
Paper ID #38566

Promoting Computational Thinking in Integrated Engineering Design and
Physics Labs

Dr. Ruben D. Lopez-Parra, University of New Mexico

Ruben D. Lopez-Parra is a Post-doctoral fellow in the Department of Chemical & Biological Engineering
at University of New Mexico. His Ph.D. is in Engineering Education from Purdue University and he
has worked as a K-16 instructor and curriculum designer using various evidence-based active and passive
learning strategies. In 2015, Ruben earned an M.S. in Chemical Engineering at Universidad de los An-
des in Colombia where he also received the title of Chemical Engineer in 2012. His research interests
are grounded in the learning sciences and include how K-16 students develop engineering thinking and
professional skills through diverse learning environments. He aims to apply his research in the design of
better educational experiences.

Ravishankar Chatta Subramaniam
Dr. Jason Morphew, University of Illinois, Urbana-Champaign

Dr. Jason Morphew is currently an assistant professor at Purdue University in Engineering Education and
Morphew is affiliated with the INSPIRE research institute for Pre-College Engineering and the Center for
Advancing the Teaching and Learning of STEM. Dr. Morphew’s research focuses on the application of
principles of learning derived from cognitive science and the learning sciences to the design and evaluation
of learning environments and technologies that enhance learning, interest, and engagement in STEM.

©American Society for Engineering Education, 2023



 

Promoting Computational Thinking in Integrated Engineering 
Design and Physics Labs 

 
Abstract 
 
Computational thinking has widely been recognized as a crucial skill for engineers engaged in 
problem-solving. Multidisciplinary learning environments such as integrated STEM courses are 
powerful spaces where computational thinking skills can be cultivated. However, it is not clear 
the best ways to integrate computational thinking instruction or how students develop 
computational thinking in those spaces. Thus, we wonder: To what extent does engaging students 
in integrated engineering design and physics labs impact their development of computational 
thinking? We have incorporated engineering design within a traditional introductory calculus-
based physics lab to promote students’ conceptual understanding of physics while fostering 
scientific inquiry, mathematical modeling, engineering design, and computational thinking. 
Using a generic qualitative research approach, we explored the development of computational 
thinking for six teams when completing an engineering design challenge to propose an algorithm 
to remotely control an autonomous guided vehicle throughout a warehouse. Across five 
consecutive lab sessions, teams represented their algorithms using a flowchart, completing four 
iterations of their initial flowchart. 24 flowcharts were open coded for evidence of four 
computational thinking facets: decomposition, abstraction, algorithms, and debugging. Our 
results suggest that students’ initial flowcharts focused on decomposing the problem and 
abstracting aspects that teams initially found to be more relevant. After each iteration, teams 
refined their flowcharts using pattern recognition, algorithm design, efficiency, and debugging. 
The teams would benefit from having more feedback about their understanding of the problem, 
the relevant physics concepts, and the logic and efficiency of the flowcharts.   
 

Introduction and Theoretical Framework 
 
Computational thinking (CT) is a critical skill for everyone to live in a world shaped by 
technology. Seymour Papert coined the term CT in 1986 [1], but Wing [2]spread it broadly as a 
fundamental skill for everyone, which involves “solving problems, designing systems, and 
understanding human behavior, by drawing on the concepts fundamental to computer science” 
[2, p. 33]. This conception extended computational thinking beyond merely programming skills 
to focus on how computer scientists think when solving problems. With this definition, CT 
represents a way of thinking that supports inquiry in STEM disciplines, helps individuals 
succeed in a technological society, and enables personal empowerment [3]–[5]. CT is 
particularly relevant for engineers considering how new technologies based on automated 
systems and artificial intelligence have become predominant in the workplace [6], [7]. 
Furthermore, research has found a robust connection between CT and other cognitive skills such 
as critical thinking, spatial reasoning, and problem-solving skills [8], [9]. As a consequence, 



 

there is a global interest, particularly within engineering education, in preparing scientists and 
engineers in CT [10]. 
 
Research about teaching and learning CT is still in its infancy, and currently there is not a clear 
definition of CT across STEM disciplines. Multiple definitions and operationalizations have been 
proposed making it difficult to design and assess teaching materials aimed at developing CT 
[11]–[16]. This lack of consensus has obstructed the development and assessment of teaching 
approaches to support students’ development of CT [17], [18]. However, most common 
approaches include framing CT in terms of abstraction, automation, and decomposition [17]. In a 
recent comprehensive literature review Shute, Sun, and Asbell-Clarke [11] reviewed existing 
models of CT, then summarized the findings by advancing a model of CT that includes six facets 
common to most existing models. 
 
Shute, et al. [11] defined CT as the “conceptual foundation required to solve problems 
effectively and efficiently with solutions that are reusable in different contexts” [11, p. 151]. This 
model is particularly relevant for this study, as Shute and colleagues envisioned a model for CT 
that was applicable across content areas and disciplines. In addition, this model was developed to 
facilitate assessment of CT by students engaged in problem solving tasks. CT as viewed in this 
model is composed of six facets: Decomposition, abstraction, algorithms, debugging, iteration, 
and generalization. Problem decomposition refers to breaking down a complex problem into 
more manageable sub-problems that when combined lead to an effective solution of the overall 
problem. Abstraction refers to extracting the “essence” of a complex problem to obtain the 
relevant information and interrelationships needed to address the problem through data collection 
and analysis, pattern recognition, and modeling. The CT facet of algorithms refers to the 
development of a logical design or ordered instructions that are needed to find efficient solutions 
to the problem. When this logical sequence of steps or instructions are developed to form an 
effective procedure, this process can be automated to solve similar problems. Debugging refers 
to identifying and fixing errors in the algorithm, both during the development of the algorithm 
and when students attempt to transfer the algorithm to a new context. Iteration is the process of 
revisiting effective algorithms to improve their efficiency until an optimum state is reached. 
Generalization occurs when the algorithms and CT skills are transferred to effectively address 
problems in other domains. Because iteration and generalization require the problem context to 
allow sufficient time for reflection and modification of the solution to be observed, we focused 
on the first four facets for this study. Future work will examine subsequent design challenges to 
find evidence for iteration and generalization. 
 
Teaching and learning CT in non-computer science contexts has been particularly challenging in 
higher education. Considering the challenges with introducing new courses into the curriculum, a 
feasible option to promote students’ CT is to infuse this skill within the current courses. 
Multidisciplinary learning environments such as integrated STEM courses present a potentially 



 

transformative opportunity to help students develop CT skills within existing STEM courses 
while also learning disciplinary content knowledge [19]–[21]. For example, modeling is a key 
process in both CT and scientific inquiry that engage students in abstracting and decomposing 
problems [22]. Specifically, within K-12 education efforts have been made to integrate CT into 
physics instruction. These efforts include the development of appropriate assessments [23], [24] 
and the promotion of learning CT in conjunction with physic concepts [25]. In contrast, there is a 
lack of research in higher education about how to effectively integrate the teaching of CT into 
STEM instruction and how students develop CT in multidisciplinary contexts. 
 
One promising method for facilitating the development of CT in higher education is through the 
introduction of flowcharting. Flowcharts have been commonly used in industry since their 
development by IBM in 1970 [26]. In educational settings, flowcharts have been integrated into 
instruction to facilitate students' learning of programming and CT in computer science and other 
engineering contexts [27]–[31]. The use of flowcharts supports novice programmers' learning by 
minimizing the cognitive load associated with learning the syntax of a new programming 
language and using friendly representations of programming logic and common language 
constructs like conditional statements or loops [29]. Previous studies have found that flowcharts 
can successfully scaffold students’ CT by supporting students’ visualization of their reasoning 
[4], [32], decomposing of the task [33], [34], and separating the design or logic of the solution 
from the coding [28]. When designing feasible algorithms, developing CT facets (i.e., 
decomposition, abstraction, etc.) is often more relevant than writing correct syntax [35]–[37]. 
This study focuses on examining student produced flowcharts as the aim of the study was to 
analyzing students’ development of CT rather than students’ learning of coding. 
 
Laboratory experiences in undergraduate physics courses are full of opportunities to engage 
students in CT. The integration of CT and engineering design (ED) can foster students' learning 
during these experiences (e.g., [38]–[41]). However, there is a need for further research about the 
best ways to integrate CT and ED in undergraduate STEM courses and to examine how students 
develop these skills within multidisciplinary STEM contexts [20], [21]. Following calls to create 
more integrated and impactful laboratory experiences in undergraduate physics [42], [43], we 
integrated CT and ED into a traditional introductory undergraduate  physics lab for engineering 
and science majors. The goal of this multidisciplinary approach to teaching physics was to 
promote students’ conceptual understanding of physics while fostering scientific inquiry, 
mathematical modeling, ED skills, and CT. In this context, we proposed the following research 
question to better understand the undergraduate students’ learning of CT in a multidisciplinary 
STEM environment: 

To what extent does engaging students in integrated engineering design and physics labs impact 
their development of computational thinking? 

 



 

Methods 
 
We used a generic qualitative research approach to explore the students’ CT in the integrated 
engineering design and physics labs. Generic qualitative research is not guided by a specific set 
of philosophic assumptions and provides flexibility when the study’s focus or the kind of data 
does not fit a typical qualitative approach [44]. This research approach is appropriate for this 
study due to the exploratory nature of this work and the complexity of our data. Namely, we 
looked for evidence of CT in the flowcharts developed by six teams of undergraduate students 
when addressing an ED challenge. The following sections provide details about the context, 
settings, participants, data collection and analysis, and limitations of this study.  
 
Context  
 
This study was part of a larger pedagogical intervention that aimed to transform the laboratory 
experiences in a large-enrollment first-semester calculus-based undergraduate physics course at a 
large U.S. midwestern land-grant university by integrating CT and ED. The physics course has 
an annual enrollment of about 2400 students, about 80-90% of which are engineering majors, 
and the remaining students are primarily physics or other natural science majors. The course 
adopts the principle-based approach that is followed in the course text: Matter and Interactions 
(M&I) vol. 1 [45]. Specifically, it covers the (linear) momentum, energy, and angular momentum 
principles with a focus on systems thinking, modeling, assumptions, and approximations. The 
course’s weekly schedule includes two 50-minute lectures, one 120-minute laboratory, and one 
50-minute recitation focused on problem-solving. The laboratory segment has a total of 13 
sessions throughout the semester. This study focused on the sessions 2 through 6.  
 
Laboratory setting  
 
The design of the lab sessions has undergone several changes over the last four years to integrate 
ED, CT and scientific inquiry into the physics labs. Each lab session included around 50 students 
working in groups of two or three, was led by a graduate teaching assistant, and was supported 
by an undergraduate teaching assistant. The graduate teaching assistants were trained in leading 
ED-integrated physics labs at the beginning of the semester, attended weekly meetings, and 
performed the labs in advance to discuss the best practices for instructing students. Each lab 
session typically began with a brief introduction to the days’ lab by the graduate teaching 
assistant. Students then worked in teams to complete the ED as long as learning CT, and physics 
concepts following printed instructions.  
 
Integration of ED. Our more recent intervention integrated ED through challenges that followed 
seven essential ED characteristics [46]. The seven ED characteristics are: being client-driven and 
goal oriented, having an authentic context, stating the constraints clearly, making use of 



 

materials, resources and tools familiar to students, developing a prototype that may be a product 
or a process, generating multiple solutions, and engaging in teamwork.  
 
Integration of CT. CT tasks consisted of working with Jupyter Notebooks hosted by Google 
Colab and creating flowcharts to document their algorithms. Apart from being free for anyone 
with a Google account, these Notebooks combine executable code and rich text in a single 
document. These are particularly useful for running Python codes, typing equations in Latex, 
uploading images and CSV files, performing data analysis, creating, and sharing files without 
having to download or install anything. Students were not expected to have prior programming 
experience, as the focus of the CT tasks were on applying physics concepts to edit and modify 
existing code relevant to the physical concept of the lab. Carefully designed scaffolds were 
provided for the students to facilitate learning elements of programming in the context of the 
laboratory experiment. 
 
Integration of scientific inquiry. The physics tasks consisted of hands-on activities using 
PASCO equipment and PASCO Capstone software, which are aligned with the three principles 
defined by course textbook (i.e., linear momentum, energy, and angular momentum principles), 
along with guided activities in Python programming.  
 
Students engaged in two ED challenges throughout the laboratory sessions. This study focused 
on the first ED challenges that worked as an introduction to design experience for the students. 
The next section describes in detail this first design challenge.  
 
Engineering Design Challenge 
 
Students completed the first design challenge in labs 0 through 5. Lab 0 consisted of a tutorial for 
the students to get familiar with the use of Jupyter Notebooks and was a work-from-home task. 
Lab 1 introduced the ED challenge to the students (Figure 1) and presented a short YouTube 
video on robots being used to move packages in an Amazon workstation to help them gain an 
understanding of a real-life situation. Based on this information, they started framing the 
problem by identifying the client, stakeholders, end-users and requirements. Then, students 
worked on a hands-on physics experiment based on the concept of 1-D motion with constant 
speed.  



 

 

Figure 1. First ED challenge proposed to the students as part of their physics lab. 
 
In Lab 2, students were provided with further details about the constraints of the problem and a 
layout to help them further frame their problem (See Figure 2). Students were introduced to the 
idea of flowcharts as a tool to visually represent algorithms. Then, based on an example in the 
lab instructions; students designed the first flowchart as a team to visually represent the logic of 
an algorithm to remotely control automatic guided vehicles (AGVs). After that, students worked 
of accelerated motion in 1-D.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Problem constraints and layout provided to the students. 
 
In labs 3 and 4, the teams completed more traditional physics labs for most of the lab time. 

A partner shipping company is interested in making its operations more efficient using modern 
technology. One of their more time-consuming operations is handling the packages inside the facilities. 
Thus, they want to implement Automated Guided Vehicles (AGVs) at their new warehouse. AGVs are 
a class of robots used for transporting items directly to the workstations where human workers prepare 
the items for shipment to the customers. The company is requesting your team to develop an algorithm 
to remotely control its AGVs in a timely and safe manner. They will review your proposal and send the 
algorithm to a team of expert programmers who will implement it in Python. They will need a visual 
representation (e.g., flowchart) of your algorithm with a written description of how it works and any 
additional information that you consider relevant. 
 

 

Your algorithm should at least ensure the AGV 
will pick up a variable number of items from 
the loading area, take them to a specific 
workstation, and go back to the loading area. 
For your reference, the company provides the 
layout of one of its warehouses. Each trip must 
take the minimum time and always be safe for 
both robots and workers. In case of a collision 
with a wall, the AGV breaks when it has a 
momentum of 220 kg*m/s or more. 
Additionally, the algorithm should be as 
automatic as possible, requiring minimum 
human interaction. 



 

However, at the end of each lab, they were asked to discuss the physics concepts and principles 
relevant to the ED challenge present in the physics lab, the assumptions and approximations that 
may have been made in their ED, and to document the changes in their ED as a result of the 
lessons learned during the lab. See Table 1 for additional details about the ED, CT and physic 
tasks that were integrated each week. (See Table 1). Finally, in lab 5, the teams designed their 
final flowcharts using concepts learned from the lab completed over the previous three weeks 
and wrote a technical report for the client. This report required the teams to reflect about their CT 
and ED process by analyzing the evolution of their flowchart throughout the five lab sessions.  
 

Table 1. Main tasks performed by the students throughout the first ED challenge. 
Lab # CT & ED Tasks Hands-on Physics Tasks 

0 • Jupyter Notebook - a tutorial  • None 

1 • Presenting the ED problem: To develop 
an algorithm to remotely control 
automatic guided vehicles (AGVs) 

• Uniform 1-D motion: Position update 
using PASCO carts.  

2 • Continue the ED problem: What are 
criteria and constraints?  

• Introduce the concept of flowchart 

• Accelerated motion in 1-D: Momentum 
update using PASCO carts.  

3 • Present criteria and constraints: (1) Every 
move must be always safe and (2) each 
trip of an AGV must take minimum time 
and 

• Further work on first constraint: Use 
metrics to evaluate the AGV safety   

• Update flowchart to incorporate criteria, 
constraints and metrics 

• Smart-Fan accessory mounted on a 
PASCO cart: Momentum Principle  

4 • Further work on second constraint: Find 
out the AGV path that would minimize 
the movement time  

• Update the flowchart 

• Smart-Fan accessory mounted on a 
PASCO cart: speeding up and slowing 
down  

5 • Further work on second constrain: Use a 
python simulation to analyze 2-D motion 
with variable acceleration 

• Complete ED challenge: Final flowchart 
is developed 

• Reflect about the ED process 

• None 

 
Participants 
 
The participants of this study were 17 undergraduate students organized in five teams of three 
students (Teams 1, 2, 3, 5, and 6) and one team of two students (Team 4). All teams were part of 
the same lab section that had around 50 students in total. Most of the participants were first-year 
engineering students. Teams 1 to 4 were chosen randomly, and teams 5 and 6 were chosen 
because one author of the present study observed their performance during the lab sessions. The 



 

graduate teaching assistant who leads the lab sessions had taught the class once before and the 
undergraduate teaching assistant had taken the class previously.  
 
Data collection and analysis  
 
Our main data source was the students lab reports. Namely, we collected the five lab reports 
associated with the first ED challenge of each team. These reports included the students answers 
to the ED tasks, CT tasks, and physics tasks. For this study, we focused on the flowcharts 
developed for each team. We analyzed four flowcharts per team for a total of 24 flowcharts. 
Additionally, to better understand the context of the lab, one researcher observed the five lab 
sessions, and took notes about the general structure of the lab, the interaction of the teaching 
assistants with the students, and the performance of two teams (Team 5 and 6).  
 
The teams flowcharts were coded throughout several rounds of open coding using the CT model 
of Shute, et al. [11]. Initially, two researchers open-coded the 24 flowcharts looking for evidence 
of the CT according to the model of Shute, et al. Then, a third researcher expert on students’ 
learning discussed the initial codes looking for relationships and potential emerging themes. 
After this conversation, the two initial researchers performed a second round of coding based on 
the initial codes to identify the evidence associated with the CT facets of problem 
decomposition, abstraction, algorithms, and debugging.  
 
Limitations 
 
We identified a few limitations in this study. As may be evident, the representative sample size is 
quite small. This study does not aim to find generalizable results; instead, we provide rich 
descriptions aiming for the transferability of the results to similar integrated physics lab contexts. 
Also, because the labs are completed in teams, the flowchart is a product of a collaborative 
learning environment, and therefore individual development of CT cannot be identified. Finally, 
since we did not observe teams as they were creating their flowcharts, the rationale for student 
decisions in creating the flowchart are not always clear. We plan to collect process data in future 
research to better understand the students decision making when producing the flowcharts.  
 

Findings 
 
This study explored the extent to which undergraduate students developed CT skills when 
engaging in a physics lab integrated with ED and CT tasks. The six teams included in this study 
demonstrated development across four facets of CT (i.e., decomposition, abstraction, algorithm 
design, and debugging) while working on designing their flowcharts. The following paragraphs 
describe evidence for how teams developed within each CT facet throughout the iterations of 
their flowchart. 



 

Problem decomposition 
 
Problem decomposition was mostly evident in the initial flowchart created in lab 2 of the design 
challenge. Teams decomposed the problem of remotely controlling the movement of an AGV 
into a few sub-problems (see Figure 3). Namely, they broke the larger problem into the following 
sub-problems in their first flowchart: charge the AGV, AGV receives instructions, AGV moves 
to destination, AGV senses the load, AGV picks up items.  
 
In addition to the sub-problems associated with moving the AGV, Team 2 identified contextual 
aspects of the problem, such as the presence of big slopes that may impede the AGV from 
transiting across the warehouse. This focus seems to indicate that the team was positioning the 
problem from the clients’ perspective by thinking about features of the warehouse that may 
become a problem for the AGV. However, they decided to remove the slope verification in their 
second flowchart. In doing so, this team may not have considered the sub-problem of sloping of 
the floor to be as relevant for the algorithm as other constraints. That lab session focused on the 
requirements of safety and timely movement; thus, students may have been persuaded to only 
focus on those requirements. Students could have been encouraged to integrate the context of the 
problem more into their algorithms.  

 
 

 
Figure 3. Initial flowcharts developed by Team 2 (left) and Team 1 (Right) showing different 

ways to decompose the problem and different levels of algorithm design. 
 

 



 

The ability for teams to engage in problem decomposition varied greatly in the initial flowcharts; 
however, all teams ended up breaking up the subproblems into actionable tasks that could be 
operationalized by a team of programmers (i.e., the end-user of the algorithm) by the end of the 
design challenge. The time needed for teams to fully decompose the larger problem into 
actionable sub-problems varied. While Teams 1, 2, 3, and 6 presented only the sub-problems in 
their first flowchart, Teams 4 and 5 identified actionable tasks that would solve some sub-
problems. For instance, instead of stating the sub-problem “move to object,” Team 5 identified at 
least three actionable tasks associated with that sub-problem: Determine the current position, 
calculate the fastest path, and drive to the destination. In identifying the actionable tasks required 
to address each sub-problem, Team 5 was able to develop an initial flowchart that took other 
teams at least two or three more sessions to develop. As such, Team 5 may have been very 
engaged in the activity and wanted to advance as much as possible in the beginning of the design 
challenge, or they may have come into the lab course with more experience or proficiency in CT.  
 
Abstraction  
 
Abstraction involves extracting the most relevant information to address the problem and often is 
accompanied by data collection and pattern recognition. To make progress on the design 
challenge, teams needed to extract information in the form of constraints to design an algorithm 
that would fulfill the client’s needs and adhere to physical constraints imposed by physical laws 
and principles. The lab sessions scaffolded students in recognizing relevant contextual data and 
physics principles to integrate into the flowcharts. The following paragraphs describe how teams 
exhibited abstraction in their flowcharts throughout the five lab sessions.  
 
The teams developed their initial flowchart during lab 2. As the last section, “Problem 
decomposition,” mentioned, the teams mostly decomposed the design problem into subproblems 
during the initial flowchart. Their first flowcharts showed how teams defined several constraints 
based on the general problem statement using the provided data and their previous experiences. 
For example, Team 5 used video information provided as part of the lab to extract how AGVs lift 
objects inside the warehouse. Namely, they identified the sequence: “Board truck via ramp,” 
“drive below pallet,” “Lift pallet vertically,” “exit truck via ramp.” Even though the problem did 
not specify the constraint that the AGV should move towards a ramp and then lift the load, Team 
5 defined and integrated these additional constraints in their initial flowchart. In a similar way, 
other teams added actionable tasks in their algorithm to ensure that the AGV would emit an 
alarm before hitting something, stop when encountering an obstruction, or determine if the AGV 
encountered a steep slope. The integration of these additional constraints found outside of the 
problem context helped to create a more realistic and feasible algorithm to address the design 
challenge and meet the client’s needs and context.  
 



 

During subsequent lab sessions, the teams continued to develop their flowcharts using 
abstraction and drew on the traditional physics labs to integrate physics concepts into their 
flowcharts. Labs 3 and 4 scaffolded the teams’ ability to implement physical constraints by 
connecting physics concepts with design criteria from the problem context. As an example, the 
problem statement of the design challenge required the teams’ algorithms to ensure that their 
AGV would move safely through the warehouse and make timely deliveries. In the case of a safe 
movement, the problem stated that the AGV should not carry a momentum higher than 220 
Kg*m/s any moment. During lab 3, students engaged in hands-on experiments aimed at 
examining the motion of the PASCO cart with constant acceleration. However, teams were not 
given explicit instructions about how to integrate the momentum constraint in their flowcharts. 
Teams took three different approaches to integrate their conceptual physics knowledge with the 
design constraint (see Table 2). Out of the three approaches observed by these teams, the third 
approach would be desirable (variable mass and speed), and result in a more feasible flowchart. 
However, not all teams reached this level of integration. This result implies that to fully progress 
with abstracting this aspect of the flowchart, students may need additional feedback concerning 
the optimization and feasibility of their flowchart in addition to the experimental investigations.  
 

Table 2. Strategies used by the teams to integrate the concept of momentum into their 
flowcharts. 

Integration of 
momentum metric Description 

Momentum as a 
measurable entity 

The teams added the question “Is the momentum less than 220 Kg*m/s?” 
This basic approach would assume that the AGV can sense the momentum. 
Teams 2 and 4 started with this approach in their first flowchart and changed 
to a more sophisticated way of integration for the second. Team 1 presented 
this approach in the third flowchart and did not improve it.  

Constant mass and 
variable speed 

Even though the problem stated that the AGV should carry a variable load 
less than 340 Kg, Teams 2, 3, and 4 assumed the load should be always 
maximum. Thus, they included in their third flowchart that the AGV would 
only sense its speed and calculate its momentum. Based on the momentum, 
the speed would be increased or decreased.  

Variable mass and 
speed  

Teams 5 and 6 defined in their second flowchart that AGV should sense the 
mass when charging the load; then, it should also sense the speed and 
calculate the momentum. Based on the result, the AGV would increase or 
decrease its speed.  

 
Most teams implemented the design constraint of timely deliveries in the second and third 
iterations of their flowcharts by drawing on the data simulation tasks required by the physics 
labs. During labs 4 and 5, teams used a simulation to determine the time required for a simulated 
AGV to move throughout the 18 workstations (see layout in Figure 2). They analyzed the data 
generated by the simulations and ranked the stations in order by the time required to travel to 
each station. All of the teams, except for Team 1, integrated the information from the simulations 
into their flowchart as an input for the AGV to decide the order of the workstations that the AGV 
should use to deliver items to minimize travel time. While Team 1 failed to incorporate the 



 

lessons from the simulations into their flowchart, this team did add an actionable task, “Bring 
load to the nearest workstation,” into their final flowchart. It may be that Team 1 did not 
consider necessary to include the list of workstations into the algorithm, or they may have failed 
to notice that delivering to the nearest workstation may not result in the fastest overall trip 
duration. Overall, teams demonstrated some development in their ability to abstract the essence 
of the problem in the form of constraints, then to integrate these constraints into the flowcharts. 
In addition to the variation associated with the extracted information, teams organized the 
actionable tasks in their algorithms using different sequences, which is explored in the next 
section.   
 
Algorithms  
 
The CT facet of algorithms includes designing logical and ordered instructions to address the 
problem efficiently. Teams were asked to develop an algorithm with a logical sequence of 
actionable tasks to remotely control the movement of an AGV inside the clients’ warehouse, as 
summarized in the flowcharts. The teams’ initial flowcharts exhibited a variety of logic 
structures ranging from linear sequences to basic loops. For example, while Team 1 presented a 
linear sequence of 4 steps to address the problem, Team 2 constructed a complex sequence of 
steps with loops (see Figure 3). Throughout the design challenge, all teams developed more 
complex flowcharts in terms of the number of included steps, the number of selection statements 
(e.g., if-then), and the number of loops. For instance, Team 5’s flowchart evolved from an initial 
flowchart with a complex structure similar to the presented by Team 2 to their final flowchart, 
which incorporated two flowcharts so that the algorithm operated more efficiently, and the 
flowcharts were easier to understand (see Figure 4). 

Figure 4. Final algorithm developed by Team 5 and represented using two flowcharts. 



 

Although the final flowcharts incorporated complex structures, integrated both design and 
physical constraints, and demonstrated integration of physics concepts into the algorithm, most 
of the flowcharts still exhibited problems with logic, such as the presence of disordered 
instructions or abrupt ends where the algorithm would break down. For example, Team 3’s final 
flowchart indicated that the AGV would begin at the charging area, where it receives the order to 
pick up an item (see Figure 5). The AGV then moves to the loading area, where it picks up the 
item. Finally, when moving to the workstation, the AGV would accelerate to the maximum 
speed to meet the momentum criteria, but only for an item at the maximum weight. In this 
flowchart, the team did not consider that the speed should be monitored and regulated during the 
initial movement of the AGV, from the charging station to the loading area. In addition, the team 
appears to fail to recognize that both the weight and speed need to be monitored and covary 
when regulating the AGVs momentum. Finally, their flowchart included an abrupt end when the 
load was greater than the maximum weight allowed. Consequently, even though the flowchart 
includes many of the required elements (i.e., safe and timely movement), a programmer, as a 
final user, would have to reinterpret the flowchart in order to use it. Students may have needed 
more scaffold to understand the level of detail that a useful flowchart for the final user should 
have. 
 

 
Figure 5. Final flowchart developed by Team 3 including abrupt ends. 

 
 
 
 



 

Debugging 
 
Debugging involves identifying and fixing errors in the algorithm. For the teams in this study, 
debugging was mostly evident in the finalization of the flowchart rather than as an aspect 
employed in every iteration. After completing the initial flowchart, teams mainly focused on 
integrating new information in the second and third iterations of the flowcharts rather than on 
identifying errors in their logic or flowcharts and correcting those errors. Conversely, the teams 
demonstrated debugging in the third and the final flowcharts. The debugging mainly focused on 
correcting information of the actionable tasks or their sequence. For example, as Figure 6 shows, 
Team 1 had abrupt ends present in their initial flowchart, which was uncorrected in subsequent 
iterations. In the final flowchart, however, Team 1 corrected their flowchart by adding new 
loops, thus preventing the AGV from being stuck at the end of one delivery.  
 
The labs were designed to facilitate and encourage reflection, giving students the opportunity to 
correct their flowcharts in each iteration. However, teams instead focused on adding new 
information such as the momentum criterion rather than reflecting on and evaluating previous 
iterations. The flowcharts were not rigorously graded, and in the lab sections, the teaching 
assistants emphasized completion rather than accuracy, which may have resulted in students 
being less motivated to correct previous flowcharts. In contrast, between the third and the final 
iterations, the teaching assistants encouraged students to present a final accurate solution. This 
shift in the messaging from the teaching assistants appears to have encouraged students to take 
the time to focus on debugging and improving their flowchart. 
 

 
 

Figure 6. Team 1 flowcharts 3 (left) and 4 (right) where they corrected the abrupt ends. 
 



 

Discussion, Conclusions, and Implications 
 
The participants demonstrated a progression of CT across the four facets examined in this study 
as evidenced by the content and sequence of the actionable tasks included in the flowcharts. 
Overall, teams started the design challenge by engaging in a superficial decomposition of the 
main problem by describing the sub-problems as actionable tasks without paying much attention 
to the logic of the sequence of steps. Given that this was the first-time students were asked to 
engage in a design challenge in the course, this initial superficiality is not surprising.  
 
Although decomposing the problem is one of the most challenging CT facets, using a familiar 
context may help students to perform it [16]. The AGVs’ motion in a warehouse provided a 
context close enough to the students’ life; so, they could engage in the ED challenge and start 
decomposing the problem in the first lab session. The teams’ initial flowcharts present an 
opportunity to support instructors in determining how well students understand the design 
problem, identifying deviation from canonical scientific understanding, and encouraging students 
to consider other perspectives (e.g., the clients and stakeholders) on the design problem the 
algorithm is meant to address.  
 
In subsequent labs, students demonstrated abstraction in the flowcharts by collecting and 
analyzing data relevant for the problem. Across the five weeks, a progression from using data 
associated with the context of the problem to using mathematical equations and physics concepts 
to make the solution more feasible was observed. For example, teams first identified and 
integrated information related to the warehouse layout. Then subsequent weeks, the teams 
identified and integrated information related to physics concepts such as the momentum or 
position update requirements to ensure a safe and timely movement. The teams observed in this 
study quickly grasped and applied the contextual information from the problem documents; 
however, they needed time and scaffolding to correctly integrate the concept of momentum. 
Applying the concept of momentum to an authentic design problem seems to add a layer of 
complexity that teams struggle to incorporate into their algorithms. One reason that applying 
momentum to solve this design problem is complicated, is that while the equation only contains 
two variables, the variables must both be monitored and adjusted as a pair, because a change in 
one variable will impact the maximum value the other value can take on. Thus teams need to 
decompose the concept of momentum into the variables of velocity and mass and co-locate the 
monitoring and setting of the values for these variables logically inside the flowchart.  
 
In constructing the flowcharts, teams prioritized integrating information into the flowcharts over 
evaluating the logic underlying the flowchart sequences. Throughout the lab sessions, teams 
mostly engaged in three of the five processes of programming followed by computer science 
students: abstract the problem from its description, generated sub-problems, transform sub-
problems into sub-solutions [37]. They were not fully involved in the last processes of 



 

recomposing the sub-solutions into a working program and evaluating and iterating to produce 
an optimum solution. Given this result, the final flowcharts still contained some errors, resulting 
in flowcharts that were not optimal or efficient. One reason for this is that teams seemed to focus 
on integrating the correct information rather than analyzing the logic of the flowchart. 
Flowcharts needs to be simple enough to be practical and complex enough to represent clearly 
the algorithm [31]. The teams seemed to lack the experience with ED and CT to accurately self-
evaluate the level of detail needed in the flowcharts to make them practical but still complete.  
 
The influence of the course context likely contributed to the over reliant focus on information 
over algorithm logic. Although the laboratory sessions aimed to integrate physics with ED while 
developing CT, the grading of the lab reports likely led teams to prioritize including the physics 
content in the flowcharts over spend time iterating on the flowchart to optimize the logic of the 
algorithm and generalizing the algorithm so that it could be applied to solve other problems. 
Furthermore, the initial grading of the flowcharts did not focus on quality or logic, therefore 
teams did not receive specific feedback to help scaffold the processes of iteration and 
generalization. One conclusion from these observations is that finding a balance between the 
learning objectives and aims of multiple domains or disciplines when working in integrated 
contexts will naturally lead to a prioritization of the goals of one of the disciplines for any given 
task. As such, it is important to view integrated STEM instruction as helping students to identify 
connections between disciplines and developing the skills necessary to transfer the skills and 
practices between the disciplines to solve authentic and multidisciplinary problems. 
 
Providing continuous and immediate feedback is fundamental for promoting student learning. 
This is especially true in interdisciplinary settings where the learning outcomes are to develop 
CT, engage in ED, develop scientific inquiry skills, and learn and apply physics principles in 
authentic contexts. In this study, teams worked independently during most of the lab time 
without communicating with other teams or the teaching assistants. Most of the interactions with 
the teaching assistants consisted of asking questions about the step-by-step procedures of the lab, 
or practical questions about use of the lab equipment. Conceptual discussions concerning the 
physics concepts were presented at the beginning of the labs, and occasionally between 
individual teams and the teaching assistants, however discussions concerning CT or ED were 
relatively few and brief. Part of this lack of discussion of engineering and mathematical practices 
is that students and teaching assistants tend to take an epistemological stance that disciplines are 
siloed and should be learned in isolation [40], [41]. Then, they may perceive that developing CT 
and ED are not as important as completing the step-by-step procedures of the lab. Future studies 
could explore the students’ perceptions of the importance of learning CT, ED, scientific inquiry, 
and physic principles in the laboratory context.  
 
A key engineering practice within ED is communication with clients and stakeholders to identify 
and scope the problem, and to receive feedback about the sufficiency of the proposed solution. In 



 

the AGV problem, teaching assistants played the role of the client and iterative discussions with 
the teaching assistants simulating clients would benefit students during debugging and iteration. 
As such, we think that providing space for reflection and iteration is a critical aspect of 
integrated STEM labs and time for these discussions should be included as an explicit feature in 
integrated design challenges. As part of the design challenge, students should be encouraged to 
discuss their ideas with teaching assistants and other teams. Particularly critical for this design 
challenge is the need for teaching assistants to play the role of programmers (i.e., the final user of 
the algorithm) to facilitate and scaffold iteration, evaluation, and generalization. During these 
conversations, students need feedback about their understanding of the problem, the relevant 
physics concepts, and the logic and efficiency of the flowcharts. In addition, teams need time to 
reflect on the efficiency of their flowcharts to revise and improve both the effectiveness and 
efficiency of the processes they are designing. These additions to the design challenge may give 
teams a better idea of the details expected of an efficient algorithm, promote the importance of 
the flowchart activity, and help students understand the importance of science, engineering, and 
mathematical practices as part of the laboratory.   
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