell multimodal data, it
is expected that more and more multimodal GRN inference
methods will be developed in the near future.

GRN inference has been considered a separate com-
putational task from trajectory inference and lineage tree
reconstructions. Although some GRN inference methods
use pseudotime information from TI methods as input, it is
rarely studied how GRNs can affect trajectories. We discuss
this aspect in the next section.
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Outlook: towards a comprehensive
understanding of cells’ temporal dynamics

In this section, we discuss how GRNs explain the observed
gene expression data and potentially determine cell trajec-
tories. The consistencies between gene expressions and the
GRNS in specific systems have been discussed in existing
work. For example, Laslo et al. (Laslo et al. 2008) reviewed
how GRNs control the differentiation of myeloid and lym-
phoid cell fates within the immune system, which involves
both intrinsic interactions between genes in the GRN as well
as extrinsic signal inputs. More recently, Larsen et al. (Larsen
et al. 2018) showed that there are moderate connections
between E. coli static GRN and the gene expression profiles.
In a recent study on Corynebacterium glutamicum (Parise et al.
2021), it is discussed that the GRN alone cannot fully explain
the gene expression data. It is possible that such inconsisten-
cies are caused by the inaccuracy of computationally inferred
GRNs or even the GRNs obtained from databases. Existing
experimental and theoretical research on the role of GRNs
in determine cell trajectories are limited to specific TFs or
very small GRN structures. Furthermore, it is likely that there
exist other intrinsic and extrinsic factors that determine cell
fates and the developmental trajectories together with GRNs.
Therefore, further research is needed to investigate how GRNs
control gene expression profiles of cells in a temporal process.
Along the developmental trajectory of cells, understand-
ing how GRN controls the cells to take on specific branches
of the trajectory, or cell fates, is of great interest. Existing
efforts on studying how GRNs determine cell fates tend to
only focus on one or a few key regulators, and try to under-
stand their specific regulatory programs. For example, Naka-
jima et al. (Nakajima 2011) studied the differentiation and
reprogramming of hematopoietic cells and identified the
regulations of lineage-specific transcription factors such as
C/EBP a, PU.1, and GATA-1. Another study (Wang et al.
2014) that aims to dissect a regulator’s influence on rod and
bipolar cell fate decisions in the vertebrate retina involves
a detailed examination of key regulators’ enhancers and
upstream transcription factors. These studies require the
system of interest to be relatively easy to manipulate and
observe the changes of regulator expressions and cell fates.
The GRNSs built from these works, despite involving only a
few genes, can help determine the driving regulatory pro-
grams that influence the cells’ fate specifications.
Theoretically, it is possible to identify certain GRN struc-
tures and associated parameters that give rise to single-cell
gene expression data with a specific trajectory topology (lin-
ear, tree, cyclic, etc.). In dyngen (Cannoodt et al. 2021), the
authors defined “module networks" to model the regulatory
cascades and feedback loops that lead to progressive changes
in expression and cell fate decisions. These module networks

tend to have only a few nodes and edges and are mapped
to different kinds of trajectory topology. The actual GRN
is generated from the module network by generating key
transcription factors and adding target genes. With the sev-
eral GRN-to-trajectory mappings provided, dyngen provides
initial ideas on how the GRNs can control gene expression.
In dyngen’s simulation framework, the key idea is to model
the gene expression and developmental trajectory together
with the GRN. In order to do that, the connections between
target genes and upstream regulators are incorporated in cal-
culating the expression changes for individual genes. Using
the formula of the expected value of the total expression per
unit time of a gene given the GRN, the expected develop-
mental trajectory can be generated. For theoretical verifica-
tion, we illustrate the ODE (ordinary differential equation)
solutions of two GRNs, which are discussed in dyngen, that
lead to the divergence (Fig. 3a) and convergence (Fig. 3b)
of a bifurcating trajectory (Fig. 3). With a simple structure
of two key genes down-regulating each other, we are able to
generate two mutually exclusive cell fates while incorporat-
ing upstream or downstream genes that cause divergence or
convergence. Although a full GRN contains a large number
of genes and interactions, it is considered that at bifurcating
points, the number of regulators that dominate cell fates is
often very small. This is consistent with previous biological
studies (Greulich et al. 2020).

While the toy GRN examples shown in Fig. 3 can theo-
retically lead to certain trajectory structures using differ-
ential equation models, when the network gets larger and
more complex, it remains challenging to validate the con-
sistency between the GRN and the observed cell trajectory.
Indeed, GRNs may not be the only factor that determines
gene expression and cell trajectories. Cell—cell interactions
(CCls) are considered to play a role in cell fate decisions
(Greenwald and Rubin 1992; Kirouac et al. 2009). There
exist methods that consider GRNs and cell-cell communi-
cations together to interpret cell fate decisions or cell—cell
variations (Rommelfanger and MacLean 2021; Smith and
Grima 2018) at the scale of small networks. For example,
Rommelfanger and MacLean used a multiscale method to
model GRNs using ODEs and the intercellular signal by
Poisson processes (Rommelfanger and MacLean 2021).
Future research is needed to expand these studies to larger
GRN and CCI networks. Although it is challenging to study
the effect the GRNs on cell trajectories for complex GRNS, it
can be beneficial for current computational tasks to consider
the relationship between the two tasks, GRN inference and
TI. For example, some GRN inference methods have used
the pseudotime from the TI methods, but the topology of
the trajectories is not considered in GRN inference methods.
Selecting the GRNs that can generate the observed trajectory
topology can potentially yield more accurate GRNs.
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Fig.3 Theoretical analysis of connections between GRN, develop-
mental trajectory, and gene expression. In the GRNs, each node rep-
resents a gene (gene names are A, B, C) and the edges denote up-
regulation (arrow) and down-regulation (block). For each gene, we
use a total expression DE (differential equation) to model the changes
of the gene expression, while also considering the regulation effects
of promoters based on the GRN. We use a two-phase framework: an
initial warm-up Burn Phase that only part of the network is active; a
Transcription Phase that all network components are active. From the

Conclusions

Indeed, the integration of different models to jointly
model single-cell temporal dynamics on a genome scale
has the potential to greatly enhance our understanding of
the underlying biological processes. As the technology
continues to advance, we expect that more comprehen-
sive models that can simultaneously account for gene
expression changes, cell lineage, and gene regulatory
networks will be developed. This will require not only
more sophisticated computational algorithms but also a
deeper biological understanding and knowledge of the
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DE solution of the equations, discrete states can be defined. a A GRN
that generates a bifurcation trajectory. Three cell states are defined
from the DE solution: S; where only gene A is highly expressed; S,
where gene A, B are highly expressed and S; where gene A, C are
highly expressed. b A GRN that generates a bifurcation conver-
gence trajectory. Three cell states are defined from the DE solution:
S, where only gene A is highly expressed; S, where gene B is highly
expressed and S; where gene C is highly expressed

systems being studied. Ultimately, we believe that these
integrative models will provide powerful tools for devel-
opmental biologists to uncover the key events in cell
differentiation and cell fate specifications, and shed light
on the fundamental mechanisms that underlie develop-
ment and disease.
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