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The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes
by directly solving the time-dependent Schrödinger equation as a differential equation. In this work, we provide an
alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the
ground state of a harmonic oscillator with its frequency adjusted to give the initial width of the Gaussian, and the time
evolution, given by the free-particle Hamiltonian, being the same as the application of a time-dependent squeezing
operator to the harmonic oscillator ground state. Operator manipulations alone (including the Hadamard lemma and
the exponential disentangling identity) then allow us to directly solve the problem. As quantum instruction evolves
to include more quantum information science applications, reworking this well known problem using a squeezing
formalism will help students develop intuition for how squeezed states are used in quantum sensing.

I. INTRODUCTION

A common example of time evolution taught in quantum
mechanics classes—in fact, in many cases, the first exam-
ple that is considered—is the free expansion of a Gaussian
wavepacket starting from a state with variance σ and zero
average momentum, which is in the following wavepacket at
t = 0:

ψ(x, t=0) =
1

(2πσ2)
1
4

e−x2/4σ2
. (1)

It is then solved by transforming from position to momentum
space, time evolving in momentum space, and then transform-
ing back to position space. These Fourier transformation in-
tegrals are elementary to do, because they are in a Gaussian
form and Gaussians integrate to Gaussians. But the analysis
is fairly technical and does not provide great physical intuition
as to what is happening (aside from the notion that because we
have a spread in momentum, this means that components of
the wavepacket move in position space at different rates and
hence the position-space wavepacket spreads in time).

In this work, we present a different methodology to solve
this problem, based on the modern concept of squeezing.
Squeezing is a phenomenon whereby a quantum state main-
tains a minimum uncertainty product, but the uncertainties
in position and momentum, oscillate in time, with each in-
dividual uncertainty becoming very small at some moment
of time and the other uncertainty becoming very small at a
later time. Squeezing is often discussed within the context
of a simple harmonic oscillator. Here, the squeezing operator
looks similar to the exponentiation of the Hamiltonian itself,
but with different coefficients in front of the individual terms.
The application to the free-expansion of a Gaussian comes
from the facts that the ground state of a harmonic oscillator
is also a Gaussian, and that the free time-evolution operator
is a squeezing operator (for the harmonic oscillator system).
Hence, the time evolution of a Gaussian can be solved by sim-
ply applying a squeezing operator to the harmonic oscillator
ground state!

Squeezed states can be difficult to understand. One way to

physically picture them is via a quantum quench. If a sys-
tem is in a harmonic oscillator energy eigenstate with an ini-
tial frequency ωi, and then suddenly the frequency changes to
ω f , then we would expect the initially steady state to evolve
over time. This subsequent time evolution is one way to think
of the behavior of a squeezed state. Unlike a coherent state,
which preserves its shape as it evolves in time, the squeezed
state changes its shape as it evolves, periodically changing
from a squeezed state, with smaller variance in position space,
to an expanded state, with a larger variance in position space.
The period of the shape oscillations is one half the period of
the new oscillator. If, the quench goes all the way to ω f = 0,
then we will no longer have periodic motion. Instead, the
Gaussian will simply expand forever as a function of time.
This is precisely the scenario for the free expansion of a Gaus-
sian that we consider here.

We have surveyed 25 different undergraduate textbooks
to see whether they cover the free-expansion of a Gaussian
wavepacket and where this material appears relative to discus-
sions of the operator-based solution of the simple harmonic
oscillator. We also looked at whether these textbooks discuss
coherent states and squeezed states. The results are summa-
rized in Table I. Clearly, none of these texts are ideal for us-
ing the material presented here—supplemental material will
be required for all of them.

For undergraduate classes that employ these textbooks, the
methodology we discuss fits in best with a course organized
so that the abstract operator method is used to solve the har-
monic oscillator problem before a discussion of the spreading
Gaussian wavepacket. However, because all of these text-
books have inadequate resources for these topics, extra in-
struction on squeezed states of the harmonic oscillator is re-
quired. Since quantum mechanics classes are likely to change
the material they cover to be more aligned with quantum in-
formation science, we anticipate many more classes will pro-
vide coverage of coherent and squeezed states and be well
positioned to discuss the material we develop here in the near
future. Indeed, we find from our textbook survey that more
recent books are more likely to cover coherent and squeezed
states, supporting this trend.
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Author Title Spreading SHO in SHO before Coherent Squeezed
Gaussian operator form Gaussian states states

Banks Quantum Mechanics X X X
Beck Quantum Mechanics X X X X
Binney and Skinner The Physics of Quantum Mechanics X X
Brandsden and Joachain Quantum Mechanics X
Burkhardt and Leventhal Foundations of Quantum Physics X X X
Cohen-Tannoudji, Diu, and Laloë Quantum Mechanics X X X
Dicke and Wittke Introduction to Quantum Mechanics X
French and Taylor Introduction to Quantum Physics X
Griffiths Introduction to Quantum Mechanics X X X X
Hannabuss An Introduction to Quantum Theory X X X
Kroemer Quantum Mechanics for Engineering X
Liboff Introductory Quantum Mechanics X X
Mahan Quantum Mechanics in a Nutshell x X
McIntyre, Manogue, and Tate Quantum Mechanics X
Miller Quantum Mechanics for Scientists · · · X X X
Ohanian Principles of Quantum Mechanics X X
Puri Nonrelativistic Quantum Mechanics X X X X
Rae and Napolitano Quantum Mechanics X
Robinett Quantum Mechanics: Classical Results, · · · X X X
Saxon Elementary Quantum Mechanics X X
Shankar Principles of Quantum mechanics X X X
Townshend A Modern Approach to Quantum Mechanics X X X
Winter Quantum Physics X
Zettili Quantum Mechanics: Concepts and · · · X X
Zweibach Mastering Quantum Mechanics: · · · X X X X

TABLE I. Summary of different topics, as presented in 25 undergraduate quantum mechanics textbooks. The X indicates that the topic is
covered in the corresponding textbook.

The pedagogical literature has also discussed the free ex-
pansion of a Gaussian wavepacket extensively, but we are
not aware of any physics education research work on this
squeezed states approach. Our discussion of previous peda-
gogical work will not be exhaustive here. Much of the previ-
ous work is interested in the question of whether and how the
wavepacket expands,1,2 how its shape evolves over time,3–5

and whether a power-series expansion to the time-evolution
operator converges.2 Some papers discuss alternative method-
ologies to compute the evolving wavepacket.6 We are aware
of three works that discuss this problem in relationship to
squeezed states of the simple harmonic oscillator.8–10 Un-
like this previous work, our work emphasizes the operator ap-
proach to squeezed states.

The ground-state wavefunction of a simple harmonic oscil-
lator, with mass m and frequency ω is given by

ψgs(x) = ⟨x|0⟩=
(mω

π h̄

) 1
4

e−mωx2/2h̄. (2)

Here, |0⟩ is the ground state of the simple harmonic oscilla-
tor and |x⟩ is the position eigenstate at the location x. The
variance of σ2 of the initial Gaussian is set by choosing
ω = h̄/2mσ2. Next, we can use a displacement operator to
displace the Gaussian in both position space and momentum
space. The displacement by x0 and p0, respectively, is given
by

D̂(x0,y0) = e−
i
h̄ (x0 p̂−p0 x̂), (3)

where x̂ and p̂ are the operators of position and momentum,
which satisfy the canonical commutation relation [x̂, p̂] = ih̄.
The displaced Gaussian state can then be represented by

|ψgs;x0, p0⟩= D̂(x0, p0)|0⟩; (4)

our choice for writing the wavepacket in this fashion fixes its
initial global phase.

The free-particle evolves according to the free Hamiltonian,
given by Ĥfree = p̂2/2m, so the time evolution of the initial
Gaussian state becomes

|ψgs(t);x0, p0⟩= e−
i
h̄ ĤfreetD̂(x0, p0)|0⟩, (5)

and the spreading Gaussian wavefunction evolves according
to time via

ψgs(x, t;x0, p0) = ⟨x|e−
i
h̄ ĤfreetD̂(x0, p0)|0⟩. (6)

It turns out that this is in the form of a squeezed and dis-
placed simple harmonic oscillator state, which can be seen
most easily when we express the position and momentum op-
erators in terms of the ladder operators of the simple harmonic
oscillator.

The raising and lowering operators for a simple harmonic
oscillator are given by

â =

√
mω

2h̄

(
x̂+ i

p̂
mω

)
and â† =

√
mω

2h̄

(
x̂− i

p̂
mω

)
. (7)
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The inverse relations are

x̂ =

√
h̄

2mω

(
â+ â†) and p̂ =

√
h̄mω

2
1
i

(
â− â†) . (8)

We can re-express the free-particle Hamiltonian in terms of
the ladder operators as

p̂2

2m
=− h̄ω

4
(
(â†)2 − â†â− ââ† + â2) . (9)

The most general squeezing operator is written as

Ŝ(ξ ,η) = e−
ξ

2 (â†)
2
+i η

2 (â†â+ââ†)+ ξ∗
2 â2

, (10)

with ξ a complex number and η a real number. When con-
verted to position and momentum operators, this is the most
general unitary operator that can be constructed from quadrat-
ics in position and momentum; namely, it is of the form
exp
(
iax̂2 + ib(x̂ p̂+ p̂x̂)+ icp̂2

)
, with the numbers a, b, and

c independent of each other and expressible in terms of ξ and
η . Using Eq. (9), we find that the time-evolution operator
e−ip̂2t/2mh̄ is simply the squeezing operator with

ξ =− iωt
2

and η =−ωt
2
. (11)

Hence, the most general spreading Gaussian is a displaced-
squeezed state, with the magnitudes of both ξ and η increas-
ing linearly in time. Note that this squeezing operator is a spe-
cial case, in which ξ = iη . In this case, we find it is simpler
to express the simplified squeezing operator in the form

Ŝ±(k) = eik(â†±â)
2
, (12)

where k = ωt/4. Here, the operator we work with for the time
evolution is Ŝ−

(
ωt
4

)
, because it involves the exponential of the

square of the momentum operator; we will find we also need
to work with the exponential of a constant times the square
of the position operator, which corresponds to Ŝ+(k′) for a
suitably chosen k′.

II. FORMALISM AND DETAILS OF THE DERIVATION

If students know about the operator-based solution of the
simple harmonic oscillator, coherent states and squeezed
states, then it is natural to also discuss the spreading of a
Gaussian wavepacket in the context of this simplified squeez-
ing operator and the displacement operator. We describe the
details for how this works next. What we find to be partic-
ularly interesting about this approach is that we use ladder
operators from the simple harmonic oscillator in the analy-
sis, even though the quantum state evolves with respect to a
free-particle Hamiltonian, and there is no frequency scale in
the free-particle Hamiltonian. The simple harmonic oscillator
(and thereby the frequency we will use) enters only because
the initial wavepacket is a Gaussian wavepacket with an ini-
tial variance σ2. This tells us the frequency of the simple har-
monic oscillator for which this Gaussian is the ground-state

wavefunction, and allows us to examine the spreading of the
wavepacket in this fashion. The formal developments in this
work are similar to, but different from earlier work on how
to determine the displaced-squeezed state wavefunction using
operator methods11 in that here we must work with η ̸= 0,
whereas there, η = 0.

We start with a coherent state |α⟩ with initial position x0 = 0
and some arbitrary initial momentum p0. Then, using the stan-
dard notation for coherent states, we have that α = ip0

1√
2h̄mω

for this special case. We use the free-particle Hamiltonian,
with m and ω fixed in our calculations, and we have that
the initial variance of the probability distribution is given by
σ2

0 = ∆2
x = h̄/2mω , since it is a coherent state.

To obtain the time-dependent wavefunction, we take the
overlap of a position bra with the time-evolved initial coherent
state;

ψ(x, t) = ⟨x|e−
i
h̄ Ĥfreet |α⟩= ⟨x|e−

it
2h̄m p̂2

e
ip0
h̄ x̂|0⟩. (13)

The coherent state is simply a momentum translation opera-
tor applied to the harmonic oscillator ground state. We will
also find it convenient to later introduce the position state
at the origin |0x⟩, which satisfies x̂|0x⟩ = 0. Then, using
the translation operator for position yields the position eigen-
state at x via |x⟩ = e−

i
h̄ xp̂|0x⟩, so that x̂|x⟩ = x|x⟩. In addi-

tion, because the position translation operator has the semi-
group property, given by e−

i
h̄ xp̂e−

i
h̄ x′ p̂ = e−

i
h̄ (x+x′)p̂, we find

that |x+ x′⟩ = e−
i
h̄ x′ p̂|x⟩ = e−

i
h̄ xp̂|x′⟩ both hold. We will also

use this identity below.
Our manipulations will employ two other operator identi-

ties: (i) the Hadamard lemma,

eÂB̂e−Â = B̂+[Â, B̂]+
1
2!
[Â, [Â, B̂]]+ · · · (14)

with the nth term in the summation equal to

1
n!

[Â, [Â, · · · B̂] · · · ]︸ ︷︷ ︸
n nested commutators

of Â with B̂

(15)

and (ii) the exponential disentangling identity, which is dis-
cussed in the Appendix.

Now, we begin our work to simplify Eq. (13). We use a
multiply by 1 to create a Hadamard lemma expression, which,
after evaluating the Hadamard lemma effectively moves the
exp( ip0

h̄ x̂) term from the right of the time evolution operator
to its left.

ψ(x, t) = ⟨x|e
ip0
h̄ x̂e−

ip0
h̄ x̂︸ ︷︷ ︸

=1

e−
it

2h̄m p̂2
e

ip0
h̄ x̂|0⟩

= ⟨x|e
ip0
h̄ x̂ e−

ip0
h̄ x̂e−

it
2h̄m p̂2

e
ip0
h̄ x̂︸ ︷︷ ︸

Hadamard

|0⟩

= e
ixp0

h̄ ⟨x|e−
it

2h̄m (p̂+p0)
2 |0⟩. (16)

Here, we used the fact that ⟨x|x̂ = ⟨x|x to replace ⟨x|exp( ip0
h̄ x̂)

by ⟨x|exp( ip0
h̄ x) and then moved the number out of the ma-

trix element. Evaluating the Hadamard lemma requires some
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standard operator manipulations. First, we expand the cen-
tral exponential in a power series, and note that the exponen-
tial factors can be moved into the exponent (this operation is
called the braiding relation) because the “internal” exponen-
tial factors appear in pairs and multiply to 1,

e−
ip0
h̄ x̂e−

it
2h̄m p̂2

e
ip0
h̄ x̂ =

∞

∑
n=0

1
m!

(
− it

2h̄m

)m

e−
ip0
h̄ x̂ p̂2me

ip0
h̄ x̂

=
∞

∑
n=0

1
m!

(
− it

2h̄m

)m
e−

ip0
h̄ x̂ p̂e

ip0
h̄ x̂︸ ︷︷ ︸

Hadamard

2m

=
∞

∑
n=0

1
m!

(
− it

2h̄m

)m(
p̂− ip0

h̄ [x̂, p̂]
)2m

=
∞

∑
n=0

1
m!

(
− it

2h̄m

)m

( p̂+ p0)
2m

= e−
it

2h̄m (p̂+p0)
2
. (17)

Note that the Hadamard for the exponent truncates after just
the first commutator because it is a number, which subse-
quently commutes with all operators.

Next, we expand the squared exponent in Eq. (16), pull out
the constant terms, let the terms with a linear exponent in p̂
act on the bra to translate the position state, and then replace
the momentum operator with its expression in terms of ladder
operators (of the simple harmonic oscillator) in the quadratic
exponent to give us

ψ(x, t) = e
ip0x

h̄ − it p2
0

2h̄m ⟨x− t p0

m |e
iωt
4 (â†−â)

2
|0⟩. (18)

We need to motivate our next step. The exponent of the oper-
ator is proportional to the difference of the ladder operators,
and we do not know how such an operator acts on the position
bra to the left. But, if we could find a way to change the differ-
ence of ladder operators into a sum in the exponent, then the
operator in the exponent would be proportional to x̂2, which
can be readily applied onto the position eigenbra to its left.
This would then leave us with the ground-state wavefunction
evaluated at x− t p0

m . In order to accomplish the sign change,
we first use the exponential disentangling identity acting on
the simple harmonic oscillator ground state and apply it to
the operator with a quadratic exponent as given in Eq. (A12).
We use the case with a difference of the ladder operators and
k = ωt/4. We find Eq. (18) becomes

ψ(x, t) =
e

ip0x
h̄ − it p2

0
2h̄m√

1+ iωt
2

⟨x− t p0

m |e
iωt

4+2iωt (â
†)2

|0⟩, (19)

where two of the exponential factors in the exponential disen-
tangling identity have been replaced by 1 because â|0⟩ = 0.
This means that both exp(β â†â)|0⟩ = |0⟩ and exp(γ â2)|0⟩ =
|0⟩, with β and γ numbers, as can be verified by expanding
the exponentials into power series and acting them on the har-
monic oscillator ground-state ket. Next, we use Eq. (A12)
again, but now for the sum of ladder operators and with
k′ = ωt

4(1+iωt) . In addition, we start from the expression on the

right and replace it by the equivalent expression on the left. A
direct calculation gives

ik′

1−2ik′
=

iωt

4(1+ iωt)
(

1− 2iωt
4(1+iωt)

) =
iωt

4+2iωt
. (20)

So, we find

ψ(x, t) =
e

ip0x
h̄ − it p2

0
2h̄m√

1+ iωt
2

⟨x− t p0

m |

√
1+ iωt

2
1+ iωt

e
iωt

4(1+iωt) (â†+â)
2

|0⟩

=
e

ip0x
h̄ − it p2

0
2h̄m

√
1+ iωt

⟨x− t p0

m |e
imω2t

2h̄(1+iωt) x̂2
|0⟩

=
e

ip0x
h̄ − it p2

0
2h̄m

√
1+ iωt

e
imω2t

2h̄(1+iωt)

(
x− t p0

m

)2

⟨x− t p0

m |0⟩

=
e

ip0x
h̄ − it p2

0
2h̄m

√
1+ iωt

e
imω2t

2h̄(1+iωt)

(
x− t p0

m

)2

ψgs
(
x− t p0

m

)
. (21)

Substituting in the ground-state wavefunction from Eq. (2)
yields our final result

ψ(x, t) =
(mω

π h̄

) 1
4 1√

1+ iωt
e−

mω

2h̄(1+iωt) (x− t p0
m )

2
+ ip0x

h̄ − it p2
0

2h̄m .

(22)
The probability density becomes

|ψ(x, t)|2 =
√

mω

π h̄(1+ω2t2)
e
− mω

h̄(1+ω2t2)
(x− t p0

m )
2

. (23)

Now we see the variance is increasing approximately quadrat-
ically in time as

σ
2(t) = ∆

2
x(t) =

h̄
2mω

(1+ω
2t2) = σ

2(0)(1+ω
2t2). (24)

This is, of course, the standard result for the spreading
Gaussian wavefunction in position space. Using operator
methods to determine it is a straightforward exercise that helps
build facility in working with operators. It is also interesting
to think of this in terms of squeezing and a “hidden” simple
harmonic oscillator.

The momentum-space derivation is even simpler. We start
with

φ(p, t) = ⟨p|e−
i
h̄ Ĥfreet |α⟩= ⟨p|e−

it
2h̄m p̂2

e
ip0
h̄ x̂|0⟩. (25)

We can immediately apply the momentum operator onto the
momentum eigenstate and replace p̂ → p. This gives

φ(p, t) = e−
it

2h̄m p2⟨p|e
ip0
h̄ x̂|0⟩. (26)

The evaluation of the remaining expectation value is easy once
we realize that the exponential operator translates the momen-

tum via |p⟩ = e
ip
h̄ x̂|0p⟩, with p̂|0p⟩ = 0 defining the momen-

tum state at the origin |0p⟩. So, we find the exponential oper-
ator translates the momentum bra to give us

φ(p, t) = e−
ip2t
2mh̄ ⟨p− p0|0⟩. (27)
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The term ⟨p− p0|0⟩ is just the ground state of the simple har-
monic oscillator in momentum space. It can easily be found
by Fourier transformation, or by operator methods.12 Substi-
tuting in this result gives us

φ(p, t) =
1

(π h̄mω)
1
4

e−
(p−p0)

2
2h̄mω

− ip2t
2mh̄ , (28)

which is our final result for the wavefunction. The probability
distribution becomes

|φ(p, t)|2 = 1√
π h̄mω

e−
(p−p0)

2
h̄mω . (29)

The variance of the momentum-space wavefunction does not
change with time:

σ
2
p(t) = ∆

2
p =

h̄mω

2
. (30)

III. APPLICATIONS OF THESE IDENTITIES AND NEW
EXERCISES FOR STUDENT LEARNING

One of the goals in modernizing physics instruction is to
bring modern experimental results into the classroom. Recent
work on atoms trapped in harmonic potentials has been able to
(i) create the ground state, the first excited state, and the sec-
ond excited state and (ii) has used time-of-flight spectroscopy
to measure the momentum distribution of the atom when it
is in these different Fock states.13 The formalism we used
to describe the free-expansion of the simple harmonic oscilla-
tor can be immediately adapted to analysing this experiment,
which makes for a context-rich problem for students studying
the expansion of wavepackets. We describe how this can be
used in instruction next.

These experiments employ time-of-flight spectroscopy,
which is an important experimental technique that does not
often get discussed in quantum instruction. The only quan-
tum textbook we are aware of that discusses this technique
in any detail is Ballentine’s book.14 In fact, even though
many textbooks say that one can measure the momentum of
a quantum particle, virtually none explain just how one does
this. It is subtle, because we usually measure position to infer
momentum; hence, introducing a discussion of time-of-flight
provides a great opportunity to properly explain how Heisen-
berg’s uncertainty principle applies to a real experiment on
measuring momentum.

In fact, while many textbooks do describe how one can
measure position, they are often silent about how to measure
momentum. For example, Griffiths states “You might wonder
how it is enforced in the laboratory—why can’t you deter-
mine (say) both the position and the momentum of a particle?
You can certainly measure the position of the particle, but the
act of measurement collapses the wave function to a narrow
spike, which necessarily carries a broad range of wavelengths
(hence momenta) in its Fourier decomposition.” In this dis-
cussion, Griffiths is intimating that a simultaneous measure-
ment of position and momentum is impossible. It is certainly

true that subsequent measurements of position cannot be used
to determine the original momentum, but that does not for-
bid position and momentum to be measured at the same time,
as we see below. Zweibach explicitly states “given a parti-
cle, you cannot simultaneously know both its position and its
momentum.” But, a time-of-flight measurement is one way to
determine momentum and it does so by measuring position. Is
this in conflict with the Copenhagen interpretation? Of course
not, because the momentum is inferred from the position mea-
surement and the assumption that the wavepacket is traveling
as a free particle. One simply needs to perform the analysis
properly. Let us explain carefully how time-of-flight works.

In a time-of-flight experiment, one prepares a reasonably
localized state (in Ref. 13 the state is localized on the order of
0.3− 0.5 µm). Then at a specific time, the harmonic oscilla-
tor trapping potential is shut off (a quench to ω f = 0, just like
we analyzed above). We start a clock at this time and let the
atom expand in its wavepacket for some time before measur-
ing its position (in Ref. 13, the time of flight is about 10 µs).
At the moment of the measurement, we know the position to
the accuracy of the position detector—but, we also know its
momentum, which is inferred from the fact that it traveled as a
free particle from its localized origin to where it was detected
in the time of flight. So, at the moment of the measurement,
we know the position and momentum of the quantum particle
for this one experimental shot!

Does this violate uncertainty? Of course not. The uncer-
tainty principle applies to the spread in the results if we repeat
the measurement many times (which will actually determine
the momentum distribution). The momentum distribution is
that of the original trapped atom, plus any spread in the dis-
tribution that occurred due to the time of flight. But, because
the momentum distribution does not spread in time, we do
really measure the momentum distribution of the atom in its
trap. And what about the original position uncertainty? Un-
fortunately, we cannot determine that, because this measure-
ment is not sensitive to the initial position. But the uncertainty
in knowing just what the initial position is (due to the initial
wavepacket spread) does lead to an intrinsic uncertainty in the
momentum measurement in a time-of-flight experiment, but
one can make that uncertainty as small as desired by simply
increasing the time for the time of flight (which reduces the
relative error for the momentum measurement).

Hence, the time-of-flight measurement does not fall into the
standard measurement paradigm taught in most quantum text-
books, and it avoids the uncertainty principle restrictions on
individual experimental shots due to the way it is set-up. The
time of flight is employed to magnify the position values so
that we can distinguish these different positions (due to the
magnification effect) and then infer the different momenta in
the initial momentum distribution.

What gets confused about quantum mechanics postulates
is that every quantum state has complementary uncertainties
that must obey the uncertainty principle. In other words, no
quantum state can be created that has definite position and
momentum. And similarly, no von Neumann style projec-
tive measurement can measure both position and momentum
without obeying uncertainty as well. But the von Neumann
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paradigm is not sufficient to be used to describe all of the parts
of the time-of-flight measurement—it only describes the posi-
tion measurement part. This is a subtle point, but an important
one to convey to students.

So, while one can certainly say one cannot create a quan-
tum state with definite position and momentum, one should
never say that one cannot measure position and momentum at
the same time. One can. And discussing how this works pro-
vides a great opportunity to carefully explain the subtleties of
the Heisenberg uncertainty principle and the strategies used to
measure momentum. These are two topics often given “short
shrift” in the traditional quantum mechanics courses.

Back to the experiment in Ref. 13. In those measure-
ments, they examine not just the momentum distribution of
the ground state, but of the two lowest excited states as well.
We can easily generalize the techniques we developed above
to determine the momentum distributions for these different
Fock states too, and this is an excellent exercise for students
post instruction. Since the momentum distribution of a har-
monic oscillator is identical in shape to the position distribu-
tion, this also can be thought of as a magnified visualization
of the original position distribution as well. The calculation is
quite simple to do, and this is because all harmonic oscillator
Fock states maintain their shape (in momentum space) during
time of flight.5 So, if I start in the nth Fock state, given by
(â†)

n

√
n!

|0⟩, then the momentum distribution after a time of flight
of duration t is simply given by

φn(p, t) = ⟨p|e−
i
h̄ Ĥ f reet (â†)

n

√
n!

|0⟩, (31)

which can be immediately solved to be

φn(p, t) =
1

(π h̄mω)
1
4

1√
n!2n

Hn

(
p√

h̄mω

)
e−

p2

2h̄mω
− ip2t

2h̄m . (32)

Here, we have introduced the physicist’s form of the Hermite
polynomial. Details for how to do this using operators has
been discussed in Rushka and Freericks.12

One might say that because we directly measure the posi-
tion in the time-of-flight, we should really calculate the posi-
tion distribution at time t. One can do this as well for the Fock
states, but it takes a few more steps. Again, we assume the
initial momentum is zero because we are in an energy eigen-
state. Then, the only difference in the derivation is that at
the point when we use the exponential disentangling identity,
the exponentials of â2 and of â†â cannot immediately act on
the ground state because the

(
â†
)n term is in the way. But

this causes no problem, as one can move the exponentials past
that operator by using a “multiply-by-one” followed by the
Hadamard lemma. We have to do this twice—once when we
use the disentangling identity on the square of the momentum
operator and once when we bring the required factors needed
to convert the exponential to the square of the position opera-
tor. This requires a fair amount of algebra, which then yields

ψn(x, t) =
1√

1+ iωt
e

imω2t
2h̄(1+iωt) x2 1√

n!(1+ iωt)n

×⟨x|
(
â† +(iωt)2â

)n |0⟩. (33)

If n = 0, this is the same answer as we had before. When
n = 1, we obtain

ψ1(x, t) =
(mω

π h̄

) 1
4 1√

1+ iωt

√
2mω

h̄
x

(1+ iωt)

× e−
mω

2h̄(1+iωt) x2
. (34)

The first excited state probability distribution then becomes

|ψ1(x, t)|2 =
√

mω

π h̄
1√

1+ω2t2

2mωx2

h̄(1+ω2t2)
e
− mω

h̄(1+ω2t2)
x2

.

(35)
This has the same shape as the first excited state, but with x2 →
x2/(1+ω2t2) (and the required change in the normalization
factor), as we expect it to.5 The calculation of higher-order
excited states follows in a similar fashion, but is tedious to
work out the details, because the Hermite polynomial must
have each power of x scaled with a different factor, leading to
cumbersome equations to work out. So we stop here.

IV. CONCLUSION

In this work, we showed an alternative way to determine
the expansion of a Gaussian wavepacket in free space as a
function of time by mapping the problem onto the applica-
tion of a squeezing operator on a simple-harmonic-oscillator
ground state with the same variance as the initial wavepacket
at t = 0. The squeezing operator used here is particularly
simple, which allows us to use an exponential disentangling
identity in the derivation that is easy to derive. Given the in-
creasing interest in quantum information science, especially
in quantum sensing, we feel this approach will provide an in-
teresting new perspective on an old problem.

We worked with operators throughout because we believe
working with operators makes the material accessible to more
students since it does not require calculus (calculus is only
needed to determine normalization constants, and those can
be told to the student if needed).

All of the pedagogy used with the free-expansion of a Gaus-
sian wavepacket can also be used if it is taught this way. This
pedagogy is well-known and appears in many textbooks, so
we do not rehash it here. Instead, we described how this
approach can be employed to introduce a modern time-of-
flight experiment that measures the momentum distribution
of a quantum particle in a harmonic trap and in the ground
state or a low-lying excited state. This provides an interest-
ing new application of the freely expanding Gaussian, which
should become a standard in quantum mechanics courses of
the future.
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VII. APPENDIX: SIMPLIFIED EXPONENTIAL
DISENTANGLING IDENTITY FOR THE SYMPLECTIC
GROUP

We want to find a disentangled expression for

eik(â†±â)
2
= eik

(
(â†)2±(â†â+ââ†)+â2

)
, (A1)

with k a complex number. Disentangling identities are proven
by mapping the operators in the exponent onto Lie algebra
generators.15 Here, the Lie algebra is that of the symplec-
tic group. We employ a faithful matrix representation of that
Lie algebra to derive an identity of the exponential operator in
terms of the product of three different exponential operators—
each involving one of the Lie algebra generators. Then, be-
cause the representation is faithful, the identity holds when
expressed in terms of the Lie generators as well.

We start by working with the following operators, which
serve as generators of the symplectic Lie algebra:

K̂0 =
1
4
(â†â+ ââ†), K̂+ =

1
2
(â†)2, and K̂− =

1
2

â2. (A2)

They satisfy the commutation relations[
K̂0, K̂±

]
=±K̂± and

[
K̂+, K̂−

]
=−2K̂0, (A3)

as can be directly worked out from the fact that [â, â†] = 1.
This algebra looks quite similar to the more familiar SU(2)
algebra, except for the change in sign on the last commutator.
Then, we have

eik(â†±â)
2
= e2ik(K̂+±2K̂0+K̂−). (A4)

and our goal is to find a, b, and c such that

e2ik(K̂+±2K̂0+K̂−) = eaK̂+ebK̂0ecK̂− . (A5)

We create a faithful representation of the Lie algebra via the
following 2×2 matrix representation of the Lie algebra:

K̂0 ↔
1
2

(
−1 0

0 1

)
, K̂+ ↔

(
0 0

−1 0

)
, and K̂− ↔

(
0 1
0 0

)
.

(A6)
It is a worthwhile exercise to show that these matrices satisfy
the symplectic Lie group commutator algebra in Eq. (A3). Us-
ing this representation, we find that

K̂+±2K̂0 + K̂− ↔
(
∓1 1
−1 ±1

)
= M±. (A7)

The matrices M± are nilpotent with index two—in other
words, M2

± = 0. Then the power-series expansion of the expo-
nential truncates after the first term, so we have

e2ikM± = I2 +2ikM± =

(
1∓2ik 2ik
−2ik 1±2ik

)
. (A8)

Each term in the right-hand side of Eq. (A5) can also be easily
calculated, and we find

eaK̂+ebK̂0ecK̂− ↔
(

1 0
−a 1

)(
e−

b
2 0

0 e
b
2

)(
1 c
0 1

)

=

(
e−

b
2 ce−

b
2

−ae−
b
2 −ace−

b
2 + e

b
2

)
. (A9)

We equate these two matrices to find that

a± = c± =
2ik

1∓2ik
and b± =−2ln(1∓2ik). (A10)

Hence, the exponential disentangling identity becomes

eik(â†±â)
2
= e

ik
1∓2ik (â†)

2
e−

1
2 ln(1∓2ik)(â†â+ââ†)e

ik
1∓2ik â2

. (A11)

Acting this on the simple-harmonic-oscillator ground state
then gives us

eik(â†±â)
2
|0⟩= 1√

1∓2ik
e

ik
1∓2ik (â†)

2
|0⟩, (A12)

because â|0⟩ = 0. This last identity is used in our derivation
with two different k values, k = ωt

4 and k′ = ωt
4(1+iωt) .
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