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ARTICLE INFO ABSTRACT

Keywords: Circadian rhythms play a vital role in maintaining an individual’s well-being, and they have been shown to be

AFtigr?PhY the product of the master oscillator in the suprachiasmatic nuclei (SCN) located in the brain. The SCN however, is

;I“fadlafl thythm inaccessible for assessment, so existing standards for circadian phase estimation often focus on the use of indirect
elatonin

measurements as proxies for the circadian state. These methods often suffer from severe delays due to invasive
methods of sample collection, making online estimation impossible. In this paper, we propose a linear state
observer as an elegant solution for continuous phase estimation. This observer-based filter is used in isolating
the frequency components of input biometric signals, which are then taken to be the circadian state. We start
the design process by fixing the observer’s oscillatory frequency at 24 hours, and then we tune its gains using an
evolutionary optimization algorithm to extract the target components from individuals’ data. The resulting filter
was able to provide phase estimates with an average absolute error within 1.5 hours on all test subjects, given

Sleep-wake cycle
State observer
Wearable data

their minute-to-minute actigraphy data collected in ambulatory conditions.

1. Introduction

A large number of biological processes within living organisms have
been found to exhibit a cycle with an approximate 24-hour period.
These processes are collectively referred to as circadian rhythms and in-
clude variations in heart rate, core body temperature, and metabolism,
as well as a multitude of other processes. Circadian rhythm generators
play a vital role in the overall well-being of the organism and are con-
served throughout the evolutionary tree as far back as cyanobacteria,
although the actual genetic machinery varies. In the animal kingdom
(including humans), all cells contain identical genetic machinery ca-
pable of generating a circadian rhythm; indeed, peripheral circadian
rhythm generators have been demonstrated in a wide variety of tissues
including cardiomyocytes and vascular smooth muscle, where they ex-
ert their effects through the control of protein effectors. Under steady
state conditions, these peripheral clocks are synchronized by a mas-
ter circadian clock located in the suprachiasmatic nucleus (SCN) of the
hypothalamus. The SCN is composed of approximately 20,000 neurons
whose firing rate is governed by transcription and translation of a group

of genes, the products of which are proteins that participate in a nega-
tive transcriptional feedback loop [1, 2]. Without external cues known
as zeitgebers, the SCN exists in a free-running state that often varies
from a strict 24-hour rhythm. Light is the strongest zeitgeber involved
in entraining the SCN to a 24-hour rhythm, although other less effective
cues also exist.

When the SCN and the peripheral clocks are entrained to a 24-hour
rhythm synchronized to the outside environment, biological processes
that depend on such synchronization are optimized. On the other hand,
circadian disruptions can have adverse effects on a person’s quality of
life, with issues ranging from short-term problems such as cognitive im-
pairment and digestive issues to chronic illnesses such as cardiovascular
disease, diabetes, and certain cancers [3, 4]. One of the more important
circadian rhythms consists of the drive for arousal known as Process C,
which combines with the homeostatic Process S to determine the level
of alertness or sleepiness of an individual at any given time of day; dis-
turbances in wakefulness and sleepiness are ubiquitous in modern life
and relief of these symptoms and their consequences are an important
aspect of the study of chronobiology. These issues have spurred signif-
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icant research in the field of circadian control and estimation with the
aim of developing techniques to assess and mitigate the effects of circa-
dian disruption.

Multiple open-loop methods have been proposed to get the circa-
dian system to a goal state. The bulk of these constitutes an optimal
control approach to scheduling lighting in order to minimize the time
to entrainment [5, 6, 7]. To control the rhythm in a feedback manner
however, we need to be able to accurately assess the circadian state
in real-time. The SCN, by virtue of its physical location, does not lend
itself readily to direct measurements, so existing research has largely
focused on using circadian signals as a proxy for the oscillator. A few
of the signals most widely studied have been melatonin concentration
(both in plasma and saliva), core body temperature, and activity lev-
els [8]. Melatonin, due to its relative resistance to masking factors, has
been the standard for circadian state estimation for decades. Particu-
larly, studies have used the dim light melatonin onset (DLMO) - the
time at which the melatonin concentration crosses a certain threshold
in dim lighting - as a circadian phase marker since it was first proposed
by Lewy et al. in [9]. This method has proven highly useful in clini-
cal research, but DLMO can only be used in estimating the timing of
phase markers or the phase shift between two points [10]. Moreover,
melatonin values are not available in real-time but require laboratory
processing. Consequently, there is still the need for continuous circa-
dian phase estimation if the measurements are to be incorporated into
an online feedback controller.

With the aim of eliminating the pitfalls of melatonin assessment and
similarly invasive genetic assay techniques, recent research has focused
on the use of easily accessible biometric data, most prominently activ-
ity levels, heart rate, skin temperature, and light exposure [11, 12, 13].
These measurements are used in estimating the circadian phase in a
variety of ways - regression techniques, machine learning algorithms,
and model-based approaches [14, 15]. Brown et al. frame the estima-
tion problem as one of classification and use their method in estimating
the DLMO phase marker with mean error of 1.3 hours [16]. Gil et al.
use an auto-regressive moving average with exogenous input (ARMAX)
model in estimating DLMO for 11 individuals [17]. Their work was
particularly useful in showing that a combination of internal signals
and external cues could improve the accuracy of the algorithm used. In
[18], Cheng et al. combine actigraphy (rest/activity data monitored us-
ing a wrist-worn device) and light data in a model-based framework to
predict the DLMO timing of fixed shift workers - a particularly difficult
population to assess. Their method produced better correlations with
in-lab DLMO measurements than agreement using sleep timing, provid-
ing a potential improvement to existing clinical practices in studying
shift workers. Mott et al. in [19] use a particle filter in conjunction
with the Kronauer model [14] in predicting the circadian phase marker.
Woelders et al. [20] estimate the nadir of core body temperature (a
phase marker) using measured ambient light and the Kronauer model.
These methods largely still focus on the estimation of phase markers
instead of continuous estimates. Yin et al. attempt to solve the continu-
ous estimation problem in [10] by using an adaptive notch filter (ANF).
Their approach is able to estimate the continuous circadian phase with
appreciable accuracy, but the nonlinear system is rather complex and
requires significant resources for tuning.

In this paper, we propose a method for estimating the continuous cir-
cadian phase using a linear state observer in conjunction with easily ac-
cessible biometric signals. By assuming a form on the composition of the
biometric signal, we can design an observer for a multi-component har-
monic oscillator, and then fit its gains to the user data using an evolu-
tionary optimization algorithm. The optimization is structured such that
the observer isolates target frequency components from the measured
signals, allowing us reliably estimate the continuous circadian phase for
individuals entrained to the light-dark cycle. Moreover, the online esti-
mation and its computational efficiency open up the approach for use
in a feedback control loop. We evaluate this observer-based filter (OBF)
with actigraphy data collected for eight healthy subjects in ambulatory
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conditions. We compare its estimated phase shift with the DLMO val-
ues for each subject, along with the estimates from the ANF previously
developed by our group and used in [10] for solving the same prob-
lem. We find that our approach provides comparable phase estimation
with both methods at a fraction of the optimization run-time that was
needed by the ANF, and without the use of invasive techniques required
by the melatonin assessment.

2. Materials and methods
2.1. Experiment setup

2.1.1. Data collection

For this paper, we used the actigraphy data of eight healthy young
adults. Five subjects were female and three were male, aged between
18 and 34 y (25.8 + 6.6 y). All female subjects were pre-menopausal,
though their menstrual cycles were not monitored during the study, as
it’s been shown that it has no effect on the circadian acrophase or period
in non-controlled conditions [21, 22, 23].

While the data was collected over an 8-month period, the OBF was
tested only on data over a 2-week period, ensuring weather and cli-
mate did not play a role. The actigraphy data was collected using an
ActiGraph GT3X+ Monitor (Pensacola, FL) worn on the subject’s non-
dominant wrist. The device collected data at 1-minute intervals over
the 2 weeks, providing near real-time information on the subjects. Am-
bient light intensity was also measured, though not considered in this
paper.

The DLMO measurements were taken on the 7th and 14th days
using saliva samples collected at 30-minute intervals with Salimetrics
SalivaBio Oral Swabs (State College, PA). The samples were taken with
the subjects in a supine position in dim light settings, starting approxi-
mately 5 hours before and ending 30 minutes after the average bedtime.
Participants were instructed to accumulate saliva for 2 minutes, after
which the samples were then stored at -20° Celsius. For analysis, the
samples were thawed and centrifuged for 10 minutes at 2500 rpm.

All participants provided their informed written consent, and the
experiments followed the principles in the Declaration of Helsinki from
the World Medical Association. The experiments were monitored by
the University of New Mexico (UNM) Health Sciences Center Human
Research Protections office and approved by the UNM Institutional Re-
view Board (IRB). The study’s associated IRB number is 14-002.

2.1.2. Simulation environment

All numerical experiments were conducted using MATLAB R2021a
and Simulink on a Dell workstation equipped with an Intel Core i7-3770
3.40 GHz processor and 16 GB RAM.

2.2. Observer-based filter

A state observer is a tool used in estimating the internal state of
a target system given a model of its dynamics, and measurements of
its inputs and outputs. When the target system is observable, the ob-
server can be used to estimate the full state of the target, allowing us
to solve many fundamental control problems, including feedback con-
trol. In the continuous-time case, we assume the state of an autonomous
linear time-invariant (LTI) system satisfies

x(t) = Ax(t)

y(0) =Cx(®)

where x(7) is the system’s state and y(r) is the measurable output at
time 7, A represents the system dynamics, and C represents the output’s
relationship to the state. If this system is observable, then given the
outputs, we can estimate the internal states using a state observer of
the form
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)?(t) =(A—-LO)x(@)+ Ly(t)
¥ =Cx(®)

where %(¢) is the state estimate, j(¢) is the estimated output, and L is
the observer gain matrix. If the observer is appropriately designed to be
asymptotically stable, the estimation error

e(t) = %(t) — x(1)

converges to zero as t — oo, implying that the estimate begins to mirror
the true state given sufficient time. The speed of convergence can be
increased by setting the poles of the continuous-time observer further
to the left of the vertical axis in the complex-plane.

In this paper, we assume that the nominal circadian signal (e.g.,
actigraphy) is a periodic signal and as such, can be approximated arbi-
trarily closely using a Fourier series. The signal can then be represented
as a sum of K harmonics and a bias term, in the form

K
yt)=d+ 2 a;sin(io™t + ¢;),
i=1

where * is the fundamental frequency of the signal which we assume
to be fixed at i—irad /h (corresponding to a 24 hour period), d is the
constant bias term, g; is the amplitude, and ¢; is the phase offset of the
i-th harmonic. The harmonic components of this sum, being sinusoidal,
can each be generated by an appropriately designed linear harmonic
oscillator. This fact allows us to assume the signal was generated by
a harmonic oscillator model with multiple components, and to subse-
quently design a linear observer to approximate its output. Note that,
in practice, d, a;, and ¢; are time-varying. The filter that we develop is
thus meant for tracking how these variables deviate from their nominal
values over time.

We design an observer whose internal dynamics consists of K
harmonically-related oscillators with fundamental frequency «*. By
matching the output of this observer with the input signal, we are
able to use the observer states in estimating the parameters a;, ¢,, for
i€{l,...,K}, and d. The biometric signal thus forms the input to the
observer, with which we estimate the internal state & € R2K+! with
%,;_; and %,; as the i-th harmonic and its derivative, respectively, and
%ok 4+1 as the estimated bias term.

In this form, the OBF gains L= L, L, Lok, ]T are the de-
sign variables of the algorithm and simply need to be tuned with an
appropriate method to fit each individual’s data. We select the system
matrices

A0 0 0
0 A, 0 0
A=l A B
0 0 .. Ag O @™
0 0 .. 0 0
c=[c G .. Ckx 1]

with submatrices

0 1
A= [—(iw*)z 0] ’

c=[0 %]

iw*

iel{l,...,K},

The choice of system dynamics A and output matrix C in Equation (1)
represent our view of the biometric data as the sum of multiple
harmonically-related components with a bias term, where K represents
the target number of harmonics. The filter then yields the output

K

SO 2%y;
IO =g + 2 -
i=1

io*
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2.3. Gain optimization

To account for the variability in the human population, we tune the
observer gains for every individual. To do so, we first quantify optimal-
ity using the cost function proposed in [10]

F(Y(w)7 Y(w)) = Jharma + Jnoise’ (2)
with
b

Jharmo :/[Y(w) - 1}((‘))]2 dw
0

nw*+6w

K
+y / [Y(@) - Y (@) do
"=byo 5

and

K—1 (n+1)w*—éw

Jm)ise = 2 Y(w)2 do
n=0 nw*+éw
+oo
+ / ¥ (@) do,
Ko*+éw

where Sw represents the bandwidth around the frequency components
and bias term that we want the filter to capture, J,,,.,, represents the
square error around each component and the bias term, J,,,, is the
filtered output outside the desired components, K is the filter order
being used, and Y (w) and Y (w) are the Fourier transforms of the input
biometric signal and the OBF output, respectively, defined

Iy
Y(w) 2 / y(B)e I dt,
0
)
?(w)é/ﬂt)e_j”” dt,
0

where ¢, is the time of the final measurement.

The observer gains are then optimized using the evolutionary strat-
egy [24] detailed in Algorithm 1 on the cost function in Equation (2).
The optimization algorithm has y initial members at each iteration,
during which A offspring are created by random combinations of p
parents. The A worst performing members of the population are then
removed, along with their corresponding costs, and then the next iter-
ation is started. During each iteration, if a population member is found
to yield an unstable system, its cost is set to int_max (2147483647 on a
64-bit computer) to maximize the probability that it is removed from
the population on that iteration. By doing this, we can also guarantee
that the algorithm’s output gain matrix will be stable provided the ini-
tial population includes at least one stable member.

2.3.1. Initial population

The initial population is created using a logarithmic sampling
method between specified bounds. We start by creating a matrix N €
R#*CK+D) of uniformly sampled points

n~U(l,r),

where / is the left end and r is the right end of the uniformly sampled
space. We then create the initial population P € R**CK+D with entries

10(—m+LB) n>m+0.5

p=10, m—05<n<m+0.5,
—10Um=n+LB) -y <y —0.5
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Algorithm 1: Gain Optimization.

Input: max_iterations, y, u, 4, p

Initialize:
Create initial population as in 2.3.1
fori=1,...,udo
Create state space using population(i)
if created system is stable then
¥ «—OBF(y)
Cost(i) «— F(Y (w), Y (w))
else
| Cost(i) «— int_max
end
end

Iteratively improve population:
for i=1,...,max_iterations do
forj=p+1,...,u+ido
Combination < p random population members
population(j) «— mean(Combination)
Create state space using population(j)
if created system is stable then

() < OBF(y) .

Cost(j) «— F(Y (@),Y (w))
else

| Cost(j) «— int_max

end

end
Remove A highest costs and corresponding population members

end
L,,, < best member of final population

Result: Optimal gain matrix L,,

where the midpoint m = "t and LB is the lower bound exponent. This
gives an initial population with ~ 45% of its members negative, ~ 45%
positive, and the rest set to zero. For example, with LB = -5, | =0,
and r = 8, we generate y random gain vectors with elements uniformly
distributed between +10~> and +10~!.

2.4. Circadian phase estimation

Once the optimal gains have been obtained using the above proce-
dure, we can then use them in estimating the continuous phase of the
oscillator. We take the estimated circadian phase to be the argument of
the first harmonic term

3

0(1) = *t + ¢, (1) = —tan™! [Lm] :

w* - x (1)

In our current experiments, we used the estimated phase shift be-
tween day 7 and 14 of the subject data in order to benchmark the filter’s
performance against the corresponding DLMO measurements. We also
compare the OBF’s estimate with that of the ANF. To calculate the phase
shift for both filters, we use the formula

24
Apiter = i / 0t + 6 x 24) — 0(t + 13 x 24) d1,
0

which is the difference between the average phase on day 7 and the
average phase on day 14. A positive value here represents a phase delay,
suggesting that circadian oscillation occured later in time on the 14th
day than it did on the 7th. The phase shift gotten from DLMO data is
calculated using the formula

Aprmo =T =Ty,
where T represents the time that the chosen melatonin threshold was
reached. A positive value in this case also represents a phase delay sug-
gesting that the DLMO happens later in time on the 14th day than it did
on the 7th.

The entire process in this project is thus made up of the gain op-
timization followed by the phase estimation. Fig. 1 shows the usage
envisioned for the filter, where the optimization can be run at set in-
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Fig. 1. Filter Optimization and Deployment Flowchart.

tervals, or when a certain amount of new data is available. The phase
estimation can be carried out between optimizations and its results can
then be used in a closed-loop control system.

2.5. Adaptive notch filter

The adaptive notch filter was initially proposed by Mojiri et al. [25]
to extract a sinusoid with variable frequency from a noisy signal. It was
then modified for multi-harmonic signals with constant bias by Zhang
et al. [26, 27] and then used in [28] for multiple inputs with the same
fundamental frequency. The continuous-time ANF dynamics are given
by

X(1) = Apnp(@)x + By p(@)y — §),
b(1) =~ %, & (y = J),
() = Cynp(@)x,

where & is the ANF’s continuous estimate of the fundamental frequency,
x € R?K+1 represents the ANF states, with x,;_; and x,; as the i-th har-
monic and its derivative, respectively, and y is the ANF’s filtered output.
The state space matrices are given as

A, 0 ... 0 0
0 A, ... 0 0
Aunp(@) =] : : s
0 0 ... Ag O
o o0 .. 0 O
. T
Bynr@=[B, By, ... Bg 4] .
Canr@=[C; C, ... Cx 1]

with submatrices

Af(@)=[_(fd))2 (1)]

B@=[0 ap]",

c@=[o0 %],
ie(1,2,....K}

In this form, there are three parameters which can be tuned to fit
a subject’s data — the damping factor ¢, the frequency adaptation y,,,
and the bias adaptation y,. Yin et al. proposed a tuning algorithm in
[10] to fit these parameters to each individual subject’s data, yielding
promising results on the actigraphy dataset.

Of note, however, is that the frequency adaptation and the atten-
dant mutability of the estimated frequency & render this as a nonlinear
time-varying system, making it more complex to optimize and analyze.
The OBF eliminates the frequency adaptation based on the argument
that doing so materially affects neither the cost of the achieved optimal
filter, nor the resulting phase estimation in entrained settings. We know
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from existing research that the average person’s free-running circadian
period is distributed tightly around 24.18 hours [29]. However, in am-
bulatory conditions where subjects are allowed to follow a daily routine
and are exposed to the day-night cycle, it has been shown that the re-
sulting entrained rhythm exhibits a period closer to 24 hours [30]. This
is the known effect of zeitgebers, of which light is the strongest, that
work to synchronize the biological clock to the 24-hour cycle. This fact
allows us fix the period of our model at 24 hours and to view slight
inter- and intra-individual variations in period as noise components in
the output signal. From this perspective, the adaptability of the ANF
opens it up to learning the noise parameters in the signal which then
hampers its ability to accurately assess the circadian phase. Moreover,
we found that in practice and in [10], the ANF frequency adaptation
was consistently optimized to near zero, effectively freezing the signal
period at 24 hours. The OBF eliminates this adaptation, and we see in
the next section that it has better estimation power than the ANF on
real actigraphy data, and comparable power for synthetic data with no
phase corruption.

3. Results

In order to evaluate the accuracy and efficiency of the OBF, we
look at the optimized filters’ phase shift estimates, the optimization run-
times, and the final optimal costs. These numbers are all compared with
those produced by the ANF after running it with identical optimizations.
For the results discussed in this paper, each optimization ran for 50 iter-
ations, starting with y = 100 random members of the population, p =2
parents, and 4 =50 offspring at each iteration. We focus primarily on
subjects 3 and 10 from [10], as 3 has the most detail across the filter
orders studied in that paper, and subject 10 has complete DLMO infor-
mation. The phase shifts and runtimes for subjects 4 to 9 are also shown
in the appropriate sections.

First, we note Fig. 2 which was generated with optimized versions
of both filters on subject 10’s data. Fig. 2A shows the original input
signal, along with the filter outputs. We see that the OBF is able to
extract a clean periodic signal that closely follows the output of the
ANF, which serves as an initial qualitative indication that the filter fol-
lows the desired behavior. In Fig. 2B, we show the continuous estimated
phase offset ¢, (¢) from both filters. This value was calculated by solving
Equation (3) for ¢, () yielding

@1 (1) =0(t) — 0™ (D). @

As the ANF continuously estimates the frequency @&(t), we used that
output estimate in calculating the ANF’s phase offset. However, as the
OBF does not provide any estimate for the frequency, w*(r) was used,
yielding the slightly different offset seen in the graph,

bopr®) = (1) + a)d,-f/-(t)t,

where wg; ¢ () = () — @) is the variation that occurs in that fre-
quency due to disturbances. This has the effect that the OBF offset
estimate does not differentiate deviations in the signal frequency from
true occurrences of phase offset like the ANF can. As will be shown
in subsequent subsections, however, this subtle difference between the
filters has no effect on the OBF’s ability to estimate the true phase shift.

3.1. Phase shift estimation accuracy

The most important performance metric for our algorithm is the ac-
curacy of the phase shift estimates, as this is the major concern of our
problem space. We focused primarily on whether the proposed OBF al-
gorithm is able to provide results that are at least as good as those from
the ANF. To tease out this information, we look at the estimated phase
shifts from both methods and compare them with the phase shifts as
calculated from the DLMO data. To visually compare the algorithms,
we use Fig. 3, which shows the results for orders 1-5 on subject 3 and
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Fig. 2. (A) Actigraphy Data with Filtered Outputs from the OBF (Red) and the
ANF (Black). (B) Online phase offset estimates from the OBF (Red) and ANF
(Black).

10; and Fig. 4, which shows the performance of the third order filters
on subjects 4 (4A), 5 (4B), 6 (4C), 7 (4D), 8 (4E), and 9 (4F). The DLMO
values were not available for subjects 5 and 9, but their graphs are in-
cluded here for completeness. We see that in the case of subject 3, the
OBF estimates (Fig. 3A) appear as close to those given by the DLMO
data as the ANF estimates (Fig. 3B), but with a tighter variance than
the ANF values. For subject 10, the OBF estimates (Fig. 3C) are closer
than the ANF’s (Fig. 3D), with significantly lower run-to-run variance.
To further quantify the filters’ performance on these two subjects, we
performed a one-tailed t-test on the absolute deviations of the filters’
estimates from the mean of the DLMO estimates. Specifically, we tested
the null hypothesis that the means of the deviations are equal, against
the alternative hypothesis that the mean deviation of the ANF estimates
is greater than that of the OBF. For subjects 3 and 10, the OBF out-
performed the ANF in 70% of the cases, suggesting that the OBF is a
solid option on these subjects’ data. These results are shown in Table 1.
Table 2 shows the average absolute deviation of the third order filter
estimates from the average DLMO estimates for all subjects with valid
DLMO data, along with the t-test results with the same hypotheses from
above. We chose to focus on the third order filter as [10] found that
the ANF did not see a material improvement in estimation power past
the third order, and the OBF possesses a similar property as is seen in
Fig. 3. We see that for subjects 3, 4, and 10, the OBF yields lower av-
erage estimation error with smaller run-to-run variance than the ANF.
The t-test further confirms that the ANF deviations are greater with sta-
tistical significance. However, for subjects 6, 7, and 8, the ANF appears
to yield lower average error rates. To gather a more complete picture of
this, we conducted a second t-test on the results for subjects 6, 7, and 8,
with the null hypothesis that the deviations were equal against the al-
ternative that the OBF deviations were greater. The results are shown in
Table 3, and we see that the OBF deviations were greater with statisti-
cal significance for only subject 8, thus showing that the OBF performs
on par or better than the ANF for 83% of the subjects. These results are
thus consistent with the preceding graphs in showing that the OBF is
indeed a more efficient alternative to the ANF in entrained conditions.

3.2. Optimization runtimes

While optimization is currently done offline at a set cadence, in prac-
tical settings, it may need to be done more often based on the user’s
daily biometric data patterns (e.g., changes in lifestyle, work sched-
ule, or wearable sensors). Moreover, the algorithms will be most useful
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random initialization of the filters’ parameters for each optimization.

Table 1. Results from One-Tailed T-Tests on the Absolute Deviations of the

Table 3. Results of Additional 2-Sample T-Test By Subject.

Phase Shifts for Subjects 3 and 10 from Average DLMO Values. Subject h? p°
Order  Subject 3 Subject 10 6 0 0.1553
e p " e p o 7 0 0.5493
1 1 00498 [17147x10%,00] 0 02274 [—~0.0688, 0] as - — ! — — 00001
9 1 0.0073 [0.3521, 00] 1 52643 % 10-10 [1.0614, oo] Hyp(.)t}{esw test r?sults - 0 indicates mean deviations are statistically same, 1 indicates
3 1 00012 [03059,co] 1 67813x10%  [0.5078, 0] OBF deviations are higher. o )
2 Significance level - smaller values cast doubt on validity of null hypothesis.
4 0 0.2235 [-0.3135, c0] 0 0.8086 [—0.2225, o]
5 1 0.0384 [0.0522, o] 1 0.0020 [0.3213, 0]

2 Hypothesis test results - 0 indicates mean deviations are statistically same, 1 indicates
ANF deviations are higher.

b Significance level - smaller values cast doubt on validity of null hypothesis.

¢ Confidence interval where the results hold.

Table 2. Average Absolute Deviation (in minutes) from the Average DLMO Val-
ues By Subject.

b

Subject OBF ANF h? p

3 37.2 (£20.4) 1014 (x173.4) 1 0.0112

4 15 (x10.2) 57.6 (£71.9) 1 1.9696 x 10~*
6 39.6 (+20.4) 32.4 (+41.4) 0 0.8447

7 79.8 (£132) 82.2 (+43.8) 0 0.4507

8 60.6 (+22.8) 36.6 (32.4) 0 0.9999

10 56.4 (+26.4) 117.6 (£112.8) 1 6.7813x 107

2 Hypothesis test results - 0 indicates mean deviations are statistically same, 1 indicates

ANF deviations are higher.

b Significance level - smaller values cast doubt on validity of null hypothesis.

when deployed on computationally constrained devices - most likely
smartphones and activity trackers. In both cases, the algorithm effi-
ciency is an important metric, as greater efficiency is tied to greater
potential usefulness. To this end, we use the optimization runtimes as a
proxy for evaluating each algorithm’s overall complexity and efficiency.
In Fig. 5, we see the boxplots of the runtimes for all 40 optimizations
for orders 1-5 of both filters on subject 3, Figs. 5A and 5B, and subject
10, Figs. 5C and 5D, respectively. Fig. 6 shows the optimization run-
times for order 3 filters on subjects 4 (6A), 5 (6B), 6 (6C), 7 (6D), 8
(6E), and 9 (6F). Note that at 50 iterations, with 100 initial population
members and 50 offspring, each optimization involved an upper bound
of 2,600 simulations (fewer if unstable systems were encountered). We
can easily see that the OBF gains a significant speedup over the ANF
in both the median and worst case (on the order of 2.9x). The average
OBF optimization runtime for all subjects was calculated to be 301.83
seconds, while the average ANF runtime was 866.82 seconds. This is a
direct result of the comparative simplicity of the OBF’s dynamics over
the ANF’s. Where the OBF is a linear, easily discretizable system, the
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ANF is nonlinear and was simulated in approximate continuous-time.

We thus see that the OBF is able to outperform the ANF at a fraction of
the adjustment runtime. This further bolsters the case for the OBF as a
tool for phase estimation in entrained settings.

3.3. Optimal costs

The last object of comparison is the optimal costs obtained from the
optimizations of both methods. We would like to see that the OBF op-
timization provides comparable optimal costs to those obtained when
optimizing the ANF parameters. Fig. 7 shows the distributions of the
optimal costs obtained on subject 3, Figs. 7A and 7B, and subject 10,
Figs. 7C and 7D, respectively. We see that across orders, the median
values of the OBF are comparable with those of the ANF. We do note
that the variance of the OBF costs increases with filter order. We at-
tribute this to the increasing dimension of the observer gain vector,
which yields an increase in degrees of freedom that need optimization.
To confirm this, we tested a population size of u =200 for the optimiza-
tions, and found that the change mitigated the increase in variance to
more closely follow the ANF’s distributions. This had the trade-off of
slightly increasing the optimization runtime, though the algorithm still
ran much faster than the ANF. We do note, however, that even with the
greater cost variance shown here, the OBF phase shifts were statistically
better than those of the ANF, suggesting that the costs only represent a
coarse evaluation of the filter’s performance. To this end, we opted to
retain the optimization population at x = 100.

Table 4. Results from One-Tailed T-Tests on the Optimal Costs for Subjects 3

and 10.
Order Subject 3 Subject 10
h? pb h? pb
1 1 6.9177 x 10~ 0 0.9782
2 1 2.9230% 10714 1 22651 x 10733
3 1 2.1160x 1077 1 1.0024 x 10711
4 1 5.3230x 10?7 1 1.8861 x 10710
5 0 0.8558 0 0.6705
a

Hypothesis test results - 0 indicates mean costs are statistically same, 1 indicates ANF
costs are higher.
b Significance level - smaller values cast doubt on validity of null hypothesis.

We also conducted a one-tailed t-test on the optimal costs for both
methods. In this case, we tested the populations for sameness against
the alternative hypothesis that the means of the ANF costs are higher
than those of the OBF. The results are presented in Table 4. We see
that in 70% of the tested cases, the ANF optimal costs are statistically
higher than those of the OBF. This yields another argument in favor of
the OBF. In general, the OBF performs better than the ANF with our
specified cost function, indicating that the filter more closely follows
our specifications on the desired spectral content of the output signal.

3.4. Synthetic data testing

To further evaluate the OBF’s performance in a controlled setting,
we tested it on a simulated signal with known phase shift. We used the
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Fig. 8. (A) Light Input and corresponding (B) JFK Model Output.

Jewett-Forger-Kronauer (JFK) model [14] in creating the 30-day signal
shown in Fig. 8B. It is the result of a 10-day period of entrainment fol-
lowed by a slam shift of 8 hours in the light input as seen in Fig. 8A,
after which the oscillator is allowed to return to its limit cycle and run
for an additional 20 days. We further corrupted the model output with 4
levels of white Gaussian amplitude noise specified by the signal-to-noise
ratios SNR =0.5,1,2,4, or SNR;z =—3 dB, 0 dB, 6 dB, and 12 dB, respec-
tively. We then ran 10 optimizations for the 3rd order ANF and OBF on
these signals and compared the filters’ performance. Specifically, we fo-
cused on the accuracy and precision of their phase shift estimates, as
well as the obtained optimal costs.

In Fig. 9, we see the phase shift estimates from the OBF (9A) and the
ANF (9B). On this simple signal, both filters yielded highly consistent
results centered on the true shift. The degree of similarity between the
estimates serves as the final confirmation that the OBF can replace the
ANF in situations where the subject is entrained to the natural light-
dark cycle (24 hours).

To further show this, Fig. 10A shows the noisy signal with SNR
0.5 overlayed with outputs from both optimized filters. Even with the
extreme noise, both filters are able to consistently extract the clean orig-
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Fig. 9. Phase Shift Estimates from the (A) OBF and (B) ANF.

inal signal. The OBF possesses the same level of robustness to white
Gaussian amplitude noise even in this extreme case. Fig. 10B shows the
estimated phase offset from both filters calculated as in Equation (4),
and we see that their performance on the signal remains nearly identi-
cal.

Finally, Fig. 11 shows that the OBF (11A) performs slightly better
than the ANF (11B) across orders, with improvement on the order of
10%. However, as can be seen from the phase shifts, both filters are
within 6 minutes of the true shift.

4. Conclusion

In this paper, we proposed a linear state observer as a tool for
estimating an individual’s continuous circadian phase from biometric
data. In cases of circadian alignment, we expected that the OBF would
perform at least as well as the ANF algorithm proposed in [10]. We
experimentally validated these claims using real actigraphy data and
further tested the algorithm on synthetically generated data. In both
cases, we found that the OBF provided accurate estimates with a frac-
tion of the computational cost of the ANF. In the real case, the OBF
performed better than the ANF, while in the synthetic case, it performed
identically to the ANF. These results lead us to believe that the OBF is
the superior algorithm, particularly in situations where efficiency of im-
plementation is important.
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The linearity of the system also opens up the algorithm to more
widely researched methods and theory. In future work, we would like
to further validate the OBF with more interesting data. The dataset used
in this study was from individuals who followed a normal daily pattern
and were not subjected to any drastic changes. We intend on testing
the OBF on data from rotating shift workers, to assess the algorithm’s
robustness in such situations.

Moreover, we would like to assess the possibility of using multiple
input signals to the algorithm. Existing approaches have shown im-
proved performance with a combination of measurements of internal
signals and external cues - light being most effective. An extension of
the OBF to allow multiple inputs could further improve the overall ac-
curacy of the algorithm in entrained ambulatory settings.
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