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Abstract

Traffic forecasting plays an important role in urban planning. Deep learning methods outperform traditional traffic flow fore-
casting models because of their ability to capture spatiotemporal characteristics of traffic conditions. However, these meth-
ods require high-quality historical traffic data, which can be both difficult to acquire and non-comprehensive, making it hard
to predict traffic flows at the city scale. To resolve this problem, we implemented a deep learning method, SceneGCN, to
forecast traffic speed at the city scale. The model involves two steps: firstly, scene features are extracted from Google Street
View (GSV) images for each road segment using pretrained Resnet!8 models. Then, the extracted features are entered into
a graph convolutional neural network to predict traffic speed at different hours of the day. Our results show that the accu-
racy of the model can reach up to 86.5% and the Resnet|8 model pretrained by Places365 is the best choice to extract scene
features for traffic forecasting tasks. Finally, we conclude that the proposed model can predict traffic speed efficiently at the

city scale and GSV images have the potential to capture information about human activities.
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In the process of urban expansion, populations can rap-
idly increase in areas disconnected from places of work,
resources, and leisure, leading to problems such as traffic
congestion, crashes, and air pollution. The ability to fore-
cast traffic, therefore, is vital to the success of traffic con-
trol, traffic safety improvements, and CO2 emission
reductions. Traditionally, traffic forecasting relies on
data-driven approaches, such as the autoregressive inte-
grated moving average (ARIMA) model, linear regres-
sion models, and theory-driven traffic simulation models,
such as the queuing theory model (/-6). However, these
methods all assume that the traffic operates under ideal
conditions, making them inefficient in a large-scale trans-
portation system analysis with massive real-time data.
The development of machine learning provides us
new approaches to capture more complex information
from existing traffic datasets. These approaches—known
as nonparametric methods—such as k-nearest neighbor
(KNN), Bayesian network, and support vector machine
(SVM) have been successfully applied in previous traffic
prediction research (7-9). Recently, deep learning, an
advanced type of machine learning, outperformed

traditional parametric as well as non-parametric machine
learning approaches in traffic prediction accuracy (10).
Non-deep-learning methods perform well in capturing
the temporal dependency of traffic flow; however, they
are not able to take spatial information into account,
which is another vital factor which influences the accu-
racy of traffic forecasting.

To address this problem, graph neural networks
(GNN) are integrated with deep learning models.
Different kinds of recurrent neural networks (RNN),
such as long short-term memory (LSTM) and gated
recurrent unit (GRU), are used in these models to glean
temporal information from historical traffic data. GNN
are employed to integrate the spatial features of nodes in
road networks. Examples include the highly performed
T-GCN, DST-GCNN, STGNN, GaAN, and so on (//-
14). Even though these models reach a high level of
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accuracy for traffic flow prediction, there are two prob-
lems that still need to be solved. Firstly, these models can-
not capture the physical characteristics of roads such as
number of lanes and road condition. The function of sur-
rounding areas, which cannot be learned by existing RNN
and GNN models, is another significant factor that may
influence the traffic flow and the relationship between con-
nected roads. Secondly, these models are trained based on
high-quality historic traffic data collected from specific
roads equipped with traffic sensors, which makes it diffi-
cult to predict the traffic condition at city scale.

For these two problems, Google Street View (GSV)
images have the potential to capture the road conditions
and the information of functions of its surrounding area.
The development of convolutional neural networks
(CNN), such as VGG, ResNet, YOLO, and Mask
RCNN, provide efficient approaches to extract scene fea-
tures from GSV images (/5, 16). These scene features
include: urban functions, urban built environment, place
characteristics, and so forth (/7-19). Additionally, GSV
images can serve as a supplement to existing historical
traffic data to predict traffic flow at the city scale. With
these scene features, it is possible to predict hourly traffic
flows for streets without historical data.

To address the challenges of existing integrated GNN
and RNN models and to prove the ability of scene fea-
tures extracted from GSV images to predict traffic flow,
in this paper we propose a framework to predict traffic
flow hourly from GSV images by combining CNN and
GNN. A CNN framework will be used to extract scene
features from GSV images for each street and these fea-
tures will be input to a GNN to capture the spatial infor-
mation of the road network.

Literature Review

Traffic forecasting methods can be divided into two cate-
gories: parametric and nonparametric. Parametric meth-
ods construct the model structure based on certain
theoretical assumptions with parameters calculated
based on empirical data (20). Nonparametric methods,
also known as data-driven methods, involve a more com-
plex model structure that can be trained without prior
knowledge or theoretical assumptions.

Parametric Approaches

Examples of parametric approaches for traffic forecast-
ing include the autoregressive integrated moving average
(ARIMA) model, the linear regression model, and the
Kalman filter model (-5, 27). ARIMA—also written as
ARIMA(b, d, q)—is one of the most widely used models
to forecast traffic flow. The autoregressive, integrated,
and moving average polynomial orders are essential
parameters used to build the ARIMA time series model

(22, 23). However, since traffic conditions are neither sta-
tionary nor linear, parametric approaches are not appli-
cable to the rapid changes in traffic flow.

Nonparametric Methods

Nonparametric approaches such as KNN, Bayesian net-
work, SVM, and artificial neural networks can successfully
capture the complex and nonlinear characteristics of traffic
flow (8, 24). The KNN method requires a high-quality traf-
fic flow database. This method searches for data that are
similar to observed data at certain locations, such as a sta-
tion, then similar traffic flow series are used to forecast the
traffic flow of the station (7, 25). Zhang et al. present a
KNN model to predict urban expressway flow with up to
90% accuracy (26). The SVM method involves mapping
data to a high-dimensional feature space and performing
linear regressions within that space (27). Ling et al. intro-
duced a multi-kernel SVM (MSVM) to predict traffic flow,
and a novel adaptive particle swarm optimization (APSO)
algorithm to optimize the parameters of MSVM. Their
results show that this algorithm can make timely and adap-
tive predictions during peak hour when the traffic condi-
tions change rapidly (28).

Nonparametric models can also be integrated with
other nonparametric models to improve overall perfor-
mance. Ahn et al. used both support vector regression
and Bayesian classifiers to conduct real-time traffic flow
prediction (29). Random forest and support vector
regression are integrated to perform short-term traffic
flow forecasting (30). Additionally, the combination of
Kalman filtering and KNN, KNN and SVM, KNN and
LSTM, KNN and neural networks, and so forth, are
performed to predict short-term traffic flow (37-34).

With the rapid development of deep learning, deep
neural network models are now widely used to forecast
traffic flow (35—41). At present, modeling methods based
on deep neural networks achieve the most accurate results
because of their ability to extract dynamic traffic features.
These methods can identify traffic features without prior
knowledge or assumptions, handle multi-dimensional
data and flexible model structures, and employ strong
generalization and learning abilities (/7, 20, 35). In recent
years, RNNs and their variants, LSTM and GRU, have
received attention because of their self-circulation
mechanism, which allows them to learn temporal depen-
dence, and their ability to outperform other types of deep
neural networks (/7). Tian and Pan proposed an LSTM
model to determine optimal time lags dynamically. Their
results show that LSTM achieves higher accuracy than
other methods including random walk (RW), SVM,
single-layer feed forward neural network (FFNN) and
stacked autoencoder (SAE) (42). However, these models
only focus on temporal characteristics, meaning they can-
not capture the spatial dependencies of traffic flow. GNN
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Figure I. Structure of scene graph convolutional network (GCN).

can aggregate and transform traffic information through
edges in road networks (43—45). This allows GNN to cap-
ture the spatial dependencies of traffic flow, which
improves the accuracy of traffic forecasting. More and
more researchers have combined these deep learning mod-
els with GNN to capture the spatiotemporal characteris-
tics of traffic flow. Wu et al. proposed a graph attention
LSTM network (GAN-LSTM) to capture spatiotemporal
correlations for traffic flow forecasting, and found GAN-
LSTM outperformed other multi-link traffic flow fore-
casting models: diffusion convolutional recurrent neural
network (DCRNN), LSTM, and feed forward neural net-
work (FNN)(46). A gated CNN can be combined with a
graph convolutional network (GCN) to form a spatio-
temporal GCN (STGCN), which captures comprehensive
spatiotemporal correlations and runs much faster with
fewer parameters (/3). Zhang et al. proposed a model
based on gated attention networks (GaAN) to extract
spatiotemporal characteristics of traffic flow (/4). The
combination of RNN and GNN requires both a historical
dataset to train the model and observation traffic flow
data to forecast traffic conditions. CNN and RNN can
also be combined to capture the spatiotemporal character-
istics of traffic flow at the city scale (47, 48). This method
involves transforming the road network to raster maps,
with the values of each cell representing the condition of
traffic, then typical RNN networks are used to capture
the temporal characteristics of traffic data for each cell.
With these models, we can learn the spatiotemporal fea-
tures of traffic flow data at the city level; however, these
models require traffic data on all the streets, such as tra-
jectory data, which limits this approach to situations
where a city-wide dataset is accessible. The need for both
historical and observation data makes these models diffi-
cult to apply to the entire city.

Methodology
Problem Definition

In the problem of traffic forecasting, we intend to predict
hourly traffic speeds during workdays based on scene

features extracted from GSV images. Specifically, the
scene features of each road are represented on a traffic
network model. We describe the traffic network as an
unweighted graph G = (V, E), where V =
{vi, v2, ..., vy} is a set of road nodes (we treat each
road as a node), NV is the number of the nodes, and E is a
set of edges representing the connection of each road.
The adjacency matrix, 4 € {RY*"}, can also represent
the connection between roads. For each element in the
adjacency matrix, 4;;, which represents the connection
between node i and node j, there are only two possible
values (0 means no connection; 1 means they are con-
nected). The scene features extracted from GSV images
for road nodes can be represented as a feature matrix,
X € XV*P in which X; = [x;, x2, ..., Xp] represents
features of node i, where D represents the dimension of
scene features for each node.

The hourly traffic speed information for each node
can be represented as a sequence y = (Y7, Y2, ..., Y24)
on the traffic network, where each Y, is the traffic speed
at time ¢.

Thus, the problem of traffic speed forecasting can be
defined as building a model f on the traffic network G
and feature matrix X; = [x|, x2, ..., xp| to predict the
hourly traffic speed y = (Y1, Y2, ..., Ya4), which is
shown as (1):

(Yl, Yz, ey Y24) = f(G, [xl, X2, ey XD]) (1)
where
D = the dimension of extracted scene features for

each street node.

Method

The proposed scene graph CNN framework consists of
two parts: the CNN and the GNN. As shown in Figure 1,
we first use a pretrained CNN model, Resnet18, to extract
scene features from GSV images for each street node, then
the average of these features is calculated to construct the
feature matrix X. Secondly, the generated scene features
are entered into a GCN to capture the spatial dependency.



Transportation Research Record 00(0)

© «© ©
LB 2 BB 1] (B (R))|8
> <1 > > > >
o z a = €|y E = 2 Z |4 2
E L 8 » (;3_ » 8 » 8 > 8 > 8 > 8 » 8 8 »
= ® Q| R R R 2| |2 Q
IS & & & & g 3 3

3x3 conv, 128

v »

3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
Ave pool

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 oo:w 512

I Fully connected classification I

Figure 2. Structure of Resnet|8.

Finally, we get a predicted hourly traffic speed sequence,
y = (f/l, Ys, .., 5’24), for each road node, where each
¥, represents the traffic speed at time 7.

Scene Features Extraction. Four GSV images at heading
angles of 0°, 90°, 180°, and 270° for each street node are
generated using the GSV static API. For each node, we
use Resnetl8 to extract scene features from GSV.
Features in all heading angles are generated,

X, = [ X, 00°> Xl 180° > X., 700 |» where X; is the list of fea-

1

tures at each of the four heading angles of node i. Then,
the average value of each location is calculated,
Xij = 3 (X; 0o T+ Xi,90°,j * X: 180, XJl 270°,j)s where
X;;j is the feature of node i at dimension j, and
i€ N, je D. We use a pretrained Resnetl8 to extract
scene features. The model is trained by the Places365
dataset with a high top-5 accuracy of 85.07% (49). It
employs an identity shortcut connection mechanism to
skip one or more layers when training the model, so that
more layers could be included in the model resulting in
higher accuracy. Resnet18 requires relatively fewer para-
meters and less computational cost to extract features
from images than other methods. The structure of our
Resnet is shown as Figure 2.

Spatial Dependence Modeling. The traffic speed in a street
node is influenced not only by its own features, but also
by the other street nodes connected to it. GCN has been
successfully used in extracting spatial dependencies of
traffic networks to predict traffic flow with high accu-
racy. The mechanism of GCN is to construct a filter in
the Fourier domain based on adjacency matrix 4 and
feature matrix X. For each street node, the filter will
aggregate the features of its connected nodes, then sev-
eral convolutional layers are stacked to extract further
and more complex spatial features. The GCN can be
expressed as:

~_ 1.1
XU+ = U(D AD X! W’) 2)

where
A = A +1Iy = the adjacent matrix with self-
connections,

Iy = the identity matrix,

D= Zjﬁij, D = the degree matrix,

X! = the output feature matrix of layer /,

W! = the trainable weights of layer /, and

o(.) = the activation function (ReLU).

In this research, we adopt a two-layer GCN to extract
spatial features from the traffic network. The process can
be expressed as:

§ = Ao(AXoWo) W, (3)
where

7 € RVN*?* = the predicted hourly traffic speed,

A = D4D:, X, € RVXP the scene features
extracted from GSV, and

Wy € RP*T = trainable weight matrix from the hid-
den to the output layer, and

Wi € RT*?* = trainable weight matrix from the hid-
den to the output layer.

Experiments

In this section, we set up experiments to evaluate the per-
formance of our proposed SceneGCN framework. We
first introduce the dataset used for training our model
and evaluation metrics. Then, different CNN models are
employed to extract scene features. Finally, we present
the experiment results and interpretation of our proposed
model.

Data Description

Taxi Trajectory Dataset. The performance of the proposed
SceneGCN model is evaluated on a taxi trajectory data-
set collected in the city of Porto, Portugal (50). A total of
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442 taxis were equipped with mobile data terminals to
collect trajectory data for a complete year (from July 1,
2013, to June 30, 2014). In this dataset, GPS signals are
collected every 15s and timestamps of the start point for
each trip are recorded. We select Monday to Friday
(except holidays or other special days and days before
these days) to prepare our training and testing dataset.

Google Street View Imagery (GSV). GSV provides us 360°
panoramic scenes along streets at the same viewing
angles as pedestrians. It provides a huge amount of ima-
gery to explore urban built environments. The Google
Cloud platform provides us a GSV static API to down-
load these images automatically. The necessary para-
meters include location (latitude and longitude of the
images), pano-ID (the specific panorama ID), output size
of each image, and key of the API, as well as other
optional parameters, such as the heading (compass head-
ing of the camera), fov (horizontal field of view of the
image) and pitch (the up and down angle of the camera
relative to the GSV vehicle). In this research, we down-
load GSV images for each road segment at the central
point of each road at heading angles 0°, 90°, 180°, and
270°. Finally, 18,324 images are downloaded to gather
scene features for each road segment. These images are
used to extract scene features, which are possibilities of
different scene types, such as apartments, highways,
bridges, parking lots, and so forth. Since these features
are extracted from a pretrained Resnet model with a high
accuracy, the time the images are captured will not influ-
ence the extraction of the feature (49). To match the time
of the images and taxi dataset, we downloaded the GSV
images from year 2013 to 2014. Figure 3 shows examples
of our downloaded images.

Evaluation Metrics

To evaluate the performance of the SceneGCN, we use
three metrics:

1) Mean absolute error (MAE):

MAE = %Z:’:in_ /i

2) Root mean squared error (RMSE):

RMSE = Bz_l (I _j;)zr (5)

3) Mean absolute percentage error (MAPE):

. Vi
%Z L

MAE = .
i=1 n

Figure 3. Examples of downloaded Google Street View at
heading angles of 0° (top left), 90° (top right), 180° (bottom left),
and 270° (bottom right).

where
f; = the real traffic speed, and

A

f; = the predicted traffic speed.

Model Parameters

Our proposed model deals with two tasks: scene feature
extraction from GSV using CNN, and traffic speed pre-
diction based on GCN. For scene feature extraction, we
adopt two Resnet18 models pretrained by two different
datasets:

Places365: The Places365 dataset classifies images
into 365 categories of scenes, such as highway, forest,
field, street, church, plaza, and so on (5/). The
weights of the model are trained by 18 million images
and predicts the category of each image with high
accuracy (49).

ImageNet: The ImageNet dataset classifies images
into 1,000 object categories, including different kinds
of cars, animals, vegetation, infrastructure, and so on.

Places365 aims to recognize scene features at a larger,
more general scale, while ImageNet focuses on specific
objects. We compared the performance of these two pre-
trained models on traffic speed forecasting to determine
the most suitable prediction model. In each pretrained
model, we keep the pretrained weights, and test whether
containing the classification layer will influence the per-
formance of our model.
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Table 1. Evaluation Matrix

Model MAPE RMSE MAE
Places365 365 scenes 0.348 15.91 14.55
512 features 0.347 15.87 14.47
ImageNet 1,000 classes 0.377 17.02 15.64
512 features 0.375 17.02 15.67

Note: MAE = mean absolute error; MAPE = mean absolute percentage error; RMSE = root mean squared error.

In total, four experiments are conducted to evaluate
the performance of our proposed model: Resnetl8 pre-
trained by Places365 containing the classification layer,
which generates a 365 dimension set of features for each
road node; Resnetl8 pretrained by Places365 without
classification layer, which generates a 512 dimension set
of features for each road node; Resnetl8 pretrained by
ImageNet containing the last classification layer and
without the last classification layer, which obtains a
1,000 dimension set and 512 dimension set of features
for each road node, respectively. For each experiment,
the generated features are entered into a two-layer GCN
to predict traffic speed. Finally, we use the MAE as the
loss function (L1Loss) to reduce the error between pre-
dicted speed and real speed during the training process.
The loss function is defined as:

I
loss = ;Zl |7 — il (7)

where
n = the number of predicted values,
¥; = the predicted traffic speed value, and
y; = the real traffic speed value.

Experimental Results

We first processed the taxi trajectory dataset, then we
obtained the training dataset, validation dataset, and test
dataset with sizes of 600, 300, and 303, respectively. Scene
features were extracted and entered into the GCN to train
the model. The most accurate result for each experiment
was generated after training about 2,500 epochs. We used
the test dataset to evaluate our model. The performance
of our models is shown in Table 1. From the evaluation
matrix we find that the GCN trained by features extracted
by the Places365 pretrained model has MAPE, RMSE,
and MAE of around 0.35, 15.9, and 14.5 respectively,
which are lower than that of the ImageNet pretrained
models, which are around 0.37, 17.02, and 15.6, respec-
tively. The classification layer has little effect on perfor-
mance of our proposed model. A total of 365 scenes
features obtained by Resnetl8 with classification layer
predict the traffic speed at similar errors as 512 scenes

features extracted by Resnetl8 without -classification
layer. Traffic speeds predicted by 365 scene features are
more stable than that predicted by 512 features. So, we
chose the 363 scene features extracted by Resnetl8 (with
classification layer, and pretrained by Places365) as our
feature matrix to train the GCN model.

Figure 4 shows a selection of the results of our test
dataset. We can see that our proposed model can predict
traffic speed patterns during the workday with high accu-
racy. The predicted results in these figures show that,
overall, traffic speeds in the city of Porto experience two
rapid declines from 6a.m. to 9a.m. and 4p.m. to 7p.m.
The lowest speeds occur at 8 a.m. and between 6 p.m. and
7 pm. After these valley hours, traffic speeds will recover
to normal speed within one or two hours. The traffic
speeds at night (from 10p.m. to Sa.m.) are faster than
during daytime. The model can predict traffic speeds
ranging from Okm/h to 100 km/h with a high degree of
accuracy. However, some road nodes are overestimated
or underestimated. Table 2 shows that, in our test data-
set, 17 road nodes are overestimated, 24 road nodes are
underestimated, and 262 road nodes are predicted cor-
rectly. More detailed reasons on prediction errors are
analyzed in the following paragraph.

Figure 5 shows the result map of our test dataset.
Purple lines are road nodes that are underestimated, red
lines are road nodes that are overestimated, and green
lines are road nodes that are predicted correctly. From
this map we can identify that the road nodes that are
underestimated are mainly located at the entrance and
exit of highways. This is because these road nodes con-
nect high-speed roads to roads with low speeds, which
will be aggregated and result in an underestimated speed
prediction through GCN. Also, the speeds at the
entrances and exits of highways are usually lower than
those on normal highway nodes. For overestimated road
nodes, they are mainly located near highways. This is
because some highway nodes capture features of sur-
rounding buildings, which can cause errors that confuse
these nodes with other streets with similar building
scenes. Also, some overestimated roads are connected to
highways, therefore information from these highways
will be transferred to these overestimated roads through
the GCN.
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Figure 4. Result of test data.

Note: ‘top left’ = the figure at the first row, the first column; ‘top middle’ = the figure at the first row, the second column; ‘bottom left’ = the figure at the
second row, the first column; ‘bottom middle’ = the figure at the second row, the second column; ‘bottom right’ = the figure at the second row, the third

column.

Table 2. Accuracy of SceneGCN

Count Percentage
Overestimate 17 5.6%
Underestimate 24 7.9%
Correct 262 86.5%

Finally, we forecasted traffic speeds for each hour of the
day for the city of Porto. Figure 6 shows predicted traffic
speeds at the city scale (taken at 6a.m., noon, 6 p.m., and
midnight.). The map shows that, spatially, the traffic speed
of highways is much higher than that of city roads. Traffic
speed is lowest at the center of the city. Temporally, traffic
speed is higher at night than at any other time, and traffic
speed is lowest during commuting hours (6p.m. in this
map). The red lines in Figure 6 have the lowest traffic
speed, revealing areas of traffic congestion.

Figure 5. Result map of test dataset.

Note: Green lines = road nodes that are predicted accurately; purple lines
= road nodes that are underestimated; red lines = road nodes that are
overestimated.
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speed at 6 p.m.

Conclusion

As populations in urban areas increase rapidly, traffic
forecasting becomes more and more important. Existing
methods rely on historical traffic data, which makes it
hard to forecast traffic at city scale. In this research, we
proposed a method based on SceneGCN that uses scene
features extracted from GSV to predict traffic speeds for
each hour of the day. Different scene features are extracted
from pretrained Resnetl8 models are compared and a
GCN model is used to predict traffic speed for each hour
of the day. The proposed model has the ability to predict
traffic speed at city scale, which can serve as a supplement
to traffic flow datasets which are usually collected at lim-
ited sites. Our method also illustrated the potential of
scene features in traffic flow prediction. Further research
can be conducted on the basis of this paper, for example,
to improve traffic flow prediction by integrating scene fea-
tures to existing spatiotemporal models. According to the
results, we have two conclusions. First, our proposed

model can capture the spatiotemporal characteristics of
traffic flow. From the forecasted traffic speed map, we
find, as suspected, that areas with more human activities,
such as the central city, have lower traffic speeds. Also, as
suspected, traffic speed changes during commuting hours,
and traffic congestion may occur during these hours.
Secondly, scene features extracted from GSV images have
the potential to be used to estimate the built environment
and urban functions. Traffic speed is influenced by human
activities and road conditions, and the good performance
of our model indicates that these factors can be reflected
in the GSV images.

Our proposed model has some limitations. First, we
adopt GCN to capture the spatial characteristics of the
traffic network. It requires a high-quality traffic network
map and any changes to the network may require retrain-
ing the model. Second, the quality of GSV images influ-
ences the accuracy of our model significantly. Some
highways capture features of surrounding buildings,
which may cause errors in streets with similar building
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scenes. Third, even though GSV images can reflect
human activities and road conditions to some degree,
other characteristics may influence traffic speed, such as
the posted speed limitation and density of population, as
well as the availability of public transportation. In the
future, we plan to adopt more social-economic factors
and urban points of interest (POI) data to our model to
improve the forecasting accuracy and improve the tem-
poral resolution of our model.
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