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Abstract

Improved understanding of solid surface energy and its role in the overall mechanical properties is of great interest due
to the emerging manufacturing techniques of nanostructures, coatings, and synthetic/biological bilayer-polymer hy-
brids. Continuum numerical modeling of surface stresses efficiently incorporates a zero-thickness membrane bonded
to a bulk, intrinsically accounting for surface tension and surface elasticity. Compressive surface stresses are not pos-
sible in a purely membrane formulation, ignoring the surface flexural resistance. The extension of material surfaces to
account for flexural resistance, i.e., the Steigmann—Ogden model, requires spatial derivatives of second order, posing
significant challenges to standard discretization techniques. Hence, the effect of surface curvature resistance on the
overall mechanical behavior of complex geometries remains elusive. Here, we develop a three-dimensional compu-
tational formulation of curvature-dependent surface energetics at finite strains using surface-enriched isogeometric
analysis. Coupled with a hyperelastic bulk, bending-resistance of material surfaces furnishes a new physical length
scale, i.e., the elastobending length. We quantify the effect of elastobending deformations for several numerical exam-
ples involving soft materials with thin coatings and liquid-shell surfaces, capturing budding-like behavior observed at
cell membranes. Our results demonstrate a stiffer overall mechanical behavior when material surfaces resist bending
deformations and illustrate how curvature effects lead to complex budding deformations at non-zero initial curvature
states. The proposed methodology provides a robust computational foundation to help improve our understanding and
mechanical characterization of soft solids, nanostructures, and biological membranes at small scales.
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1. Introduction

It is well established that physical properties and energy characteristics of materials’ surfaces or interfaces differ
from those of the encased bulk [1]. While the surface effects are negligible in stiff solids at macro scale, they sig-
nificantly influence the mechanical response of nanostructures and soft solids at small scales (up to ~mm). In soft
solids such as gels, the surface energy (N/mm) is comparable with the bulk energy due to very low shear modulus
(~Pa), introducing a physical-length scale. The capillary forces and the resulting elastocapillary length-scale are crit-
ical for many physical phenomena such as elastowetting on soft solids [2—4], cavitation [5], and instabilities [6—8]. In
stiff nanostructures, the surface-area-to-volume ratio is high, and therefore surface effects are pronounced, leading to
size-dependent mechanical properties [9—12], surface piezoelectricity [13, 14], and pseudoelasticity [15, 16].

The majority of research on surface stresses in solids is based on Gurtin and Murdoch’s continuum mechanics
theory of surface elasticity[17]. Central to this theory is the idea that the solid surface is a two-dimensional membrane
permanently attached to the bulk with its own thermodynamic structure. As a result, surface stresses and surface
strains become energetically conjugate quantities. Steigmann and Ogden [18] generalized their theory to include
surface flexural resistance by assuming that the surface energy depends on surface curvature along with in-plane sur-
face strains. The surface cannot support compressive stresses if its flexural resistance is ignored [19]. This hinders
comprehensive studies of complex surface phenomena such as bifurcations including global wrinkling [20-22] or
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localized crease instabilities [23, 24], triggered when compressive stresses on the boundary reach a critical threshold,
for a very thin surface layer bonded to a substrate. Many theoretical, numerical, and experimental works have utilized
the Gurtin—-Murdoch [9-11, 25-29] and Steigmann—Ogden [12, 30-37] theories to quantify the effects of surface ten-
sion, surface elasticity (strain-dependent resistance to stretching) and surface curvature-resistance in the mechanical
response of soft solids and nanostructures. From the computational standpoint, Yvonnett et al. [38] presented a finite
element (FE) approach to model surface elasticity for two-dimensional small strain problems. Javili and Steinmann
developed two- and three-dimensional FE frameworks that account for surface effects at finite strains [39, 40]. They
later revised their framework by adopting a curvilinear-coordinate-based FE methodology for an efficient surface elas-
ticity formulation [41]. He and Park recently presented a methodology to capture surface stresses that could easily be
implemented in commercial FE softwares such as COMSOL and Ansys [42].

Most of the computational frameworks dealing with surface effects in solids ignore Steigmann and Ogden’s
extension to consider surface flexural resistance. The reason for this is that incorporating curvature-dependent surface
energy in the current surface elasticity enhanced Galerkin FE models is challenging. The surface in the Steigmann—
Ogden model is assumed to be a zero-thickness shell embedded in the three-dimensional space, necessitating a robust
calculation of surface curvature. Surface curvature depends on second-order derivatives in space and therefore requires
a surface representation with at-least C'-continuity in the entire domain. The surface enrichment using the Lagrange
basis function results in C°-continuity across element boundaries. The C' continuous surface representation provided
by Hermite basis functions is only limited to two-dimensional formulations. Isogeometric analysis (IGA), introduced
by Hughes et al. [43] uses higher-order NURBS basis functions and facilitates the exact representation of curved
geometries at the coarsest level of discretization. Furthermore, the same basis functions are used to construct the
approximation of the field variable in the analysis. NURBS-based representation of the geometry allows C*-continuity
in the entire domain, giving IGA computational advantages over the standard finite element method to model higher-
order problems. Consequently, IGA has emerged as a promising tool to solve geometric partial differential equations
on surfaces [44, 45], model higher-order phase-field approximations [46—49], simulate the behavior of Kirchhoff—
Love and Reissner—Mindlin shells through rotation-free formulations [50-59], and investigate curvature-mediated
physics of biological cell membranes [60—-64].

In this work, we leverage the advantages of isogeometric analysis and develop a three-dimensional computational
framework to model curvature-resisting energetic surfaces in solids. Our framework can represent complex geome-
tries, capture large deformations, and incorporate arbitrary nonlinear constitutive laws for the bulk and the surface. We
first verify the framework by comparing it to an analytical solution at large deformations and then present several nu-
merical examples elucidating the effects of surface curvature resistance in solids. Furthermore, we offer two examples
to demonstrate how our framework can be used to model liquid-shell behavior on a hyperelastic bulk. The presented
framework is generic and can be utilized to understand the behavior of artificially coated macroscopic solids, elucidate
size-dependent properties of nanostructures, and investigate the curvature-mediated mechanical response of biological
cell membranes or protocell membranes.

The manuscript is organized as follows. Section 2 gives the theoretical background and the computational im-
plementation of the behavior of a solid encased by a zero-thickness curvature resisting surface. We begin with the
kinematics of the problem in Section 2.1 followed by the constitutive laws used for the surface and the bulk in Sec-
tion 2.2. We then present the variational equation suitable for computational implementation in Section 2.3. The
computational framework is developed using isogeometric analysis. To this end, we briefly summarize the basics of
the isogeometric analysis and how it is applied to discretize the variational equation in Section 2.4. In Section 3,
we present several numerical examples and explore the physical aspects of curvature-dependent surface behavior in
arbitrarily thick solids and bonded liquid shells. Finally, we conclude this work and provide an outlook for future
work in Section 4.

2. Theory

The objective of this section is to establish the governing equations of solid-surface coupled mechanical behavior
including surface curvature-resistance. The surface has zero-thickness and is endowed with its own thermodynamic
structure distinct from the bulk. Following the Steigmann—Ogden theory, the surface flexural resistance is incorporated
at the constitutive level along with surface tension and surface elasticity. The kinematic quantities including the surface
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curvature are formulated in a curvilinear coordinate system which is directly suited for computational implementation
using IGA.

2.1. Kinematics

Let us consider a solid bulk B in the three-dimensional space R? occupying a reference configuration B, at time
t = 0 and a current configuration B, at ¢ > 0, as illustrated in Fig. 1. Let ¢ be the nonlinear deformation function that
maps a material point X in the reference configuration to x in the current configuration as

x = @o(X) (1)

Let S, = 08, and S; = 08, denote the surface S of the bulk B in the reference and the current configurations,
respectively. According to our convention, the surface quantities are represented as {~}. The material points on the
surface are labelled as X and ¥ in the reference and the current configurations, respectively. Integral to the surface
elasticity theory, the surface is assumed to be perfectly attached to the bulk at all configurations and therefore, its
motion @ is convected by the bulk deformation map ¢. That is

T=9(X) where 7 =gl )

The bulk material points X and x are represented in the standard Cartesian coordinate system. The bulk deforma-
tion gradient F is a linear function that relates an infinitesimal line element dX € T8, in the reference configuration
to its counterpart dx € T8, in the current configuration through the relation dx = F - dX, where F = Gradx. The de-
formation gradient of the bulk F is rank-sufficient, and therefore, its inverse f exists, where f = gradx. The properties
f-F=1TIand F - f =ihold where, I and i are the bulk identity tensors in the reference and the current configuration,
respectively. The Jacobian of the bulk J is defined as the ratio of the volume element dv in the current and dV in the
reference configuration and is given by J = dv/dV = det F. The surface S is a two-dimensional manifold embedded

Figure 1: Finite deformation of the continuum body and its surface. The surface deformation is convected by the bulk deformation i.e. the surface
is permanently attached to the bulk at all configurations. The curvature of the surface also changes as the body deforms.

in the three-dimensional space R* and the surface material points X and ¥ are parameterized locally by the curvilin-
ear coordinates 6%, where @ € {1,2}. With the curvilinear-coordinates parameterization, the covariant (natural) basis
vectors for the tangent planes of the surfaces S, and S, are defined as

Go=X, and §,=%. Vaell, 2 3)



where {+},, = 9{+}/06" is the partial derivative of a surface quantity with respect to the parametric coordinates 6°.
From the covariant basis vectors, follows the definition of unit normal vectors N and 7 on the surfaces S, and S;.
That is

= G xG, —_ 21X%
B T B @

The natural basis vectors G, and g, give rise to the covariant components of the metric tensor also known as the first
fundamental form of the surface, which are expressed as
Gaﬁ = Ga,r : Gﬁ and E&b’ = ?a ' ?ﬁ (5)

Geometrically, the first fundamental form determines the arc-length of a curve, angles between curves, and area of a
region on the surface. The inverses G = [Gaﬁ]‘1 and g% = [g\(,[;]‘1 represent the contra-variant components of the
metric tensor and define the associated contra-variant (dual) basis vectors of the surface as

G'=G"Gy; and E"=3"E ©6)

Similar to the bulk, the surface deformation gradient F can be defined as a linear function which maps an infinites-
imal line element dX € TS, in the reference configuration to its counterpart dX € T'S; in the current configuration
through the relation dx = F - dX, where F = Grad¥ = 2.9 G’. Note that, in contrast to bulk, surface deformation
gradient F is rank-deficient and therefore, its inverse fis given by the relation fz G. ® g"“. The surface Jacobian 7
is defined as the ratio of the area element da in the current and dA in the reference configuration and is given by the

=1 =2 — —_
relation J = da/dA = IE' X fg‘ZIIGA1 X G |. The right Cauchy-Green surface deformation tensor C and its inverse C !
can now be defined using F and f as

C-F F=5,0"90 ad €' =FF -3%C, 00, %

Next, we introduce the surface curvature tensor b, represented using the second fundamental form b,z of the surface
as

b =bg" ®2" where bop =T, g (8

Here g,  is the parametric derivative of the tangent vector which depends on the second derivative of the surface
position vector in the current configuration. Alternatively, the parametric derivative of the tangent vector can be
written using the Gauss formulae [18] as

By =T 1587 +bopl ©)

where, ’l:zﬁ =g EL 8 is the Christoffel symbol. Similarly, we can write the initial surface curvature tensor as

B= Baﬁa “©G where By =N- G.. B (10)
The principal curvatures ; and «, at a point on the surface is defined as the eigenvalues of the matrix
=11 =12
%y = |5 S,||01 b2 11
8 " bpy [gzl gzz] [b21 by (1

Physically, the principal curvatures are measures of how the surface bends in different directions. They are given by
the maximum and minimum values of curvature at a point on the surface. The mean curvature H and the Gaussian
curvature G of the surface are defined in terms of the invariants of the surface curvature tensor b as

1 - det[b(,ﬁ]
H = 3 trb = §baﬁg and G =deth=———= (12)
det[gaﬂ]
Finally, we define the relative curvature tensor « [18, 35] and initial relative curvature tensor K as
k=-F b F=xsG ©G and K=-F B-F=%,G oG (13)

where kop = -bop and Kyp = -Bog. k and K are the counterparts of b and B respectively in the reference configuration.
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2.2. Strain Energy and the Constitutive Law

The mechanical response of the solid encased by curvature-resisting energetic surface is described by the internal;
strain energy function W;,, with contributions from both the bulk and the surface. That is

Wiy = f pdV + $dA (14)
B, 08B,

where, ¢ and 5 are the internal strain energy functions per unit volume and per unit area for the bulk and the surface,
respectively.

The bulk is assumed to be an isotropic neo-Hookean material for which the strain energy density function ¢ in
the reference configuration is written as

#(C) = g(tr(C) —3)+ g (2 -1)- (g +/1) In(J) (15)

where, A and u are the Lamé parameters. The corresponding second Piola-Kirchhoff stress tensor S takes the following
expression

_,0 _ 2

S = aC—z(Jz—l)C’lﬂ,z(I—C’l) (16)

Following the Steigmann—Ogden theory, the surface constitutive law is assumed to have dependence on the in-
plane resistance to deformation represented as well as resistance to the change in its curvature. The surface energy
density function is therefore a function of the right Cauchy-Green deformation tensor C and the relative curvature
tensor of the surface . Furthermore, if the surface is orientable and isotropic [18, 35, 65], the surface energy density

#(C.0) = ¢\, 1. I, I 5. Ig) (17)
where, the six invariants are defined as
E:tra E:deta E:trK

— — — — — (18)
Iy = detk Is = tr(Ck) I = tr(Ckpi)

Here, i = 1%G, ® Eﬁ is the permutation tensor-density [18] with its components 7% defined as

AR =0 5= = \Jae(Gul (1

In this work, we use a simple surface strain energy density function for the surface that captures the surface tension
and surface elasticity via the first and second invariants /; and I,. The surface curvature resistance is incorporated by
penalizing the change in the third invariant I3 = trx. That is

#(C, k) = jf: + %ﬁlnz(f) + %]I[tr(@) -2-2In(7 )]+ %ks(trk - r K)>

surface tension

(20)

surface elasticity surface curvature-resistance

where, y [N/m] is the constant and isotropic surface tension, 1 [N/m] and u [N/m] are the surface Lamé parameters,
and k, [N/m?] is the surface bending stiffness. Similar to bulk, the second Piola—Kirchhoff stress tensor for the surface
thus becomes

- 00 ~ =l [ =] e
S=2—£=/lln(J)C1+/1[I—C1]+7JC1 @1)
ocC
Due to surface curvature-resistance, a moment will be generated in the surface which is given by the expression
—  dp -
M = a—¢ = ky[tr(k) — te(FOIT (22)
K



The second Piola—Kirchhoff stress tensor and the moment tensor of the surface can also be expressed in curvilinear
basis as follow

S=S5%G,® Eﬁ where S = ’/Tln(f )?’ﬁ + II[E of _ fg\‘w] +7I g% (23)
and

M = M“ﬁ’G‘(, ® aﬁ where M = kskyfg/G\V‘;a”ﬁ , (24)
respectively.

2.3. Total potential energy and the variational equation

To establish a computational framework, in this section, we derive the variational equation using the principle
of minimization of the total potential energy. Let IT = W;,, + W,,, be the total potential energy of the system, where
the total internal energy is given by Eq. (14). We assume dead loading in the system with a surface traction T in the
reference configuration. The total external energy W,,, in the absence of body forces can thus be written as

W = - f T-GdA 25)
08,

The minimization of the total potential energy (6I1 = 0), with respect to all admissible variations dx € 7‘(& (B;) and
6x € (H(; (S;), renders the variational equation in the reference configuration as follow:

f S:(F"-Gradsx)dV+ | [T" 6%, + M 6%, z1dA - f T-6XdA=0 (26)
B,

08, 08,

where T* = §“ﬁ§ﬁ + M\’lﬁfiﬁﬁ, M = -M7, 65, = 6.4, and 68,5 = 0% ap. Eq. (26) will now be discretized
using isogeometric analysis in the next section.

2.4. Numerical implementation using isogeometric analysis

Non-Uniform Rational B-Splines (NURBS) basis functions are used to represent the bulk and the surface ge-
ometry as well as to discretize Eq. (26) in the context of isogeometric analysis. Here we provide a brief overview
of B-splines and NURBS and how they are implemented to discretize the solid-surface coupled geometry and the
associated kinematic quantities. Before defining B-spline functions, we need to define a knot vector. A knot vector,
E = {&1,&, ..., &npe1), 1s a non-decreasing set of coordinates in the parameter space, where & € R is the i knot, n
is the number of basis functions, and p is the polynomial order. The knots in the knot vector partitions the parameter
space into elements. With a knot vector =, B-spline basis functions are defined recursively starting with zeroth-order
(p = 0) basis function:

Nuolt) = {1 if& < &< & o

0 otherwise

Using the Cox-de Boor recursion algorithm, B-spline basis functions for p > 1 can be defined as

E-§ Eivpe1 =€
Nip = Nip- —
R T 16+ Eivpr1 — &int

(28)

Given a set of B-spline basis functions {N; ,}?_,, a B-spline curve Q can be constructed by taking its linear combination
with the corresponding control points P; € RY:

Q) = Y Nip©P; 29)
i=1



A B-spline surface, Q can be constructed by taking tensor product of two B-spline curves of polynomial orders p and
g, and knot vectors Z = {¢1,&, ..., Epipr1} and H = (01,72, ..., meg+1) TESPECtively:

n m

Qe = > Nip©M; DB, (30)

i=1 j=1

Similarly, a B-spline solid € can be constructed using an additional B-spline curve of polynomial order r with knot

vector Z = {1,805+, {lare1 1t

n

m
QEND =) > D NipEMg(DLeA)B; ji 31)

i=1 j=1 k=1

Non-Uniform Rational B-Splines (NURBS) are generalization of B-splines which give us the capability to exactly
represent many complex geometries which can not be represented using B-splines. NURBS basis function in R? is
constructed by projecting a B-spline basis function in R?*!. This is obtained by associating a weight with each control
points in B-splines

= Nip(©w;
RP(g) = =21 (32)
T v
where, w; is the weight associated with the control point B; and W(¢) is the weighting function defined as
W) = D Nip@wi (33)
i=1

We can write the basis functions for NURBS surface and solids by taking the tensor product of univariate NURBS
basis function RY () as

REn =R @R

R0 Rl o B 69
R n.0) = R (§) @ R; (1) ® R;({)
The bulk and the surface field variables can now be discretized using NURBS basis functions as
N
u(§) = Z Nu(&u, for the bulk
“ (35)

N
wWE) = Z N,@&)i, for the surface

a=1

The integrals in Eq. (26) can be discretized and written as the internal and external residual vectors which will be

collectively assembled in the global residual vector denoted by R. The nonlinear system of governing equations
are obtained by setting R = O, which is solved via an iterative Newton—Raphson scheme. To this end, consistent
linearization of the resulting system of equations at any iteration k is established as

R
Risi=0 with Rey =R +Ki-Ax, and K := o (36)
k

where, K is the tangent matrix at the k iteration and X is the global deformation which consists of the deformations
at all the control points. The global deformation vector X is updated at each iteration as X1 = X; + AXg, where
the deformation update Ax is computed at the k” iteration from Eq. (36). The iterative process is stopped when
the norm of the residual vector R numerically vanishes. For numerical integration, we adopt (p + 1) X (¢ + 1) and
(p+1)x(g+ 1) x(r+ 1) Gauss integration points for the surface and the bulk elements, respectively.
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Figure 2: An illustration of partitioning of surfaces from volume mesh. The bulk and surface discretization overlap with each other. Therefore,
each surface shares the control points corresponding to each face of the volume mesh

3. Numerical examples

We now present a variety of numerical examples to demonstrate the robustness of our framework developed in
Section 2. The bulk, for all the examples, is made up of compressible neo-Hookean material with Lamé parameters
A and u. The surfaces enclosing the bulk possess a surface energy which can have surface tension (¥), resistance to
in-plane deformations (u and ’/1\), or resistance to change in their curvature (k;). Our main emphasis in these examples
is to elucidate the effects of surface curvature-resistance in the mechanics of solid-surface coupling. We define the
normalized surface material parameters using bulk shear modulus y and bulk thickness ¢. The dimensionless elasto-
capillary, -stiffening, and -bending numbers [35] are defined as

Y u ks
I5 = W’ Iz = o Iy, = Ay’ 37
respectively. The geometries are constructed using a single patch and the bulk and the surfaces are discretized with
3D and 2D NURBS elements respectively. Since the surfaces are assumed to be perfectly bonded to the bulk, their
discretization overlap with each other. To strongly enforce rotational boundary conditions at the symmetric faces, we
assign equal values to the degrees of freedom on the boundary and the degrees of freedom that are adjacent to the
boundary [66, 67].

3.1. Radial compression of a thick-walled hollow sphere

In the first example, we verify our numerical framework with an analytical solution of a radially compressed
thick-walled hollow sphere [18]. Fig. 3 shows the geometry and mesh for this example. The inner and the outer
radius of the sphere are A = 0.3 mm and B = 0.5 mm respectively. The bulk material parameters are assumed to be
u =1 mN/mm? and A ~ 50000y, which corresponds to the Poisson’s ratio of v = 0.4999. An analytical solution is
possible for this problem assuming the bulk behaves fully incompressible [18]. Accordingly, a high Poisson’s ratio is
set so as to approach the limit of incompressibility for comparisons with the analytical solution. We emphasize that
analytical approaches for compressible bulk are in general not available in a closed form, further necessitating the

8



developed surface-enriched computational approach. The inner surface of the sphere is energetic and an external
uniform pressure P is applied to its outer surface. Under the influence of the pressure P, the sphere uniformly
compresses to an inner radius a and an outer radius b. The inner radial stretch is defined as 4, = a/A and holds
the inequality A, < 1 for P > 0 because a decreases as the P increases. Due to the symmetry of the problem,
we model one octant of the geometry. The geometry with the coarsest mesh is constructed with the knot vectors
2 ={0,0,0,1,1,1}, H = {0,0,0,1,1,1}, and Z = {0,0,0, 1, 1, 1} and quadratic polynomial order p = g = r = 2.
We then order elevate the mesh to obtain a NURBS mesh with cubic polynomial order. Finally, we insert unique
knot values at the desired locations, thus performing k-refinement to achieve the highest possible regularity over the
domain and sufficiently fine mesh for accurate results. Based on the mesh convergence analysis, we choose 3125
cubic NURBS elements for the bulk and 625 cubic NURBS elements for the surface.

Outer Surface with
Radial Pressure (P)

Inner Radius (A)

Energetic Inner Surface

Bulk

Outer Radius (B)

Figure 3: The geometry and NURBS mesh for the thick-walled hollow sphere. The inner surface is energetic and a pressure P is applied on the
outer surface.

First, we compare our numerical results with the existing analytical solution [18] by plotting the variation of inner
radial stretch A, with the normalized pressure P = P/u for different values of elasto-bending numbers I'y,, see Fig. 4.
We consider two cases for our model verification. Case 1, as shown in Fig. 4 A, presents the comparison between the
numerical and analytical solutions without surface tension and surface elasticity. In case 2 (Fig. 4 B), we compare the
numerical and analytical solutions in the presence of surface tension and surface elasticity. The analytical solution is
presented in Appendix Appendix A. The results show that the numerical results closely match the analytical results
for both cases. We observe that in case 1, A, starts with a value 1, while in case 2, it starts with 0.98. This deviation
is due to the presence of surface tension in case B which reduces the surface-to-volume ratio to minimize the energy
even in the absence of external pressure.

In Fig. 4, we observe that A, achieves a lower value for a particular pressure P on increasing I'y,. This indicates
that surface curvature resistance has a stiffening effect on the overall deformations of the sphere. To investigate this
behavior further, we plot the variation of inner radial stretch A, against the elasto-bending number I'y, for different
values of elasto-stiffening number Iz, see Fig. 5. Due to the radial compression of the sphere, its inner radius a
decreases, and therefore, the curvature of the inner surface changes. The surface bending energy thus competes with
the bulk energy by penalizing the change in the inner surface curvature. Initially, for small values of I';, 4, almost
remains the same as the case when I'y —o. This is because the surface bending energy is negligible in comparison to
the bulk energy, and therefore does not penalize the change in the inner surface curvature. As we increase Iy, further,
the surface bending energy becomes comparable to the bulk energy and as a result, a considerable surface moment
is generated as curvature change is penalized. Consequently, the radial deformation significantly reduces and we
observe a sharp increase in A,. For large values of I, the inner surface does not allow any change in its curvature.
Since the inner surface is perfectly bonded to the bulk, A, approaches 1, and the radial deformation of the sphere
becomes negligible. Finally, we note that for a particular I' , A, increases on increasing I'; indicating the stiffening
effect due to surface elasticity.

Next, we show the effects of surface curvature-resistance on the effective in-plane compressive stress S in the
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Figure 4: Inner radial stretch A, vs normalized pressure P: (A) Without surface tension and surface elasticity. (B) With surface tension and surface
elasticity. The numerical solutions closely match with the analytical solutions.
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s

Figure 5: (A) Inner radial stretch A, vs elasto-bending number Iy, for different elasto-stiffening numbers I'*. (B) Surface compressive stress (E)
and its contributions from in-plane surface elasticity (o) and surface curvature-resistance (o) vs Ty, .

inner surface, where S =G-0n (see Appendix Appendix A). In Fig. 5 B, we plot the effective in-plane compressive
stress X and its contributions from surface elasticity o, and surface curvature-resistance o, against the elasto-bending
number I'y,. The results show that till a particular value of Iy , ¥ coincides with o, while 7, is negligible. This is
because the contribution of the surface bending energy in the total potential energy is negligible in comparison to the
bulk energy. However, there is considerable resistance to the inner surface compression due to surface elasticity and
hence & coincides with the total compressive stress X. As the surface bending stiffness increases further, the ability of
the inner surface to resist the change in its curvature increases, and therefore the magnitudes of ¥ and T, increase
and approach the same value. On the other hand, even in the presence of surface elasticity, the magnitude of o reduces
to zero. This is because, as the surface curvature resistance increases, radial compression of the inner surface reduces,
and therefore, the in-plane deformations of the inner surface decrease and vanish (see Fig. 5 A).

3.2. Deflection of a soft circular disc with surface energy

In this example, we explore the influence of curvature-resisting surfaces on the deflection of a thick soft circular
disc under uniform loading. Fig. 6 shows the geometry and the boundary conditions of the disc. The disc has a radius
R = 0.5 mm, thickness t = 0.1 mm and is loaded uniformly over its upper surface with a load intensity P = 0.3
mN/mm?. The bulk possess a shear modulus u = 1 mN/mm? and a bulk modulus A ~ 50000u. The top and the bottom
surface of the disc is endowed with surface energy.

First, we perform a mesh convergence study for the normalized tip deflection w = w/t and elasto-bending number
I', = 5. We start with the coarsest mesh (single element) constructed using the knot vectors = = {0,0,0,1, 1, 1},
H =1{0,0,0,1,1,1}, and Z = {0,0,0, 1, 1, 1} and quadratic polynomial order (p = ¢ = r = 2). We note that since the
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Figure 6: Geometry and boundary conditions for the thick circular disc.

geometry is curved, we need at-least quadratic polynomial order to accurately represent it using a single element. We
perform order elevation (p-refinement) on the coarsest mesh to obtain NURBS mesh with cubic (p = ¢ = r = 3) and
quartic (p = g = r = 4) polynomial orders. We then perform h-refinement by inserting the knots at desired locations.
The mesh convergence results are presented in Fig. 7 A. We observe a rapid convergence behavior for all the three
cases of polynomial orders. A coarse mesh with only one element in the thickness direction (see Mesh 2 in Fig. 7 A)
provides an accurate solution for both cubic and quartic polynomial orders.
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Figure 7: (A) Mesh convergence study of normalized tip deflection (w) for I'y; = 5. (B) Normalized tip-deflection w vs elasto-bending number I'y,
for different elasto-stiffening numbers I7.

Next, we investigate the effects of surface bending stiffness on the deflection of the disc for different values of
I'z. In Fig. 7 B, we plot the normalized tip deflection (W) with the elasto-bending number (I'; ). We make note of
three regions in the plot and elucidate the effects of surface curvature resistance in each of these regions. In the first
region, surface curvature resistance does not affect the deflection of the disc. This suggests that the bending energy is
negligible in comparison to the bulk energy in the first region. In the second region, the deflection of the disc decreases
rapidly and vanishes. This behavior suggests that a considerable amount of energy goes to change the curvature of the
surfaces that would otherwise deflect the bulk of the disc. In the third region, surface-curvature resistance dominates
the bulk energy, and hence the deflection in the disc is negligible on further increasing I'y,. Finally, we note that the
onset of each of the three regions is not affected by surface elasticity.
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Figure 8: Deformation and the curvature contours of the deflection of the circular disc for different elasto-bending numbers I';,. Surface
curvature-resistance reduces the deflection of the disc by penalizing the change in the surface curvature.

3.3. Pinching of a thin cylindrical tube

The above examples illustrated the coupled mechanical response of solids with surfaces that possess significant
curvature resistance along with in-plane surface stresses. We now shift the focus and demonstrate how our framework
can be used to model liquid-shell behavior, e.g., see [61, 68] using thin-shell kinematics without bulk effects. Liquid
shells exhibit in-plane fluid-like behavior due to surface tension and out-of-plane solid-like behavior due to curvature
resistance. An important example of a liquid shell is lipid bilayers that form the membrane of biological cells. Inspired
by the mechanics of lipid bilayers, here we model a thin cylindrical tube whose ends are clamped and is pinched by
a point load in its center. Fig. 9 shows the geometry, mesh, and boundary conditions for this example. The tube has
a radius R = 500 um and a small thickness + = 10 um. To mimic the liquid-shell-like behavior, we minimize the
contribution of the bulk to the total energy of the system by choosing a fully compressible thin bulk with a small shear
modulus £ = 0.01 pN/um?. Due to the point load, a localized curvature is induced in the surface of the cylinder
which is penalized by a surface bending stiffness I'y,. Due to symmetry, one-quarter of the geometry is used. To
perform mesh convergence study, the coarsest NURBS mesh is constructed using the knot vectors E = {0,0,0, 1, 1, 1},
H =1{0,0,0,1,1,1}, and Z = {0,0,0, 1, 1, 1} and with quadratic polynomial order. During h-refinement, we globally
refine the mesh near the area where the point load is applied to capture large deformations close to the point load.
Based on the mesh convergence study, we choose a non-uniform quadratic mesh with 3636 elements in the bulk and
1848 elements on the surface as shown in Fig. 9.

Figure 10A-B show the deformation profiles of the cylinder around the line load for different Iy, in the cross-
sectional and longitudinal directions, respectively. We observe high curvature regions near the line load for the case
without surface bending stiffness I'y, = 0. However, even a small value of surface bending stiffness (T, = 0.1)
supports the point load and regularizes the deformations. On further increasing the surface bending stiffness, the
deformations tend to smoothen out and reduce such that the high curvature regions are avoided.

The curvature-resisting behavior of thin cylindrical tube under point load as shown in Fig. 10 can be understood
using the deformation and change in curvature (A tr k) contours around the line load, see Fig. 11. For the case when
surface bending stiffness is small (I';, = 0.1), there is considerable amount of A trk around the line load. As we
increase the surface bending stiffness, the ability of the surface to resist the change in its curvature increases, and
therefore it tends to reduce the change in its curvature. Furthermore, when the surface bending stiffness is large,
the surface does not allow any change in its curvature and therefore the deformations around the line load become
negligible. Finally we note that, the quasi-static numerical solution of liquid shell behavior requires shear stabilization
methods because of the absence of shear stiffness [53, 68]. In our model, however, the presence of bulk provides
stabilization, and therefore does not require artificial shear stabilization methods.
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Figure 10: The membrane deformation profile in (A) cross-sectional direction and (B) longitudinal direction for different elasto-bending numbers
I',. The highly localized deformations are regularized due to the presence of surface curvature-resistance.

3.4. Budding of material surfaces

Our next example is inspired by the formation of cell membrane budding during the process of endocytosis. In
particular, during endocytosis, coat proteins such as clathrin attach to a small area of the cell membrane and causes it to
bend and form spherical shaped buds [69]. The driving force in this phenomenon is the protein-induced spontaneous
curvature in the membrane that bends it into a positive or negative curvature based on the distribution of protein. Here,
we model a zero-thickness liquid-shell as an energetic surface bonded to a fully compressible thin circular disc with
radius R = 5 um, thickness ¢ = 0.025 um and shear modulus u = 0.01 pN/um?. The top surface possess a surface
tension I; = 0.4 as well as surface curvature-resistance I';,. The spontaneous curvature due to the coat protein is
modeled by assigning a non-zero tr K to the surface bending energy in a small region of the surface. The area in the
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Figure 11: Deformation and curvature change contours for the pinching of thin cylindrical tube for different elasto-bending numbers Iy, .

surface that represents coat protein posses a surface bending stiffness I'y, = 640, while the rest of the surface possesses
I't, = 6.4. Due to symmetry, we model a quarter of the disc geometry with 286 bulk and 286 surface elements. Both
bulk and surface are discretized with quadratic C'-continuous NURBS elements. The mesh is globally refined near
the coated area to capture the sharp changes in curvature due to membrane bud formation.

We consider two different cases of membrane bud formation based on how coat proteins are distributed on the
membrane, see Fig. 12. In case 1, the coat protein distribution exists in the region defined by the disc radius 0 < r < 1
(orange) and tr K is assigned as

15t 0<r<1
K = =r= (38)
0 1<r<s

where ¢ € [0, 10]. For finite tr & values, a surface moment is generated which bends the orange colored area into a
rounded bud shape. Next, in case 2, we model a heterogeneous distribution of proteins on the cell membrane leading
to interesting bud formations. For example, in Fig. 12, the region defined by 0 < r < 1 (orange) represents the coat
protein which has a tendency to bend the membranes with a positive curvature. On the other hand, the region defined
by 1 < r < 2 (green) represents the coat protein bending the membranes with a negative curvature. tr K for case 2 is
assigned as

18 0<r<l1
TK=3-6t l<r<?2 (39
0 2<r<S5

Due to a negative tr K in the green-colored region, a negative surface moment is generated thus bending the membrane
concave downwards. On the other hand, a positive tr K in the orange-colored region generates a positive moment thus
bending the membrane concave upwards. Finally, we emphasize that along with providing shear stabilization to the
numerical simulation as explained in Section 3.3, the bulk in our framework can also be used to model the effects of
cytoskeleton forces during the membrane curvature generation.

4. Conclusion and future work

This paper presents a three-dimensional computational formulation to model curvature-resisting surfaces bonded
to a soft bulk. The bulk formulation is general and can accommodate complex elastic and inelastic material models.
On the boundary, we consider a zero-thickness surface that can resist curvature changes along with surface elasticity
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Figure 12: Formation of membrane budding depending on the distribution of coat protein on the membrane. The orange color in case 1 and orange
and green colors in case 2 indicate the coat protein distribution. For case 2, indices 1 and 2 are used to represent the orange and the green colored
region respectively.

and surface tension. The second-order dependence of surface curvature tensor in space is effectively addressed using
at least C'-continuous NURBS basis functions within the context of isogeometric analysis. The resulting higher
order regularity also renders a numerical framework that is robust against locking effects, see Section 3.1 with the
hollow sphere example. In this example, the results obtained closely match the analytical solution of the radially
compressed thick-hollow sphere subjected to pressure for varying surface bending stiffnesses. Physical stiffness of
energetic surfaces leads to an increased effective mechanical modulus of the overall structure, in balance with bulk
effects. Due to the presence of bulk, a stable liquid-shell behavior is achieved and tested under distributed and point
loading. The classical mesh localization issues that emerge in purely bulk formulations are resolved when curvature
or surface effects are accounted for in the formulation. The last example shows the budding-like behavior of the
surface when the local curvature properties, in particular, the initial stress-free curvature values are increased in parts
of the computational domain. The evolution of final budded geometry is determined by competition between bending
stiffness, surface elasticity and tension, and the bulk properties (shear modulus and the Poisson’s ratio.) The developed
computational tool is suitable to model thin-coated soft materials, biological and synthetic lipid membrane-polymer
hybrids, and interface effects in nanostructures. Future work includes extending the current formulation to account for
Helfrich-type curvature energetics suitable for lipid membranes [60-64], studying the effect of curvature-resistance
on the Plateau-Rayleigh instabilities in solids [70, 71], and performing systematic studies to improve our quantitative
understanding of surface effects in the mechanical characterization of soft materials using nano- and micro-indentation
testing.
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Appendix A. Analytical solution for compression of hollow sphere

In this appendix, we provide the analytical solution for the compression of a thick-hollow sphere with a curvature-
resisting energetic inner surface. The generalized analytical solution for an incompressible hyperelastic bulk encased
by a curvature-resisting energetic surface is given in [18]. Here, we present the solution specialized for the bulk and
surface strain energy density functions mentioned in Section 2.2.

Let us consider a thick hollow spherical shell of inner radius A and outer radius B, uniformly compressed to an
inner radius a and outer radius b by an external pressure P. Let 4;, 4>, and A3 be the principle stretches in the sphere
in each direction. The bulk is incompressible, and therefore, the following relation hold for the principal stretches

== and L==21 (A.1)
The incompressible neo-Hookean constitutive model for the bulk is written as
_H
¢ =5 (@) -3) (A.2)
where, tr(C) in terms of principal stretches can be written as
1
tr(C) = A+ 5+ 4% = i 242 (A3)
The bulk strain energy density function ¢(1) thus becomes
p(l 2
D==|—7+21-3 A4
o) =3 ( 7 ) (A4)
The surface strain energy density function is assumed to be

&(C, k) =7] + %Elnz(f) + %ﬁ[tr(ﬁ) —2-2In(J)] + %ks(trx — r K)> (A.5)

where, tr(ﬁ) =212, 7 = \/det(a) =2, rk=-247"2,, and r K = -2A47".
The curvilinear components of the Cauchy stress tensor and surface moment tensor in the current configuration can
then be given as

— —_— 1 _ — _
7P =T = 5, In(A2) + s — e + Y5 A% and  m™ =g = kAT - 247208 (A6)

The analytical solution is given by simultaneous solutions of the following three equations:

_H 42, +1 4/12"'1 2 -1 5-13752
P_E( 33 - 2247115 (A7)
- m
S=7-
AL (A.8)
A 3
=11+ (5) @i- 7 (A.9)
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