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Abstract—We present the first GPU-based parallel algorithm to
efficiently update vertex coloring on large dynamic networks. For
single GPU, we introduce the concept of loosely maintained vertex
color update that reduces computation and memory requirements.
For multiple GPUs, in distributed environments, we propose
priority-based ordering of vertices to reduce the communication
time. We prove the correctness of our algorithms and experimen-
tally demonstrate that for graphs of over 16 million vertices and
over 134 million edges on a single GPU, our dynamic algorithm
is as much as 20x faster than state-of-the-art algorithm on static
graphs. For larger graphs with over 130 million vertices and over
260 million edges, our distributed implementation with 8 GPUs
produces updated color assignments within 160 milliseconds. In
all cases, the proposed parallel algorithms produce comparable
or fewer colors than state-of-the-art algorithms.

Index Terms—Parallel/distributed algorithm, Vertex coloring,
Dynamic networks.

I. INTRODUCTION

Complex systems of interacting entities are typically mod-
eled using networks or graphs, where the vertices represent the
entities while the edges represent dyadic interactions between
pairs of vertices. Analyzing properties of such graphs provides
insights into the behavior of the underlying systems.

Networks representing complex systems in real-world ap-
plications are often very large and their topological structure
may change dynamically in terms of addition or deletion of
vertices and edges. For example, social network graphs change
due to new user registration or account deletion. Recomputing
a network property for each (or batch) change being typically
expensive, it is more efficient to identify the region of change
and accordingly update the property. Two key challenges to
achieving desired efficiency are: (i) non-local access pattern
of graph algorithms makes them hard to parallelize; and (ii)
efficiently identifying the region affected by the change is hard.
Recent works [1]-[5] addressed some of these challenges by
developing parallel algorithms for updating dynamic networks.

Vertex coloring (i.e., coloring the vertices such that no two
adjacent vertices are assigned the same color) is a fundamental
problem in graph theory with a wide range of applications
including scheduling, channel assignment [6], dynamic com-
munity detection [7], and printed circuit testing. Coloring the
vertices with the least number of colors is known to be an NP-
hard problem [8]. There exist many approximation algorithms
and heuristics for coloring static graphs (e.g., [9]-[11]).

Recognizing that the topology of many real-world applica-
tion graphs may change (e.g., due to the addition or deletion

of edges or vertices), the colors assigned to the vertices need
to be updated accordingly. For large-scale dynamic graphs, the
design of parallel algorithms is essential for efficient update
of vertex colors. However, there exist very few algorithms for
updating vertex colors on dynamic networks, and even fewer
approaches that can scale up to large graphs. This motivates
us to design and implement parallel algorithms for updating
vertex colors in large dynamic networks.

Our Contributions: The novel contributions of our paper
are to develop the first GPU-based parallel algorithms for
large dynamic networks, for both single GPU and multiple
GPUs. Our innovative approach addresses the two key chal-
lenges of dynamic network updates as identified above, while
improving efficiency. Specifically,

o For single GPU, we design a loosely-maintained vertex
color update (LVCU) algorithm to minimize computation
and use minimum available information for recoloring.

« We propose a novel algorithm for updating colors based
on a priority ordering of vertices distributed across mul-
tiple GPUs. The priority scheme reduces communication
across processors and improves the update time.

« Experiments on real-world and synthetic networks
demonstrate that colors obtained by our algorithms are
comparable or lower than those obtained by other state-
of-the-art parallel algorithms. Moreover, our implemen-
tation shows up to 20X speedup over the baseline GPU
implementation for static graphs.

The remainder of the paper is organized as follows: Sec-
tion II introduces preliminary concepts, and Section III defines
the problem. Section IV presents the LVCU parallel algorithm
for vertex color update while Section V describes the priority-
based distributed algorithm. Section VI evaluates the perfor-
mance of our dynamic algorithms. Section VII reviews the
related work and the final section concludes the paper.

II. PRELIMINARIES

Table I provides the list of symbols used in this paper. Let
G(V, E) be an undirected unweighted graph, where V' is the
vertex-set and E' is the edge-set. A (proper) vertex coloring
of G is a function that assigns a color (from a set C) to each
vertex u € V, such that no two adjacent vertices get the same
color. G is k-colorable if it can be properly colored using at
most k colors. The chromatic number x(G) is the smallest
value of k for which G is k-colorable.
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An optimal coloring of G using x(G) colors is known to
be an NP-Hard problem [8]. Various approximation algorithms
and heuristics have been proposed for vertex coloring. These
methods provide a simple upper bound of (§ + 1) on the
number of colors used, where § is the maximum degree of
a vertex. A greedy coloring picks up vertices following an
order maintained by some coloring priority, and assigns the
lowest available color from C to the selected vertex (e.g., [2],
[9]1-[11]). A saturation color set (SC) of a vertex u is the set
of colors assigned to its neighbors. Therefore, the set of colors
available for u is C — SC(u).

TABLE I: List of Symbols

Symbols Meaning

G(V,E) Undirected unweighted graph

o Maximum degree of vertices in G

C Set of colors

SC(u) Saturation color set of vertex u
Part; Partition 7

V7 (or Ei) Set of vertices (or edges) in Part;
AE" Set of changed edges in Part;

Z; Set of internal vertices in Part;

B; Set of border vertices in Part;

g} Set of 1-hop ghost vertices in Part;
g? Set of 2-hop ghost vertices in Part;
AFE Set of changed edges in G

Del Set of deleted edges in G

Ins Set of inserted edges in G

p Number of processing units

R; jth region in a partition. 1 < j < 4

A. Dynamic Graphs

In a dynamic graph, the topology changes with time; the
primary changes are edge insertions and deletions. In [1] the
authors presented a generic framework for parallel update of
dynamic graph property, specifically shortest path updates. The
framework starts with a graph and initially computed property.
Next, it updates the property by finding the affected sub-graph
due to the changes and iteratively recomputes the property for
the affected sub-graph. The major steps of this framework are:
1) process the changed edges in batch and update the property;
and 2) achieve the correctness iteratively.

In this paper, we will adapt this framework (with modi-
fications) to develop our parallel algorithm for vertex color
update in dynamic graphs. Figure 1 illustrates the steps of
this template for vertex coloring (See Section III-A and IV).
B. Graph Partitioning

A distributed graph algorithm requires partitioning the graph
such that each partition contains a disjoint subset of vertices of
roughly equal size, and the number of cut edges is minimized.
Our distributed approach uses a label propagation-based parti-
tioner, called PuLP [12] that considers an initial partition and
iteratively updates the subsequent partitions. This feature is
useful for dynamic graph partitioning.

A partition Part; having vertex-set Vi, forl < i < q,
where ¢ € N is the number of processors, contains two types
of vertices: (1) Internal vertex (Z;): This vertex and all of
its neighbors belonging to Part;, and (2) Border vertex (3;):
This vertex has at least one neighbor in another partition.

III. PROBLEM FORMULATION
Without loss of generality, we assume all changes in the
dynamic network are due to edge insertions or edge deletions.
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Ins (1,8) (8,9), (3,10): Vertices 8,9,10 all need to chang
color; Aff: {11,8,9,10}

(b) Process AE; = {Dely, Ins} to find affected subgraph
and update vertex color in parallel.

Process Ins;
Process AE;and update property

]

affected

Vertices 9 and 10 recolored; due to simultaneous
coloring 9 and 10 generate new conflict. Aff: {9, 10}

Achieve correctness iteratively

(c) Color conflict resolution to update color of G¢41.
Fig. 1: A template for dynamic vertex color update.

This is because, it is easy to convert a vertex insertion or
deletion into insertion or deletion of edges. At the initial step,
the input to the algorithm is (i) a properly colored graph, and
(ii) a batch of changed edges that may potentially influence
the color of the affected vertices. In subsequent steps, the
algorithm only accepts new batches of changed edges and uses
the colored output graph from the previous step to update the
color. Thus, our algorithm aims to update colors in a dynamic
graph rather than re-coloring the changed graph from scratch.

Problem Statement: Let G;(V;, E;) be the graph at time step
t and w.color; be the corresponding color assignment of a
vertex u. Let AE; = Fy1 — E; be the set of changed edges
from time step ¢ to ¢t + 1. It consists of two subsets, Ins;
and Del,, respectively the set of inserted and deleted edges at
time step ¢. Thus, Ery1 = ((Ex U Inst) \ Delt). Our goal is
to efficiently compute the color assignment u.color;y; for all
u € Vi41, without recomputing from scratch.
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A. Overview of the Color Update Template

The insertion or deletion of an edge e = (u,v) in G requires
updating the color of at most one of the end vertices « and v
to maintain proper coloring. In the Single Instruction Multiple
Threads (SIMT) architecture, similar operations are processed
simultaneously. Our template first processes the edges from
Del in parallel and then the edges from Ins. In course of this
process, some vertices may need to be recolored to maintain
proper coloring. However, if this recoloring is done in parallel,
two adjacent vertices may be assigned the same color due
to asynchronous updates, leading to new color conflicts. We
resolve this conflict by selecting and recoloring only one of
the conflicting vertices, and iteratively recoloring as necessary.
In every iteration, the number of potential conflicts decreases,
and the process finally converges. The next section provides
details on the proposed approach.

IV. LOOSELY-MAINTAINED VERTEX COLOR UPDATE
(LVCU) ALGORITHM

In practice, a graph requires fewer colors than § + 1 (upper
bound) and it gives us an opportunity to use a small subset of
saturation color set for recoloring.

While recoloring a vertex u, our algorithm selects the avail-
able color with lowest id from a fixed size partial saturation
color set SC'(u), s.t. SC'(u) € SC(u) and maintains the upper
bound of (§ 4+ 1) colors [ SC’ in Section VI]. Therefore, a
local minimum is used in place of the global minimum to
choose a color. Operations on comparatively smaller SC’(u)
decrease memory usage and computation time. We name
this coloring as loosely maintained coloring and propose
Loosely-maintained Vertex Color Update (LVCU) algorithm
(see Algorithm 1) for dynamic graphs.

Our proposed algorithm consists of two key steps, namely
processing changed edges (ProcessCE), and resolving conflicts
and updating neighbor colors, as described below.

A. Step 1-Process Changed Edges

This step processes all changed edges in parallel. For each
changed edge, at most one endpoint is selected for recoloring.

For deletion of an edge (y,z) € Del, the endpoint with
higher color (say y) is checked and recolored with the other
endpoint’s color z.color, if z.color is not in the saturation
set of y. If recolored, the vertex is considered as affected and
stored in a set Af f for further processing. We have observed
that recoloring the vertex with the higher color may help to
maintain better color quality by reducing the total number of
used color in long run. This approach does not require us to
store SC as we can check if z.color is used by any neighbor
of y, simply by visiting the neighbors.

For edge insertion, the non-trivial case arises when both
the endpoints have the same color. Otherwise, no vertex
color update is required. For inserted edge (a,b) € Ins, if
a.color = b.color then an endpoint is selected as candidate
for recoloring. The candidate selection usually follows one of
two approaches: (i) property based which selects the candidate
by comparing the vertex property such as degree, saturation
degree or hashed value of the endpoints; and (ii) randomized

Algorithm 1: LVCU

Input: C, G(V, E), AE = {Ins, Del}, user defined
max iteration it7,,qz
Output: Updated colored vertices of G at ¢t 4 1
1 Function LVvCU_Main (G, C, AFE):
Initialize empty sets Aff and S
itr < 0
Aff < ProcessCE(G, Del, Ins, Af f)
while Af f is not empty do
S« Aff, Aff <0
for each vertex v € S, in parallel do
Aff < Aff U CheckConflict(G, v)
if itr < itr,,., then
| Aff <« Af fUUpdateNeighbors(G, v);

LY-RE-REN B L I N N

—
<

itr —atr + 1

11

Function ProcessCE (G, Del, Ins, Aff):
for each edge (a,b) € Del, in parallel do
Y < argmaz e q,p}(@.color)
2 4= argminge (q,p} (v.color)
if z.color ¢ SC(y) then
y.colorpyey < y.color, y.color < z.color
add y to the set Aff

| delete (a,b) from G

12
13
14
15
16
17

18

19 for each edge (a,b) € Ins, in parallel do

20 add (a,b) in G

21 if a.color = b.color then

2 Y 4 argmazyeqqpy(2.id)

23 y.colorpyey < y.color

24 y.color < min. available color in SC’(y)

25 add y to the set Aff

26 return Af f

27 Function CheckConflict (G,v):

28 A+0 > stores affected vertices locally

29 for u € V and u is neighbor of v do

30 if u.color == v.color then

31 Y = argmaze vy (2.id)

32 A+ AUy

33 y.colorprey < y.color

34 y.color < min. available color in SC’(y)

35 return A

36 Function UpdateNeighbors (G,v):

37 A0 > stores affected vertices locally

38 for vertex u, where v.colorye, < u.color and u is
neighbor of v do

39 if v.colorpre, ¢ SC(u) then

40 u.colorprey — u.color

4 u.color <= v.colorprey

42 add u to the set A

43 return A
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which selects one of the endpoints randomly. The former may
suffer from high computation and memory overhead while the
latter may delay the convergence or lead to color inconsistency
in the distributed setup (See Section V-B3).

Instead of storing additional vertex property, LVCU selects
the endpoint with higher vertex ID as candidate (say y) and
recolors using the minimum available color in SC’(y).

B. Step 2—Resolve Color Conflict via Iteration

Color conflict between two adjacent vertices may arise due
to parallel recoloring. To address this issue, LVCU visits all the
recolored vertices in parallel, finds color conflicts and resolves
them iteratively by choosing and recoloring the vertex with
larger ID.

When a vertex v is recolored, it’s previous color, say k,
becomes free. It may be possible to reduce the number of
colors if we recolor some of the neighbors of v with the color
k. This step is not necessary to maintain the color correctness.
We therefore limit this search by a user defined maximum
iteration, itry,q, (Algorithm 1, Line 9).

The LVCU reduces the total amount of work by relaxing the
efforts to minimize the number of colors used. The maximum
number of colors depends mainly on the color range of the
input graph and the number of insertions. In a large dense
graph, the saturation color set can be large. As the algorithm
does not require to store the full saturation color set, it
is suitable for parallel architectures with relatively smaller
memory, such as GPUs.

C. Theoretical Analysis
We present theorems related to the correctness of our algo-
rithm and a theoretical bound on its computational complexity.

Theorem 1. In LVCU, the iterations to resolve the color
conflict (Algorithm 1, Lines 4-10). will converge.

Proof. 1f two asynchronous threads recolor two adjacent ver-
tices, color conflict may arise between these recolored vertices.
We do not consider coloring the neighbors based on free
colors, as this is an optional step.

Let A; is the set of vertex IDs among which color conflict
arises at 7*" iteration. As all vertex IDs are natural numbers,
the relation < is a strict partial order on A;. Hence, there
should be a minimum vertex ID u € A;.

To resolve conflict between any two adjacent vertices from
A;, LVCU chooses the vertex with higher vertex ID and
recolors it. Therefore, u should be never selected at any time
while selecting a vertex for recoloring. So, in the worst case,
LVCU recolors (|A;| — 1) vertices at i*" iteration of conflict
resolution. These new set of recolored vertices will be a subset
of A; as no new vertex is recolored in the process of conflict
resolution. Therefore, in the worst case, color conflict may
arise among recolored (|A;| — 1) vertices at (i+1)*" iteration.
In this process, the number of vertices with conflicts will keep
on decreasing as the iterations increase, and will eventually
become zero, resulting in convergence. O
Theorem 2. If the initial graph G is properly colored by
choosing colors uniformly at random from a palette of size
k(1 < k < 6+ 1); with p processing units, the average-case
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time complexity of LVCU algorithm (keeping itr,q. = 0 or
assuming the neighbors are not updated) on G and change
edges AE = {Ins, Del} is O( (| Del] + |Im|)).

Proof. Deletion. The LVCU algorithm first processes all
deleted edges in parallel and selects an end-vertex u of every
deleted edge (u,v) € Del for recoloring. It requires O(%)
time. Then, for each selected vertex w, its neighbors are
checked to determine if w can be recolored using the color
of vertex v. Given that § is the maximum degree of the graph,
and therefore d + 1, the upper limit of the colors required, in
worst case this step will have complexity O( 6”5) As the
initial graph uses a palette of k colors, the probabrhty that no
neighbor of u is colored with the color of v is (1—1)°. So the
expected number of deletion affected vertices is |Del|(1— %)5 .

Insertion. Next the inserted edges are processed in parallel.
Based on our assumption that colors are selected uniformly
at random, the probability that both the end-vertices of an
inserted edge have the same color is kQ Therefore the ex—
pected number of selected vertices for recoloring is |I7.s| - 7
For recoloring a vertex, LVCU prepares a 32-bit bitmap by
visiting the neighbors of the selected vertex in O(J) time, and
colors the vertex using an available color from the bitmap in
O(1) time. Therefore, the total time complexity of processing
inserted edges is O(+—2 lins| 1. 720).

Iterative Resolution of Color Conflicts. The expected num-
ber of recolored vel’tices (or affected) at step 1 is X
|Del|(1— £)° + [Ins| . Step 2 checks color conflict among
recolored vertices in parallel and recolors the vertex with
higher ID between two conflicting vertices in every iteration.
Visiting the initially affected vertices will take O( ) time. At
first iteration color conflict may arise for & 7z (let y) vertices.
As neighbors are not updated, no new vertex is recolored in
any iteration. Therefore, a positive real number \ less than 1
can be found such that at every iteration the average number
of recolored vertices be A times the number of conflicting
vertices. Therefore, at first iteration A\) number of vertices
will be recolored.

Similarly, in the second iteration conflict may arise among
),‘C—%’ vertices and 2 k2 vertices will be recolored. Step 2 con-
verges iteratively and total amount of time required to check
the conflicting vertices and select candidate vertices to recolor
is YA+ A+ 5+ +...)=

The total number of vertices recolored (may contain dupli-
cates as a vertex can be recolored in multiple iterations) in step
21is )\y(1+k—é+2—j+2—z+ D= Wk . As recoloring a vertex
takes O(0) sequential time, step 2 recolormg takes O(;;(TM))

. 2
time. Hence, total time requirement for step 21is O(m +

AYES) = O35 (A3 + 1)) = Oy (A6 + 1),

Therefore, the average time complexrty of the algorithm is
O 5) +O( 122l 4 6) + O (s (Ad+1)) = O(2 (| Del|+
)1+ 2HD)). As 6,k € N; k>1 and 0 < A < 1,
/\ € R, the term *,;1/5
time complexity of LVCU becomes O( (| Del|+

llnsl

becomes negligible. Therefore, the

nslyy O
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Corollary 1. The expected number of recolored vertices by
LVCU (keeping itryq, = 0) is |Del|(1 — 3)° + |Ins| 5.

Proof. From the proof of Theorem 2, we get the expected
number of vertices recolored at step 1 is [Del|(1 — £)° +
|Ins|{%. Step 2 of LVCU finds color conflict within the
vertices colored by step 1 only. Hence, the expected number of
vertices, recolored by LVCU is [Del|(1 — 1)° + [Ins|%. O

V. DISTRIBUTED VERTEX COLOR UPDATE

While our proposed algorithm efficiently parallelizes the
color update in dynamic graphs, generalizing it to distributed
environments is non-trivial due to the following challenges.
Inter-partition Communication: In distributed coloring, each
partition can individually update the color of their vertices,
except the border vertices [13]. As partitions do not have
updated information on all the neighbors of a border vertex,
coloring border vertices require inter-partition communication.

Also, the conflict resolution among the border vertices
requires several rounds of inter-partition communication [14].
In a distributed vertex color update problem, when the aim is
to reduce recoloring time and size of the affected sub-graph;
inter-partition communication cost becomes dominant.
Maintaining Color Consistency: In static graph coloring,
inter-partition communication is typically reduced by copying
the neighbors of border vertices as ghost vertices from other
partitions [13], [14]. However, in dynamic setup, where two
neighboring partitions do not know about each others topo-
logical changes, there can be issues of coloring consistency,
i.e. the same border vertex can be assigned different colors by
different processors to which it belongs.

To address these challenges, we design a priority based
distributed LVCU algorithm.

A. Partitioning

We use a label-propagation based partitioner as imple-
mented in PuLP [12]. To reduce the communication cost in
each partition Part;, we store two additional types of vertices
beside Z; (internal vertex) and B; (border vertex), as follows.
Ghost vertex ( Qil ): If a neighbor vertex u of a border vertex
b € B; belongs to another partition Part;, then u is copied
to Part;. This copied vertex is called ghost vertex in Part,;.
We term Part; as the owner patition of .
2-hop ghost vertex (G2): If a ghost vertex has neighbor vertices
in partitions other than Part;, those vertices are copied to
Part; and called 2-hop ghost vertices.

B. Priority Based Distributed LVCU

The key insight to our distributed algorithm is as follows.
A border vertex that is shared among multiple processors can
be simultaneously colored by each of the processors, and yet
assigned the same color if (i) the colors of its neighbors are
known and is consistent across processors, and (ii) the coloring
algorithm is deterministic.

Based on this observation, we propose a novel priority
assignment for vertices, such that the vertices for which
inter-partition communication becomes unavoidable are the
least likely to be recolored. Then we present a distributed

coloring algorithm based on the assigned priority to minimize
the rounds of inter-partition communications. The proposed
distributed LVCU algorithm workflow consists of two phases:
1) Preprocessing, and 2) Color update.

1) Preprocessing: This phase assigns priority to all the
vertices and distributes change edges among the partitions.

Initial Priority Assignment: Initially, in each partition,
priority 1 is assigned to all the internal vertices and priority
2 is assigned to the border and ghost vertices. If any internal
vertex is adjacent to any border vertex then the priority of that
internal vertex is changed to 3. All 2-hop ghost vertices are
assigned priority 4 (Algorithm 2).

In each partition, the priority assignment creates four non
overlapping regions R, Ry, R3, and R, containing vertices
with priorities 1, 2, 3 and 4 respectively. Figure 2a shows an
example graph with two partitions. Figures 2b and 2c show
the initial priority assignment in those partitions. Green, blue,
yellow, and red areas in these figures indicate R;, Ro, R3, and
R, respectively. The dotted lines indicate the remainder of the
subgraph in R; which is not shown in the example.

Part 2

(a) Partition 1 and 2 without any ghost vertex

_____ O-—6—GE-@H™

[priority 3
Part 1

@ Dpnomy 4

(b) Priority assignment in Partition 1 at ¢

Inserted
Edges
Deleted
Edges

(e) Priority assignment in Partition 2 at ¢t 4 1
Fig. 2: Priority assignment in different partitions.

Update Priority: Edge insertion can change the initial
priority assignment and can move nodes. As seen in Figure 2d,
in any partition, nodes can move from R; to R3 (e.g. node
2), from R; to Ry (e.g. node 1), and from R3 to to R».
Moreover, based on nodes in the neighboring partition, new
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Algorithm 2: Initial Priority Assignment

Algorithm 4: Distributed LVCU

1 for each partition Part; in G, in parallel do

2 Assign priority 1 to each vertex u € Z;.
3 Assign priority 2 to each vertex u € B; or u € G}.
4 Assign priority 3 to each vertex
ue{r:(z,v) € E,x € L;v € B;}.
5 Assign priority 4 to each vertex u € G2.

nodes can move to Ry (e.g. node 9). Priority change due to
edge insertion is described in Algorithm 3. Figures 2d and 2e
show the updated priority assignment after considering Ins; =
{(1,8),(3,2),(4,6),(7,11),(3.4)}, and Del; = {(9,11)} in
partition 1 and partition 2 respectively. Priority change due
to edge deletion does not affect correctness of the algorithm.
Therefore, we focus mainly on priority change due to insertion.

Algorithm 3: Change Priority

1 for each partition Part; in G, in parallel do

2 Vic =Vi—{x:2€ Ry}

3 for each edge (u,v) € Ins do

4 if ue Vi~ and v ¢ V'~ then

5 if w € G} then

6 L Assign priority 4 to v and add it in G2.
else

8 Assign priority 2 to v and add it in G}

9 Add w in Bl

10 Reassign priority for the neighbors of u

and v.
11 Repeat Line 4-10 by interchanging v and v.

Due to our priority assignment, 23 always comes between
R; and R,, whereas R3 and R, are separated by Ro. It ensures
there will be no edge between (R1,R52), (R3,R4), and (R1,Ry).
Also, considering two adjacent partitions, Part; and Part;,
the set of vertices in R; region will be unique to each partition,
the set of vertices in region Ry will be the same for each
partition, and the set of vertices in region R3 of Part; will
be the set of vertices in region R4 of Part; and vice-versa.
Any vertex u € Ry belongs to two or more partitions and in
all of them the priority of u remains 2 as it is considered as
either border or ghost vertex.

The preprocessing step also reads the initial color as-
signment and distributes the changed edges among different
partitions. Part; stores all changed edges AE".

2) Distributed Color Update: It can be observed that in
any partition Part;, for all but R, vertices, the neighbors are
already in Part;. Therefore, if the initial color assignment
is known, AE® can be processed and any vertex u ¢ Ry
can be recolored without additional information from other
partitions. Next, if the color for each vertex w is gathered from
its owner partition, it will be an updated color as in owner
partition, u belongs to Ry, Rs or Rs. Therefore, information

1 Function Dist_LVCU_Main (G, C, AE, itrmaes) *

2 Initialize empty set Af f, S, and AE3
3 itr <0
4 for each edge (a,b) € AE in parallel do
5 if a.priority = b.priority = 3 then
6 L Add (a,b) in AE3
7 else if a.priority # b.priority then
8 y < (a.priority < b.priority)?a : b
9 For (a,b) being a non-trivial edge insertion,
recolor y using min. available color in
SC'(y)
10 For (a,b) being an edge deletion, recolor y
using another endpoint’s color
1 add y to set Aff
12 else
13 | Aff < ProcessCE(G, Del, Ins, Af )
14 while Af f is not empty do
15 S Aff, Aff <0
16 for each vertex v € S, in parallel do
17 Aff < Aff U CheckConflict(G, v)
18 if itr < itr,,q. then
19 | Aff <« Aff UUpdateNeighbors™ (v)
20 itr < itr+1
21 ProcessRegion3(G, C, AE3)
22 Function UpdateNeighbors® (G,v):
23 A+ > stores affected vertices locally
24 for vertex n, where v.colorp,c, < n.color and n is
neighbor of v do
25 if n.priority # v.priority then
26 L skip the iteration for n
27 if v.colorpre, ¢ SC(n) then
28 n.coloTprey < n.color,
n.color < v.colorprey
29 add n to set A
30 return A
31 Function ProcessRegion3 (G,C,AE3):
32 Initialize empty set A and S
33 | for each edge e(a,b) € AE3 in parallel do
34 if e(a, b) to be inserted N a.color = b.color
then
35 Y 4 argmaz,eqq py(2.id)
36 y.colorpyey < y.color
37 y.color < min. available color in SC’(y)
38 add y to set A
39 while A is not empty do
40 S+ A A«
41 for each vertex v € S, in parallel do
4 | A+ AU CheckConflict(G, v)
120
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about recolored R4 vertices is not required. However, when
for processing the next batch of changes, the updated colors
for R, vertices are required to recolor Ry vertices correctly.
Therefore, before processing the next batch, updated colors of
R3 vertices need to be sent from the owner partition to the
neighboring partitions where those vertices belong to Ry.
We present the following properties of our distributed LVCU
algorithm: 1) Ry is never recolored while processing changes.
Color of R4 is used for recoloring other regions. 2) R; is
recolored by its owner partition only. 3) Ro is recolored
by multiple partitions, but it gets the same color due to
deterministic algorithm. 4) As the updated color of R3 is
exchanged before processing the next batch of changes, R3 is
recolored only when it is utmost necessary to maintain proper
coloring. It helps to reduce the size of information exchange.
As the color updates of R; and R, do not require any inter-
partition communication, distributed LVCU processes changed
edges and recolor affected vertices completely in R; and Ra
at first and then update color in Rs, if necessary.
Step 1-Processing Changed Edges in Regions 1 and 2:
The algorithm processes the changed edges in parallel and
inserts the edges with both endpoints in 3 into a new changed
edge set AE3 for processing at the end (Algorithm 4 Line 6).
The algorithm also processes other changed edges for which
at least one endpoint belongs to R; or Ry and selects the
candidate vertices in the lower priority region (R; or Ry) for
recoloring. For the intra-region changed edges where both the
endpoints belong to either R, or Ry, the candidate vertices for
recoloring are selected using the same logic as in Algorithm 1.
Precisely, for edge deletion (resp. insertion) the endpoint with
a higher color ID (resp. global ID) is selected. Any candidate
vertex is recolored using the minimum available color in SC’.
The lowest unset-bit in a fixed bit SC’ with a fixed lowest
color ID provides a deterministic way to color Ry vertices.
Step 2-Resolve conflict in R, and R,: Since no vertex
u € Rg is selected nor recolored at step 1, two conflicting
vertices should either be in R; or both in Ry. The conflict
resolution and neighbor’s color update step is similar to the
methods in Algorithm 1. The only difference in current ap-
proach of neighbor’s color update is the constraint prohibiting
the process to recolor any R3 vertex (Algorithm 4 Line 26).
Step 3—Process Changed Edges in Rs: If the color of any
vertex u € R is updated at ¢t + 1, the owner partition requires
to send the updated color to its neighbor partitions where u
belongs to R4. This inter-partition communication is not im-
mediately necessary to compute color;, 1, but necessary before
computing color;ys. Therefore, this communication can be
overlapped with the next preprocessing phase. However, the
communication among the partitions can be costly depending
on the size of data; hence the number of recolored vertices is
minimized by restricting color update only for edge insertion.
(Algorithm 4 Line 34). Color conflict in Rj is resolved locally.
3) Discussion on communication reduction: Here, we
detail how LVCU reduces inter-partition communication costs
through the four optimizations below.
2-hop ghosts: Storing the 2-hop ghosts helps to recolor any
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border vertex and resolve a color conflict between two border
vertices without any inter-partition communication.
Deterministic recoloring for Ry: LVCU avoids any random-
ized variable or operation and uses deterministic approach for
recoloring or resolving conflict in Ry. As a result, an owner
partition does not require to inform its neighbor about the
updated colors in Ra.

Minimized color update in R3: A novel priority assignment
makes Rz vertices least probable to be recolored. It reduces the
number of vertices requiring inter-partition communication.
Use of minimum information: The distributed LVCU uses
minimum available information (global ID, priority or color) to
select the vertex for recoloring. Unlike existing approaches, it
does not store additional vertex properties such as a degree
or saturation color set. This helps to reduce the total data
transferred for R4 in the preprocessing phase.

VI. PERFORMANCE EVALUATION

We implemented our algorithms for NVIDIA GPUs using
CUDA C++. The adjacency list is stored in a modified com-
pressed sparse row (CSR) format in unified memory. Changed
edges are stored using an array of structures where each
element stores the endpoints of an edge, and a flag to indicate
insertion/deletion status. For lower memory usage and faster
recoloring we use a 32-bit bitmap implementation of SC'.

Optimization using 32-bit bitmap: Let G; be colored
using a set of colors C = {1,...k}. To store SC’ we use a
32-bit bitmap, where i bit (1 < i < 32) denotes the (i+7)*"
color in SC. Here, j (j € N) can be chosen in a way such that
(k — 32) < j < k. In bitmap an unset-bit indicates that the
corresponding color is not in the saturation set, SC. Hence,
the lowest unset-bit provides the min. available color in the
partially stored saturation color set SC’. As CUDA does not
have a readily available template for bitmap related operations
yet, we use a single integer (32-bit) as a 32-bit bitmap and
simple bitwise operators to perform bitmap related operations.

Our algorithm takes advantage of both edge-centric and
vertex-centric operations. Each changed edge is processed by
each CUDA thread; whereas for conflict checking or neighbor
update, each affected vertex is assigned to a single thread.
We use a filter kernel after each iteration of Step 2 to
uniquely select the affected vertices. This operation reduces
redundant work by eliminating duplicates. For distributed im-
plementation, we use MPI for communication among different
partitions and use data parallelism at each partition level.

A. Experimental Results

We evaluated the performance of our implementations on
Longhorn cluster [15] at Texas Advanced Computing Center.
It consists of 104 computing nodes, each equipped with 2 IBM
Power System AC922 processors and 8 NVIDIA Tesla V100
GPUs (80 streaming multiprocessors) with 32GB memory.
These computing nodes are interconnected via Infiniband and
attached to a Lustre file system.

To evaluate the performance of LVCU, we consider five real
[16] and four synthesized networks [17], reported in Table II.
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TABLE II: Networks in Our Test Suite [16], [17]

(a) Real Networks

(b) Synthesized Networks

Graph (G) Alias  Vertices Edges Graph (G) Alias  Vertices Edges
IMDB D1 896,308 3,782,463 RMAT24_e2 D6 16,777,216 33,554,432
soc-orkut D2 2,997,167 106,349,209 RMAT24_e4 D7 16,777,216 67,108,864
inf-italy-osm D3 6,686,493 7,013,978 RMAT24_e8 D8 16,777,216 134,217,728
inf-road-usa D4 23,947,347 28,854,312 RMAT27 D9 134,217,728 268,435,456
soc-sinaweibo D5 58,655,849 261,321,071
inf-road-usa : Speedup w.r.t. Kokkos Orkut : Speedup w.r.t. Kokkos
8 RMAT24_e4 8 RMAT24_e8 o o %
= Ins % = Ins % 3 T E—
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Fig. 3: Performance of LVCU on different batch size.

1) Experiment on |AE|: Figure 3 shows the execution time
of our LVCU CUDA implementation when the batch size of
changed edges is varied. Each batch consists of different mixes
of edge insertions and deletions. In our experiment, if the batch
contains p% insertions then there is (100 —p)% edge deletion.
The result shows our algorithm takes the highest execution
time for 25% insertion, i.e., 75% deletion. For every edge
deletion, LVCU tries to recolor one endpoint of the edge and
visits the neighbors of the endpoint. However, in the case of
edge insertion, a vertex is recolored or its neighbors are visited
iff both the endpoints of the inserted edge are having the same
color. Therefore, the average work for edge deletion is higher
than that of edge insertion and a higher percentage of deleted
edges in a batch increases the total execution time. In Figure 3,
when the batch size is increased exponentially, the time for
vertex color update increases gradually.

2) Single-GPU Performance: Figure 4 shows the perfor-
mance of different steps in the LVCU algorithm. It shows that
processing Del takes more time than processing Ins and the
deletion processing time is dominant in the whole execution
time. We get this result as the average work for processing
deleted edges is higher than the average work requirement for
processing inserted edges. When the percentage of insertion is
increased (or % of deletion is decreased) the whole execution
time decreases as the number of deleted edges decreases.
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Fig. 4: Execution time of different steps
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Fig. 5: Single GPU performance comparison.

We compare the execution time of a single GPU LVCU
implementation with a static graph coloring algorithm in
Kokkos [18], [19], because there is no GPU-based vertex
coloring implementation for dynamic networks to the best
of our knowledge. For instance, the agent-based algorithm
proposed in [20] cannot accept rapid changes; the incremental
algorithm proposed in [21] does not mention the type of paral-
lel architecture used and their implementation is not available.
We tried to compare LVCU with coloring implementation
provided by Gunrock [22] library also. However, when tested
on medium-scale networks, the Gunrock implementation failed
to provide any valid coloring result within a reasonable time.

As Kokkos coloring works on static graphs only, for a batch
of changes AE; = (Ins, Del;), we supply a graph with edge
set Ery1 = ((E: U Ins;) \ Del;) for Kokkos implementation.

Figure 5 presents performance results; the Y-axis shows
the execution time of Kokkos-coloring divided by that of
our implementation (the factor by which we are faster than
Kokkos). Although the change edges are generated randomly,
the results are mainly affected by two factors. First, the dele-
tion takes more time than insertion in our algorithm. Second,
for a fewer percentage of insertion (or higher percentage of
deletion) the effective number of edges is reduced for Kokkos-
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coloring, requiring comparatively less time to recompute. In
most of the plots, LVCU performs better than Kokkos-coloring
if the percentage of insertion is increased. The performance
comparison shows that our algorithm can provide updated
vertex color up to 20X faster than Kokkos-coloring.

3) Distributed Implementation Scalability: Figure 6 shows
the strong scaling analysis of distributed LVCU. It also com-
pares the performance for different percentages of insertion
when the batch size is fixed. The results show that the
execution time decreases drastically when the number of
GPUs changed from 2 to 4. However, beyond 4 GPUs the
performance improves very slowly. This behavior is justified
as the color update part in ProcessCE function or visiting
neighbors in CheckConflict function are sequential in nature
and do not execute faster if the number of GPU is increased.

9 RMAT27: scalability, AE = 10° g sinaweibo: scalability, AE = 107
2 - ns%25 | 2 —e— Ins%: 25
= —e— Ins %: 50 = ~e— Ins %: 50
€ ——mns%:75 | E —o— Ins%: 75
£ £180
580 8
£ E
[S [
_5 75 160
F=] b=
3 =
o o
Q v
X X
w 2 4 6 g W 2 4 6 8
Number of GPUs Number of GPUs
(a) RMAT27 (b) sinaweibo

Fig. 6: Performance with different number of GPUs

TABLE III: Color Quality Comparison (|C|, |C*|,|C"| : # of
colors used by our algorithm, Kokkos-coloring, and Havoqgt
respectively; Ins : % of edge insertions; AFE in million)

(a) Single GPU (b) Distributed

G AE 1Ims |C| |C¥ G AE Ims |C| |CM

D6 0.1 25 19 19 DI 1 25 16 16
D6 0.1 50 19 19 DI 1 50 16 16
D6 0.1 75 19 20 D1 1 75 16 17
D6 1 25 47 46 D5 10 25 102 126
D6 1 50 47 46 D5 10 50 102 126
D6 1 75 47 47 D5 10 75 102 127
D2 5 25 102 124

D2 5 50 102 125

D2 5 75 102 126

4) Experiment on Color Quality: Table III compares the
number of colors used by our algorithm and baseline algo-
rithms. In Table I1Ta, |C| and |C*| are respectively the number
of colors used by our single GPU implementation and Kokkos-
coloring. Since no implementation exists for dynamic graph
coloring for distributed GPUs, we use Havoqgt-based dynamic
graph coloring implementation for distributed CPUs [2] as
baseline in distributed case. Table IIIb compares the maximum
number of colors used in our distributed implementation and
Havoqgt. Results for LVCU and distributed LVCU show that
our algorithm uses fewer or comparable colors. The total
number of colors in our algorithm depends on 1) Initial
coloring, and 2) Edge deletion. For edge deletion, LVCU aims
to reduce the total number of colors by recoloring the endpoint
with a higher color ID using the other endpoint’s color.

VII. RELATED WORK
A. Static Graph Coloring

A plethora of heuristic algorithms [9]-[11] exists for static
graph coloring. For large graphs, the existing parallel vertex
coloring algorithms can be broadly classified as: independent
set based and speculation based. The former class finds
independent subsets in the graph and colors the vertices in
each subset in parallel. A Monte Carlo randomized algorithm
is proposed in [23] to find a maximal independent set and
color all the vertices in the set with the same color. This is
improved in [24], where a random number assignment is used
for every vertex to find the independent sets and color the
vertices concurrently. The algorithm is also combined with
Largest Degree First (LDF) heuristic in [25], which is further
improved in [26]. An independent set based vertex coloring
algorithm for single GPU was implemented in [27].

On the other hand, speculation based algorithms first color
the vertices in parallel and iteratively resolve conflicts [13],
[28]. A shared memory parallel algorithm based on the specu-
late and iterate approach is proposed in [29]. The GPU-based
Gunrock library uses an advance-filter-compute framework
[22] and provides a single GPU vertex coloring implemen-
tation. Recently, a multi-GPU implementation is developed
for distributed systems [14] that modifies vertex coloring
algorithms in the Kokkos-coloring framework [19] to present
MPI+X implementations of distance-1 and distance-2 coloring.
Specifically, this algorithm uses 2-hop ghosts to minimize the
communication cost. Nevertheless, the randomized candidate
selection procedure used for resolving conflict may still lead
to multiple rounds of inter-partition communications.

B. Dynamic Graph Coloring

As applying static coloring algorithms to dynamic graphs
can be costly for small changes, numerous methods have been
proposed to update the colors for dynamic graphs.

An agent-based algorithm, is proposed in [20] for coloring
dynamic graphs, where the candidate vertex between two
conflicting adjacent vertices is selected for recoloring by
choosing the vertex with the lowest degree of saturation. The
algorithm limits recoloring the endpoints of a changed edge
and their immediate neighbors. Another greedy online coloring
algorithm proposed in [30] accepts vertices one by one with
their corresponding edges, and colors the vertices using a color
selection rule. However, this approach leads to suboptimal
color quality for not adjusting the color of neighbor vertices.

To evaluate the success of an online coloring algorithm, a
performance metric is introduced in [31] along with theoretical
bounds. To maintain color consistency between the online
approach and that of a static graph, an incremental algorithm
for maintaining vertex color in dynamic graphs is proposed
in [21]. However, this algorithm recolors a large number of
vertices to achieve the same color output as the target static
graph algorithm [9] after a single edge insertion or deletion,
resulting in a relatively high overhead and low efficiency.

The authors in [2] claim to present the first generic dis-
tributed, online graph coloring algorithm. They use a hashing
on global vertex ID to resolve color conflict, reducing the
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initial communication cost. Although the algorithm adjusts
color for only endpoints of an inserted or deleted edge, it
misses the opportunity to use fewer colors because it does not
adjust the color of neighbors for edge deletion.

Unlike the existing approaches, our proposed distributed
LVCU algorithm follows the speculate and iterate approach in
each partition and colors the affected vertices by processing
the changed edges in parallel. The color conflicts are resolved
iteratively. Instead of using an additional parameter such as
degree, saturation degree, or hashed value of a vertex to
determine which vertex to recolor, our algorithm uses the
minimum available information such as vertex ID and vertex
color. The LVCU algorithm maintains a proper J + 1 coloring
without attempting to find an optimal solution, although it aims
to reduce the number of colors used in case of edge deletion.

VIII. CONCLUSION

We first presented a loosely maintained vertex color update
algorithm, which uses a partially stored saturation color set
to recolor vertices efficiently using less memory. Next, we
proposed a novel priority assignment technique followed by
a distributed color update algorithm. Extensive experimental
evaluations on real-world and synthetic networks show that our
GPU-based implementation updates vertex color up to 20X
faster than the baseline method using comparable colors.

Although producing a partial saturation color set is sequen-
tial in our current approach, it is amenable to dynamic paral-
lelism in GPU. Furthermore, a CPU-GPU hybrid architecture
can improve the performance executing heavy operations at
the host and light repetitive works at the kernel. We plan to
investigate these two approaches as future work.
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