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Soil organic carbon models need independent
time-series validation for reliable prediction
Julia Le Noë1,2✉, Stefano Manzoni 3,4, Rose Abramoff 5,6, Tobias Bölscher7,
Elisa Bruni 1,5, Rémi Cardinael 8,9,10, Philippe Ciais 5, Claire Chenu7,
Hugues Clivot11, Delphine Derrien12, Fabien Ferchaud 13, Patricia Garnier7,
Daniel Goll 5, Gwenaëlle Lashermes 11, Manuel Martin14, Daniel Rasse15,
Frédéric Rees7, Julien Sainte-Marie16, Elodie Salmon 5, Marcus Schiedung 17,

Josh Schimel 18, William Wieder 19,20, Samuel Abiven1, Pierre Barré1,
Lauric Cécillon 1 & Bertrand Guenet1

Numerical models are crucial to understand and/or predict past and future soil organic

carbon dynamics. For those models aiming at prediction, validation is a critical step to gain

confidence in projections. With a comprehensive review of ~250 models, we assess how

models are validated depending on their objectives and features, discuss how validation of

predictive models can be improved. We find a critical lack of independent validation using

observed time series. Conducting such validations should be a priority to improve the model

reliability. Approximately 60% of the models we analysed are not designed for predictions,

but rather for conceptual understanding of soil processes. These models provide important

insights by identifying key processes and alternative formalisms that can be relevant for

predictive models. We argue that combining independent validation based on observed time

series and improved information flow between predictive and conceptual models will increase

reliability in predictions.

Soils have a potential to mitigate climate change1,2 by sequestering and storing carbon3,4
(C). However, warming and land use changes are expected to increase decomposition and
lead to soil organic carbon (SOC) losses, causing an amplifying feedback on climate

change5. Whether soils mitigate or exacerbate climatic changes depends on the balance between
(i) C inputs from vegetation and exogenous organic matter, and (ii) C outputs from microbial
respiration, dissolved organic C leaching, soil erosion, combustion by wildfires and volatile
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organic compounds emissions6. Mathematical models are crucial
to understand and predict this balance, as they condense complex
processes into a mathematical formalism suitable for quantitative
analyses.

Soil organic carbon models translate theoretical hypotheses
into a simplified overview of the ecological system described by
schematic representations and mathematical equations (Fig. 1a).
By confronting model simulations against empirical observations,
the underlying hypotheses of a model can be tested (Fig. 1b, c).
After testing, models can be used to infer the effects of envir-
onmental drivers, such as climate change or land use, on SOC
dynamics (Fig. 1c). As a tool to connect data and theory, a model
is neither true nor false7. Rather, the value of a model comes from
its ability to explain and account for a set of phenomena8, so that
the validation process of a model depends on the purpose and
context in which it is applied (Box 1).

Since the early 1930s, a wide variety of models to represent the
dynamics of SOC have been developed for various spatial and
temporal scales, climatic conditions, land-uses and land-
covers9,10. At least two families of model structures can be
identified: (i) approaches relying on conceptual SOC pools
decaying according to first order kinetics11,12, and (ii) approaches
that resolve microbial and physical processes controlling SOC
decay and stabilisation by describing extra-cellular enzymatic
reactions, diffusion and/or sorption kinetics13,14 (Fig. 1b). In the

former category, first-order kinetics imply that decay rates are
proportional to the SOC stocks of the various pools considered,
with rate modifiers to implicitly represent the effects of key fac-
tors, namely soil temperature, soil moisture, and clay content on
microbial and physical processes15,16. In the latter category,
nonlinear kinetics consider the feedbacks between microbial
activity and SOC substrates by representing the decay rate as a
function of SOC and/or microbial C stocks17,18. Yet, no con-
sensus has emerged on any approach for understanding and
predicting SOC dynamics19. As a consequence of the wide range
of approaches, predicted SOC values exhibit large discrepancies
across models, irrespective of model category or temporal and
spatial scales20–22, indicating that more robust validation proce-
dures of SOC models need to be developed23. Comparison of
model performance is also complicated by lacking standardisation
of model validation criteria24 (Fig. 1c). While validation of
models is a critical step to improve confidence in SOC model
predictions, so far, no comprehensive review of the different
approaches to model validation has been undertaken.

We fill this gap by systematically comparing the validation
procedures of ~250 SOC models spanning 90 years of model
development history in relation to their scope and main features.
We raise three interrelated questions: (i) What are the different
SOC model scopes, features and validation procedures in the
scientific literature and how have they changed since the first

Fig. 1 What is a SOC model? A schematic representation of (a) SOC model as a mediator between a theoretical and an empirical field, (b) links between
models and theory (c) as well as between SOC models and empirical field. In b, Micr. biom. Stands for microbial biomass.
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SOC models in the 1930’s? (ii) How, and to what extent, are
different model categories evaluated against observations? (iii)
How can the diversity of model’s scope and features help enhance
the reliability of models aimed at predictions? Answering these
questions is crucial for applying and developing adequate SOC
models for prediction while leveraging the complementarity of
different model scopes and features.

To answer these questions, we summarize model validation
methods based on existing definitions in the literature (Box 1)
and then conducted a systematic literature review to assess the
types of model validation used. The review consisted in four steps:
(i) literature screening based on a previous SOC model review
from 200910 and expert elicitation following a workshop on
“Diversity and complementarity in SOC modelling approaches”
in October 2021, (ii) literature selection aiming at excluding
publications out of the scope of the present study, (iii) systematic
literature analysis, and (iv) refinement of literature selection
(Fig. S1). Our systematic quantitative review is also com-
plemented by a qualitative analysis of the history of model vali-
dation of both first-order and nonlinear SOC models, illustrating
different pathways of model validations for three first-order
kinetic models (Century, AMG, Q-model) and two nonlinear
kinetic models (MIMICS, Millennial) (Figs. S3–5 and Box S1
& S2).

Model features, scopes and validation across time
Model features, scope, and validation procedures are regarded
here as primary data and represented through an historical per-
spective (Fig. 2), and bar chart analyses (Fig. 3).

Regarding model features, we focused on the representation of
decomposition kinetics (Fig. 2b) and the ecological system level of
the models (Fig. 2c) (see also SI1). These ‘system levels’ char-
acterise the context in which models are used, and partly also
reflect the spatial scale of application (starting from smallest
scales at the ‘microbial community’ level). We found that 28 to
37% of the 137 models until the 2000’s applied non-linear kinetics
including both SOC and microbial biomass or enzymes. This
number increased to 55% of the 139 models published after 2010
(Fig. 2b). The recent increased number and proportion of SOC
models based on nonlinear kinetics can be explained by at least
two reasons. First, nonlinear kinetics allow us to account for
transient dynamics and feedback responses of soil microorgan-
isms to changing environments and SOC decomposition25,26.
While linear models rarely capture these effects27, they were
preferred for their simplicity and inherently stable behaviours. In

the last decades the need to include nonlinear effects in the
context of climatic changes has motivated a revival of nonlinear
models. Second, since the 2010’s, an increasing number of Earth
System Models (ESM) and Dynamic Global Vegetation Models
(DGVM) intended to incorporate these feedback effects to predict
global C dynamics under climate change18,28. This new direction
of ESM and DGVM development was probably motivated by
their poor SOC prediction performance29, leading to further
publications arguing for inclusion of soil microbial processes in
ESM30. Yet, most models in the 2010–2021 period were not
developed for global scale applications (only 4%, Fig. 2c), with
most models describing processes from the soil- to the ecosystem-
level (69% and 18%, respectively, of all models in that period,
Fig. 2c). A minority of models describe processes at microscopic
scales, including models at the microbial community level (9%,
Fig. 2c). This dominance of soil- and ecosystem-level models,
might reflect the spatial scales at which most data are available
(Fig. 2f). Thus, despite the call for including nonlinear kinetics in
ESM and DGVM, nonlinear models are still primarily developed
for smaller scales. Moreover, models were increasingly needed to
provide decision support to enhance SOC sequestration at the
plot or farm level, which require local- rather than global-scale
predictions31.

Regarding model scope, we distinguished three objectives:
hypothesis-testing and formalisation, data interpretation (diag-
nostic models), and prediction (prognostic models, see also SI1).
Those categories are not exclusive, which means that a given
model can fall into more than one category. Because prediction is
the scope for which model validation is the most critical, we focus
here on this objective (Fig. 2d). Between one third and one half of
the models were developed with this objective in mind, with a
notable decline between the 2000’s and the 2010’s, suggesting that
most of these newer models are in an early phase of theoretical
development and testing before being possibly used for
prediction32,33.

Finally, we characterised validation by considering two relevant
axes: the dependence of the validation dataset to the calibration
dataset (Fig. 2e) and the source of the validation dataset (Fig. 2f,
see also SI1). Four types of model validation dataset are con-
sidered: (i) independent diachronic validation, which provides the
most confidence in model accuracy34, (ii) independent non-
diachronic validation, which tests model ability to reproduce
spatial pattern of SOC stocks, (iii) non-independent validation,
which corresponds to model calibration35,36, and (iv) no valida-
tion/calibration (Box 1). Before the 1970’s, most models were not

Box 1 | What is model validation?

Following the seminal definition by Rykiel24, validation of a model, in the broadest sense, ‘is a demonstration that a model within its domain of applicability
possesses a satisfactory range of accuracy consistent with the intended application of the model’ before specifying that in the case of predictive models, the
validation ‘involves a comparison of simulated data with data obtained by observation and measurement of the real system’. In the case of SOC models, the
validation most often consists of testing the agreement between simulations (or analytical solutions) and field or laboratory measurements of one or
several SOC pools or fluxes9. This allows model developers and users to estimate model reliability and accuracy (Fig. 1b).
Independent validation is a necessary condition to assess model robustness in making reliable predictions24,82. While calibration involves fitting model
parameters to best reproduce some empirical data, independent validation of SOC models tests the model ability to reproduce observations for which it
was not calibrated. Therefore, even though several sets of parameters can enable reasonable fit observations, independent validation is needed to
identify the most robust set of parameters, i.e., the one that allows reproducing observations in a wide range of contexts. To ensure reliable predictions
of SOC dynamics through time, independent validation should compare simulations with diachronic observations (time-series) of SOC stocks or C
fluxes. We refer to this type of validation here as ‘independent diachronic validation’, and describe it more thoroughly hereafter. Another approach to
test the ability of a model to capture temporal changes in SOC stocks or C fluxes is the space for time validation, in which simulations are compared to
observations along spatial gradients that are caused by processes occurring over different time spans. The assumption that space could be substituted
for time can be critical if the land-use history and pedoclimatic contexts differ along the chosen spatial gradient. If that is the case, such contexts act as
confounding factors that control, together with time, SOC dynamics6,83. As the ability of a model to reproduce temporal shifts in C dynamics is critical
for making future projections, examining whether predictive SOC models proceed to independent diachronic validation should be a strong focus of the
model development.
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evaluated except via qualitative comparisons with observations
(Fig. 2e). Since the 1980’s, more models have been evaluated, but
non-validated models remained an important fraction. However,
as the percentage of non-validated models remains fairly constant
since the 1990’s while the total number of models increases
(Fig. 2a), the number of non-validated models has actually
increased. Independent diachronic validation, while remaining a

minor fraction, became more widespread in the last two decades
(Fig. 2a, e), indicating increased attention to model ability to
predict temporal changes in SOC (Fig. 2e).

In addition, we examined four sources of data utilised for
validation: (i) against laboratory experiments, (ii) against field
experiments, (iii) against observation networks, and (iv) against
reconstructed datasets in which observation values from field

Fig. 2 Temporal evolution of model number, features, scopes and validation procedure. Evolution of (a) the number of publications reviewed in the
present research and model features (expressed as percentages of all models in each time interval) regarding: (b) decomposition kinetics, (c) model level
of interest, (d) model scope, and model validation according to (e) the procedures applied and (f) validation conditions. Curly brackets in (d) group models
including ‘prediction’ among their scopes; curly brackets in (f) highlight the percentage of models undergoing independent diachronic validation.

Fig. 3 Validation of models aiming at prediction. Types of validation depending on the source of data used with all SOC models reviewed since 2000—
accounting for 92 models in 45 publications. Numbers inside the bar charts indicate the total number of each combination of type and condition of model
validation.
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measurements are scaled up to construct gridded datasets37.
Although the validation of SOC models against observation
networks and reconstructed data sets increased since the 1990’s,
we found that the majority of validations are still based on field or
laboratory experiments (Fig. 2f), which is expected as the majority
of models describe processes at the level of soil or ecosystem
(Fig. 2c).

Model features, scopes and validation since 2000
To assess recent trends in SOC model validation, we analysed the
relative distributions of model features and scopes depending on
the type of validation—either independent diachronic or other
types (Fig. S2). We found that 27% of first order kinetics models
were validated against diachronic independent data while this was
the case for only 15% of nonlinear kinetics models. This indicates
that simpler models based on first order kinetics has been vali-
dated more thoroughly with independent time-series observations
than the ‘more mechanistic’ microbial models. In contrast,
independent validation has been performed in similar proportion
to test both models at the soil level or below and models at the
ecosystem level or above.

Additionally, we analysed the types of validation used for
models proposed since year 2000 and aiming at prediction. To do
that, we considered two relevant axes: (i) types and (ii) conditions
of model validation. Approximately 40% of model validations
were based on field data in predictive models, but were not based
on independent and diachronic data (Fig. 3). This proportion has
remained almost constant since 1933 (Table S1). Similarly, 15% of
validations were based on laboratory data, but they were not
independent diachronic (Fig. 3). In several cases, the validation
consisted of calibrating the model and assessing its performance
against the same calibration data38,39. In many cases, independent
validation based on space-for-time substitutions was used17,40–42.
Only 23% of models aiming at prediction were tested using an
independent diachronic validation, despite its importance for
testing the ability of models to simulate SOC temporal dynamics
(Box 1). This group included 14 first order models, namely the
LPJ43, MOMOS44, CN-SIM45, CIPS46, AMG47, Roth-C48,
PRIM49, ORCHIDEE-PRIM50, Yasso51, N14CP-Agri52, CASA-
CNP53, DAISY54 models, as well as three unnamed models55,56,
and six nonlinear models, namely the SOMKO57, Ecosys58,
BACWAVE-WEB59, MIMICS28, CORPSE53 and one unnamed
model60. Only 7 models (8%) were evaluated against network
measurements at the territorial- or national- level, but not dia-
chronically and independently. However, type of data does not
seem to covary with evaluation type, in that a fairly constant
proportion of model validations are independent diachronic (26%
for lab experiments, 24% for field, 25% for reconstructed).

Recommendations for model validation
Our review identified a lack of independent diachronic validation
based on SOC network measurements (Fig. 3). Filling this gap
will be crucial to evaluate objectively regional to global SOC
predictions in the context of climate and land use changes. Reuse
of highly valuable data sets and novel measurement networks will
be central to this effort. Both incubation and field experiments
provide valuable empirical observations to evaluate SOC models.
In particular, existing decadal field experiments5,61 represent a
valuable source of data. They provide long-term time-series data
on SOC stocks in different climatic conditions, but remain
underutilised. Given the time required to develop high value
long-term data sets and measurement networks, much increased
access to, valorization and more extensive use of these resources
will be key to this effort. At a larger scale, validations against
observations from measurement networks allow the predictive

value of SOC models to be assessed under a vast range of land-use
and pedoclimatic contexts.

National and macro-regional soil monitoring networks are
routinely resampled and data are becoming more available (e.g.,
with the second campaign of the French Soil Network
Measurement44 and fourth resampled of the European LUCAS
topsoil network62 and with the regional or national soil mon-
itoring systems existing in 18 European countries63), and will
therefore enable validating models in a large set of contexts and at
large spatial and temporal scales. To this end, some existing
limitations still need to be overcome. In particular, the different
soil databases already in use64–66 require harmonisation in terms
of spatial resolution, reported variables and measurement meth-
ods. Harmonized datasets will provide reliable model input
variables30, such as C inputs from plants or amendments67 and
initialisation of SOC pools68, allowing meaningful model inter-
comparisons. These limitations have been identified as a key
research priority to provide compatible benchmark data sets for a
consistent validation of SOC models. In the case of SOC model
implementation within ESMs, an additional barrier is that ESMs
often lack the adequate forcing data at the site resolution. Because
data scarcity is still largely limiting large-scale diachronic vali-
dation, global datasets, such as the Soil Respiration Database69,
remain invaluable to validate the ability of models to predict the
spatial variability of C fluxes from soils—for which time-series are
not a prerequisite. However, these datasets are insufficient to
validate the predictive accuracy of the temporal dynamics of SOC
stocks.

Models tend to become increasingly complex, including more
and more biogeochemical processes70 (Box S2). Yet, adding
processes or compartments to SOC models might result in hidden
compensating biases arising from the overfitting of model
parameters21,71. Therefore, evaluating model ability to reproduce
newly explicitly represented processes and/or soil compartments
is required to address this bias. To this end, validation of new
models including e.g., microbial processes should be conducted
on field experiments that allow controlling the effects of envir-
onmental or management changes on these processes. More
generally, it is worth emphasising that the more observations are
collected—not only on SOC stocks and SOC compartments, but
also on bulk density, vertical SOC profile, clay content, moisture
content, C inputs from plants, microbial biomass, etc.—the better
it is for stringently validating all model outputs.

To summarize, the next steps in model validation to improve
reliability and accuracy should be, in order of priority: (i) To
gather and homogenize time series of long-term field trials and
measurement networks that could be used as benchmark datasets
to systematically validate independently and diachronically all
models aimed at predicting SOC dynamics. Such a benchmark
dataset would allow stringent comparisons of SOC models,
helping to choose the best-suited models depending on the
spatio-temporal scale of interest, land-use and pedoclimatic
contexts. (ii) To maintain and develop SOC monitoring networks
to build spatially-explicit maps of the temporal dynamics of SOC
stocks, which in turn will allow validating SOC models from
regional to global scales (this type of validation is currently sorely
underrepresented, Fig. 3). (iii) To avoid compensating biases, to
validate models incorporating new representations of soil pro-
cesses and/or soil compartment against independent time-series
data specifically related to those processes and compartments.

Model diversity can help improve prediction ability
Each model considers a number of biogeochemical processes
governing the dynamics of SOC, which is translated into their
mathematical formalism (Fig. 1). Can we take advantage of the
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diversity of SOC models to improve those aimed at predictions or
projections and evaluate their relative performance? To answer
this question, let us consider the common object of interest for all
these models – the dynamics of SOC – and the role of models as a
mediator between empirical and theoretical knowledge72 (Fig. 1).

Different SOC modelling approaches, reflecting distinct theo-
retical assumptions, can use the same empirical observations for
calibration or validation53,73. Comparing the accuracies of SOC
models describing different processes with respect to the same set
of observations allows us to identify the mathematical formalism
achieving the best performance. For instance, Lawrence et al.25
developed four SOC models of varying mechanistic complexity
and compared their ability to simulate soil respiration observed in
a laboratory incubation experiment to test which mechanisms
improve model performance. However, the use of the models that
showed the best performance might be hindered by the low-
quality or lack of available input data and parameters when the
intended scale is larger or longer than the one for which models
were tested and parametrized, for instance when moving from the
laboratory incubation to the field level. To overcome this barrier,
new indicators based on widely available observational data could
be developed to transfer processes identified as important by
complex models toward simpler models. One example is the
integration of the priming effect (enhanced or inhibited decom-
position of native SOC by added fresh organic matter) in SOC
models. Priming can be described by modelling microbial bio-
mass and enzymatic reactions (Michaelis-Menten kinetics)25
(Fig. 1c), but including these processes could be hampered by the
lack of reliable input data and parameter estimates at the intended
scale of application. To circumvent this issue, an empirical rela-
tionship between C input and mineralization rate can be used to
surrogate explicit microbial processes and thus represent the
priming effect in a simple way49,74. Moreover, predictive models
can benefit from the comparison with more complex models
designed for other goals, as such comparisons provide a safeguard
against being locked into one type of model and help to identify
processes that may have been neglected or incorrectly represented
at the scale at which predictions are made25,49.

Different SOC models can also be used to run equivalent
numerical experiments to compare how their mechanistic
representations affect the simulations. Bridging empirical
knowledge, condensed into model calibrations, and theoretical
knowledge gained by analysing the simulation results, has two
virtues in terms of model complementarities. First, it enables
researchers to explore how feedback mechanisms can result in
distinct behaviours in different SOC models26,75,76. For instance,
Sainte-Marie et al.75 explored how different conceptualisations
and mathematical formalisations of SOC depolymerisation by
different decomposer groups impact the chemistry and amount of
organic matter during decomposition and at steady state. This
analysis has a heuristic value in itself, independent of the sub-
sequent validation of the model24. Second, bridging empirical and
theoretical knowledge allows for testing the sensitivity of different
models to shifts in driving variables20,76. For instance, Ito et al.20
highlighted the high sensitivities and uncertainties on the impact
of land-use on future SOC dynamics at the global level in
15 DGVMs.

Model diversity can also result in synergies when models are
implemented into ensemble modelling approaches77–79. Con-
sidering multiple structurally diverse models for prediction allows
to estimate the uncertainty of the simulated variables due to the
different processes represented and their sensitivities to driving
factors80. Weighted averages and model selection based on per-
formance criteria reduce the prediction error and provide more
robust predictions, relative to single model simulations77. How-
ever, standardizing modelling methods remains a fundamental

issue in multi-model inter-comparison exercises77–79. For exam-
ple, the choice of the parameters to calibrate, the initialization
method to use for conceptually different soil compartments, and
the estimation of forcing variables make model inter-comparisons
difficult. Protocols are needed that also account for data
availability81. Multi-model ensembles thus represent promising
tools to account for uncertainties in the simulations and provide
greater reliability than individual models.

Outlook
Soil organic carbon models are expected to predict SOC stock
changes and to provide a sound biogeochemical context for
simulating coupled soil-vegetation interactions. Yet, reliable
model validation lags behind increasing model complexity. Based
on a systematic review of ~250 models over 90 years, we advocate
for stringent independent diachronic validation of prediction-
aimed models at all scales based on sites and networks that
provide time series of SOC stocks and/or C fluxes at plot, national
and regional scales. Continued efforts to maintain these datasets
are thus imperative to increase reliability and accuracy of SOC
projections and predictions. In parallel to observation-based
validation, predictive models can also be conceptually evaluated
by comparing them to models designed for other goals, to identify
processes that might have been neglected or incorrectly repre-
sented at the scale at which predictions are made.

Data availability
All data supporting the findings of this study are available within the paper and its
Supplementary Information. The systematic review of SOC model features, scope and
validation procedure are provided in Supplementary Table S1 as well as in
Supplementary Data 1, along with original reference describing the SOC models reviewed
in this study. The dataset generated during the current study is also available at https://
doi.org/10.5281/zenodo.7867131.
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