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Abstract: The binding of linear diamine counterions with different methylene chain lengths to the
amino-acid-based surfactants undecanoic L-isoleucine (und-IL) and undecanoic L-norleucine (und-
NL) was investigated with NMR spectroscopy. The counterions studied were 1,2-ethylenediamine,
1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. These counte-
rions were all linear diamines with varying spacer chain lengths between the two amine functional
groups. The sodium counterion was studied as well. Results showed that when the length of the coun-
terion methylene chain was increased, the surfactants’ critical micelle concentrations (CMC) decreased.
This decrease was attributed to diamines with longer methylene chains binding to multiple surfactant
monomers below the CMC and thus acting as templating agents for the formation of micelles. The
entropic hydrophobic effect and differences in diamine counterion charge also contributed to the size
of the micelles and the surfactants’ CMCs in the solution. NMR diffusion measurements showed
that the micelles formed by both surfactants were largest when 1,4-diaminobutane counterions were
present in the solution. This amine also had the largest mole fraction of micelle-bound counterions.
Finally, the und-NL micelles were larger than the und-IL micelles when 1,4-diaminobutane coun-
terions were bound to the micelle surface. A model was proposed in which this surfactant formed
non-spherical aggregates with both the surfactant molecules’ hydrocarbon chains and n-butyl amino
acid side chains pointing toward the micelle core. The und-IL micelles, in contrast, were smaller and
likely spherically shaped.

Keywords: NMR; diffusion; amino acid-based surfactant; counterion; critical micelle concentration

1. Introduction

Surfactants are amphiphilic molecules containing both a hydrophobic hydrocarbon
tail and a polar or charged head group. When the concentration of surfactant in an aqueous
solution exceeds the critical micelle concentration (CMC), the molecules aggregate into
micelles with the hydrophobic tails pointing inward and the hydrophilic head groups
facing the bulk aqueous phase. Surfactant solutions disperse oils and other nonpolar
compounds in an aqueous solution since the latter solubilizes in the micelles’ hydrophobic
core. Surfactants are, therefore, used in the petroleum, pharmaceutical, detergent, and
cosmetics industries [1].

There is an increased demand from manufacturers, consumers, industrialists, and envi-
ronmentalists to develop green alternatives to surfactant molecules that can be exploited in
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the above applications. Alternatives that are less toxic and that are produced from biomass
or natural products instead of from petroleum are favored. Amino acid-based surfactants
fit these criteria because they are biodegradable, antimicrobial, and can be prepared from
renewable resources. They also can easily be synthesized, are environmentally friendly in
nature, relatively inexpensive, and have various potential industrial applications, such as
drug delivery. In an amino acid-based surfactant, a hydrocarbon tail is covalently bound to
an amino acid or peptide headgroup [1–10].

Capillary electrophoresis (CE), NMR spectroscopy, and molecular dynamics simula-
tions have been used to characterize amino acid-based surfactants [11–14]. For example,
changes in the CMCs, micelle radii, and a fraction of micelle-bound counterion molecules
have been studied as a function of solution pH. Molecular dynamics simulations have been
used to identify the micelles’ chiral binding sites and to investigate the intermolecular inter-
actions between the surfactant headgroups and chiral analytes. An understanding of these
properties is needed to make optimal use of these materials in commercial formulations
and separation experiments with CE. In the latter, separations must be conducted above the
micelles’ CMC and micelle radii, charge and counterion binding govern the electrophoretic
mobilities of the micelles through the capillary [15].

The surfactants examined here were undecanoic L-isoleucine (und-IL) and undecanoic
L-norleucine (und-NL). Molecular structures are shown in Figure 1.
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Figure 1. Chemical structures of (a) undecanoic L-isoleucine (und-IL) and (b) undecanoic L-norleucine
(und-NL). Proton labels are used to reference the NMR resonances in Figure 2.

Isoleucine and norleucine are both isomers of leucine; however, only isoleucine is
naturally occurring. Meats, fish, cheese, eggs, and seeds are good dietary sources of
isoleucine [16]. Amino acid-based surfactants with an isoleucine headgroup have also been
used as chiral selectors in the separation of racemic mixtures with CE [15]. Norleucine is a
non-canonical amino acid used to study the structures and functions of proteins. It has also
been detected in small concentrations in some bacteria [17,18]. The amino acid side chains
in isoleucine and norleucine are sec-butyl and n-butyl functional groups, respectively.
Both surfactants contain an eleven-atom hydrophobic tail and a hydrophilic amino acid
head group. At the pH used in this study, the carboxylate is deprotonated, giving both
surfactants a −1 charge.
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Figure 2. 1H NMR spectra of (a) undecanoic L-norleucine and (b) undecanoic L-isoleucine. Each
surfactant’s NH doublet is shown as an insert above the respective spectrum.

The goal of this study was to investigate how micelle counterions affected the physical
properties of these two amino acid-based micellar systems. Counterions have previously
been shown to affect the CMCs and radii of other anionic micelles. For example, Ali
et al. studied sodium dodecyl sulfate micelles (SDS) in solutions containing L-Valine and
L-Leucine. At low concentrations, the amino acid counterions decreased the surfactant’s
CMC, but at high concentrations, they bound strongly to the SDS monomers causing
micelle formation to occur at a higher concentration [19]. Surface tension and conductivity
measurements have also been used to measure SDS CMC values in solutions containing the
amino acids L-Glutamic Acid, L-Tryptophan, and L-Histidine [20]. The effect of counterions
on the micellization of amino acid-based surfactants has been investigated as well. Patra
et al. studied the physiochemical properties of sodium N-dodecanoyl sarcosinate micelles
in the presence of the counterions Mg+2 and SO4

−2. The surfactant’s CMC was found to
decrease with increasing salt concentration. In contrast, higher salt concentrations yielded a
slight increase in the micelles’ hydrodynamic radii [21]. Similarly, in experiments with the
amino acid-based surfactant surfactin-C16, which contains a hydrocarbon tail and a cyclic
peptide headgroup, small, spherical micelles formed in solutions containing monovalent
counterions, such as Li+ and K+. The divalent cations, however, Ca+2 and Mg+2 interacted
strongly with the anionic surfactants and caused micelle radii to increase [22].

The counterions investigated here were linear diamines with two to six carbon methy-
lene chains separating the ionizable amine functional groups. The structures of the diamines
are shown in Table 1, along with each amine’s pKa values. Sodium counterions were studied
as well because Na+ is often used as the counterion in separation experiments with amino
acid-based micelles [15]. Including sodium counterions also allowed the behavior of the
diamines, which had variable structures and charges, to be compared to a simpler +1 metal
cation. Commercial formulations containing both surfactants and organic diamines have
been reported. For example, Vu et al. showed that solutions containing the amino acid-
based surfactant sodium lauryl sarcosinate were thickened by organic amine additives,
such as L-Arginine, triethanolamine, and trimethylphenyl chloride. Thickening of these
surfactant solutions is required for their application in personal care formulations [23]. In
addition, linear diamines have been used as surfactant solution additives for applications
in cosmetics [24], detergents [25], and oral pharmaceutical compositions for the delivery of
drugs with low water solubilities [26].
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Table 1. Structures and pKa values at 25 ◦C for the five diamine counterions investigated. pKas were
taken from reference [27].

Counterion Structure pKa1 pKa2

1,2-ethylenediamine
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The micelle physical properties examined here included the surfactants’ CMC, the
mole fraction of micelle-bound counterions, and the hydrodynamic radii of the micel-
lar aggregates. The systems were characterized using NMR chemical shift analyses to
determine the surfactants’ CMC in mixtures containing different counterions. Diffusion
Ordered Nuclear Magnetic Resonance Spectroscopy (DOSY) was used to measure the
hydrodynamic radii of the micelles and to determine the mole fraction of micelle-bound
counterions [28]. These experiments use pulsed magnetic field gradients to encode infor-
mation about translational motion into NMR data sets. DOSY allows a diffusion coefficient,
D, to be measured for each NMR-resolved component in a mixture. These data, in turn, can
be used to resolve NMR spectra of the components in complex mixtures without carrying
out physical separations [29–33].

2. The Materials and Methods

The diamines 1,2-ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-dia-
minopentane, and 1,6-diaminohexane, deuterium oxide (99.9% atom D), and tetramethyl-
silane were purchased from Sigma-Aldrich. Und-IL and Und-NL surfactants were syn-
thesized by the method described by Lipidot et al. [34]. Surfactant purity was confirmed
by comparing the relative integrals of the surfactant resonances in their NMR spectra. In
addition, the NMR spectra of the recrystallized products showed no signs of impurities or
starting material. Overall, surfactant purity was estimated to be greater than 98%. Anno-
tated NMR spectra of both surfactants are shown in Figure 2. Solutions for NMR analysis
were prepared gravimetrically. The pH of each solution was adjusted to 10.0 by adding
small amounts of solid NaOH. All NMR measurements were made at this pH because
surfactant solubility decreased considerably at more acidic pH values. Moreover, at pH 10,
the counterions would be expected to be in cationic form.

All NMR spectra were collected on a Bruker 300 MHz spectrometer. The solvent was
90% H2O/10% D2O. The WATERGATE pulse sequence was used to suppress the solvent
signal, and the number of scans were adjusted as needed based on the concentration of the
analytes [35]. The temperature was maintained at 25 ◦C. Annotated NMR spectra of both
surfactants are shown in Figure 2.

1H NMR was used to determine the CMC of surfactant solutions containing either
und-IL or und-NL and each of the linear diamines listed above. In these experiments,
NMR spectra were collected for a series of solutions whose concentrations were both above
and below the surfactant’s CMC. The chemical shift of the surfactant resonances did not
change with increasing concentration below the surfactant’s CMC. When the CMC was
reached, however, surfactant molecules became incorporated into the micelles, and the
electronic environment of the surfactant protons changed. As a result, the chemical shifts
of the NMR resonances changed as well. The surfactant Hα and NH peaks behaved in
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this manner. The concentration at which the chemical shift abruptly changed was the
CMC [11]. Figure 3 shows a plot of the chemical shift of the und-IL NH resonance as a
function of concentration. The counterion was 1,2-ethylenediamine. The CMC measured in
this experiment was 12.2 mM.

Colloids Interfaces 2023, 7, x FOR PEER REVIEW 5 of 15 
 

 

shifts of the NMR resonances changed as well. The surfactant Hα and NH peaks behaved 

in this manner. The concentration at which the chemical shift abruptly changed was the 

CMC [11]. Figure 3 shows a plot of the chemical shift of the und-IL NH resonance as a 

function of concentration. The counterion was 1,2-ethylenediamine. The CMC measured 

in this experiment was 12.2 mM. 

 

Figure 3. Plot of the chemical shift of the und-IL NH resonance as a function of surfactant concen-

tration. The solution contained 1,2-ethylenediamine counterions. 

Finally, it should be noted that all of the CMC measurements presented below were 

made using NMR spectroscopy. Other techniques used to determine surfactant CMC val-

ues include surface tension, conductivity, and fluorometry. Scholtz et al. compared CMC 

values for anionic, cationic, and neutral surfactants and found that the three above tech-

niques gave very similar results [36]. Therefore, it is likely that the trends observed in the 

NMR-derived CMC values would also be seen if surface tension or conductivity measure-

ments were used to determine the surfactants’ CMCs. 

The solutions prepared for the DOSY analyses contained 50.0 mM of either und-IL or 

und-NL and 50.0 mM of one of the counterions listed above. A total of 50.0 mM is well 

above each surfactant’s CMC, so the surfactant molecules would be expected to primarily 

be in micellar form at this concentration [29]. Approximately 10 μL of tetramethylsilane 

(TMS) was also added to each NMR sample. Overall, the samples contained less than one 

percent by weight of the TMS probe. The solutions were mixed and allowed to equilibrate 

at 25.0 °C before NMR experiments were performed. 

In the DOSY NMR experiments, separate resonances were resolved for the diamine 

counterion protons. The diffusion coefficient of the counterion could, therefore, be meas-

ured by monitoring the change in the intensity of these counterion peaks with increasing 

gradient strength. Tetramethylsilane molecules were used as probes to measure the diffu-

sion coefficient of the micelles. TMS is very hydrophobic and partitions into and remains 

inside the micelle’s hydrocarbon core. Therefore, in the DOSY experiment, the change in 

the intensity of TMS resonance with increasing gradient strength reports the diffusion co-

efficient of the entire micelle, Dmicelle. [37–41]. In contrast, the surfactant molecules ex-

change between free solution and micelle-bound states. When micelle-bound, the surfac-

tant molecules have a diffusion coefficient equal to Dmicelle. In their free states, however, 

the diffusion coefficient of the surfactant molecules is much larger. Since exchange be-

tween these two states is fast on the NMR timescale, the surfactant diffusion coefficients 

measured with the DOSY experiment are the weighted average of their slower micelle 

and faster free solution D values. If micelle radii were calculated with these diffusion co-

efficients, the size of the micelles would be underestimated. Therefore, the TMS probe was 

used to directly determine Dmicelle. An accurate measurement of the Dmicelle value is needed 

Figure 3. Plot of the chemical shift of the und-IL NH resonance as a function of surfactant concentra-
tion. The solution contained 1,2-ethylenediamine counterions.

Finally, it should be noted that all of the CMC measurements presented below were
made using NMR spectroscopy. Other techniques used to determine surfactant CMC
values include surface tension, conductivity, and fluorometry. Scholtz et al. compared
CMC values for anionic, cationic, and neutral surfactants and found that the three above
techniques gave very similar results [36]. Therefore, it is likely that the trends observed
in the NMR-derived CMC values would also be seen if surface tension or conductivity
measurements were used to determine the surfactants’ CMCs.

The solutions prepared for the DOSY analyses contained 50.0 mM of either und-IL or
und-NL and 50.0 mM of one of the counterions listed above. A total of 50.0 mM is well
above each surfactant’s CMC, so the surfactant molecules would be expected to primarily
be in micellar form at this concentration [29]. Approximately 10 µL of tetramethylsilane
(TMS) was also added to each NMR sample. Overall, the samples contained less than one
percent by weight of the TMS probe. The solutions were mixed and allowed to equilibrate
at 25.0 ◦C before NMR experiments were performed.

In the DOSY NMR experiments, separate resonances were resolved for the diamine
counterion protons. The diffusion coefficient of the counterion could, therefore, be mea-
sured by monitoring the change in the intensity of these counterion peaks with increasing
gradient strength. Tetramethylsilane molecules were used as probes to measure the diffu-
sion coefficient of the micelles. TMS is very hydrophobic and partitions into and remains
inside the micelle’s hydrocarbon core. Therefore, in the DOSY experiment, the change
in the intensity of TMS resonance with increasing gradient strength reports the diffusion
coefficient of the entire micelle, Dmicelle. [37–41]. In contrast, the surfactant molecules
exchange between free solution and micelle-bound states. When micelle-bound, the surfac-
tant molecules have a diffusion coefficient equal to Dmicelle. In their free states, however,
the diffusion coefficient of the surfactant molecules is much larger. Since exchange between
these two states is fast on the NMR timescale, the surfactant diffusion coefficients measured
with the DOSY experiment are the weighted average of their slower micelle and faster
free solution D values. If micelle radii were calculated with these diffusion coefficients,
the size of the micelles would be underestimated. Therefore, the TMS probe was used to
directly determine Dmicelle. An accurate measurement of the Dmicelle value is needed to
calculate the micelles’ hydrodynamic radii and the mole fraction of counterions bound to
the micelles [10,13,29,38].
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In each diffusion coefficient measurement, twenty NMR spectra were collected with
increasing magnetic field gradient strength, G, using the bipolar pulse pair longitudinal
encode–decode pulse sequence [42]. Typical G values ranged from 2.5 to 30.2 G·cm−1. The
intensity of the NMR resonances in these experiments decayed exponentially with a rate
proportional to the quantity, (γ · G · δ)2 · (∆ − δ/3 − τ/3), where γ is the magnetogyric
ratio, δ is the duration of the magnetic field gradient pulses, τ is the delay between the
bipolar gradient pulses, and ∆ is the diffusion time [42]. The ∆, δ, and τ values used in
this study were 200, 4.0, and 0.20 ms, respectively. Linear plots of the natural log of the
TMS and counterion peak intensities versus the quantity (γ · G · δ)2 · (∆ −δ/3 − τ/3)
were then prepared for each solution investigated. Linear regression analyses were used to
calculate the slope of each plot. In each case, the slope equaled -D, where D is the diffusion
coefficient. A representative plot for a solution containing und-IL and 1,4-diaminobutane
is shown in Figure 4. A DOSY spectrum of a mixture containing 50 mM und-IL with Na+

counterions is shown in the Supplemental Information.
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Analysis of the TMS intensity provided the diffusion coefficient of the micelle and
Dmicelle, and analysis of the counterion resonance intensity provided the observed diffusion
of the counterion, Dobs, CI, in the micellar solutions. As discussed below, the latter is the
weighted average of the counterion diffusion coefficient in its free and micelle-bound states.
The chemical shifts of the counterion resonances relative to TMS used for these calcu-
lations were as follows: 1,2-ethylenediamine, 2.60 ppm; 1,3-diaminopropane, 2.90 ppm;
1,4-diaminobutane, 2.74 ppm; 1,5-diaminopentane, 2.73 ppm; 1,6-diaminohexane 2.76 ppm.
Three trials of each diffusion experiment were performed.

Diffusion coefficients were then used to calculate the micelles’ hydrodynamic radii, Rh,
and the mole fraction of micelle-bound counterions fb. Hydrodynamic radii were calculated
using the Stokes–Einstein equation (Equation (1)), where Dmicelle is the micelle diffusion
coefficient, kB is Boltzmann’s constant, T is absolute temperature, and η is the viscosity. A
viscosity of 1.06 ± 0.02 cp reported by Lewis et al. was used in all radii calculations [13].

Dmicelle =
kB·T

6·π ·η·Rh
(1)

The mole fraction of micelle-bound counterion, fb, was calculated with Equation (2).

fb =
Dobs(CI) − Dfree(CI)

Dmicelle − Dfree(CI)
(2)
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Here, Dobs,CI is the diffusion coefficient of the counterion in the presence of the micelles,
Dfree,CI is the diffusion coefficient of the counterion in free solution, and Dmicelle is the
micelle diffusion coefficient. Equation (2) holds because the counterion undergoes fast
exchange on the NMR timescale between its free solution and micelle-bound states. When
micelle-bound, the counterion diffuses at the same rate as the micelle [29,43]. Free solution
counterion diffusion coefficients were measured by carrying out DOSY experiments with
solutions containing 50.0 mM counterion and no surfactant.

3. Results and Discussion

Table 1 shows the structures and pKa values of the diamines used in this study [27].
The pKa values suggest that at pH 10, 1,2-ethylenediamine exists as a mixture of neu-
tral and monoprotonated or +1 ions. The pKa for 1,3-diaminopropane is higher than
1,2-ethylenediamine, suggesting that at pH 10, this counterion is predominately monopro-
tonated or +1. Finally, at pH 10, the pKa values in Table I suggest that 1,4-diaminobutane,
1,5-diaminopentane, and 1,6-diaminohexane all exist as mixtures of +1 and +2 ions. In addi-
tion, moving from 1,2-ethylenediame to 1,6-diaminohexane, the diamine’s linear methylene
chain becomes longer, and the amines become more hydrophobic. The effect of counterion
charge and hydrophobicity on the physical properties of the und-IL and und-NL micelles
is examined below, beginning with a discussion of the CMC results and continuing with an
examination of micelle radii, and the mole fraction of diamine counterions bound to the
micelles. It should be noted that along with the NMR methods used here, other techniques,
such as dynamic light scattering (DLS), are used to investigate the properties of micellar
solutions [14,44]. For example, Arkhipov et al. used NMR diffusion experiments and DLS
to measure the CMCs and solubilizing capacities of aggregates formed by rhamnolipid
surfactants. Good qualitative agreement was seen between the NMR diffusion and DLS
experiments. This study also highlighted that an important feature of the NMR diffusion
experiments was that they allowed separate diffusion coefficients to be measured for each
component in the mixture [44]. This feature is exploited here when studying the binding of
the diamine cations in Table 1 to the und-IL and und-NL micelles.

3.1. Critical Micelle Concentrations

Table 2 shows CMC values for und-IL and und-NL micelles in solutions containing
Na+ and each of the diamine counterions. In the Na+ counterion measurements, solutions
contained surfactant and NaHCO3. Uncertainties were calculated from three replicate mea-
surements. Table 2 results show that the CMCs of both surfactants were higher in solution
with Na+ counterions and lower in solutions containing the diamines. For example, the und-
IL and und-NL CMC values were 13.0 mM and 12.8 mM, respectively, when the counterion
was Na+. These values were higher than the CMCs measured for each solution containing
the diamines. Table 2 also shows that the surfactant CMCs decreased when the length
of the diamine methylene chain length increased. The und-IL CMC was 12.2 mM with
1,2-ethylenediamine counterions. As the length of the diamine methylene chain increased,
the und-IL CMC decreased, reaching a minimum value of 2.0 mM with 1,6-diaminohexane.
Similarly, the und-NL CMC was highest with 1,2-ethylenediamine (11.5 mM), decreased
steadily with diamine methylene chain length, and reached a minimum value of 4.9 mM in
a solution containing 1,6-diaminohexane. These results will now be compared to previous
work with the amino acid-based surfactant undecanoic L-phenylanaline (und-Phe). In
addition, the trends in Table 2 will be discussed in terms of the entropic hydrophobic
effect, differences in counterion charge, and the ability of the linear diamine counterions to
facilitate micelle formation by binding to multiple surfactant monomers.

A similar CMC trend was observed in an NMR study of the physical properties of
undecanoic L-phenylanaline (und-Phe) amino acid-based surfactants in solutions con-
taining Na+, L-Arginine, and L-Lysine counterions [11]. L-Arginine contains a primary
amine and a side chain guanidinium functional group, both of which are ionized in acidic,
neutral, and slightly basic solutions. L-Lysine, such as the linear diamines studied here,
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has two ionizable amine functional groups. The study of und-Phe micelles found that at
pH 10, the surfactant CMC was 14.1 mM with Na+ counterions but dropped to 5.7 mM
and 6.2 mM in the presence of L-Arginine and L-Lysine, respectively. Therefore, like the
linear diamines in Table 1, L-Arginine and L-Lysine facilitated micelle formation compared
to Na+. In this study, CMC values were measured for two amino acid-based surfactants
with different side chains than und-Phe. Additionally, by measuring the surfactant CMCs
with the counterions shown in Table 1, the spacer length between the amine functional
groups could be systematically varied from two to six carbons, whereas, with L-Arginine
and L-Lysine, the spacer length was fixed at four and five carbons, respectively.

Table 2. CMC values (mM) for Undecanoic L-Isoleucine and Undecanoic L-Norleucine at pH 10 and 25 ◦C.

Counterion Undecanoic
L-Isoleucine CMC (mM)

Undecanoic
L-Norleucine CMC (mM)

Na+ 13.0 ± 0.1 12.8 ± 0.1
1,2-ethylenediamine 12.2 ± 0.1 11.5 ± 0.8
1,3-diaminopropane 10.9 ± 0.2 9.0 ± 0.1
1,4-diaminobutane 5.8 ± 0.3 7.2 ± 0.5

1,5-diaminopentane 3.0 ± 0.1 6.1 ± 0.7
1,6-diaminohexane 2.0 ± 0.1 4.9 ± 0.9

Both the basic amino acids L-Arginine and L-Lysine and linear diamines in Table 1
likely facilitate micelle formation by bridging between two surfactant monomers [11]. This
behavior, shown in Figure 5 with 1,4-diaminobutane counterions, is not possible in Na+-
containing solutions where the counterion is a point +1 charge. The interactions shown
in Figure 5, in turn, allow the counterions to act as templating agents, facilitating the
aggregation of surfactant monomers and causing micelles to form at a lower concentration.
Figure 5 behavior, however, would likely be less effective in 1,2-ethylenediamine and
1,3-diaminopropane where the amine functional groups are closer together and, thus, steric
factors may prevent the amines from effectively binding to different surfactant monomers.
This prediction is consistent with Table 2 results, which show that the surfactant CMCs
are lower in solutions with diamines containing shorter methylene chains. For example,
the und-IL CMC was 12.2 mM and 10.9 for 1,2-ethylenediamine and 1,3-diaminopropane,
respectively. The und-NL CMC was 11.5 mM and 9.0 mM for 1,2-ethylenediamine and
1,3-diaminopropane, respectively. Diamine counterions with longer methylene chains, such
as 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane had lower CMCs likely
because the steric factors discussed above are less important as the length of the methylene
chain increases. Table 2 also shows that for both und-IL and und-NL the surfactant CMCs
were lowest for the 1,6-diaminohexane counterion, which had the longest methylene chain.
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In addition, the pKa values in Table 1 indicate that a significant population of the
1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminobutane ions in solution at pH 10
have a +2 charge. [43] Doubly protonated or +2 diamine counterions likely more readily
form the structures shown in Figure 5 when compared to 1,2-ethylenediamine or 1,3-
diaminopropane counterions which are predominately neutral or singly charged at pH 10.
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Koyma also investigated the aggregation of octanoic, decanoic, lauric, and myristic
fatty acids in the presence of Na+, ammonium, and L-Arginine counterions. This study
found that in fatty acid solutions containing bulkier counterions, such as L-Arginine, the
CMC was lower than corresponding CMCs in solutions with smaller counterions, such
as Na+. The bulkier L-Arginine counterions were postulated to more effectively reduce
the repulsion between anionic monomer headgroups at the micelle surface [43]. Table 2
results are consistent with the Koyma study in that the und-IL and und-NL surfactants
have lower CMCs when in solution with bulkier diamine counterions compared to Na+. In
addition, as the size of the diamine counterion increased, the CMC decreased. This result is
also consistent with the Koyma study [45].

Finally, when the methylene chain length of the counterion increases, the hydropho-
bicity of the counterion increases as well. This increase in overall diamine hydrophobicity
likely contributes to the surfactants aggregating at lower concentrations. Chen et al. used
variable temperature CMC measurements of homologous series of ionic and nonionic sur-
factants to calculate entropy and enthalpy changes associated with micelle formation [46].
The decrease in CMC observed as the length of the surfactant’s hydrocarbon chain increased
was attributed to the entropic hydrophobic effect, where micelle formation displaced water
molecules surrounding the hydrocarbon chains into the more disordered bulk phase [46].
Table 2 shows that as the length of the diamine methylene chain increases, the surfactant
CMC decreases. This observation may result from a similar entropic effect. The water
molecules surrounding the diamine methylene chain are also likely displaced into the
bulk phase when the counterion associates with the micelle. A longer diamine chain,
such as 1,6-diaminohexane, causes a larger displacement of the ordered water molecules
compared to the shorter chain counterions. Therefore, the resulting increase in entropy may
make micelle formation more thermodynamically favorable for the solutions containing
counterions with longer methylene chains [47,48].

3.2. Hydrodynamic Radii and Mole Fraction of Bound Counterions

While the CMC measurements report the concentration at which surfactants form
micelles, they do not generally provide a detailed picture of the structure of the micellar
aggregates above the CMC. Therefore, NMR spectroscopy was used to measure both
micelle and counterion diffusion coefficients in solutions containing 50.0 mM of both
surfactant and counterion. The diffusion coefficient, D, reports the rate of a particle’s
thermal motion in solution. D values can be used to calculate micelle radii and the mole
fraction of counterion molecules bound to the micelles using Equations (1) and (2). These
diffusion coefficient-derived values will be discussed in order to investigate the structures
of the micelle-diamine complexes.

Table 3 reports the average hydrodynamic radii (Rh) of the und-IL and und-NL micelles
in solutions containing Na+ and each diamine counterion. Rh is the radius of a hypothetical
hard sphere that has the same diffusion coefficient as the particle studied [49]. Therefore,
since Rh is an apparent size of a dynamic, hydrated particle, the radius includes both
solvent (hydro) and shape (dynamic) effects. Furthermore, Rh values report radii for the
entire micellar complex, which includes both the micelle-bound surfactant monomers and
counterion molecules. Changes in Rh with pH have been used previously to elucidate the
mechanism of counterion binding to amino acid-based micelles [11,13,14].

Table 3 shows that the und-IL and und-NL hydrodynamic radii were 9.7 Å and
11.9 Å when Na+ counterions were present at the micelle surface. These results are in
good agreement with a study by Lewis et al. which investigated micelles formed by
the amino acid-based surfactant L-undecyl-L-leucinate (und-Leu). Und-Leu has a C11
hydrocarbon chain, such as the surfactants investigated here, but the headgroup was an
L-Leucine amino acid instead of isoleucine or norleucine [14]. The Lewis et al. study found
that with sodium counterions, micelles formed by und-Leu had hydrodynamic radii of
9.3 ± 0.1 Å, in good agreement with the und-IL and und-NL radii in Table 3. Furthermore,
dynamic light scattering experiments with 50 mM solutions of the und–Leu surfactant
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yielded a similar Rh value of 11.3 ± 0.5 Å. Finally, both NMR and dynamic light scattering
experiments showed that with sodium counterions, the und–Leu micelle radius did not
change appreciably with solution pH [14].

Table 3. Average hydrodynamic radii (Rh) and fb values for undecanoic L-Isoleucine and undecanoic
L-Norleucine micelles at 25 ◦C and pH 10.

Counterion Und-IL
Rh (Å)

Und-IL
fb

Und-NL
Rh (Å)

Und-NL
fb

Na+ 9.7 ± 0.2 n/a 11.9 ± 0.1 n/a

1,2-ethylenediamine 9.8 ± 0.2 0.22 ± 0.01 9.2 ± 0.1 0.24 ± 0.01

1,3-diaminopropane 12.3 ± 0.2 0.34 ± 0.01 19.6 ± 0.8 0.10 ± 0.01

1,4-diaminobutane 15.6 ± 0.1 0.39 ± 0.01 39.4 ± 0.3 0.45 ± 0.02

1,5-diaminopentane 14.7 ± 0.3 0.29 ± 0.01 20.0 ± 2.0 0.28 ± 0.02

1,6-diaminohexane 11.0 ± 1.0 0.34 ± 0.02 24.5 ± 0.1 0.32 ± 0.01

In addition, the und-IL and und-NL radii with sodium counterions in Table 3 are very
similar to the radii of 9.8 Å and 9.2 Å for und-IL and und–NL micelles, respectively, in
solutions containing 1,2-ethylenediamine counterions. For und–IL the Rh value increased
to 12.3 Å for 1,3-diaminopropane and 15.6 Å for 1,4-diaminobutane. The Rh value then
decreased slightly to 14.7 Å and 11.0 Å for 1,5-diaminopentane and 1,6-diaminohexane coun-
terions, respectively. Therefore, the und–IL micelles are largest when 1,4-diaminobutane
counterions were present in the solution and smallest in the presence of Na+ counteri-
ons. Similar but more pronounced trends are observed for und–NL. The und–NL Rh
value was 19.6 Å with 1,3-diaminopropane counterions. Rh increased to 39.4 Å with 1,4-
diaminobutane counterions, and then decreased to 20.0 Å and 24.5 Å, respectively, in the
presence of 1,5-diaminopentane and 1,6-diaminohexane. Therefore, as with und–IL, the
und–NL micelles were largest when 1,4-diaminobutane was present in the solution.

Table 3 shows the f b values for the five diamine counterions binding to und–IL and
und–NL micelles at pH 10. With 1,2-ethylenediamine, fb values were similar (0.22 for und–
IL and 0.24 for und–NL micelles) for the two micelle systems. With 1,3-diaminopropane,
fb increased to 0.34 for und–IL but decreased to 0.10 for und–NL micelles. Fb values for
diamines with four, five, and six methylene chains will be discussed in more detail below,
but we note here that the mole fraction of bound counterions was generally higher for these
counterions than for 1,2-ethylenediamine and 1,3-diaminopropane. The lower fb values
observed for the diamines with shorter methylene chains are likely due in part due to the
charge of the counterion. The pKa values in Table 1 suggest 1,2-ethylenediamine and 1,3-
diaminopropane counterions are primarily +1 cations at pH 10, compared to the diamines
with longer methylene chains which are a mixture of +1 and +2 cations. Therefore, the lower
charge for 1,2-ethylenediamine and 1,3-diaminopropane likely causes these counterions to
be less attracted to negative micelle surface, thus leading to smaller fb values.

For both micellar solutions, fb was largest with 1,4-diaminobutane counterions (0.39
for und–IL and 0.45 for und–NL). Fb values then decreased for both micelles when 1,5-
diaminopentane and 1,6-diaminohexane were present at the micelle surface. As discussed
above, Rh values were also highest with 1,4-diaminobutane counterions. Thus, the counte-
rion with a methylene chain length of four carbons gives both the highest mole fraction of
bound counterions and the largest hydrodynamic radius for both surfactants. A correlation
between Rh and fb is expected because as more surfactant monomers aggregate, the micelles
become bigger, and Rh increases. However, as more monomers pack into the micelle, the
ionic headgroups repel, thus impeding further micelle growth. Counterions at the micelle
surface balance this repulsion of the negative headgroups [37,40]. Thus, when fb is larger
and more counterions are micelle bound, Rh is generally larger as well. Furthermore, the
mode of binding of the counterions to the micelles is likely important as well. This effect
will now be explored.
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With doubly charged counterions, such as 1,4-diaminobutane, 1,5-diaminopentane,
and 1,6-diaminohexane, it is likely that the counterions bind parallel to the micelle surface
as shown in Figure 6. In this manner, both charged amine functional groups interact with
different surfactant monomers. Previous work has shown that L-Lysine binds und–Phe
micelles in this manner [11]. 1,4 and 1,6-diaminohexane have been shown to bind parallel to
the surface of undecyl-LL-leucine valanate micelles as well [13]. In addition, Figure 6 shows
that the singly charged 1,2-ethylenediamine and 1,3-diaminopropane counterions may
instead bind perpendicular to the micelle surface since only one of their amine functional
groups is charged. Since the radii of both micelles are largest with 1,4-diaminobutane coun-
terions, this counterion may have an optimal spacing between the amine functional groups
that most effectively allows the counterion to bridge between two surfactant monomers, as
shown in Figures 5 and 6. More effective bridging then provides greater coverage of the
micelle surface with counterions and allows more surfactant monomers to pack into the
micellar aggregates.
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All micelle radii and fb values reported in Table 3 were measured at pH 10. As
discussed above, this pH was chosen because surfactant solubility decreased considerably
at lower pH values. However, it would be expected that the diamine counterion would
deprotonate above pH 10. As a result, the population of cationic counterions in the solution
would decrease, and the counterions would be overall less attracted to the anionic micelle
surface. To investigate this hypothesis, a DOSY experiment was performed with 50.0 mM
und–IL and 50.0 mM 1,4-diaminobutane at pH 11.5. In this experiment, the micelle radius
was 10.5 ± 0.1 Å. This value was very similar to the 11.0 ± 0.1 Å radius measured at pH
10. At higher pH, however, as expected, the mole fraction of micelle-bound counterions
decreased from 0.39 ± 0.01 at pH 10 to only 0.10 ± 0.01 at pH 11.5.

Finally, Table 3 shows that at pH 10 with 1,4-diaminobutane counterions, the und–NL
micelles are considerably larger than the und–IL micelles (15.6 Å for und-IL vs. 39.4 Å
for und-NL). Each surfactant monomer has a hydrocarbon chain of the same length and a
single terminal amino acid headgroup. The two surfactants, however, have different amino
acid side chains. This difference likely contributes to the difference in Rh values shown in
Table 3. The larger radius observed for und–NL micelles may result from the surfactants’
linear, n-butyl side chains turning toward the micelle core as shown in Figure 7.
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The hydrophobic R-group of the und–NL monomers may be, therefore, behave some-
what like Gemini surfactants which have two hydrocarbon chains [50]. Perez et al. used
X-ray scattering and NMR diffusion measurements to show that C11 Gemini surfactants
with L-Arginine headgroups aggregated into cylindrical micelles. Good agreement be-
tween the X-ray scattering and NMR experiments was observed as well [51]. Similarly, the
behavior shown in Figure 7 may cause the und–NL micelles to also form non-spherical
aggregates. Finally, it should be noted that equation (2) reports the radius of the sphere
with the same diffusion coefficient as the micelle. DOSY experiments alone, however, do
not allow the exact shape of the micelles to be determined [49]. Further experiments, such
as small angle X-ray scattering or dynamic light scattering, are needed to assess the exact
shape of the micelles formed by und–NL with 1,4-diaminobutane counterions [52].

4. Conclusions

NMR measurements of und–IL and und–NL critical micelle concentrations in solution
with linear diamine counterions showed that as the counterion methylene chain length
increased, both surfactant’s CMCs decreased. This observation was attributed to the
counterions templating surfactant monomers below the CMC, the entropic hydrophobic
effect, and differences in the charges of the counterions at pH 10. Furthermore, both und–IL
and und–NL micelles had maximum hydrodynamic radii and a maximum mole fraction
of micelle-bound counterions when 1,4-diaminobutane was present in the solution. It
was hypothesized that this counterion’s four-carbon methylene chain allowed it to most
effectively bridge between neighboring surfactant monomers at the micelle surface. Finally,
at pH 10, the und–NL micelles with 1,4-diaminobutane counterions were larger than the
corresponding und–IL micelles with the same counterion. A model was proposed in which
the und–NL monomers formed non-spherical micelles with both their hydrocarbon chains
and amino acid side chains pointing toward the micelle core.
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