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Abstract Nano-indentation is a promising method to
identify the constitutive parameters of soft materials,
including soft tissues. Especially when materials are very
small and heterogeneous, nano-indentation allows me-
chanical interrogation where traditional methods may
fail. However, because nano-indentation does not yield
a homogeneous deformation field, interpreting the re-
sulting load-displacement curves is non-trivial and most
investigators resort to simplified approaches based on the
Hertzian solution. Unfortunately, for small samples and
large indentation depths, these solutions are inaccurate.
We set out to use machine learning to provide an alter-
native strategy. We first used the finite element method
to create a large synthetic data set. We then used these
data to train neural networks to inversely identify mate-
rial parameters from load-displacement curves. To this
end, we took two di↵erent approaches. First, we learned
the indentation forward problem, which we then applied
within an iterative framework to identify material pa-
rameters. Second, we learned the inverse problem of
directly identifying material parameters. We show that
both approaches are e↵ective at identifying the parame-
ters of the neo-Hookean and Gent models. Specifically,
when applied to synthetic data, our approaches are accu-
rate even for small sample sizes and at deep indentation.
Additionally, our approaches are fast, especially com-
pared to the inverse finite element approach. Finally, our
approaches worked on unseen experimental data from
thin mouse brain samples. Here, our approaches proved
robust to experimental noise across over 1000 samples.
By providing open access to our data and code, we hope
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to support others that conduct nano-indentation on soft
materials.

1 Introduction

Testing and quantifying the mechanical properties of soft
materials, such as soft tissues, is essential to understand-
ing and predicting their behavior [1–3]. Unfortunately,
the experimental characterization of soft materials faces
numerous di�culties. This is especially true for soft tis-
sues that are often heterogeneous as well as very small
[4–7]. Traditional test methods, such as uniaxial tensile-
compression testing, may not capture the heterogeneity
of the tissue, as these tests tend to interrogate only
the bulk of the material and do not capture spatial
variations [8]. Moreover, traditional test methods often
require significant extra sample space for clamping [9],
which proves di�cult or impossible when working with
small biological samples. For example, when using model
systems such as rodents, tissues’ lateral dimensions can
be on the order of millimeters while having thicknesses
on the order of micrometers [10–14].

The inability of traditional test methods to yield
spatially resolved mechanical properties and to accom-
modate very small test samples has inspired the use
of indentation-based methods. Such methods may use
micrometer-sized indenters ranging in size from a few
to hundreds of micrometers that locally probe soft bio-
logical tissues to yield load-displacement curves [15–18].
The qualitative and quantitative characteristics of these
curves may then be interpreted to yield approximations
for the local mechanical properties of the material of in-
terest. Thus, these methods overcome the limitations of
traditional mechanical test methods and can not only be
applied to very small test samples without the need for
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mechanical clamping but can be repeated in a scanning
pattern over the tissue to map the samples heterogeneity
[19–22].

However, indentation-based methods face their own
challenges. Aside from experimental hurdles, indenta-
tion yields highly nonlinear deformations. To interpret
these data, the community has largely resorted to using
the spherical Hertzian contact solution [23,24]. How-
ever, this solution has some limitations in that it applies
only to linearly elastic isotropic materials, assumes that
the indenter and sample surface are non-conforming,
requires that the indentation depth is much smaller com-
pared to the spherical indenter diameter, and finally, it
ignores friction and surface e↵ects [25]. The indentation
of soft materials, including biological soft tissues and
hydrogels, in practice, violates at least some of these as-
sumptions [26,27]. Therefore, using the Hertzian model
to identify the material parameters of soft biological tis-
sues via indentation is prone to significant errors [28–32]

Previously developed approaches for overcoming some
of the Hertzian model’s pitfalls each introduce their own
limitations. For example, Zhang et al. recently proposed
a modification that corrects the Hertzian model for large
indentations (> 10% of the indenter radius)[33]. How-
ever, this solution, and other proposed modifications to
the Hertzian model, usually only overcome one of its
limitations, but not all. In contrast, others have used
inverse finite element approaches to identify material
parameters through an iterative least squares approach
in which either the direct inverse problem or iterative
forward problems are solved to identify unknown ma-
terial parameters from indentation data [34–38]. The
flexibility of finite element methods allows these ap-
proaches to overcome all of the Hertzian model’s limi-
tations. However, inverse finite element approaches can
be computationally expensive [39,40].

The objective of our current work is to develop an
e�cient approach that combines the generality of finite
element-based methods with the high computational
e�ciency of machine learning. Thereby, we will provide
an open-source tool that identifies the material parame-
ters of biological soft tissues – and other soft materials –
from indentation data at a much lower cost than classic
inverse finite element approaches. To this end, we use the
finite element method to create two large synthetic data
sets for the neo-Hookean and Gent models and subse-
quently use them to train neural networks that identify
their material parameters from load-displacement data.

2 Methods

2.1 Synthetic Data Creation

To create synthetic data for model training, testing, and
validation we first sampled a four- and five-dimensional
parameter space for the nano-indentation problem with
neo-Hookean and Gent models, respectively. The param-
eter space included sample width (W ), sample thickness
(H), indentation depth (�), sample shear modulus (µ),
and the Gent material parameter (Jm), see Figure 2.
The indenter radius (R) was used as the characteristic
length to non-dimensionalize all geometric parameters.
The final parameter space spanned 5  W/R  40 by
5  H/R  40 by 0.05  �/R  0.5 by 102 Pa µ  106

Pa and 5 ⇥ 10�4  Jm  5. We then sampled this
large parameter space using latin hypercube sampling.
Note that we logarithmically scaled the shear moduli
before sampling. With each set of parameters, we cre-
ated a finite element input file for the nonlinear finite
element solver FEBio (www.febio.org). Within FEBio,
we then synthetically simulated the nonlinear inden-
tation problem of a rectangular prism of dimensions
W ⇥W ⇥H to yield our training, validation, and test-
ing load-displacement data sets. In total we generated
25,000 data sets: a 10,000 sample training set, 1,250
validation set, and 1,250 test data set for each, the neo-
Hookean model and Gent model. Please note, as the
name suggests, the training data will be used for train-
ing our machine learning-based approaches, while the
validation data will be used in network selection and
hyperparameter tuning. Finally, the testing data set will
only be used after training and parameter tuning are
concluded, to test the success of our approach.

2.2 Machine Learning Based Inverse Approaches

In this study we compared two di↵erent machine learn-
ing approaches to accelerate material parameter identi-
fication from indentation data, see Figure 1. First, we
used a least squares-based approach in which we trained
a neural network to solve the forward problem, see Fig-
ure 1A. In the second approach, we trained a neural
network to directly predict material parameters from
load-displacement data, without the need of iterations,
see Figure 1B.

For both the least squares and the direct inverse ap-
proach, we chose a fully connected dense neural network
or multilayer perceptron. The hidden layer activation
functions were set to leaky ReLU (↵ = 0.3), and the
output layer activation function was set to linear. The
neural network for the forward problem used an Adam
optimizer and mean squared error as the loss metric
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Fig. 1 Inverse parameter identification and validation/testing procedures. After creating synthetic (Synth.) data sets, we
trained a neural network to either solve the forward problem or to solve the direct inverse problem. That is, we trained a neural
network to either predict load-displacement curves (depicted as discrete load points, i.e., P1 through Pn) from geometric and
material input parameters, or we trained a neural network to predict material parameters from load-displacement and geometric
information. While the latter approach directly predicts material parameters from indentation experiments, the former approach
must be combined with an iterative (in our case, least squares) approach. Once material parameters have been predicted using
either method, we used them as inputs to a standard forward finite element simulation to output load-displacement predictions
for validation against experimental (Exp.) data.

to learn the mapping between W , H, µ, Jm and load-
displacement data pairs sampled every 0.005R between
� = 0 and � = 0.5R. The architecture for the forward
neural network consisted of 5 hidden layers, the first
two layers having 4 nodes and the last 3 layers having
100 nodes. Similarly, the neural network for the direct
inverse problem used Adam as an optimizer and mean
averaged error as the loss metric. Instead of using full
load-displacement curves as input features, we parame-
terized the load-displacement curves by fitting them to
a power law, viz. F (�) = p�

s. In turn, we used p and s,
together with the geometric parameters H and W , as
the input features for the direct inverse approach. That
is, we trained our second neural network to map W , H,
p, s to the material parameters µ, Jm. The architecture
for the direct inverse neural network consisted of 5 hid-
den layers, the first four layers having 4 nodes and the
last layer having 2 nodes.

2.3 Finite Element Model Details

We simulated the indentation problem using the nonlin-
ear finite element solver FEBio (Version 3.0.0). To this
end, we created a rigid sphere that was displaced by �

H

W W

R

Deformed Configuration

Fig. 2 Illustration of the finite element domain and dis-
cretization for the indentation problem. The insert shows the
deformed configuration after displacing the rigid (blue) in-
denter of radius R to contact the indented material (grey) of
dimensions W ⇥W ⇥H.

to indent a soft material domain of dimensions W ⇥ W

⇥ H , see Figure 2. After careful convergence studies, we
discretized the domain with a biased mesh with 1609
to 65484 elements – depending on domain size – using
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mixed hexahedral elements [41]. The contact itself was
modeled as frictionless. We conducted these simulations
for two hyperelastic material models, the neo-Hookean
model and the Gent model [42]. We chose the former
for its popularity in the biomechanics community, but
also because it yields a single material parameter that
can be easily compared to other, common measures of
material sti↵ness, such as Young’s modulus. In contrast,
we chose the Gent model for its ability to capture a
wide spectrum of strain-sti↵ening material behaviors
as may be seen during indentation experiments on soft
tissues. The strain energy density functions for both
models read

W (C) =
µ

2
[Ĩ1 � 3] +

1

2
K[ln J ]2 (1)

and

W (C) = �µJm

2
ln(1� Ĩ1 � 3

Jm
) +

1

2
K[ln J ]2, (2)

respectively. Here, µ is the shear modulus, Jm is the
sti↵ening parameter for the first invariant, and K is the
bulk modulus. In all of our simulations, we choseK to be
three orders of magnitude larger than µ to ensure quasi-
incompressibility [43]. Note that Ĩ1 is the first invariant
of the isochoric Cauchy-Green deformation tensor and
J is the Jacobian of the deformation gradient. More
details are available in the FEBio documentation and
in the relevant literature on hyperelastic constitutive
modeling [44].

2.4 Hertzian and Modified Hertzian Contact Theory

The Hertzian solution was originally formulated as a
simplified contact model for a rigid sphere and an elastic
half-space. It relies on the assumption that the surface
is an infinite half plane, the pressure distribution is
parabolic, the material is homogeneous, and that the
material strain is small. By integrating the pressure over
the region under compression, a practical relationship
between applied force (F) and vertical displacement (�)
of the indenter thus follows as

F (�) =
16

3
µR

1/2
�
3/2

, (3)

where µ is the shear modulus of the indented material
[45]. Please note that we assumed a perfectly rigid inden-
ter material and an incompressible indented material to
arrive at the above expression of the classic Hertzian for-
mulation. When violating the small strain and the non-
conformity of surfaces assumptions, indentation depth-
dependent discrepancies between the Hertzian solution

and finite element solutions have been reported [46].
This has led to the development of numerous modified
Hertzian solutions. Here we chose one for comparison
to our approach [33], viz.

F (�) =
16

3
µR

1/2
�
3/2(1� 0.15�/R). (4)

It is the last term in this modified solution that
improves the standard Hertzian predictions for large
indentation depths.

2.5 Real-World Mouse Brain Indentation Data

We used real-world data to test out our machine learning-
based approach. That is, we collected 1372 load-displacement
curves by indenting both fresh and fixed mouse brain tis-
sue. Brains were harvested from two 14-week-old female
C57BL/6 mice before using a vibratome (Leica Biosys-
tems, Bu↵alo Grove, IL) to slice each brain into 1mm

thick samples. “Fixed” samples from animal #1 were
first fixed for 24 hours in 10% neutral bu↵ered formalin
solution, while “fresh” samples from animal #2 were
immediately transferred to our nano-indentation tester
(FT-MTA03, FemtoTools AG, Switzerland). Indentation
tests on fixed and fresh samples were then performed
using a FT-S200 probe head with a 50µm polystyrene
bead. Note, the probe has a ±200µN sensing range
and a resolution of 0.0005µN . We probed the entire
sample surfaces at 75 µm inter-measurement spacing
and an indentation speed of 10µms

�1 for a total of 686
indentations in fresh tissue and 686 indentations in fixed
tissue.

3 Results

3.1 Sensitivity of Indentation

Figure 3 demonstrates that violating the assumptions
for the Hertzian contact model leads to significant errors
and that modified solutions may correct for some short-
comings but not all. Specifically, the figure shows three
surfaces: First, it shows the (gold-standard) finite ele-
ment solution surface to the indentation problem in red.
This surface demonstrates that the indentation force is
highly dependent on the size of the indented sample.
That is, the thinner the sample, the larger the indenta-
tion force. Similarly, the smaller the lateral dimension
of the sample, the smaller the indentation force. Addi-
tionally, it shows that the deeper the indentation, the
larger the indentation force. The figure also shows the
Hertzian solution in blue. That is, the Hertzian solution
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Fig. 3 Comparison between the (modified) Hertzian approach and the gold-standard finite element solution. The predicted
maximum load due to indentation to a depth of 0.1 (A), 0.25 (B), and 0.5 (C) times the indenter radius. With decreasing
lateral size (W ) and thickness (H) the Hertzian solution and its modification significantly deviate from the gold standard finite
element solution, especially at deep indentations (� > 0.1R)
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Fig. 4 Training and validation of the least squares-based inverse approach. The trained forward neural network for the
neo-Hookean model (A) yielded near-perfect agreement between the predicted shear modulus and the ground truth (B). The
trained forward neural network for the Gent model (C) also yielded near-perfect agreement between the predicted shear modulus
and the ground truth (D), and yield strong, yet imperfect, agreement between the predicted parameter Jm and the ground
truth (E). Note, comparisons between predicted and target parameters used the neural networks that were trained with 10,000
samples.

is a good approximation for large and thick samples
and small indentations. When these assumptions are
violated, the Hertzian solution quickly deviates from the
gold-standard solution. In fact, errors may be as large
as 89% when the sample becomes as thin as H = 2R.
Finally, the figure also shows the modified Hertzian
solution in black. We find that the modified Hertzian

solution accurately accounts for increased indentation
depth but cannot account for nonlinearities induced by
small sample sizes and thicknesses. This is important
when applying indentation to biological tissues where
lateral sample sizes may be minuscule, and tissue can
be very thin [14]
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3.2 Neural Network Training & Validation

Figure 4 shows the training and validation data for both
the neo-Hookean model (top row) and the Gent model
(bottom row). Figures 4A,C demonstrate that 10,000
samples su�ced to fully train both networks with min-
imum validation (relative) errors of 0.61% and 0.37%
for the neo-Hookean model and Gent model, respec-
tively. The figures also show the linearly increasing cost,
i.e., wall time, of increasing training data size. Once
we trained the neural network to predict the forward
problem, we used the network within a least squares
approach to inversely identify the material parameters
to the neo-Hookean and the Gent models from synthetic
load-displacements curves. Figures 4B,D, and E show a
comparison between the target parameters µ and Jm,
with which the synthetic load-displacement curves were
created, and the inversely identified – or predicted –
parameters for both models. The shown data sets were
pulled from the validation pool. Evidently, µ of the
neo-Hookean model was predicted accurately with a
near-perfect correlation of R2 = 0.99 and an average
relative error between the actual and the predicted pa-
rameter of 0.26%. Similarly, µ of the Gent model was
also predicted accurately with a near-perfect correlation
of R2 = 0.99 and an average relative error of 0.58%.
However, we found that Jm was predicted less accu-
rately with an average relative error of 5.22%. Yet, its
correlation was still near perfect with R

2 = 0.97 Please
note that the error increased with increasing values for
Jm.

In our second approach, we trained a neural network
to directly map load-displacement curves – as repre-
sented through parameters p and s, see Section 2.2 –
to material parameters. Figure 5 shows the training
and validation data of this second approach for both
the neo-Hookean and the Gent models. Figure 5A,C
demonstrate that 10,000 samples su�ced to fully train
both networks with minimum validation (relative) er-
rors of 0.70% and 1.77% for the neo-Hookean and Gent
models, respectively. Here, again, the figures also show
the linearly increasing cost, i.e., wall time, of increasing
training data size. To validate the networks, we then
applied the direct approach to identify the neo-Hookean
and the Gent material parameters from synthetic load-
displacement curves. Here, again, we used data from the
validation pool. Figures 5B,D, and E show a compari-
son between the target parameters and the predicted
parameters for the neo-Hookean and the Gent model, re-
spectively. From these data, it is evident that the shear
modulus µ of the neo-Hookean model was predicted
accurately with an R

2 = 0.99 and an average relative
error of 0.68%. Similarly, the shear modulus µ of the

Gent model was also predicted highly accurately with
an R

2 = 0.99 and an average relative error of 0.44%.
However, as with the least squares approach, here, too,
we found that Jm was predicted less accurately with an
average relative error of 1.38%. Yet, R2 remained high.

3.3 Neural Network Testing Against the Hertzian
Solution

After training and validating our neural networks for
the least squares-based and the direct inverse approach,
we tested and compared both approaches against the
Hertzian and the modified Hertzian solutions. Figure
6A compares the predicted and the target shear mod-
ulus µ of the neo-Hookean model between our least
squares-based approach, the Hertzian, and the modified
Hertzian solutions. Our first approach achieved a low
average relative error of 0.60% for the shear modulus
µ of the neo-Hookean model. In contrast, the Hertzian
and the modified Hertzian solutions achieved average
relative errors of 8.05% and 3.34%, respectively. Impor-
tantly, however, individual errors for both analytical
solutions were as high as 100%. Those findings are simi-
lar for the direct inverse approach. Figure 6B compares
the predicted and the target shear modulus µ of the
neo-Hookean model between our direct inverse approach,
the Hertzian, and the modified Hertzian solutions. Our
second approach achieved a low average relative error
of 0.69%, compared to the 8.05% and 3.34% reported
above. Please see Supplementary Figures S1 and S2
for additional sensitivity analyses, where we study the
prediction error as a function of sample geometry, in-
dentation depth, and material sti↵ness. All approaches
were compared using our testing data set that are dif-
ferent from our training and validation data sets used
in Figures 4 and 5.

3.4 Neural Network Testing Against Real-World Data

To test both of our approaches against real-world data,
we used nano-indentation data of fresh and fixed mouse
brains with a total of 1372 load-displacement curves. To
this end, we first used our approaches to inversely iden-
tify the neo-Hookean and the Gent material parameters
from the experimental data. Next, to test the accuracy of
our prediction, we used those same parameters in a non-
linear finite element simulation of the nano-indentation
problem and compared those predictions to the actual
experimental data. In Figure 7 we compare the load-
displacement curves based on our predictions to the
average load-displacement data of fresh and fixed mouse
brain indentation. Specifically, we first compare our least
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squares-based approach for both the neo-Hookean and
the Gent model in Figures 8A,B, respectively, before
conducting the same comparison for our direct approach
in Figures 8C,D. We find that our predictions fit the
experimental data well with root mean squared errors
(RMSE) on the order of 10�4 to 10�2

µN. This is true for
both fresh tissue (with lower moduli) and fixed tissue

(with higher moduli). We also find that the Gent model
fits the experimental data better than the neo-Hookean
model, especially for fresh tissue.

Finally, we tested our approach also on all individual
load-displacement curves from our fresh tissue data
pool. Figure 8A shows the summary statistics of 686
individual inverse analyses and their RMSEs against the
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Fig. 7 Comparison between the least squares (LS) based inverse approach and the direct inverse approach on real-world
indentation data. A-B) Least squares-based fits of the neo-Hookean and the Gent models to both averaged fresh and chemically
fixed mouse brain nano-indentation data. C-D) Fits to the neo-Hookean and the Gent models to both averaged fresh and
chemically fixed mouse brain nano-indentation data using the direct inverse approach. Experimental data was obtained as the
average of 686 fresh and fixed individual curves. RMSE=root mean squared error.

experimental data for both the neo-Hookean and the
Gent model. These statistics show that the least squares
approach yields smaller and narrower distributed errors
than the direct approach. Additionally, these statistics
reinforce that the Gent model fits the fresh mouse brain
indentation data better than the neo-Hookean model.
Finally, Figure 8B representatively shows the first nine
fits via the direct approach for both the neo-Hookean
and the Gent model, which reinforces the findings based
on our summary statistics.

Also, identifying the material parameter from our
mouse brain indentation data set comprised of 1, 372
samples took 6.85 hours using the least squares approach
and 132 seconds using the direct approach. In contrast,
using a finite element-based least squares approach to
do the same would take approximately 200 days. Note,
we extrapolated this number from the cost of a single

finite element forward simulation and the same number
of iterations as required in our least squares approach.
All of these numbers were benchmarked on a personal
desktop computer (AMD Ryzen 9 5950X: 16 Cores at
4.9 GHz).

4 Open Software Tool: AI-dente

Our training data, python scripts, trained neural net-
work, and sample data are openly available1. In addition
to the synthetic data and the experimental data, our
open repository contains the scripts main_SynthDa

ta_neoHookean.py and main_SynthData_Gent.py

with which the interested reader can simulate the in-
dentation problem using FEBio. The repository also

1 https://github.com/cmsmlab/AI-dente
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contains the script main_AnalyzeData.py that reads
load-displacement data and sample dimensions and out-
puts the machine learning-based and Hertzian-based
predictions for the material shear modulus. Please note,
this script also computes Young’s modulus and mod-
ified Young’s modulus as commonly reported in the
nano-indentation literature [46].

5 Discussion

In our current work, we implemented a machine learning-
based tool to inversely identify material parameters
from nano-indentation derived force-displacement data.
We set out to overcome i) the limited accuracy of the
Hertzian contact solution for experiments beyond the
linear strain regime and ii) the high computational ex-
pense of finite element-based approaches.

5.1 Advantage Over Other Approaches

We showed that we successfully accomplished both goals.
That is, we showed through two di↵ering approaches that
a machine learning-based approach can be both accurate
and computationally e�cient. First, we trained a neural
network to solve the forward indentation problem. By
integrating this network into a least squares framework,
we could iteratively identify the material parameters of
two popular material models, the neo-Hookean model
and the Gent model. Additionally, we used a neural
network to directly predict those material parameters
from load-displacement curves. Both approaches yielded
results with errors of < 1% and within < 1s, even for
very small and thin samples that violate the assumptions
of the Hertzian contact solution. The same cannot be
said for alternative approaches, such as the inverse finite
element approach.

5.2 Robustness to Experimental Noise

We tested our approach against both synthetic data and
real-world data. In both cases, we achieved high fit qual-
ities with low errors between predictions and ground
truth (in the case of the synthetic data) and between
predictions and the experimental data (in the case of
real-world data). That is, our approach is robust against
experimental uncertainty and noise. Interestingly, the
robustness of our approach does not stem from training
our networks on synthetic noise. Instead, the robustness
of the least squares approach stems from the forward
model being e↵ectively constrained through its train-
ing to only yield smooth load-displacement curves. On

the other hand, the direct inverse approach is highly
sensitive to noise when being directly applied to load-
displacement data. We overcame this challenge by fitting
the synthetic and real-world load-displacement curves to
a two-parameter function. Thereby, we e↵ectively param-
eterized the load-displacement curves akin to a low-pass
filter step. Subsequently, we used the two parameters
as network input features rather than the potentially
noisy raw load-displacement curves.

5.3 Material Model Choice

Albeit not specifically related to our approach but po-
tentially interesting to the reader, we found that the
Gent model was the superior model for fitting the strain-
sti↵ening behavior as seen in our real-world data set.
Of course, this is hardly surprising as we expect a two-
parameter model to outperform a one-parameter model.
Nonetheless, we want to highlight the favorable perfor-
mance of the Gent model. Especially given that the
Gent model receives relatively little attention in the
biomechanics community and is often forgone in favor of
the two-parameter Ogden model, which receives much
attention [47]. One important advantage over its more
popular counterpart could be seen in the easier inter-
pretability of its parameters. That is, its parameters
are the shear modulus and sti↵ening parameter. While
the Ogden model is also a two-parameter model, its
parameters are not as easily associable with physical
characteristics. Additionally, the Ogden model su↵ers
from a number of peculiarities that we have recently
discussed [47]. However, it should be noted that the
Gent model shows a high degree of nonlinearity in its
sti↵ening parameter. Among other e↵ects, this causes
a decrease in its influence with increasing magnitude.
For us specifically, this resulted in worse identifiability
and increasing training errors for large values of Jm, see
Figure 4 for example.

5.4 Limitations

In our work, we limited our training to hyperelastic
materials and to a relatively simple contact problem
(e.g., we did not account for friction or surface e↵ects,
such as surface tension, adhesion, or curvature forces [48,
49]). Thus, when more complex contact behavior is
required, our tool will not be useful in its current form.
However, our framework is generally applicable and
could be trained on more complex materials and contact
cases. For example, one could train neural networks to
learn viscoelastic behavior of soft tissue and to learn
surface e↵ects between indenter and sample [50]. Thus,
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not only is our framework accurate and fast, but it is also
highly flexible. Of course, additional training requires
additional synthetic data, as well as new validation, and
testing. Thus, the interested reader/user would have
to weight the cost of extending our framework against
the cost of conducting instead an inverse finite element
analysis.

6 Conclusion

We proposed and successfully tested a machine learning-
based approach to determine material parameters from
nano-indenter-based load-displacement curves. That is,
we showed that we can use machine learning to yield
accurate and fast results that outperform both the clas-
sic Hertzian solution (especially for very small and thin
samples) and a traditional finite element-based approach.
In addition to being accurate and fast, our approach is
also highly flexible and allows accounting for complex
material behaviors and nonlinear contact phenomena.
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