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Abstract—We present the first GPU-based parallel algorithm to
efficiently update vertex coloring on large dynamic networks. For
single GPU, we introduce the concept of loosely maintained vertex
color update that reduces computation and memory requirements.
For multiple GPUs, in distributed environments, we propose
priority-based ordering of vertices to reduce the communication
time. We prove the correctness of our algorithms and experimen-
tally demonstrate that for graphs of over 16 million vertices and
over 134 million edges on a single GPU, our dynamic algorithm
is as much as 20x faster than state-of-the-art algorithm on static
graphs. For larger graphs with over 130 million vertices and over
260 million edges, our distributed implementation with 8 GPUs
produces updated color assignments within 160 milliseconds. In
all cases, the proposed parallel algorithms produce comparable
or fewer colors than state-of-the-art algorithms.

Index Terms—Parallel/distributed algorithm, Vertex coloring,
Dynamic networks.

I. INTRODUCTION

Complex systems of interacting entities are typically mod-

eled using networks or graphs, where the vertices represent the

entities while the edges represent dyadic interactions between

pairs of vertices. Analyzing properties of such graphs provides

insights into the behavior of the underlying systems.

Networks representing complex systems in real-world ap-

plications are often very large and their topological structure

may change dynamically in terms of addition or deletion of

vertices and edges. For example, social network graphs change

due to new user registration or account deletion. Recomputing

a network property for each (or batch) change being typically

expensive, it is more efficient to identify the region of change

and accordingly update the property. Two key challenges to

achieving desired efficiency are: (i) non-local access pattern

of graph algorithms makes them hard to parallelize; and (ii)

efficiently identifying the region affected by the change is hard.

Recent works [1]–[5] addressed some of these challenges by

developing parallel algorithms for updating dynamic networks.

Vertex coloring (i.e., coloring the vertices such that no two

adjacent vertices are assigned the same color) is a fundamental

problem in graph theory with a wide range of applications

including scheduling, channel assignment [6], dynamic com-

munity detection [7], and printed circuit testing. Coloring the

vertices with the least number of colors is known to be an NP-

hard problem [8]. There exist many approximation algorithms

and heuristics for coloring static graphs (e.g., [9]–[11]).

Recognizing that the topology of many real-world applica-

tion graphs may change (e.g., due to the addition or deletion

of edges or vertices), the colors assigned to the vertices need

to be updated accordingly. For large-scale dynamic graphs, the

design of parallel algorithms is essential for efficient update

of vertex colors. However, there exist very few algorithms for

updating vertex colors on dynamic networks, and even fewer

approaches that can scale up to large graphs. This motivates

us to design and implement parallel algorithms for updating

vertex colors in large dynamic networks.

Our Contributions: The novel contributions of our paper

are to develop the first GPU-based parallel algorithms for

large dynamic networks, for both single GPU and multiple

GPUs. Our innovative approach addresses the two key chal-

lenges of dynamic network updates as identified above, while

improving efficiency. Specifically,

• For single GPU, we design a loosely-maintained vertex

color update (LVCU) algorithm to minimize computation

and use minimum available information for recoloring.

• We propose a novel algorithm for updating colors based

on a priority ordering of vertices distributed across mul-

tiple GPUs. The priority scheme reduces communication

across processors and improves the update time.

• Experiments on real-world and synthetic networks

demonstrate that colors obtained by our algorithms are

comparable or lower than those obtained by other state-

of-the-art parallel algorithms. Moreover, our implemen-

tation shows up to 20X speedup over the baseline GPU

implementation for static graphs.

The remainder of the paper is organized as follows: Sec-

tion II introduces preliminary concepts, and Section III defines

the problem. Section IV presents the LVCU parallel algorithm

for vertex color update while Section V describes the priority-

based distributed algorithm. Section VI evaluates the perfor-

mance of our dynamic algorithms. Section VII reviews the

related work and the final section concludes the paper.

II. PRELIMINARIES

Table I provides the list of symbols used in this paper. Let

G(V,E) be an undirected unweighted graph, where V is the

vertex-set and E is the edge-set. A (proper) vertex coloring

of G is a function that assigns a color (from a set C) to each

vertex u ∈ V , such that no two adjacent vertices get the same

color. G is k-colorable if it can be properly colored using at

most k colors. The chromatic number χ(G) is the smallest

value of k for which G is k-colorable.
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An optimal coloring of G using χ(G) colors is known to

be an NP-Hard problem [8]. Various approximation algorithms

and heuristics have been proposed for vertex coloring. These

methods provide a simple upper bound of (δ + 1) on the

number of colors used, where δ is the maximum degree of

a vertex. A greedy coloring picks up vertices following an

order maintained by some coloring priority, and assigns the

lowest available color from C to the selected vertex (e.g., [2],

[9]–[11]). A saturation color set (SC) of a vertex u is the set

of colors assigned to its neighbors. Therefore, the set of colors

available for u is C− SC(u).
TABLE I: List of Symbols

Symbols Meaning

G(V,E) Undirected unweighted graph

δ Maximum degree of vertices in G
C Set of colors

SC(u) Saturation color set of vertex u
Parti Partition i

V i (or Ei) Set of vertices (or edges) in Parti
∆Ei Set of changed edges in Parti
Ii Set of internal vertices in Parti
Bi Set of border vertices in Parti
G1

i Set of 1-hop ghost vertices in Parti
G2

i Set of 2-hop ghost vertices in Parti
∆E Set of changed edges in G
Del Set of deleted edges in G
Ins Set of inserted edges in G
p Number of processing units

Rj jth region in a partition. 1 ≤ j ≤ 4

A. Dynamic Graphs

In a dynamic graph, the topology changes with time; the

primary changes are edge insertions and deletions. In [1] the

authors presented a generic framework for parallel update of

dynamic graph property, specifically shortest path updates. The

framework starts with a graph and initially computed property.

Next, it updates the property by finding the affected sub-graph

due to the changes and iteratively recomputes the property for

the affected sub-graph. The major steps of this framework are:

1) process the changed edges in batch and update the property;

and 2) achieve the correctness iteratively.

In this paper, we will adapt this framework (with modi-

fications) to develop our parallel algorithm for vertex color

update in dynamic graphs. Figure 1 illustrates the steps of

this template for vertex coloring (See Section III-A and IV).

B. Graph Partitioning
A distributed graph algorithm requires partitioning the graph

such that each partition contains a disjoint subset of vertices of

roughly equal size, and the number of cut edges is minimized.

Our distributed approach uses a label propagation-based parti-

tioner, called PuLP [12] that considers an initial partition and

iteratively updates the subsequent partitions. This feature is

useful for dynamic graph partitioning.

A partition Parti having vertex-set V i, for 1 ≤ i ≤ q,

where q ∈ N is the number of processors, contains two types

of vertices: (1) Internal vertex (Ii): This vertex and all of

its neighbors belonging to Parti, and (2) Border vertex (Bi):

This vertex has at least one neighbor in another partition.

III. PROBLEM FORMULATION

Without loss of generality, we assume all changes in the

dynamic network are due to edge insertions or edge deletions.
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Fig. 1: A template for dynamic vertex color update.

This is because, it is easy to convert a vertex insertion or

deletion into insertion or deletion of edges. At the initial step,

the input to the algorithm is (i) a properly colored graph, and

(ii) a batch of changed edges that may potentially influence

the color of the affected vertices. In subsequent steps, the

algorithm only accepts new batches of changed edges and uses

the colored output graph from the previous step to update the

color. Thus, our algorithm aims to update colors in a dynamic

graph rather than re-coloring the changed graph from scratch.

Problem Statement: Let Gt(Vt, Et) be the graph at time step

t and u.colort be the corresponding color assignment of a

vertex u. Let ∆Et = Et+1 − Et be the set of changed edges

from time step t to t + 1. It consists of two subsets, Inst
and Delt, respectively the set of inserted and deleted edges at

time step t. Thus, Et+1 = ((Et ∪ Inst) \Delt). Our goal is

to efficiently compute the color assignment u.colort+1 for all

u ∈ Vt+1, without recomputing from scratch.
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A. Overview of the Color Update Template

The insertion or deletion of an edge e = (u, v) in G requires

updating the color of at most one of the end vertices u and v
to maintain proper coloring. In the Single Instruction Multiple

Threads (SIMT) architecture, similar operations are processed

simultaneously. Our template first processes the edges from

Del in parallel and then the edges from Ins. In course of this

process, some vertices may need to be recolored to maintain

proper coloring. However, if this recoloring is done in parallel,

two adjacent vertices may be assigned the same color due

to asynchronous updates, leading to new color conflicts. We

resolve this conflict by selecting and recoloring only one of

the conflicting vertices, and iteratively recoloring as necessary.

In every iteration, the number of potential conflicts decreases,

and the process finally converges. The next section provides

details on the proposed approach.

IV. LOOSELY-MAINTAINED VERTEX COLOR UPDATE

(LVCU) ALGORITHM

In practice, a graph requires fewer colors than δ+1 (upper

bound) and it gives us an opportunity to use a small subset of

saturation color set for recoloring.

While recoloring a vertex u, our algorithm selects the avail-

able color with lowest id from a fixed size partial saturation

color set SC′(u), s.t. SC′(u) ⊆ SC(u) and maintains the upper

bound of (δ + 1) colors [ SC′ in Section VI]. Therefore, a

local minimum is used in place of the global minimum to

choose a color. Operations on comparatively smaller SC′(u)
decrease memory usage and computation time. We name

this coloring as loosely maintained coloring and propose

Loosely-maintained Vertex Color Update (LVCU) algorithm

(see Algorithm 1) for dynamic graphs.

Our proposed algorithm consists of two key steps, namely

processing changed edges (ProcessCE), and resolving conflicts

and updating neighbor colors, as described below.

A. Step 1–Process Changed Edges

This step processes all changed edges in parallel. For each

changed edge, at most one endpoint is selected for recoloring.

For deletion of an edge (y, z) ∈ Del, the endpoint with

higher color (say y) is checked and recolored with the other

endpoint’s color z.color, if z.color is not in the saturation

set of y. If recolored, the vertex is considered as affected and

stored in a set Aff for further processing. We have observed

that recoloring the vertex with the higher color may help to

maintain better color quality by reducing the total number of

used color in long run. This approach does not require us to

store SC as we can check if z.color is used by any neighbor

of y, simply by visiting the neighbors.

For edge insertion, the non-trivial case arises when both

the endpoints have the same color. Otherwise, no vertex

color update is required. For inserted edge (a, b) ∈ Ins, if

a.color = b.color then an endpoint is selected as candidate

for recoloring. The candidate selection usually follows one of

two approaches: (i) property based which selects the candidate

by comparing the vertex property such as degree, saturation

degree or hashed value of the endpoints; and (ii) randomized

Algorithm 1: LVCU

Input: C, G(V,E), ∆E = {Ins,Del}, user defined

max iteration itrmax

Output: Updated colored vertices of G at t+ 1
1 Function LVCU_Main(G, C, ∆E):

2 Initialize empty sets Aff and S
3 itr ← 0
4 Aff ← ProcessCE(G,Del, Ins,Aff )

5 while Aff is not empty do

6 S ← Aff , Aff ← ∅
7 for each vertex v ∈ S, in parallel do

8 Aff ← Aff ∪ CheckConflict(G, v)

9 if itr < itrmax then

10 Aff ← Aff ∪UpdateNeighbors(G, v);

11 itr ← itr + 1

12 Function ProcessCE(G,Del, Ins,Aff):

13 for each edge (a, b) ∈ Del, in parallel do

14 y ← argmaxx∈{a,b}(x.color)
15 z ← argminx∈{a,b}(x.color)
16 if z.color /∈ SC(y) then

17 y.colorprev ← y.color, y.color ← z.color
add y to the set Aff

18 delete (a, b) from G

19 for each edge (a, b) ∈ Ins, in parallel do

20 add (a, b) in G
21 if a.color = b.color then

22 y ← argmaxx∈{a,b}(x.id)
23 y.colorprev ← y.color
24 y.color ← min. available color in SC′(y)
25 add y to the set Aff

26 return Aff

27 Function CheckConflict(G, v):

28 A ← ∅ � stores affected vertices locally

29 for u ∈ V and u is neighbor of v do

30 if u.color == v.color then

31 y ← argmaxx∈{u,v}(x.id)
32 A ← A ∪ y
33 y.colorprev ← y.color
34 y.color ← min. available color in SC′(y)

35 return A

36 Function UpdateNeighbors(G, v):

37 A ← ∅ � stores affected vertices locally

38 for vertex u, where v.colorprev < u.color and u is

neighbor of v do

39 if v.colorprev /∈ SC(u) then

40 u.colorprev ← u.color
41 u.color ← v.colorprev
42 add u to the set A

43 return A
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which selects one of the endpoints randomly. The former may

suffer from high computation and memory overhead while the

latter may delay the convergence or lead to color inconsistency

in the distributed setup (See Section V-B3).

Instead of storing additional vertex property, LVCU selects

the endpoint with higher vertex ID as candidate (say y) and

recolors using the minimum available color in SC′(y).

B. Step 2–Resolve Color Conflict via Iteration

Color conflict between two adjacent vertices may arise due

to parallel recoloring. To address this issue, LVCU visits all the

recolored vertices in parallel, finds color conflicts and resolves

them iteratively by choosing and recoloring the vertex with

larger ID.

When a vertex v is recolored, it’s previous color, say k,

becomes free. It may be possible to reduce the number of

colors if we recolor some of the neighbors of v with the color

k. This step is not necessary to maintain the color correctness.

We therefore limit this search by a user defined maximum

iteration, itrmax (Algorithm 1, Line 9).

The LVCU reduces the total amount of work by relaxing the

efforts to minimize the number of colors used. The maximum

number of colors depends mainly on the color range of the

input graph and the number of insertions. In a large dense

graph, the saturation color set can be large. As the algorithm

does not require to store the full saturation color set, it

is suitable for parallel architectures with relatively smaller

memory, such as GPUs.

C. Theoretical Analysis

We present theorems related to the correctness of our algo-

rithm and a theoretical bound on its computational complexity.

Theorem 1. In LVCU, the iterations to resolve the color

conflict (Algorithm 1, Lines 4-10). will converge.

Proof. If two asynchronous threads recolor two adjacent ver-

tices, color conflict may arise between these recolored vertices.

We do not consider coloring the neighbors based on free

colors, as this is an optional step.

Let Ai is the set of vertex IDs among which color conflict

arises at ith iteration. As all vertex IDs are natural numbers,

the relation < is a strict partial order on Ai. Hence, there

should be a minimum vertex ID u ∈ Ai.

To resolve conflict between any two adjacent vertices from

Ai, LVCU chooses the vertex with higher vertex ID and

recolors it. Therefore, u should be never selected at any time

while selecting a vertex for recoloring. So, in the worst case,

LVCU recolors (|Ai| − 1) vertices at ith iteration of conflict

resolution. These new set of recolored vertices will be a subset

of Ai as no new vertex is recolored in the process of conflict

resolution. Therefore, in the worst case, color conflict may

arise among recolored (|Ai|−1) vertices at (i+1)th iteration.

In this process, the number of vertices with conflicts will keep

on decreasing as the iterations increase, and will eventually

become zero, resulting in convergence.

Theorem 2. If the initial graph G is properly colored by

choosing colors uniformly at random from a palette of size

k(1 < k < δ + 1); with p processing units, the average-case

time complexity of LVCU algorithm (keeping itrmax = 0 or

assuming the neighbors are not updated) on G and change

edges ∆E = {Ins,Del} is O( δp (|Del|+ |Ins|
k2 )).

Proof. Deletion. The LVCU algorithm first processes all

deleted edges in parallel and selects an end-vertex u of every

deleted edge (u, v) ∈ Del for recoloring. It requires O( |Del|
p )

time. Then, for each selected vertex u, its neighbors are

checked to determine if u can be recolored using the color

of vertex v. Given that δ is the maximum degree of the graph,

and therefore δ + 1, the upper limit of the colors required, in

worst case this step will have complexity O( |Del|
p δ). As the

initial graph uses a palette of k colors, the probability that no

neighbor of u is colored with the color of v is (1− 1
k )

δ . So the

expected number of deletion affected vertices is |Del|(1− 1
k )

δ .

Insertion. Next the inserted edges are processed in parallel.

Based on our assumption that colors are selected uniformly

at random, the probability that both the end-vertices of an

inserted edge have the same color is 1
k2 . Therefore the ex-

pected number of selected vertices for recoloring is |Ins| 1
k2 .

For recoloring a vertex, LVCU prepares a 32-bit bitmap by

visiting the neighbors of the selected vertex in O(δ) time, and

colors the vertex using an available color from the bitmap in

O(1) time. Therefore, the total time complexity of processing

inserted edges is O( |Ins|p
1
k2 δ).

Iterative Resolution of Color Conflicts. The expected num-

ber of recolored vertices (or affected) at step 1 is X =
|Del|(1− 1

k )
δ + |Ins| 1

k2 . Step 2 checks color conflict among

recolored vertices in parallel and recolors the vertex with

higher ID between two conflicting vertices in every iteration.

Visiting the initially affected vertices will take O(Xp ) time. At

first iteration color conflict may arise for X
k2 (let Y) vertices.

As neighbors are not updated, no new vertex is recolored in

any iteration. Therefore, a positive real number λ less than 1

can be found such that at every iteration the average number

of recolored vertices be λ times the number of conflicting

vertices. Therefore, at first iteration λY number of vertices

will be recolored.

Similarly, in the second iteration conflict may arise among
λY
k2 vertices and λ2Y

k2 vertices will be recolored. Step 2 con-

verges iteratively and total amount of time required to check

the conflicting vertices and select candidate vertices to recolor

is Y
p (1 +

λ
k2 + λ2

k4 + λ3

k6 + . . . ) = Yk2

p(k2−λ) .

The total number of vertices recolored (may contain dupli-

cates as a vertex can be recolored in multiple iterations) in step

2 is λY(1+ λ
k2 +

λ2

k4 +
λ3

k6 +. . . ) = λYk2

k2−λ . As recoloring a vertex

takes O(δ) sequential time, step 2 recoloring takes O( λYδk2

p(k2−λ) )

time. Hence, total time requirement for step 2 is O( Yk2

p(k2−λ) +
λYδk2

p(k2−λ) ) = O( Yk2

p(k2−λ) (λδ + 1)) = O( X
p(k2−λ) (λδ + 1)).

Therefore, the average time complexity of the algorithm is

O( |Del|
p δ)+O( |Ins|p

1
k2 δ)+O( X

p(k2−λ) (λδ+1)) = O( δp (|Del|+
|Ins|
k2 )(1 + λ+1/δ

k2−λ )). As δ, k ∈ N; k > 1, and 0 < λ < 1,

λ ∈ R, the term
λ+1/δ
k2−λ becomes negligible. Therefore, the

time complexity of LVCU becomes O( δp (|Del|+ |Ins|
k2 )).
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Corollary 1. The expected number of recolored vertices by

LVCU (keeping itrmax = 0) is |Del|(1− 1
k )

δ + |Ins| 1
k2 .

Proof. From the proof of Theorem 2, we get the expected

number of vertices recolored at step 1 is |Del|(1 − 1
k )

δ +
|Ins| 1

k2 . Step 2 of LVCU finds color conflict within the

vertices colored by step 1 only. Hence, the expected number of

vertices, recolored by LVCU is |Del|(1− 1
k )

δ + |Ins| 1
k2 .

V. DISTRIBUTED VERTEX COLOR UPDATE

While our proposed algorithm efficiently parallelizes the

color update in dynamic graphs, generalizing it to distributed

environments is non-trivial due to the following challenges.

Inter-partition Communication: In distributed coloring, each

partition can individually update the color of their vertices,

except the border vertices [13]. As partitions do not have

updated information on all the neighbors of a border vertex,

coloring border vertices require inter-partition communication.

Also, the conflict resolution among the border vertices

requires several rounds of inter-partition communication [14].

In a distributed vertex color update problem, when the aim is

to reduce recoloring time and size of the affected sub-graph;

inter-partition communication cost becomes dominant.

Maintaining Color Consistency: In static graph coloring,

inter-partition communication is typically reduced by copying

the neighbors of border vertices as ghost vertices from other

partitions [13], [14]. However, in dynamic setup, where two

neighboring partitions do not know about each others topo-

logical changes, there can be issues of coloring consistency,

i.e. the same border vertex can be assigned different colors by

different processors to which it belongs.

To address these challenges, we design a priority based

distributed LVCU algorithm.

A. Partitioning

We use a label-propagation based partitioner as imple-

mented in PuLP [12]. To reduce the communication cost in

each partition Parti, we store two additional types of vertices

beside Ii (internal vertex) and Bi (border vertex), as follows.

Ghost vertex (G1
i ): If a neighbor vertex u of a border vertex

b ∈ Bi belongs to another partition Partj , then u is copied

to Parti. This copied vertex is called ghost vertex in Parti.
We term Partj as the owner patition of u.

2-hop ghost vertex (G2
i ): If a ghost vertex has neighbor vertices

in partitions other than Parti, those vertices are copied to

Parti and called 2-hop ghost vertices.

B. Priority Based Distributed LVCU

The key insight to our distributed algorithm is as follows.

A border vertex that is shared among multiple processors can

be simultaneously colored by each of the processors, and yet

assigned the same color if (i) the colors of its neighbors are

known and is consistent across processors, and (ii) the coloring

algorithm is deterministic.

Based on this observation, we propose a novel priority

assignment for vertices, such that the vertices for which

inter-partition communication becomes unavoidable are the

least likely to be recolored. Then we present a distributed

coloring algorithm based on the assigned priority to minimize

the rounds of inter-partition communications. The proposed

distributed LVCU algorithm workflow consists of two phases:

1) Preprocessing, and 2) Color update.

1) Preprocessing: This phase assigns priority to all the

vertices and distributes change edges among the partitions.

Initial Priority Assignment: Initially, in each partition,

priority 1 is assigned to all the internal vertices and priority

2 is assigned to the border and ghost vertices. If any internal

vertex is adjacent to any border vertex then the priority of that

internal vertex is changed to 3. All 2-hop ghost vertices are

assigned priority 4 (Algorithm 2).

In each partition, the priority assignment creates four non

overlapping regions R1, R2, R3, and R4 containing vertices

with priorities 1, 2, 3 and 4 respectively. Figure 2a shows an

example graph with two partitions. Figures 2b and 2c show

the initial priority assignment in those partitions. Green, blue,

yellow, and red areas in these figures indicate R1, R2, R3, and

R4 respectively. The dotted lines indicate the remainder of the

subgraph in R1 which is not shown in the example.
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Fig. 2: Priority assignment in different partitions.

Update Priority: Edge insertion can change the initial

priority assignment and can move nodes. As seen in Figure 2d,

in any partition, nodes can move from R1 to R3 (e.g. node

2), from R1 to R2 (e.g. node 1), and from R3 to to R2.

Moreover, based on nodes in the neighboring partition, new
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Algorithm 2: Initial Priority Assignment

1 for each partition Parti in G, in parallel do

2 Assign priority 1 to each vertex u ∈ Ii.
3 Assign priority 2 to each vertex u ∈ Bi or u ∈ G1

i .

4 Assign priority 3 to each vertex

u ∈ {x : (x, v) ∈ E, x ∈ Ii, v ∈ Bi}.

5 Assign priority 4 to each vertex u ∈ G2
i .

nodes can move to R4 (e.g. node 9). Priority change due to

edge insertion is described in Algorithm 3. Figures 2d and 2e

show the updated priority assignment after considering Inst =
{(1, 8), (3, 2), (4, 6), (7, 11), (3.4)}, and Delt = {(9, 11)} in

partition 1 and partition 2 respectively. Priority change due

to edge deletion does not affect correctness of the algorithm.

Therefore, we focus mainly on priority change due to insertion.

Algorithm 3: Change Priority

1 for each partition Parti in G, in parallel do

2 V i− = V i − {x : x ∈ R4}
3 for each edge (u, v) ∈ Ins do

4 if u ∈ V i− and v /∈ V i− then

5 if u ∈ G1
i then

6 Assign priority 4 to v and add it in G2
i .

7 else

8 Assign priority 2 to v and add it in G1
i .

9 Add u in Bi.

10 Reassign priority for the neighbors of u
and v.

11 Repeat Line 4–10 by interchanging u and v.

Due to our priority assignment, R3 always comes between

R1 and R2, whereas R3 and R4 are separated by R2. It ensures

there will be no edge between (R1,R2), (R3,R4), and (R1,R4).

Also, considering two adjacent partitions, Parti and Partj ,

the set of vertices in R1 region will be unique to each partition,

the set of vertices in region R2 will be the same for each

partition, and the set of vertices in region R3 of Parti will

be the set of vertices in region R4 of Partj and vice-versa.

Any vertex u ∈ R2 belongs to two or more partitions and in

all of them the priority of u remains 2 as it is considered as

either border or ghost vertex.

The preprocessing step also reads the initial color as-

signment and distributes the changed edges among different

partitions. Parti stores all changed edges ∆Ei.

2) Distributed Color Update: It can be observed that in

any partition Parti, for all but R4 vertices, the neighbors are

already in Parti. Therefore, if the initial color assignment

is known, ∆Ei can be processed and any vertex u /∈ R4

can be recolored without additional information from other

partitions. Next, if the color for each vertex u is gathered from

its owner partition, it will be an updated color as in owner

partition, u belongs to R1, R2 or R3. Therefore, information

Algorithm 4: Distributed LVCU

1 Function Dist_LVCU_Main(G, C, ∆E, itrmax):

2 Initialize empty set Aff , S, and ∆E3
3 itr ← 0
4 for each edge (a, b) ∈ ∆E in parallel do

5 if a.priority = b.priority = 3 then

6 Add (a, b) in ∆E3

7 else if a.priority �= b.priority then

8 y ← (a.priority < b.priority)?a : b
9 For (a, b) being a non-trivial edge insertion,

recolor y using min. available color in

SC′(y)
10 For (a, b) being an edge deletion, recolor y

using another endpoint’s color

11 add y to set Aff

12 else

13 Aff ← ProcessCE(G,Del, Ins,Aff )

14 while Aff is not empty do

15 S ← Aff , Aff ← ∅
16 for each vertex v ∈ S, in parallel do

17 Aff ← Aff ∪ CheckConflict(G, v)

18 if itr < itrmax then

19 Aff ← Aff ∪ UpdateNeighbors+(v)

20 itr ← itr + 1

21 ProcessRegion3(G,C,∆E3)

22 Function UpdateNeighbors+(G, v):

23 A ← ∅ � stores affected vertices locally

24 for vertex n, where v.colorprev < n.color and n is

neighbor of v do

25 if n.priority �= v.priority then

26 skip the iteration for n

27 if v.colorprev /∈ SC(n) then

28 n.colorprev ← n.color,

n.color ← v.colorprev
29 add n to set A

30 return A

31 Function ProcessRegion3(G,C,∆E3):

32 Initialize empty set A and S
33 for each edge e(a, b) ∈ ∆E3 in parallel do

34 if e(a, b) to be inserted ∧ a.color = b.color
then

35 y ← argmaxx∈{a,b}(x.id)
36 y.colorprev ← y.color
37 y.color ← min. available color in SC′(y)
38 add y to set A

39 while A is not empty do

40 S ← A, A ← ∅
41 for each vertex v ∈ S, in parallel do

42 A ← A ∪ CheckConflict(G, v)
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about recolored R4 vertices is not required. However, when

for processing the next batch of changes, the updated colors

for R4 vertices are required to recolor R2 vertices correctly.

Therefore, before processing the next batch, updated colors of

R3 vertices need to be sent from the owner partition to the

neighboring partitions where those vertices belong to R4.

We present the following properties of our distributed LVCU

algorithm: 1) R4 is never recolored while processing changes.

Color of R4 is used for recoloring other regions. 2) R1 is

recolored by its owner partition only. 3) R2 is recolored

by multiple partitions, but it gets the same color due to

deterministic algorithm. 4) As the updated color of R3 is

exchanged before processing the next batch of changes, R3 is

recolored only when it is utmost necessary to maintain proper

coloring. It helps to reduce the size of information exchange.

As the color updates of R1 and R2 do not require any inter-

partition communication, distributed LVCU processes changed

edges and recolor affected vertices completely in R1 and R2

at first and then update color in R3, if necessary.

Step 1–Processing Changed Edges in Regions 1 and 2:

The algorithm processes the changed edges in parallel and

inserts the edges with both endpoints in R3 into a new changed

edge set ∆E3 for processing at the end (Algorithm 4 Line 6).

The algorithm also processes other changed edges for which

at least one endpoint belongs to R1 or R2 and selects the

candidate vertices in the lower priority region (R1 or R2) for

recoloring. For the intra-region changed edges where both the

endpoints belong to either R1 or R2, the candidate vertices for

recoloring are selected using the same logic as in Algorithm 1.

Precisely, for edge deletion (resp. insertion) the endpoint with

a higher color ID (resp. global ID) is selected. Any candidate

vertex is recolored using the minimum available color in SC′.

The lowest unset-bit in a fixed bit SC′ with a fixed lowest

color ID provides a deterministic way to color R2 vertices.

Step 2–Resolve conflict in R1 and R2: Since no vertex

u ∈ R3 is selected nor recolored at step 1, two conflicting

vertices should either be in R1 or both in R2. The conflict

resolution and neighbor’s color update step is similar to the

methods in Algorithm 1. The only difference in current ap-

proach of neighbor’s color update is the constraint prohibiting

the process to recolor any R3 vertex (Algorithm 4 Line 26).

Step 3–Process Changed Edges in R3: If the color of any

vertex u ∈ R3 is updated at t+1, the owner partition requires

to send the updated color to its neighbor partitions where u
belongs to R4. This inter-partition communication is not im-

mediately necessary to compute colort+1, but necessary before

computing colort+2. Therefore, this communication can be

overlapped with the next preprocessing phase. However, the

communication among the partitions can be costly depending

on the size of data; hence the number of recolored vertices is

minimized by restricting color update only for edge insertion.

(Algorithm 4 Line 34). Color conflict in R3 is resolved locally.

3) Discussion on communication reduction: Here, we

detail how LVCU reduces inter-partition communication costs

through the four optimizations below.

2-hop ghosts: Storing the 2-hop ghosts helps to recolor any

border vertex and resolve a color conflict between two border

vertices without any inter-partition communication.

Deterministic recoloring for R2: LVCU avoids any random-

ized variable or operation and uses deterministic approach for

recoloring or resolving conflict in R2. As a result, an owner

partition does not require to inform its neighbor about the

updated colors in R2.

Minimized color update in R3: A novel priority assignment

makes R3 vertices least probable to be recolored. It reduces the

number of vertices requiring inter-partition communication.

Use of minimum information: The distributed LVCU uses

minimum available information (global ID, priority or color) to

select the vertex for recoloring. Unlike existing approaches, it

does not store additional vertex properties such as a degree

or saturation color set. This helps to reduce the total data

transferred for R4 in the preprocessing phase.

VI. PERFORMANCE EVALUATION

We implemented our algorithms for NVIDIA GPUs using

CUDA C++. The adjacency list is stored in a modified com-

pressed sparse row (CSR) format in unified memory. Changed

edges are stored using an array of structures where each

element stores the endpoints of an edge, and a flag to indicate

insertion/deletion status. For lower memory usage and faster

recoloring we use a 32-bit bitmap implementation of SC′.

Optimization using 32-bit bitmap: Let Gt be colored

using a set of colors C = {1, . . . k}. To store SC′ we use a

32-bit bitmap, where ith bit (1 ≤ i ≤ 32) denotes the (i+j)th

color in SC. Here, j (j ∈ N) can be chosen in a way such that

(k − 32) < j < k. In bitmap an unset-bit indicates that the

corresponding color is not in the saturation set, SC. Hence,

the lowest unset-bit provides the min. available color in the

partially stored saturation color set SC′. As CUDA does not

have a readily available template for bitmap related operations

yet, we use a single integer (32-bit) as a 32-bit bitmap and

simple bitwise operators to perform bitmap related operations.

Our algorithm takes advantage of both edge-centric and

vertex-centric operations. Each changed edge is processed by

each CUDA thread; whereas for conflict checking or neighbor

update, each affected vertex is assigned to a single thread.

We use a filter kernel after each iteration of Step 2 to

uniquely select the affected vertices. This operation reduces

redundant work by eliminating duplicates. For distributed im-

plementation, we use MPI for communication among different

partitions and use data parallelism at each partition level.

A. Experimental Results

We evaluated the performance of our implementations on

Longhorn cluster [15] at Texas Advanced Computing Center.

It consists of 104 computing nodes, each equipped with 2 IBM

Power System AC922 processors and 8 NVIDIA Tesla V100

GPUs (80 streaming multiprocessors) with 32GB memory.

These computing nodes are interconnected via Infiniband and

attached to a Lustre file system.

To evaluate the performance of LVCU, we consider five real

[16] and four synthesized networks [17], reported in Table II.
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TABLE II: Networks in Our Test Suite [16], [17]
(a) Real Networks

Graph (G) Alias Vertices Edges

IMDB D1 896,308 3,782,463
soc-orkut D2 2,997,167 106,349,209
inf-italy-osm D3 6,686,493 7,013,978
inf-road-usa D4 23,947,347 28,854,312
soc-sinaweibo D5 58,655,849 261,321,071

(b) Synthesized Networks

Graph (G) Alias Vertices Edges

RMAT24 e2 D6 16,777,216 33,554,432
RMAT24 e4 D7 16,777,216 67,108,864
RMAT24 e8 D8 16,777,216 134,217,728
RMAT27 D9 134,217,728 268,435,456

(a) RMAT24 e4 (b) RMAT24 e8

Fig. 3: Performance of LVCU on different batch size.

1) Experiment on |∆E|: Figure 3 shows the execution time

of our LVCU CUDA implementation when the batch size of

changed edges is varied. Each batch consists of different mixes

of edge insertions and deletions. In our experiment, if the batch

contains p% insertions then there is (100−p)% edge deletion.

The result shows our algorithm takes the highest execution

time for 25% insertion, i.e., 75% deletion. For every edge

deletion, LVCU tries to recolor one endpoint of the edge and

visits the neighbors of the endpoint. However, in the case of

edge insertion, a vertex is recolored or its neighbors are visited

iff both the endpoints of the inserted edge are having the same

color. Therefore, the average work for edge deletion is higher

than that of edge insertion and a higher percentage of deleted

edges in a batch increases the total execution time. In Figure 3,

when the batch size is increased exponentially, the time for

vertex color update increases gradually.

2) Single-GPU Performance: Figure 4 shows the perfor-

mance of different steps in the LVCU algorithm. It shows that

processing Del takes more time than processing Ins and the

deletion processing time is dominant in the whole execution

time. We get this result as the average work for processing

deleted edges is higher than the average work requirement for

processing inserted edges. When the percentage of insertion is

increased (or % of deletion is decreased) the whole execution

time decreases as the number of deleted edges decreases.

Fig. 4: Execution time of different steps

(a) inf-road-usa (b) Orkut

(c) inf-italy-osm (d) RMAT24 e2

(e) RMAT24 e4 (f) RMAT24 e8

Fig. 5: Single GPU performance comparison.

We compare the execution time of a single GPU LVCU

implementation with a static graph coloring algorithm in

Kokkos [18], [19], because there is no GPU-based vertex

coloring implementation for dynamic networks to the best

of our knowledge. For instance, the agent-based algorithm

proposed in [20] cannot accept rapid changes; the incremental

algorithm proposed in [21] does not mention the type of paral-

lel architecture used and their implementation is not available.

We tried to compare LVCU with coloring implementation

provided by Gunrock [22] library also. However, when tested

on medium-scale networks, the Gunrock implementation failed

to provide any valid coloring result within a reasonable time.

As Kokkos coloring works on static graphs only, for a batch

of changes ∆Et = (Inst, Delt), we supply a graph with edge

set Et+1 = ((Et ∪ Inst) \Delt) for Kokkos implementation.

Figure 5 presents performance results; the Y-axis shows

the execution time of Kokkos-coloring divided by that of

our implementation (the factor by which we are faster than

Kokkos). Although the change edges are generated randomly,

the results are mainly affected by two factors. First, the dele-

tion takes more time than insertion in our algorithm. Second,

for a fewer percentage of insertion (or higher percentage of

deletion) the effective number of edges is reduced for Kokkos-
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coloring, requiring comparatively less time to recompute. In

most of the plots, LVCU performs better than Kokkos-coloring

if the percentage of insertion is increased. The performance

comparison shows that our algorithm can provide updated

vertex color up to 20X faster than Kokkos-coloring.

3) Distributed Implementation Scalability: Figure 6 shows

the strong scaling analysis of distributed LVCU. It also com-

pares the performance for different percentages of insertion

when the batch size is fixed. The results show that the

execution time decreases drastically when the number of

GPUs changed from 2 to 4. However, beyond 4 GPUs the

performance improves very slowly. This behavior is justified

as the color update part in ProcessCE function or visiting

neighbors in CheckConflict function are sequential in nature

and do not execute faster if the number of GPU is increased.

(a) RMAT27 (b) sinaweibo

Fig. 6: Performance with different number of GPUs

TABLE III: Color Quality Comparison (|C|, |Ck|, |Ch| : # of

colors used by our algorithm, Kokkos-coloring, and Havoqgt

respectively; Ins : % of edge insertions; ∆E in million)

(a) Single GPU

G ∆E Ins |C| |Ck|

D6 0.1 25 19 19
D6 0.1 50 19 19
D6 0.1 75 19 20
D6 1 25 47 46
D6 1 50 47 46
D6 1 75 47 47
D2 5 25 102 124
D2 5 50 102 125
D2 5 75 102 126

(b) Distributed

G ∆E Ins |C| |Ch|

D1 1 25 16 16
D1 1 50 16 16
D1 1 75 16 17
D5 10 25 102 126
D5 10 50 102 126
D5 10 75 102 127

4) Experiment on Color Quality: Table III compares the

number of colors used by our algorithm and baseline algo-

rithms. In Table IIIa, |C| and |Ck| are respectively the number

of colors used by our single GPU implementation and Kokkos-

coloring. Since no implementation exists for dynamic graph

coloring for distributed GPUs, we use Havoqgt-based dynamic

graph coloring implementation for distributed CPUs [2] as

baseline in distributed case. Table IIIb compares the maximum

number of colors used in our distributed implementation and

Havoqgt. Results for LVCU and distributed LVCU show that

our algorithm uses fewer or comparable colors. The total

number of colors in our algorithm depends on 1) Initial

coloring, and 2) Edge deletion. For edge deletion, LVCU aims

to reduce the total number of colors by recoloring the endpoint

with a higher color ID using the other endpoint’s color.

VII. RELATED WORK

A. Static Graph Coloring

A plethora of heuristic algorithms [9]–[11] exists for static

graph coloring. For large graphs, the existing parallel vertex

coloring algorithms can be broadly classified as: independent

set based and speculation based. The former class finds

independent subsets in the graph and colors the vertices in

each subset in parallel. A Monte Carlo randomized algorithm

is proposed in [23] to find a maximal independent set and

color all the vertices in the set with the same color. This is

improved in [24], where a random number assignment is used

for every vertex to find the independent sets and color the

vertices concurrently. The algorithm is also combined with

Largest Degree First (LDF) heuristic in [25], which is further

improved in [26]. An independent set based vertex coloring

algorithm for single GPU was implemented in [27].

On the other hand, speculation based algorithms first color

the vertices in parallel and iteratively resolve conflicts [13],

[28]. A shared memory parallel algorithm based on the specu-

late and iterate approach is proposed in [29]. The GPU-based

Gunrock library uses an advance-filter-compute framework

[22] and provides a single GPU vertex coloring implemen-

tation. Recently, a multi-GPU implementation is developed

for distributed systems [14] that modifies vertex coloring

algorithms in the Kokkos-coloring framework [19] to present

MPI+X implementations of distance-1 and distance-2 coloring.

Specifically, this algorithm uses 2-hop ghosts to minimize the

communication cost. Nevertheless, the randomized candidate

selection procedure used for resolving conflict may still lead

to multiple rounds of inter-partition communications.

B. Dynamic Graph Coloring

As applying static coloring algorithms to dynamic graphs

can be costly for small changes, numerous methods have been

proposed to update the colors for dynamic graphs.

An agent-based algorithm, is proposed in [20] for coloring

dynamic graphs, where the candidate vertex between two

conflicting adjacent vertices is selected for recoloring by

choosing the vertex with the lowest degree of saturation. The

algorithm limits recoloring the endpoints of a changed edge

and their immediate neighbors. Another greedy online coloring

algorithm proposed in [30] accepts vertices one by one with

their corresponding edges, and colors the vertices using a color

selection rule. However, this approach leads to suboptimal

color quality for not adjusting the color of neighbor vertices.

To evaluate the success of an online coloring algorithm, a

performance metric is introduced in [31] along with theoretical

bounds. To maintain color consistency between the online

approach and that of a static graph, an incremental algorithm

for maintaining vertex color in dynamic graphs is proposed

in [21]. However, this algorithm recolors a large number of

vertices to achieve the same color output as the target static

graph algorithm [9] after a single edge insertion or deletion,

resulting in a relatively high overhead and low efficiency.

The authors in [2] claim to present the first generic dis-

tributed, online graph coloring algorithm. They use a hashing

on global vertex ID to resolve color conflict, reducing the
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initial communication cost. Although the algorithm adjusts

color for only endpoints of an inserted or deleted edge, it

misses the opportunity to use fewer colors because it does not

adjust the color of neighbors for edge deletion.

Unlike the existing approaches, our proposed distributed

LVCU algorithm follows the speculate and iterate approach in

each partition and colors the affected vertices by processing

the changed edges in parallel. The color conflicts are resolved

iteratively. Instead of using an additional parameter such as

degree, saturation degree, or hashed value of a vertex to

determine which vertex to recolor, our algorithm uses the

minimum available information such as vertex ID and vertex

color. The LVCU algorithm maintains a proper δ+1 coloring

without attempting to find an optimal solution, although it aims

to reduce the number of colors used in case of edge deletion.

VIII. CONCLUSION

We first presented a loosely maintained vertex color update

algorithm, which uses a partially stored saturation color set

to recolor vertices efficiently using less memory. Next, we

proposed a novel priority assignment technique followed by

a distributed color update algorithm. Extensive experimental

evaluations on real-world and synthetic networks show that our

GPU-based implementation updates vertex color up to 20X

faster than the baseline method using comparable colors.

Although producing a partial saturation color set is sequen-

tial in our current approach, it is amenable to dynamic paral-

lelism in GPU. Furthermore, a CPU-GPU hybrid architecture

can improve the performance executing heavy operations at

the host and light repetitive works at the kernel. We plan to

investigate these two approaches as future work.
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