
qTask: Task-parallel Quantum Circuit
Simulation with Incrementality

Tsung-Wei Huang
tsung-wei.huang@utah.edu

Department of Electrical and Computer Engineering, University of Utah

Abstract—Incremental quantum circuit simulation has
emerged as an important tool for simulation-driven quantum
applications, such as circuit synthesis, verification, and analysis.
When a small portion of the circuit is modified, the simulator
must incrementally update state amplitudes for reasonable
turnaround time and productivity. However, this type of
incrementality has been largely ignored by existing research.
To fill this gap, we introduce a new incremental quantum
circuit simulator called qTask. qTask leverages a task-parallel
decomposition strategy to explore both inter- and intra-gate
operation parallelisms from partitioned data blocks. Our
partitioning strategy effectively narrows down incremental
update to a small set of partitions affected by circuit modifiers.
We have demonstrated the promising performance of qTask
on QASMBench benchmarks. Compared to two state-of-the-art
simulators, Qulacs and Qiskit, qTask is respectively 1.46× and
1.71× faster for full simulation and 5.77× and 9.76× faster for
incremental simulation.

I. INTRODUCTION

Quantum computing (QC) is a promising computing
paradigm for tackling certain types of problems that are classi-
cally intractable, such as cryptography, chemistry simulation,
and finance [1]. Among various QC applications, classical
quantum circuit simulation (QCS) is essential for researchers
to understand quantum operations, design quantum algorithms,
and validate quantum circuit functionality [2]. However, QCS
is extremely challenging because it demands large computa-
tion and memory to evaluate state amplitudes of qubits. For
example, a full simulation of an n-qubit circuit requires an
exponential size of vector to store 2n amplitudes, as a result of
superposition. To tackle this challenge, QCS researchers have
explored parallel computing [3], [4], data compression [2],
circuit optimization [5], [6], etc.

Despite the rapid growth of QCS research, existing simu-
lators are largely short of a key feature–incrementality. Incre-
mental QCS has recently emerged as an important tool for
simulation-driven QC applications, as shown in Figure 1. For
example, quantum circuit synthesizers can iteratively modify
circuit gates to increase certain state probability and verify the
results with thousands of simulation runs [7], [8], [9], [10];
developers can issue step-by-step simulation calls to debug
how qubits change during the implementation of quantum
algorithms; equivalence checking tools can repetitively add
or remove gates to verify how similar two circuits are based
on simulation results [11]. For these applications, when small
portions of a quantum circuit is modified, re-simulating the full
circuit is infeasible from a turnaround time and productivity

perspective. The simulator must incrementally update only
affected regions and ensure state integrity in an efficient
manner.

Fig. 1: Incremental quantum circuit simulation is a key enabler
to high-performance simulation-driven quantum applications.

There are several challenges for designing an efficient
incremental QCS system. First, running QCS in a static envi-
ronment is very different from a dynamic environment. When a
quantum circuit begins to change, it can become very difficult
to reorganize data structures and keep algorithmic invariants
consistent over incremental operations. Second, achieving fast
incremental QCS requires very strategic task partitioning to
make the most of parallelism [12]. When applications modify
the circuits, we need to quickly identify affected partitions
and restructure their task dependencies for incremental update.
Last but not least, although algorithms of incrementality have
been widely studied in the classical design flow of digital
circuits (e.g., incremental timing/power analysis [13], [14]),
we cannot directly reuse them due to distinct behavior of
quantum circuits, such as superposition and entanglement.

To overcome these challenges, we introduce qTask, a state
vector-based quantum circuit simulator that efficiently sup-
ports incrementality using task parallelism. To the best knowl-
edge of authors, qTask is the first incremental quantum circuit
simulator in the literature. Our result can largely benefit many
simulation-driven quantum applications. We summarize our
technical contributions as follows:
• We present a lightweight C++ programming model to sup-

port incremental QCS. Applications can use our circuit
modifiers to modify existing quantum circuits and call state
update to transparently perform incremental simulation.

• We present a task graph-based partitioning strategy to
explore both inter- and intra-gate operation parallelisms
from a quantum circuit. Our strategy parallelizes both full
simulation and incremental simulation.

746

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00080

• We present an efficient technique to maintain invariants of
our task partitioning over sequences of circuit modifiers.
When a state update call is issued, we can quickly identify
affected partitions and restructure the task graph to re-
simulate state amplitudes incrementally.
We have evaluated the performance of qTask on a set

of medium- and large-scale circuits in QASMBench [15],
an OpenQASM benchmark suite for noisy intermediate-scale
quantum (NISQ) evaluation and simulation. Compared to two
state-of-the-art simulators, Qulacs [3] and Qiskit [16], qTask
is respectively 1.46× and 1.71× faster for full simulation and
5.77× and 9.76× faster for incremental simulation. We believe
qTask stands out as a unique system given the ensemble of
software tradeoffs and architectural decisions we have made.

II. BACKGROUND AND RELATED WORK

In this section, we give an overview of quantum com-
putation and related work on QCS. Then, we discuss the
importance of incremental QCS and its challenges.

A. Quantum Circuits and Simulation
A quantum circuit of n qubits is a sequence of quan-

tum gates that act on quantum states. Each state ψ is a
superposition or a linear combination of 2n possible binary
states using 2n amplitudes, denoted as |ψ〉 = α0 |0...00〉 +
α1 |0...01〉 + ... + α2n |1...11〉. For brevity, binary states can
be written in decimal, |ψ〉 = α0 |0〉+ α1 |1〉+ ...+ α2n |2n〉.
Squared amplitudes are probability of individual states to
which a superposition state will collapse when measurement
is performed. Thus, squared amplitudes need to sum up to 1.

∑

b

|αb|2 = 1

Industrial quantum computers use a set of standard single-
qubit gates and two-qubit controlled gates to perform universal
computation [15]. These standard gates are defined by 2 ×
2 or 4 × 4 unitary matrices and can compose larger gates,
such as Toffoli, Fredkin, and controlled rotators. The following
example shows the standard Pauli-X gate, Hadamard gate, and
controlled-NOT (CNOT) gate in matrix form. Notice that NOT
and X are interchangeable in gate naming.

X =

[
0 1
1 0

]
, H =

1√
2

[
1 1
1 −1

]
, CX =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





A collection of quantum gates at a level forms a unitary
transformation matrix defined by the Kronecker product (⊗) of
individual gate matrices from the first qubit to the n-th qubit.
Figure 2 shows a five-qubit circuit with five Hadamard gates
and four CNOT gates. The first five Hadamard gates form the
32× 32 transformation matrix, H⊗5, to create superposition.
The last four CNOT gates create entanglement. Finding unitary
transformation matrices is an integral part of QCS. First, we
order the gates left to right and pad an empty spot with an

identity matrix of an appropriate dimension. Parallel gates
can be ordered arbitrarily, for instance, G7 and G8. Then,
we find all 2n × 2n matrices via Kronecker product and
multiply them in order. The resulting matrix represents the
entire circuit and can be multipled by input state vectors
to derive output states. Such simulations allow researchers
and developers to evaluate the complexity of new quantum
algorithms and validate quantum devices.

�
�
��

�
�
��

����
�
��

�
�
��

�
�
��

�
�
��

����
�
	�

����
�
��

����
�

�

�
�
�
�
�

�

	

�

��

��

��

��

��

Fig. 2: A five-qubit quantum circuit of nine gates (left) and
its gate dependency graph (right).

B. Existing Quantum Circuit Simulators

Mainstream QCS software is based on two paradigms, state
vector and tensor network contraction. State vector-based QCS
keeps a vector of the current state and iteratively multiplies
it by a state transformation matrix. To improve space and
time efficiency, researchers have proposed various techniques,
such as compact binary decision diagram (BDD) to represent
matrices [17], lossy data compression to trade accuracy for
space [2], multi-threaded sparse matrices [3], graphics pro-
cessing units (GPUs) to gain throughput performance [18],
[19], and distributed vector to scale out computation [20],
[21]. While being mathematically simple, state vector has been
widely used in mainstream simulators including commercial
tools (IBM Qiskit [16], MS QDK [22], Google Qsim [23]).

On the other hand, tensor network-based QCS represents
a quantum circuit in a tensor network and explores the best
contraction order for state update. However, the time and space
costs for contracting tensor networks are exponential with the
network width. Therefore, existing research has been targeting
low-depth circuits using various optimization techniques, such
as slicing window with asynchronous task parallelism [24],
[25], GPU acceleration [19], and tree partitioning [26]. While
computing tensor networks is efficient, such an organization
does not support intermediate measurement [2]. Furthermore,
tensor network is primarily optimized for static environments.
When a circuit begins to change, maintaining a dynamic tensor
network becomes very challenging.

In addition to state vector and tensor network, general-
purpose heuristics for improving simulation efficiency have
also been studied, such as gate cancelling [4], gate restric-
tion [27], gate reordering [18], pattern matching [5], approx-
imation [28], and so on. Many of these strategies focus on
removing redundancy in a quantum circuit or restructuring it to
gain a more compact representation under certain assumptions.

747

C. Importance and Challenges of Incrementality
As for the rapid growth of quantum software development,

incremental QCS has emerged as an important tool for the
success of many simulation-driven QC applications [9]. For in-
stance, quantum circuit synthesis engines can issue thousands
of simulation runs in an optimization loop to evaluate how a
local change (e.g., qubit swapping, rotation degree turning,
gate insertion and removal) affects output amplitudes [7].
This type of optimization is especially common in cross-layer
quantum computer designs that incrementally map software
logic to hardware with simulation in the loop [8]. When a
small portion of a quantum circuit is modified, re-simulating
the full circuit is infeasible from a turnaround time and
productivity perspective. The simulator must incrementally
update only affected regions without exhaustive simulation.
The success of incremental QCS can also largely improve
the efficiency, and consequently user experience, of QC plat-
forms that target interactive learning of quantum algorithms
with step-by-step simulation. Unfortunately, the current QCS
landscape is largely short of incrementality.

�� ��

������������������� �����������	������������������������

����	�������������� �
������������������� ��������������������

Fig. 3: Incremental timing analysis in the classical design flow
of digital circuits [14]. Optimization tools iteratively change
the design and incrementally update timing information until
no timing-critical paths are found.

On the contrary, incrementality has been extensively studied
in the classical design flow of digital circuits. For instance,
design automation tools heavily count on incremental tim-
ing/power analysis algorithms for efficient circuit optimiza-
tion [29], [14]. Figure 3 shows an example of timing-driven
optimization. These algorithms explore incrementality along
the circuit network and update quantities on a per-gate basis
after optimization transforms (e.g., gate sizing, buffer inser-
tion) change the design. However, such ideas are not easily
applicable to incremental QCS because state values can be
entangled and therefore are inseparable among gates. This
property also brings another challenge to parallelization. For
instance, although G7 and G8 in Figure 2 are structurally
independent of each other, we cannot apply these two CNOT
operations simultaneously as race can occur when both q4 and
q3 are 1. We need a different task decomposition strategy to
parallelize incremental QCS.

Extending existing QCS algorithms to incorporate incre-
mentality is nontrivial, either. The biggest challenge is to
maintain consistency or invariants in these algorithms when
data structures of states and gates start to change. For instance,
BDD can be extremely compact for full simulation [17],
but its linear coupling between stages can incur expensive

reorganization of a BDD when a local change happens in an
early stage. Likewise, algorithms that count on restructuring
input circuits [5] will need to manage an additional layer of
consistency between the original and the modified circuits.
Similar challenges exist in other full simulation algorithms
as well [2], [4]. Although existing QCS algorithms and ideas
in the classical design flow have their benefits, we believe
a ground-up design of simulation system is necessary to
overcome the unique challenges of incremental QCS.

III. QTASK: TASK-PARALLEL INCREMENTAL QCS
In this section, we introduce qTask, a new QCS engine

that efficiently supports incrementality using task parallelism.
qTask introduces a lightweight C++ programming model for
incremental simulation and backs up the model with an effi-
cient runtime that explores both inter- and intra-gate operation
parallelisms from partitioned data blocks. We first discuss the
targeted environment of qTask and then present its technical
details. Throughout the discussion, we will use the circuit
example in Figure 2 to explain key steps in qTask.

A. Targeted Simulation Environment
qTask targets medium-size gate-level quantum circuits on

a single machine that has sufficient memory to store all
output amplitudes (αi). While qTask currently assumes all
data fit in memory, the proposed partitioning strategy can
be extended to a higher number of qubits using out-of-core
memory, which is part of our future work. To comply with
modern quantum computers, we target standard gates defined
atomically in OpenQASM [30] and QASMBench [15], as
shown in Table I. These standard gates can be 1) mapped to
machine-specific gates for actual execution and 2) assembled
to form composition gates (e.g., CZ, CCX, SWAP). Since
qTask does not impose any constraints on gates, composition
gates can be also included to our database using the same
simulation method as standard gates.

TABLE I: Supported standard quantum gates by qTask based
on OpenQASM specification [30]

Gates Functionality Gates Functionality
CNOT Controlled-NOT SDG Conjugate of sqrt(Z)

X Pauli-X gate T sqrt(S) phase
Y Pauli-Y gate TDG Conjugate of sqrt(S)
Z Pauli-Z gate RX X-axis rotation
H Hadamard gate RY Y-axis rotation
S sqrt(Z) phase RZ Z-axis rotation

B. Programming Model
Unlike existing quantum programming models that do not

anticipate incrementality, qTask introduces a lightweight C++-
based model with two new concepts: First, qTask groups
application programming interface (API) to three categories,
circuit modifier, state update, and query. The three cate-
gories describe operations that modify the circuit, update
state amplitudes (incrementally), and query circuit quantities,
respectively. Second, qTask asks users to explicitly structure

748

gates on a per-net basis to facilitate the design of incremental
QCS. A net is a group of gates that are parallel in structure
(e.g., G1–G5 in Figure 2). Table II shows the key API to
support incremental QCS in qTask. Currently, qTask does not
support adding or removing a qubit as the number of qubits
is typically decided in the beginning.

TABLE II: Key API to support incremental QCS in qTask

Method Functionality
insert net insert a new empty net to the circuit

remove net remove a net and all its gates from the circuit
insert gate insert a net gate to an existing net

remove gate remove a gate from its net and the circuit
update state update the state value, incrementally
dump graph dumps the current partition graph

Listing 1 shows an example of qTask code for creating the
quantum circuit in Figure 2. We start by creating a circuit
object, ckt, with five qubits, q4, q3, q2, q1, and q0, where
q4 is the most significant bit. Then, we create five nets using
the method insert_net, which inserts a new net right after
the net given in the argument. Since the five Hadamard gates
are of no structural dependency, we insert them to net1.
Next, we insert four CNOT gates to net2, net3, net4,
and net5, respectively. If a gate is inserted to a net that
introduces a dependency, such as G6 and G7, qTask will throw
an exception. When we finish describing the circuit, calling
dump_graph will dump the current task graph of partitioned
blocks to a DOT format. Calling update_state will run
the task graph to perform simulation. The last three lines
modify the circuit by removing G8 and inserting a new CNOT
gate G10, followed by calling update_state to re-simulate
state amplitudes incrementally.

qTask c k t (5) ;
a u t o [q4 , q3 , q2 , q1 , q0] = c k t . q u b i t s () ;
/ / c r e a t e f i v e n e t s and e i g h t g a t e s
a u t o n e t 1 = c k t . i n s e r t n e t (c k t . n e t s () . b e g i n ()) ;
a u t o n e t 2 = c k t . i n s e r t n e t (n e t 1) ;
a u t o n e t 3 = c k t . i n s e r t n e t (n e t 2) ;
a u t o n e t 4 = c k t . i n s e r t n e t (n e t 3) ;
a u t o n e t 5 = c k t . i n s e r t n e t (n e t 4) ;
a u t o G1 = c k t . i n s e r t g a t e (H, ne t1 , q4) ;
a u t o G2 = c k t . i n s e r t g a t e (H, ne t1 , q3) ;
a u t o G3 = c k t . i n s e r t g a t e (H, ne t1 , q2) ;
a u t o G4 = c k t . i n s e r t g a t e (H, ne t1 , q1) ;
a u t o G5 = c k t . i n s e r t g a t e (H, ne t1 , q0) ;
a u t o G6 = c k t . i n s e r t g a t e (CNOT, ne t2 , q3 , q4) ;
a u t o G7 = c k t . i n s e r t g a t e (CNOT, ne t3 , q1 , q4) ;
a u t o G8 = c k t . i n s e r t g a t e (CNOT, ne t4 , q2 , q3) ;
a u t o G9 = c k t . i n s e r t g a t e (CNOT, ne t5 , q0 , q2) ;
c k t . dump graph (s t d : : c o u t) ;
c k t . u p d a t e s t a t e () ; / / f u l l u p d a t e
/ / modify t h e c i r c u i t
c k t . r emove ga te (G8) ;
a u t o G10 = c k t . i n s e r t g a t e (CNOT, ne t4 , q1 , q2) ;
c k t . u p d a t e s t a t e () ; / / i n c r e m e n t a l u p d a t e

Listing 1: qTask code (before circuit modifiers) of Figure 2.

Internally, qTask does not maintain any gate dependency
graph, such as the one in Figure 2, but a list of nets based on
the order of their constructions. Since all the gates in a net are

structurally parallel, qTask can group them in arbitrary order
to design an efficient memory management scheme atop our
task partitioning, discussed later.

C. Task Decomposition Strategy

To facilitate the design of efficient incremental QCS, qTask
employs a top-down parallel decomposition strategy using the
task graph model. qTask divides a state vector into a set of
disjoint, equal-size blocks and groups consecutive blocks to
form partitions. Each partition spawns one or multiple tasksto
perform gate operations on designated memory regions. This
strategy breaks down gate dependencies to task dependencies
among partitions, enabling inter-gate operation parallelism. If
a partition contains more than one block, qTask further spawns
parallel tasks to explore intra-gate operation parallelism among
these blocks. By leveraging existing task graph programming
systems, qTask transparently scales to many processors. Here,
we focus on task partitioning first and will discuss how parti-
tions are connected to each other as part of circuit modifiers
and incremental update.

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

��
����
�����

��
����
�����

��
����
�����

��
����
�����

��
����
�����

��
��	�
�����

��
��	�
�����

��������

����������
����������
����������
����������
����������
��������	�
��������
�
����������
����������
��������
�
����������
����������
����������
����������
����������
��������	�
��������
�
����������
����������
��������
�
����������
����������
����������
����������
����������
��������	�
��������
�
����������
����������
��������
�
����������
����������

Fig. 4: Task partitioning for simulating the quantum circuit
in Figure 2 using a block size of 4. The task graph explores
inter-gate parallelism through partitioned data blocks.

Figure 4 shows the partition diagram for the simulation
workload of the quantum circuit in Figure 2. Each block sizeB
is a power of two (4 here) and represents the minimum number
of elements or granularity for each task. The key idea behind
our partitioning is to carry out gate operations over a state
vector in two modes, non-superposition and superposition
gates. Gate operations, such as CNOT, diagonal matrices,
and permutations do not create superposition and can directly
alter the state vector using linear swapping and scaling. For
instance, the CNOT gate G6 in Figure 2 is equivalent to

749

swapping state amplitudes between 10xxx and 11xxx, where
“xxx” denotes all possible binary strings of the first three
qubits (1+xxx for short). On the other hand, gate operations
that result in superposition, such as non-diagonal matrices and
rotators, will fall back to the use of state transformation matrix.

��������
�
����������
����������
��������
�
����������
����������
����������
����������

�����
����������
��������	�
��������
�
����������
����������
��������
�
����������
����������

�����
��������
�
����������
����������
����������
����������
��������	�
����������
��������
�

�����
����������
��������
�
����������
����������
��������
�
����������
����������
����������

�����

�����������
� �������������

����������
��������
�
����������
����������
����������
��������	�
��������
�
����������

�����
����������
����������
����������
��������	�
����������
��������
�
����������
����������

�����
����������
��������
�
����������
����������
����������
����������
����������
����������

�����
��������	�
����������
����������
��������	�
����������
����������
��������
�
����������

�����

������������� �����������
�

Fig. 5: Task partitioning of CNOT gates G6–G9 in Figure 4. (a)
G6 gives one partition spanning four consecutive data blocks.
(b)-(c) Both G7 and G8 give two partitions each spanning
two consecutive data blocks. (d) G9 gives two partitions each
spanning three consecutive data blocks.

Figure 5 gives an example of how qTask performs CNOT
using partitioned tasks. For G6, we need to swap eight
amplitudes between 10xxx and 11xxx. Since the block
size is 4, the eight swaps can be parallelized by two tasks,
starting at states 10000 and 10100, respectively. However,
the two tasks cannot appear in two parallel partitions because
their memory regions overlap (i.e., [16, 27] and [20, 31], using
decimal representation). Instead, we form one partition of
[16, 31], as shown in Figure 4, and spawn the two parallel
tasks within this partition to explore intra-gate operation
parallelism, as illustrated in Figure 6. In qTask, intra-gate
operation parallelism can be regarded as a parallel-for with
chunk size equal to our block size. On the other hand, G7
results in two partitions that can run in parallel because the
memory regions of the two blocks are [16, 23] and [24, 31]
that do not overlap, as shown in Figure 4. The procedure to
derive partitions for G8 and G9 is similar.

The memory region of a block can be quickly decided
by replacing “x”s with the binary string of a multiple of
B. In Figure 5, for instance, the first and the second blocks
of G6 are the two states by replacing xxx with 000 and
100, respectively. By iterating blocks in order, we can decide

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���

����	�����

 ����	�����

���
�����
��

Fig. 6: Intra-gate operation parallelism of G6 in Figure 5. Tasks
1 and 2 simultaneously operate on the first and the second
blocks to swap amplitudes between states.

when to form a partition of consecutive blocks that overlap
in memory regions. Furthermore, it can be observed that the
proposed partitioning has a repetitive pattern (see Figure 4).
Once we have found a partition, the rest can be quickly decided
as they all have the same size by symmetry. qTask employs
this algorithm to decide partitions for gates X, Y, Z, S, SDG,
T, TDG, SWAP, and RX/RY/RZ of certain degrees that do not
form superposition (e.g., RX(π)).

For gate operations that form superposition (e.g., Hadamard,
RX(π/2)), qTask falls back to the principle of state trans-
formation matrix. Since this process is equivalent to matrix-
vector multiplication, we partition the state vector into an equal
number of blocks and perform parallel multiplication. For
instance, the first net of five Hadamard gates in Figure 2 will
result in eight partitions each of one block, as shown in Figure
4. Each partition computes four amplitudes via multiplying the
input state vector by the corresponding subset of matrix rows.
Since the multiplication cannot start until the previous vector is
ready, the eight partitions are preceded by a synchronization
task, sync. Notice that each partition derives its subset of
matrix rows on the fly to save memory and gain parallelism
using recursive tensor products. We stop the recursion when
zero and identity patterns occur.

D. Circuit Modifiers

With a task graph in place, we can efficiently perform
incremental QCS by restructuring the graph connectivity and
identifying affected partitions to resimulate after a circuit
modifier is applied. Since qTask partitions a state vector
into contiguous blocks, connections between partitions can be
quickly decided by a few forward and backward checks using
range intersection algorithm. Specifically, a connection exists
between two partitions if they are the closest pair of overlapped
blocks. By scanning neighboring partitions and their block
coverages, qTask can efficiently rebuild new connections and
identify affected partitions for incremental update. We will
focus on removing and inserting gates since net-level circuit
modifiers can be built on top.

Figure 7 illustrates how removing a gate affects the graph
connectivity. When we remove gate G8, all its partitions and
relevant dependencies should be removed (marked in blue
dash). For each removed partition, we need to reconnect its
preceding partitions to its successor partitions if an overlap
exist in their blocks. Since each partition is a group of consecu-
tive blocks, by keeping a list of block indices covered by each
partition, we can quickly decide overlapped partitions using

750

	�

	�

	�

	�

	�

����
�
	�

����
�
��

����
�
��

����
�

�

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

��

��

��

��

��

��

��

��

Fig. 7: Remove gate G8 from the quantum circuit in Figure
2 and its impact on partitioned data blocks. Numbers in “{}”
denote block IDs.

range intersection algorithm. For instance, the first partition
of G8 spans the block range [2, 3], which intersects the block
range [1, 3] of its successor.

��

��

��

��

��

����
�

�

����
�
��

����
�
	�

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

����
�
���

Fig. 8: Insert a new gate G10 after the removal of G8 in Figure
7 and its impact on partitioned data blocks.

��!� ���!�!��� �����������
 ��!�� ��!����
���!�!���

����������
�����

���	 "�#��"�#��"�#��"�#��"�#��"	#��"
#��"�# "�#��"�#��"�# "#

�
 "���	��
���# "�������#

�� "���	#��"
���# "���	#��"
���# "�������#

��� "�������#��"	��
���# "������#��"	��
���#

�� "�������#��"	��
���# "�������#��"	��
���# "#

"�#

"�#
"�#

"�#

"�#

"	#
"
#

"�#

���������������	����������������
��	������������

Fig. 9: Incremental update of the task graph after inserting a
new gate G10 to Figure 7.

Figure 8 illustrates how inserting a new gate affects the
graph connectivity. When a new gate G10 is inserted, we first
identify its partitions (marked in blue dash) and then connect
each partition with appropriate predecessors and successors.
Figure 9 illustrates our algorithm to find such predecessors
and successors. Starting from the row of G10, which has
two partitions of block ranges [1, 3] and [5, 7], we iteratively
move backward and forward to find intersected partitions for
predecessors and successors until the remaining blocks of G10
become empty. For example, with one step forward, the two

partitions of G9 can all cover that of G10, resulting in two
successor dependencies. Similarly, with one step backward, the
two partitions of G7 cover only the second partition of G10,
resulting in two predecessor dependencies; with two more
steps backward, we have three predecessor dependencies that
completely cover the first partition of G10. Since dependency
constraints are transitive, we remove existing dependencies
between these predecessors and successors.

E. Incremental Update

qTask keeps a list of partitions called frontiers for each
sequence of circuit modifiers. Frontiers are the source to start
incremental update of affected state amplitudes when users
issue an update call after a sequence of circuit modifiers.
For each newly inserted gate, we add all its partitions to the
frontier list. For each removed gate, we add all successors
of removed partitions to the frontier list. Now, it should be
clear that our partitioning strategy effectively scopes down
state update to only successor partitions that are reachable
from frontiers. Such successors can be found through a depth-
first-search (DFS) starting from each frontier partition.

����	�������
�
����������������
�
���

Fig. 10: Incremental update of state amplitudes after (a)
removing G8 as in Figure 7 and (b) inserting G10 as in Figure
8. Frontier partitions are marked in green, and their reachable
successors are marked in blue.

Figure 10 illustrates how qTask identifies frontiers and use
them to carry out incremental update for Figure 7 and Figure
8. In (a), the two successor partitions of G8 (marked in green)
are frontiers when G8 is removed from the circuit. Intuitively
speaking, we only need to update state amplitudes of the two
partitions and onward since removing G8 has no impact on
other partitions. Similarly in (b), inserting G10 to the circuit
introduces two new partitions to perform CNOT operations.
The two partitions will be added to the frontier list and all their
successors will participate in the incremental update. Figure
11 shows a detailed state map of Figure 10(b). We can see
only 24 state amplitudes ([4, 15] and [20, 31]) are incrementally
updated after removing G8 and inserting G10.

F. Implementation Details

In this section, we discuss three important implementation
details of qTask, task graph creation, per-net state vector
management, and copy-on-write data optimization.

751

��������

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

�
�����

	�
�
�
��
�����

	�
�
�
��
�����

	�
�
�
��
�����

	�
�
�
��
�����

	�
�
�
��
�����

	�
�
�
���
�����

	�
�
�
���
�����

����������
����������
����������
����������
����������
��������	�
��������
�
����������
����������
��������
�
����������
����������
����������
����������
����������
��������	�
��������
�
����������
����������
��������
�
����������
����������
����������
����������
����������
��������	�
��������
�
����������
����������
��������
�
����������
����������

Fig. 11: Detailed state map of Figure 10(b), in which only
four partitions (marked in blue) are involved in updating 24
state amplitudes incrementally.

1) Task graph creation: We leverage the Taskflow li-
brary [31] to derive a task graph from partitioned data blocks.
We decide to use Taskflow because of its simplicity and many
successful use cases in classical circuit design [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], but
other tasking libraries (e.g., TBB [44], OpenMP [45]) are also
possible. Specifically, we use the static tasking and dynamic
tasking (subflow) features [46] of Taskflow to compose inter-
and intra-gate operation parallelisms, respectively. Figure 12
shows the Taskflow graph of Figure 4, where 1) 16 static
tasks (sync-1, MxV0–MxV7, G71, G72, G81, G82, G91,
G92, output) are used to formulate inter-gate operation
parallelism and 2) one subflow of two static tasks (G6-0 and
G6-1) is used to formulate intra-gate operation parallelism of
G6. Each time the application requests a state update, qTask
derives a new Taskflow graph from affected partitions and
submits it to Taskflow’s work-stealing runtime [47] for parallel
incremental simulation.

2) Per-net state vector management: Since gates in the
same net are structurally independent of each other, we first
group superposition gates to share a state vector and partition it
to an equal number of blocks, such as MxV0–MxV7 in Figure
12. These partitions will succeed an empty task (sync-1)
that synchronizes all previous tasks to safely perform parallel
matrix-vector multiplication. Next, we create a state vector for
each non-superposition gate in the net and partition the vector
into a set of consecutive blocks based on the proposed method.
If multiple gates exist, we connect them in an increasing order
of block count in partitions. This is because a partition of a
high block count tends to affect a large number of downstream

Subflow: G6

sync-1

MxV0

MxV1

MxV2

MxV3

MxV4

MxV5

MxV6

MxV7

outputG91

G81

G6

G71

G72

G92

G82G6-0

G6-1

Fig. 12: Taskflow graph of Figure 4. Each task performs a
specific gate operation on partitioned data blocks. The subflow
task, G6 (in blue box), spawns two static tasks for intra-gate
operation parallelism as described in Figure 6.

partitions, and we prefer to defer it as much as possible.
3) Copy-on-write data optimization: While qTask keeps

multiple state vectors per net to store intermediate results
for incrementality, each state vector does not explicitly store
all partitioned blocks. Instead, we leverage the copy-on-write
(COW) technique [48] to optimize data access. Each block
has a COW C++ smart pointer to its predecessor block.
The memory and data of a block will not be created and
copied until a task performs gate operations on the block.
This COW optimization has two significant advantages: First,
qTask will only create necessary data blocks for simulation.
For example, the first and the fifth blocks of G9 in Figure 4 will
not be created unless explicitly requested. Second, multiple
memory allocations and data copies between blocks can be
simultaneously performed through parallel tasks.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of qTask on 20 quan-
tum circuits selected from medium- and large-scale QASM-
Bench [15]. As shown in Table III, these circuits exhibit
different complexities in terms of numbers of qubits and
standard gates. For example, vqe uccsd has the largest gate
count of 10808, and big ising has the largest qubit count of
26. All circuits except bb84 incorporate several CNOT gates
to entangle and disentangle states. Figure 13 shows a fraction
of the circuit, ising, that performs Ising model simulation
using 10 qubits. All experiments ran on a CentOS 64-bit
machine with 16 Intel i7 cores at 2.50 GHz and 128 GB RAM.
We compiled qTask using clang++12 with C++17 standard
-std=c++17 and optimization flag -O3 enabled. The default
block size of qTask is 256. All data is an average of 10 runs.

752

TABLE III: Performance comparison of qTask with Qulacs and Qiskit on medium- and large-scale QASMBench circuits [15]

Circuit Description Qubits Gates CNOT Qulacs Qiskit qTask
full
(ms)

inc
(ms)

mem
(GB)

full
(ms)

inc
(ms)

mem
(GB)

full
(ms)

inc
(ms)

mem
(GB)

dnn Quantum deep neural network 8 1200 384 21.8 2167.8 0.07 51.4 5114.3 0.07 22.4 529.3 0.09
adder Quantum ripple adder 10 142 65 17.2 186.4 0.05 29.5 320.1 0.04 11.79 57.9 0.06
bb84 Quantum key distribution 8 27 0 1.1 2.3 0.03 1.1 2.4 0.03 1.5 1.9 0.04

bv Berstein-Vazirani algorithm 14 41 13 9.0 21.7 0.11 16.7 40.6 0.12 6.7 14.3 0.13
ising Ising model simulation 10 480 90 49.6 1438.1 0.08 81.4 2360.1 0.09 41.7 550.14 0.10

multiplier Quantum multiplication 15 574 246 150.9 4199.0 1.98 283.7 7896.3 2.86 101.62 1052.6 3.46
multiplier 35 3×5 matrix multiplication 13 98 40 22.4 130.1 0.10 47.1 273.54 0.15 16.01 92.7 0.18

qaoa Approximation optimization 6 270 54 5.4 148.5 0.01 13.4 368.5 0.01 6.1 37.65 0.02
qf21 Quantum factorization of 21 15 311 115 79.8 1173.1 1.59 191.5 2815.1 1.66 58.3 480.7 1.91
qft Quantum Fourier transform 15 540 210 142.0 3621.0 2.75 281.2 7170.1 3.11 102.2 949.4 3.17
qpe Quantum phase estimation 9 123 43 10.3 100.42 0.02 27.8 270.4 0.04 7.65 80.44 0.05
sat Boolean satisfiability solver 11 679 252 85.5 3660.7 0.11 196.7 8422.1 0.21 62.3 786.5 0.28

seca Shor’s algorithm 11 216 84 28.4 401.0 0.06 59.64 843.0 0.09 21.42 128.5 0.11
simons Simon’s algorithm 6 44 14 0.83 3.9 0.03 1.44 6.71 0.03 0.81 2.44 0.04

vqe uccsd Variational quantum eigensolver 8 10808 5488 244.4 249084.2 0.36 435.1 443367.1 0.56 259.4 44251.1 0.76
big adder Quantum ripple adder 18 284 130 200.1 2401.3 7.98 360.4 4300.8 11.4 137.9 602.5 13.9

big bv Bernstein-Vazirani algorithm 19 56 18 125.0 305.9 2.6 234.5 573.9 3.9 95.4 126.6 4.9
big cc Counterfeit coin finding 18 34 17 24.9 47.8 0.98 42.3 63.3 1.5 16.6 24.5 1.7

big ising Ising model simulation 26 280 50 1939.1 3345.5 89.4 1745.3 2866.2 91.4 991.4 2000.3 114.3
big qft Quantum Fourier transform 20 970 380 2936.3 100567.0 67.3 3012.6 144453.4 77.6 2209.7 12912.8 91.2

1.46 5.77 0.74 1.71 9.76 0.82 1.00 1.00 1.00
Qubits: number of qubits Gates: number of standard gates CNOT: number of CNOT gates to entangle and disentangle states
full: runtime of full simulation inc: runtime of incremental simulation mem: maximum resident set size (RSS)

Fig. 13: Quantum circuit (partial) for Ising model simulation.

A. Baseline

Given the large number of quantum circuit simulators, it
is impractical to compare qTask with all of them. Instead,
we consider Qulacs [3] and Qiskit [16] as the baseline for
the following three reasons: First, both Qulacs and Qiskit
have an optimized C++ back-end and have demonstrated
superior runtime performance over existing simulators [3].
Second, Qulacs is completely open-source and has relatively
rich documentation for C++ in addition to Python, allowing us
to reason the source when incrementality is taken into account.
Third, Qulacs and Qiskit support circuit modification, in spite
of no incremental simulation. For example, Qulacs have API
for inserting/removing gates at given positions, while Qiskit
allows adding/erasing gates as a byproduct of Python list.

B. Overall Simulation Performance

Table III presents the overall simulation performance of
qTask, Qulacs, and Qiskit, using a maximum hardware con-
currency of 16 threads. In terms of full simulation, which
issues a simulation call when the entire circuit is constructed,

qTask outperforms Qulacs and Qiskit in nearly all circuits.
The average speed-ups of qTask over Qulacs and Qiskit across
all circuits are 1.46× and 1.71×, respectively. We attribute
this result to our partitioning strategy which explores both
inter- and intra-gate operation parallelisms. This performance
advantage becomes even more significant at larger circuits
that produce more partitioned tasks and parallelism than small
ones. For example, qTask simulates big ising (26 qubits)
1.67× and 1.43× faster than Qulacs and Qiskit. For circuits
of state sizes below our partition size (i.e., 8 qubits with 256
amplitudes), such as dnn, bb84, qaoa, and vqe uccsd qTask
is a bit slower than Qulacs because there is no much task
parallelism. Yet, the difference is very negligible (e.g., about
5% in vqe uccsd).

Next, we study the performance of incremental simulation.
Following the convention of QASMBench, we create a net per
level and insert all parallel gates at that level to the net. Starting
from the first level, we repeat this process and issue level-by-
level simulation calls until the entire circuit is constructed.
That is, the number of simulation calls is equal to the number
of nets or the circuit level/depth. With incremental simulation,
we clearly see the advantage of qTask. On average, qTask is
5.77× and 9.76× faster than Qulacs and Qiskit, respectively.
When a circuit include many gates in a long depth, this
advantage becomes even more pronounced. Taking big qft
for example, qTask finished 7.79× and 11.19× faster than
Qulacs and Qiskit, respectively. The trade-off of this large
performance gain is higher memory usage, since we keep
several state vectors per net to store intermediate results for
incrementality. On average, qTask is 26% and 18% higher
than Qulacs and Qiskit, both of which incorporate specialized
sparse data structures for state vectors and matrices. However,
how to efficiently extend such sparsity management to an
incremental environment remains unknown.

753

C. Performance of Incremental Simulation
We further study the performance difference of incremental

simulation between qTask and Qulacs over different numbers
of circuit modifiers. Hereafter, we compare with only Qulacs
since Qiskit is much slower. We follow the convention of
classical design flow [14], [49], [50], [51] to define one incre-
mental iteration as a sequence of circuit modifiers followed
by a simulation call. We first demonstrate the simulation
performance for incremental gate insertions. At each incre-
mental iteration, we randomly select a few levels and insert
all their gates into the circuit. Then, we call state update
to re-simulate the modified circuit. Iterations stop until the
circuit is fully constructed. Figure 14 draws the cumulative
runtime over all incremental iterations for two circuits, qft and
big adder. As the number of incremental iterations increases,
the performance gap between qTask and Qulacs becomes
larger.

0 10 20 30 40 50

0

1,000

2,000

3,000

Incremental iterations

C
um

ul
at

iv
e

ru
nt

im
e

(m
s)

qft

qTask
Qulacs

0 5 10 15 20 25

0

500

1,000

1,500

2,000

2,500

Incremental iterations

C
um

ul
at

iv
e

ru
nt

im
e

(m
s)

big adder

qTask
Qulacs

Fig. 14: Performance of incremental simulation for random
gate insertions on two quantum circuits, qft and big adder.

0 10 20 30 40 50

0

50

100

150

Incremental iterations

R
un

tim
e

(m
s)

qft

qTask
Qulacs

0 10 20 30 40 50

0

50

100

150

200

Incremental iterations

R
un

tim
e

(m
s)

big adder

qTask
Qulacs

Fig. 15: Performance of incremental simulation for random
gate removals on two quantum circuits, qft and big adder.

Next, we demonstrate the simulation performance for in-
cremental gate removals. Starting from a complete circuit,
each incremental iteration randomly selects a few levels and
removes all their gates from the circuit. Then, we call state
update to re-simulate the modified circuit. Iterations stop until
the circuit becomes empty. Figure 15 draws the runtime at each
incremental iteration for the same circuits, qft and big adder.
Notice that the runtime at the iteration 0 represents full
simulation. As the number of incremental iterations increases,
both Qulacs and qTask approach zero due to fewer gates to re-
simulate, but qTask is always faster. qTask fluctuates more than

Qulacs because the number of affected partitions varies across
different incremental iterations. Removing gates at a later level
will affect fewer downstream partitions that an earlier level,
and vice versa.

0 10 20 30 40 50

60

80

100

120

140

Incremental iterations

R
un

tim
e

(m
s)

qft

qTask
Qulacs

0 10 20 30 40 50

100

120

140

160

180

200

Incremental iterations

R
un

tim
e

(m
s)

big adder

qTask
Qulacs

Fig. 16: Performance of incremental simulation for mixing
random gate removals and insertions based on two quantum
circuits, qft and big adder.

Finally, we demonstrate the performance of incremental
simulation performance by randomly mixing gate insertions
and gate removals at each incremental iteration. Figure 16
plots the runtime over 50 incremental iterations. Since the
circuit size varies at each iteration, both Qulacs and qTask
fluctuate. However, we observe qTask is faster than Qulacs in
nearly all points, as a result of incremental simulation. The
runtime difference is larger at big adder, which is primar-
ily composed of non-superposition gates (CNOT, CX) to to
perform quantum arithmetics. In this case, qTask can quickly
update certain, affected amplitudes by circuit modifiers, rather
than the entire state.

D. Multi-threading Performance
Figure 17 compares the runtime between Qulacs and qTask

for completing full simulation using different numbers of
cores. Both qTask and Qulacs saturate at about 10 cores. Since
our task partitioning strategy enables both inter- and intra-gate
operation parallelisms, multi-threaded qTask is always faster
than Qulacs. Also, by modeling partitioned simulation tasks
into a task graph, qTask can execute the whole-graph with
dynamic load balancing (via Taskflow [31]) in no need of
synchronizing work between levels as Qulacs. Similar result
is observed for incremental simulation in Figure 18, where we
collect 50 incremental iterations of random gate insertions and
removals. For qTask, the advantage of multi-threading is less
significant than full simulation because incremental simulation
takes much less computation. The scalability saturates at about
10 cores because most task graphs give 10—-30 parallel tasks
with a partition size of 256. Smaller partition size gives more
task parallelism, but the resulting scheduling overhead can
outweigh the advantage.

E. Impact of Block Size
We study the impact of different block sizes on simulation

performance. In qTask, using a smaller block size results in
more partitioned tasks and thus a finer control over incre-
mentality, and vice versa. However, more partitions also incur

754

0 5 10 15

200

400

600

800

Number of cores

R
un

tim
e

(m
s)

qft (full)

qTask
Qulacs

0 5 10 15

200

400

600

Number of cores

R
un

tim
e

(m
s)

big adder (ful)

qTask
Qulacs

Fig. 17: Runtime scalability of full simulation with increasing
numbers of CPU cores for qft and big adder.

0 5 10 15
0

5

10

15

Number of cores

R
un

tim
e

(s
)

qft (incremental)

qTask
Qulacs

0 5 10 15
0

2

4

6

8

10

12

Number of cores

R
un

tim
e

(s
)

big adder (incremental)

qTask
Qulacs

Fig. 18: Runtime scalability of incremental simulation with
increasing numbers of CPU cores for qft and big adder.

higher runtime overhead, such as re-connecting the task graph
after circuit modifiers and scheduling tasks with dynamic
load balancing. Figure 19 shows the simulation runtime of
qTask for qft (15 qubits) using different block sizes. When
the block size is too small, the overhead of task partitioning
and scheduling completely outweighs the advantage of task
parallelism. When the block size is to too large, qTask does
not benefit much from task parallelism, and the result basically
degenerates to using one core (compared to Figure 17 and
Figure 18).

0 2 4 6 8 10 12 14 16

200

400

600

800

1,000

1,200

1,400

Block size (logB)

R
un

tim
e

(m
s)

qft (full)

qTask

0 2 4 6 8 10 12 14 16

0

5

10

15

20

Block size (logB)

R
un

tim
e

(s
)

qft (inc)

qTask

Fig. 19: Runtime of full simulation and incremental simulation
using different block sizes.

The selection of partition size depends on the circuit struc-
ture and application environment. For example, if the simulator
only has four cores to run, then a bigger partition size is better
for avoiding excessive parallelism plus scheduling overhead.
On the other hand, if the circuit incorporates a long chain

of arithmetic operations (e.g., CNOT), a smaller partition
size may bring more inter-gate parallelism. Since there is no
universal optimal selection, we have decided to parameterize
it for users.

F. Impact of Copy-on-Write Data Optimization
qTask partitions each state vector into a set of data blocks

and stores each partitioned block using a C++ COW smart
pointer [48]. A data block is automatically freed when ref-
erence count drops to zero, which happens on the fly by
Taskflow’s scheduler. In general, this data block management
strategy can reduce the overall memory footprint by about 20–
50%. For large-scale circuits, e.g., big qft and big ising, the
saving can be significant (up to several GBs).

V. CONCLUSION

In this paper, we have introduced qTask to efficiently
support incremental quantum circuit simulation. To the best
knowledge of authors, qTask is the first incremental quantum
circuit simulator in the literature. We have presented a task-
parallel decomposition strategy to explore both inter- and intra-
gate operation parallelisms from partitioned data blocks. Our
strategy effectively scopes down incremental update to a small
set of affected partitions that can be quickly identified from
a sequence of circuit modifiers. We have demonstrated the
promising performance of qTask on medium- and large-scale
quantum circuits from QASMBench. Compared to two state-
of-the-art simulators, Qulacs and Qiskit, qTask is respectively
1.46× and 1.71× faster for full simulation and 5.77× and
9.76× faster for incremental simulation.

As part of our future work, we are enhancing qTask to
support a higher number of qubits by extending its state vector
data structure to out-of-core memory and distributed com-
puting [52], [53]. Additionally, we plan to leverage the new
CUDA Graph execution model [54], [55], [56] to accelerate
large simulation task graphs using GPU computing. Integrating
qTask into existing quantum circuit synthesis engines [7], [57]
is also of our interest.

ACKNOWLEDGMENT

We are grateful for the support of National Science Founda-
tion (NSF) grants, CCF-2126672, CCF-2144523 (CAREER),
OAC-2209957, and TI-2229304. Also, the authors would
like to thank reviewers for their constructive comments on
improving this paper.

REFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press,
2011.

[2] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-State Quantum Circuit Simulation by Using Data
Compression,” in SC, 2019.

[3] Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, J. Chen,
K. M. Nakanishi, K. Mitarai, R. Imai, S. Tamiya, T. Yamamoto, T. Yan,
T. Kawakubo, Y. O. Nakagawa, Y. Ibe, Y. Zhang, H. Yamashita,
H. Yoshimura, A. Hayashi, and K. Fujii, “Qulacs: a fast and versatile
quantum circuit simulator for research purpose,” Quantum, vol. 5, p.
559, oct 2021.

755

[4] A. Fatima and I. L. Markov, “Faster Schrödinger-style simulation of
quantum circuits,” in IEEE HPCA, 2021, pp. 194–207.

[5] R. Iten, R. Moyard, T. Metger, D. Sutter, and S. Woerner, “Exact and
Practical Pattern Matching for Quantum Circuit Optimization,” ACM
TQC, vol. 3, no. 1, Jan 2022.

[6] G. G. Guerreschi, “Fast simulation of quantum algorithms using circuit
optimization,” Quantum, vol. 6, p. 706, May 2022.

[7] A. Zulehner and R. Wille, “Introducing Design Automation for Quantum
Computing,” in Springer, 2020.

[8] “Classiq: Quantum Algorithm Design,” https://www.classiq.io/docs/
quantum-algorithm-design.

[9] P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi, D. I.
Schuster, H. Hoffmann, and F. T. Chong, “Partial Compilation of Varia-
tional Algorithms for Noisy Intermediate-Scale Quantum Machines,” in
IEEE/ACM Micro, 2019, p. 266–278.

[10] G. S. Ravi, P. Gokhale, Y. Ding, W. Kirby, K. Smith, J. M. Baker,
P. J. Love, H. Hoffmann, K. R. Brown, and F. T. Chong, “CAFQA: A
Classical Simulation Bootstrap for Variational Quantum Algorithms,” in
ACM ASPLOS, 2022, p. 15–29.

[11] T. Peham, L. Burgholzer, and R. Wille, “Equivalence checking
paradigms in quantum circuit design: A case study,” in ACM/IEEE DAC,
2022, p. 517–522.

[12] O. Daei, K. Navi, and M. Zomorodi-Moghadam, “Optimized Quantum
Circuit Partitioning,” International Journal of Theoretical Physics vol-
ume, pp. 3804—-3820, 2020.

[13] T.-W. Huang and M. Wong, “UI-Timer 1.0: An Ultrafast Path-Based
Timing Analysis Algorithm for CPPR,” IEEE TCAD, vol. 35, no. 11,
pp. 1862–1875, 2016.

[14] T.-W. Huang, G. Guo, C.-X. Lin, and M. Wong, “OpenTimer 2.0: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40,
no. 4, pp. 776–789, 2021.

[15] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “QASMBench: A Low-
Level Quantum Benchmark Suite for NISQ Evaluation and Simulation,”
ACM TQC, Jul 2022.

[16] “Qiskit,” https://qiskit.org/.
[17] L. Burgholzer, A. Ploier, and R. Wille, “Exploiting Arbitrary Paths for

the Simulation of Quantum Circuits with Decision Diagrams,” in IEEE
DATE, 2022, pp. 64–67.

[18] Y. Zhao, Y. Guo, Y. Yao, A. Dumi, D. M. Mulvey, S. Upadhyay,
Y. Zhang, K. D. Jordan, J. Yang, and X. Tang, “Q-GPU: A Recipe of
Optimizations for Quantum Circuit Simulation Using GPUs,” in IEEE
HPCA, 2022, pp. 726–740.

[19] “cuQuantum,” https://github.com/NVIDIA/cuQuantum.
[20] S. Imamura, M. Yamazaki, T. Honda, A. Kasagi, A. Tabuchi, H. Nakao,

N. Fukumoto, and K. Nakashima, “mpiQulacs: A Distributed Quantum
Computer Simulator for A64FX-based Cluster Systems,” 2022.

[21] G. G. Guerreschi, J. Hogaboam, F. Baruffa, and N. P. D. Sawaya,
“Intel quantum simulator: a cloud-ready high-performance simulator of
quantum circuits,” Quantum Science and Technology, vol. 5, no. 3, may
2020.

[22] “Microsoft Q# and the Quantum Development Kit.”
[23] “Google QSim,” https://quantumai.google/qsim.
[24] T. Vincent, L. J. O’Riordan, M. Andrenkov, J. Brown, N. Killoran, H. Qi,

and I. Dhand, “Jet: Fast quantum circuit simulations with parallel task-
based tensor-network contraction,” Quantum, vol. 6, p. 709, May 2022.

[25] A. Deshpande, A. Mehta, T. Vincent, N. Quesada, M. Hinsche, M. Ioan-
nou, L. Madsen, J. Lavoie, H. Qi, J. Eisert, D. Hangleiter, B. Fefferman,
and I. Dhand, “Quantum computational advantage via high-dimensional
Gaussian boson sampling,” Science Advances, vol. 8, no. 1, 2022.

[26] C. Ibrahim, D. Lykov, Z. He, Y. Alexeev, and I. Safro, “Constructing
Optimal Contraction Trees for Tensor Network Quantum Circuit Simu-
lation,” 2022.

[27] S. Bravyi and D. Gosset, “Improved Classical Simulation of Quantum
Circuits Dominated by Clifford Gates,” Phys. Rev. Lett., vol. 116, p.
250501, Jun 2016.

[28] A. Zulehner, P. Niemann, R. Drechsler, and R. Wille, “Accuracy and
Compactness in Decision Diagrams for Quantum Computation,” in IEEE
DATE, 2019, pp. 280–283.

[29] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “UI-Timer: An Ultra-Fast
Clock Network Pessimism Removal Algorithm,” in IEEE/ACM ICCAD,
2014, p. 758–765.

[30] A. Cross, A. Javadi-Abhari, T. Alexander, N. D. Beaudrap, L. S. Bishop,
S. Heidel, C. A. Ryan, P. Sivarajah, J. Smolin, J. M. Gambetta, and

B. R. Johnson, “OpenQASM 3: A broader and deeper quantum assembly
language,” ACM TQC, vol. 3, no. 3, pp. 1–50, Sep 2022.

[31] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing Sys-
tem,” IEEE TPDS, vol. 33, no. 6, pp. 1303–1320, 2021.

[32] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast
Task-based Parallel Programming using Modern C++,” in IEEE IPDPS,
2019, pp. 974–983.

[33] C.-X. Lin, T.-W. Huang, G. Guo, and M. D. F. Wong, “A modern c++
parallel task programming library,” in ACM Multimedia Conference,
2019, p. 2284–2287.

[34] T.-W. Huang, “A General-purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD,” in IEEE/ACM ICCAD, 2020.

[35] T.-W. Huang, D.-L. Lin, Y. Lin, and C.-X. Lin, “Taskflow: A General-
purpose Parallel and Heterogeneous Task Programming System,” IEEE
TCAD, vol. 41, no. 5, pp. 1448–1452, 2022.

[36] T.-W. Huang, Y. Lin, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-
taskflow: A general-purpose parallel task programming system at scale,”
IEEE TCAD, vol. 40, no. 8, pp. 1687–1700, 2021.

[37] D.-L. Lin, H. Ren, Y. Zhang, B. Khailany, and T.-W. Huang, “From RTL
to CUDA: A GPU Acceleration Flow for RTL Simulation with Batch
Stimulus,” in ACM ICPP, 2023.

[38] D.-L. Lin, Y. Zhang, H. Ren, S.-H. Wang, B. Khailany, and T.-W. Huang,
“GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm
with Multiple Inputs,” in ACM/IEEE DAC, 2023.

[39] Z. Guo, T.-W. Huang, and Y. Lin, “Heterocppr: Accelerating common
path pessimism removal with heterogeneous cpu-gpu parallelism,” in
IEEE/ACM ICCAD, 2021, pp. 1–9.

[40] C.-H. Chiu and T.-W. Huang, “Composing Pipeline Parallelism Using
Control Taskflow Graph,” in ACM HPDC, 2022, p. 283–284.

[41] K. Zhou, Z. Guo, T.-W. Huang, and Y. Lin, “Efficient Critical Paths
Search Algorithm using Mergeable Heap,” in IEEE/ACM ASP-DAC,
2022, pp. 190–195.

[42] C.-H. Chiu and T.-W. Huang, “Efficient Timing Propagation with Simul-
taneous Structural and Pipeline Parallelisms: Late Breaking Results,” in
ACM/IEEE DAC, 2022, p. 1388–1389.

[43] G. Guo, T.-W. Huang, and M. D. F. Wong, “Fast STA Graph Partitioning
Framework for Multi-GPU Acceleration,” in IEEE/ACM DATE, 2023.

[44] M. Voss, R. Asenjo, and J. Reinders, Pro TBB: C++ Parallel Program-
ming with Threading Building Blocks. Apress, 2019.

[45] “OpenMP,” https://www.openmp.org/.
[46] C.-X. Lin, T.-W. Huang, G. Guo, and M. Wong, “An Efficient and

Composable Parallel Task Programming Library,” in IEEE HPEC, 2019,
pp. 1–7.

[47] C.-X. Lin, T.-W. Huang, and M. D. F. Wong, “An efficient work-stealing
scheduler for task dependency graph,” in 2020 IEEE ICPADS, 2020, pp.
64–71.

[48] “Copy-on-Write,” https://en.wikipedia.org/wiki/Copy-on-write.
[49] T.-W. Huang and M. Wong, “OpenTimer: A high-performance timing

analysis tool,” in IEEE/ACM ICCAD, 2015, pp. 895–902.
[50] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated Static Timing

Analysis,” in IEEE/ACM ICCAD, 2020, pp. 1–8.
[51] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated Pash-

based Timing Analysis,” in ACM/IEEE Design Automation Conference
(DAC), 2021.

[52] T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “DtCraft: A distributed
execution engine for compute-intensive applications,” in IEEE/ACM
ICCAD, 2017, pp. 757–765.

[53] ——, “DtCraft: A High-Performance Distributed Execution Engine at
Scale,” IEEE TCAD, vol. 38, no. 6, pp. 1070–1083, 2019.

[54] D.-L. Lin and T.-W. Huang, “A Novel Inference Algorithm for Large
Sparse Neural Network using Task Graph Parallelism,” in IEEE HPEC,
2020, pp. 1–7.

[55] ——, “Efficient GPU Computation using Task Graph Parallelism,” in
EuroPar, 2021.

[56] ——, “Accelerating Large Sparse Neural Network Inference using GPU
Task Graph Parallelism,” IEEE TPDS, vol. 33, no. 11, pp. 3041–3052,
2022.

[57] G. Nannicini, L. S. Bishop, O. Günlük, and P. Jurcevic, “Optimal Qubit
Assignment and Routing via Integer Programming,” ACM Transactions
on Quantum Computing, vol. 4, no. 1, oct 2022.

756

