
Fast STA Graph Partitioning Framework for
Multi-GPU Acceleration

Guannan Guo∗, Tsung-Wei Huang†, and Martin Wong∗‡
∗Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

†Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
‡Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

Abstract—Path-based Analysis (PBA) is a key process in Static
Timing Analysis (STA) to reduce excessive slack pessimism. How-
ever, PBA can easily become the major performance bottleneck
due to its long execution time. To overcome this bottleneck, recent
STA researches have proposed to accelerate PBA algorithms with
manycore CPU and GPU parallelisms. However, GPU memory
is rather limited when we compute PBA on large industrial
designs with millions of gates. In this work, we introduce a new
endpoint-oriented partitioning framework that can separate STA
graphs and dispatch the PBA workload onto multiple GPUs. Our
framework can quickly identify logic overlaps among endpoints
and group endpoints based on the size of shared logic. We then
recover graph partitions from the grouped endpoints and offload
independent PBA workloads to multiple GPUs. Experiments
show that our framework can largely accelerate the PBA process
on designs with over 10M gates.

I. INTRODUCTION

As the size of circuit graph grows rapidly over recent
years, Static Timing Analysis (STA) has become a major
performance bottleneck in design automation tools, especially
when path-base analysis (PBA) is enabled to reduce unwanted
pessimism [1]. Although PBA can improve quality of design
closure, it is daunting due to its extremely long runtime. PBA
needs to select a set of critical paths from an exponential
number of path candidates and reanalyze them with path-
specific update. As a result, the timing community never stops
looking for new acceleration paradigms to alleviate the runtime
challenge of PBA.

Recently, we have seen many multithreading STA
paradigms [2], [3], [4], [5], [6], [7], [8], [9], [10] on
multiple CPU cores. These works either exploit parallelism
after circuit graph is levelized or leverage task-based models
to explore top-down parallel decomposition strategies. With
either method, these CPU multithreading paradigms hardly
scale beyond 16 threads. Then works [11], [12] propose to
advance the acceleration architectures from CPU to GPU. The
proposed GPU acceleration framework can help the STA en-
gine to achieve massive speed-up on a single GPU. However,
in practice, such speed-up may not be accessible due to the
limited GPU memory, since industrial designs are orders of
magnitude larger. It is very difficult to offload the entire circuit
graph with millions of gates, not to mention millions of paths
for the PBA workload. A natural solution is to partition the
circuit graph to reduce space complexity, but partitioning can
also take extremely long time if we operate directly on the

circuit graph. Direct partitioning will outweigh the advantage
of GPU acceleration.

Therefore, in this work, we propose a fast endpoint-oriented
partitioning framework for the PBA workload. In this frame-
work, we can quickly process the STA graph and build an end-
point graph based on the size of shared logic. Then we separate
the endpoint graph into groups and recover the partitions. We
construct these partitions so that we can run independent STA
(especially PBA) workload. Furthermore, with our GPU device
manager, we can accelerate the PBA process on multiple
GPUs. We highlight our main contributions as follows:

• Fast and generic STA graph partitioning framework.
We propose an endpoint-oriented partitioning framework
that can separate the STA graph based on shared endpoint
logic. It takes linear time to construct an endpoint graph that
reflects the size of shared logic between endpoints. Then
we use family of METIS [13] graph partitioning method
to separate the endpoints into groups. We recover the full
partitions by a linear recovery process. Since the number of
endpoints is orders of magnitude smaller than the circuit
graph size, we can obtain the partitioning results much
faster.

• Independent and balanced PBA workload decomposi-

tion. We decompose the PBA workload over the entire cir-
cuit graph into independent analysis workloads on different
partitions. With our endpoint-oriented partitioning method,
endpoints with larger shared logic are grouped together in
the same partition, which allows us to propagate shared
timing information in a single partition. If there exists
shared logic across different partitions, we make minimal
duplications to ensure we can conduct independent analysis.

• Efficient GPU device management. In case of more parti-
tions than the number of GPU devices, we use a task-parallel
approach to manage the workload balance between multiple
GPU devices. We associate one CPU core to monitor the
execution status of one GPU device. We leverage the work-
stealing scheduler to move the imbalance analysis workload
between GPU devices. In this way, we avoid idle GPU
devices until all the PBA workloads are complete.

We test our framework on a set of real circuit designs
provided by an industrial timer [14]. We verify the accuracy
of our framework with this golden reference. To test the scala-
bility, we also generate a set of much larger circuit designs by

combining these real designs in the contest manner. We use
the state-of-the-art critical path generation algorithm [10] as
our CPU baseline. In our experiments, we demonstrate we can
partition the STA graph into balanced pieces for independent
analysis. Our framework only introduces minimal cost to
obtain these partitions. In terms of performance, we achieve
8.58–24.03× speed-up over the CPU baseline on designs with
over 10M gates. To the extreme, our framework can partition
and analyze a 50M-gate design within an hour, while it will
take the CPU baseline more than 24 hours. We believe our
framework can make GPU-accelerated STA more accessible
on industrial designs.

II. PROPOSED PARTITIONING FRAMEWORK FOR

MULTI-GPU ACCELERATION

Figure 1 shows the overview of our STA graph partitioning
framework for multi-GPU acceleration. First we preprocess
the circuit graph by ranking the circuit pins based on their
distances from the source pins. Then we construct an endpoint
graph that reflects the size of common logic between end-
points. Based on this endpoint graph, we identify independent
components. Each independent component is represented by a
set of endpoints. If the sizes of these disjoint sets are balanced,
we can simply pack the sets together. Otherwise, we have
to separate the endpoint graph with METIS [13] graph parti-
tioning method. With each endpoint graph partition, we can
recover the original STA graph partition by the linear Breadth
First Search (BFS) algorithm. We leverage a multithreading
library, Taskflow [4], [8], to offload and monitor the PBA
workloads of all partitions on multiple GPU devices.

Y

Rank Circuit Pins

Build Endpoint Graph

Find Disjoint Endpoint Sets

Balanced Sets

Endpoint Set
Packing

Endpoint Graph
Partitioning

N

Partition Graph Recovery

Taskflow Device Manager

GPU Device0
GPU Device1

GPU Device2
GPU Device3

Fig. 1: Overview of our STA graph partitioning framework for multi-
GPU acceleration.

A. GPU-accelerated PBA

PBA is a pivotal step in STA to remove excessive slack
pessimism [1] . PBA realizes the pessimism removal by path
specific update. So the critical path generation is a fundamental
routine in PBA. However, the path generation process is in-
trinsically sequential with conventional CPU-based algorithms.
Related CPU multithreading solution hardly scales beyond a

few threads. Recently, Guo [12] proposes a new throughput-
driven approach that harnesses the GPU computation power
to explore critical paths with massive parallelism. Different
from CPU-based algorithm that processes one endpoint at a
time, this approach treats all endpoints as roots and unifies all
the path suffix information in a forest. Then critical paths can
be collected by exploring thousands of path prefixes simul-
taneously. Explored candidates are refined via GPU sorting
algorithm and prepared for the next round of exploration.
Details can be referred to the full paper [12]. Though this
work demonstrates its acceleration on 1.6M gate designs, it
may exhaust GPU’s memory on designs with over 10M gates.
So we are motivated to make GPU acceleration possible on
larger designs with our partitioning framework.

B. STA Graph Model

Like most STA engines, we model the circuit graph as
a directed acyclic graph (DAG). Each vertex represents a
circuit pin and each edge represents a pin-to-pin connection.
An endpoint represents ending pin of the datapath, usually a
flip-flop input or primary output. We choose the Compressed
Sparse Row (CSR) as our graph representation, because CSR
is commonly used as a condensed graph format in GPU
applications [15]. The CSR format contains three linear arrays
which hold information for vertex offsets, edge destinations,
and edge weights respectively. We also use CSR in our
partitioning framework to avoid cost of conversion. We save
fan-in STA graph G− and fan-out STA graph G+ which allow
us to search in both directions.

C. Circuit Pin Ranking

We first run a circuit pin ranking step to set up the weights
of endpoint graph. Each weighted edge of the endpoint graph
indicates the size of shared logic. To estimate the size of
shared logic, we use the minimum distance of each vertex
to the source pins, denoted as ranks. Algorithm 1 outlines
this circuit pin ranking step. We initialize queue and visited list
with all the source pins. Ranks of source pins are assigned with
zeros. Then we explore all the neighbor vertices in breadth-
first manner (line 13–17). In the meantime, we propagate the
rank values plus one to the neighbors (line 18). The overall
complexity of this algorithm is linear to the STA graph size,
because we only conduct linear scan to the STA graph for
once.

D. Endpoint Graph Construction

After we set up the ranks of all vertices, we can construct the
endpoint graph in linear time. In the meanwhile, we also build
disjoint sets of endpoints to identify independent components
of the STA graph. As shown in Algorithm 2, we initialize the
empty endpoint graph edptGraph with all endpoints as its
vertices (line 1). Then we iterate each endpoint in the list
(line 2). For each endpoint, we scan its fan-in logic cone
(line 24–32). During this scan, the endpoint will propagate
its index as label (line 23). Whenever we encounter a vertex
that has been labeled by the other endpoint (line 9 and 10), we

Algorithm 1: Pin Ranking Algorithm

Input : Fan-out STA graph G
+ in CSR with N vertices

and M edges, vertices[N], edges[M]
Input : List of source pins with Nsource as number of

source pins, sources[Nsource]
Result: Rank table, ranks[N]

1 /* Initialize queue and visited list with
all sources */

2 queue ← sources;
3 visited ← sources;
4 for source in sources do
5 ranks[source] ← 0;
6 end
7 while queue.empty() is false do
8 v ← queue.front();
9 queue.pop();

10 vrank ← ranks[v];
11 edgeFront ← vertices[v];
12 edgeBack ← (v == N-1) ? M : vertices[v+1];
13 for edgeid ← edgeFront to edgeBack do
14 n ← edges[edgeid];
15 if n not in visited then
16 visited.insert(n);
17 queue.push(n);
18 ranks[n] ← vrank + 1;
19 end
20 end
21 end
22 return;

add edges in both directions connecting these two endpoints
(line 12 and 13) in our endpoint graph. The weight of this
endpoint edge is the rank of the intersection vertex, which
represents the logic depth starting from source pins. Besides
endpoint graph construction, we also compute the disjoint sets
by merging the labels (line 14–19). After we encounter the first
intersection, we skip to the next endpoint (line 21). There may
be more intersections if we continue to scan, but we prioritize
intersection deep in the logic. We can reduce the complexity
of our endpoint graph, which saves the effort for partitioning
in the later step. We also save the overall runtime in this step
by early stopping.

Figure 2 illustrates an example of the endpoint graph
construction. We begin with a simple STA graph in Figure 2a,
where vertices {1, 2, 3, 4} are the sources pins or startpoints,
and vertices {13, 14, 15, 16} are the endpoints. We first scan
fan-in logic cone of endpoint 13. It will propagate 13 as label
to vertices {1, 2, 5, 9, 13} but it finds no intersection. Then
we scan endpoint 14 and we find intersection with endpoint
13 at vertex 5. So we will add bidirectional endpoint edge in
the endpoint graph with weight rank(5). Then endpoint 15
intersects endpoint 14 at vertices {7, 10} and endpoint 13 at
vertex 5. However, since we prioritize the first intersection
with higher weight, we only add the bidirectional edge to
endpoint 14 with weight rank(10). We repeat this process
for endpoints 15 and 16. After this process completes, we will
obtain the endpoint graph in Figure 2b. Since the endpoint
graph is consisted of only STA graph endpoints as vertices,

Algorithm 2: Endpoint Graph Construction Algorithm

Input : Fan-in STA graph G
− in CSR with N vertices and

M edges, vertices[N], edges[M]
Input : List of endpoints with Nedpt as number of

endpoints, endpoints[Nedpt]
Input : Rank table, ranks[N]
Input : Label table initialized with zeros, labels[N]
Result: Endpoint map, edptMap[Nedpt]
Result: Endpoint graph, edptGraph

1 edptGraph.add vertices(endpoints);
2 for edpt in endpoints do
3 /* Initialize queue and visited list

with current endpoint */
4 queue ← edpt;
5 visited ← edpt;
6 while queue.empty() is false do
7 v ← queue.front();
8 queue.pop();
9 label ← labels[v];

10 if label > 0 then
11 neighborEdpt ← label;
12 edptGraph.add edge(edpt, neighborEdpt,

ranks[v]);
13 edptGraph.add edge(neighborEdpt, edpt,

ranks[v]);
14 if neighborEdpt in edptMap then
15 edptMap[edpt] ← edptMap[label];
16 end
17 else
18 edptMap[edpt] ← label;
19 end
20 /* Jump to the next endpoint */
21 continue;
22 end
23 labels[v] ← edpt;
24 edgeFront ← vertices[v];
25 edgeBack ← (v == N-1) ? M : vertices[v+1];
26 for edgeid ← edgeFront to edgeBack do
27 n ← edges[edgeid];
28 if n not in visited then
29 visited.insert(n);
30 queue.push(n);
31 end
32 end
33 end
34 end
35 return;

partitioning over this endpoint graph takes much less time.
In this example, all endpoints have at least one intersection
with some other endpoint. So there will only be one disjoint
set containing all endpoints, which suggests that there is no
fully independent component. In terms of complexity, we can
complete the endpoint graph construction in linear time as well
since we do not scan any part of the STA graph for more than
once.

E. Endpoint Graph Partitioning and Recovering

In this step, we partition the endpoint graph in the pre-
vious step and recover the STA graph partition. Partitioning
weighted graphs like Figure 2b is a well studied topic in graph
partitioning. We choose Karlsruhe High Quality Partitioning

1

2

5

6

9

10

3 7 11 15

14

13

 Startpoint Endpoint

4 8 12 16

(a) STA Graph.

14

13

15

16

14 15

13 16

KaHIP
rank(5)

rank(10)

rank(3) 1

2

0

(b) Endpoint Graph.

Fig. 2: Example of endpoint graph construction.

(KaHIP) [16] because it supports CSR format as graph input
and guarantees balanced partitions under some imbalance
parameter. Assume we want to partition the endpoint graph
in Figure 2b into two. Since endpoints 14 and 15 are con-
nected with the highest weight, we can easily tell that the
two partitions are {14, 15} and {13, 16}. For each group of
endpoints, we treat these endpoints as roots and perform BFS
to obtain the entire fan-in cone. For the vertices that belong to
multiple fan-in cones, we replicate these vertices to ensure the
PBA workload can execute independently. Figure 3 shows the
partitioning and recovering results. Since vertices {1, 2, 3, 5}
are the shared logic for both groups of endpoints, we replicate
these vertices in the other partition. These replicated vertices
or pins are the cost of our framework, so we construct
our endpoint graph in a way to minimize this cost. After
replication, we can run PBA on these partitions as independent
tasks on the GPU. This strategy eliminates the connection
between partitions. Otherwise we have to manage millions of
prefix and suffix combinations and path fragments between
partitions.

Partition1 Partition2

1 5

10 142 6

3 7 11 15

1' 5' 9 13

2' 8 12

4 3'

16

Fig. 3: Corresponding graph partitions based on the endpoint graph.

F. Taskflow Device Management

We leverage the work-stealing scheduler in Taskflow [4], [8]
to manage multiple GPU devices. We set the number of CPU
worker threads the same as the number of GPU devices. Each
worker thread monitors execution of PBA on each partition.
Listing 1 shows the code skeleton to use Taskflow as our GPU
device manager. Assume we have processed the STA graph
(line 2) and partitioned groups of endpoints (line 4). First we
wrap each group of endpoints into a task (line 10–12). Then
in each task, we recover the full CSR graph format from the
endpoint group (line 14). We launch the PBA workload of
the partition with corresponding worker index (line 15 and
16). Inside each PBA execution, we use cudaSetDevice

on this index to select the correct GPU device. In the end, we
wait for executor to complete all the tasks (line 20). For
simplicity, we omit many details and the results handling in
Listing 1. We use reduction to collect the final report from all
partitions. In this way, we allow Taskflow to assist us in the
GPU workload balancing.

1 / / STA graph
2 STAGraph graph ;
3 / / e n d p o i n t g raph p a r t i t i o n i n g r e s u l t s
4 s t d : : v e c t o r <s t d : : v e c t o r <edp t>> edp tGroups ;
5 / / e x e c u t o r c o n t a i n s t h e same number of
6 / / CPU worker s as GPU d e v i c e s
7 t f : : E x e c u t o r e x e c u t o r ;
8 t f : : T a s k f low t a s k f l o w ;
9

10 t f : : T a s k t a s k = t a s k f l o w . f o r e a c h (
11 edp tGroups . b e g i n () , edp tGroups . end () ,
12 [&] (a u t o& group){
13 GraphCSR partCSR ;
14 graph . r e c o v e r p a r t i t i o n (group , partCSR) ;
15 s i z e t dev iceID = e x e c u t o r . t h i s w o r k e r i d () ;
16 pathAnalys i sGPU (dev iceID , partCSR) ;
17 }
18) ;
19
20 e x e c u t o r . run (t a s k f l o w) . w a i t () ;

Listing 1: Taskflow device manager

III. EXPERIMENTAL RESULTS

In this section, we demonstrate that our STA graph parti-
tioning framework can quickly decompose the circuit graph
and then accelerate the PBA process on multiple GPUs. We
conduct our experiments on a 64-bit Ubuntu Linux machine
with four GeForce RTX 2080 GPUs and four 2GHz Intel
Xeon Gold 6138 CPU cores. We compile our device code with
CUDA NVCC 11.0 and host code with GNU GCC 8.3.0. We
use optimization flag -O3 and C++17 standard -std=c++17.
Our baseline algorithm is utilized in the open-sourced STA
tool, OpenTimer, as its core PBA routine [10]. We run the
CPU baseline on a 3.2GHz Intel i5-4670 CPU core. For
experimental benchmarks, we use real designs with a golden
reference generated by an industrial standard timer [14]. To
further demonstrate our performance advantage on much larger
designs, we follow the contest strategy to connect multiple
million-gate designs in a mesh topology and generate a set of
designs that have more than 10 million gates.

TABLE I: Runtime performance (second) comparison between the CPU baseline and our multi-GPU STA (4 GPUs)

Benchmark #Pins #Gates
CPU Baseline

Runtime (second)

#Partitions=4 #Partitions=8

Replication

Factor
Runtime (second) Speed-up

Replication

Factor
Runtime (second) Speed-up

leon2 iccad 4.33M 1.62M 1.31M 1.21 155K 8.45× 1.51 155K 8.45×

netcard iccad 4.00M 1.50M 958K 1.36 124K 7.72× 1.41 127K 7.54×

design1 11.7M 4.36M 2.32M 1.08 318K 7.30× 1.30 397K 5.84×

design2 23.4M 8.72M 4.75M 1.02 371K 12.80× 1.07 658K 7.22×

design3 27.7M 11.5M 5.94M 1.05 578K 10.28× 1.11 1.10M 5.40×

design4 35.1M 13.1M 6.46M 1.02 753K 8.58× 1.08 850K 7.60×

design5 46.8M 17.4 M 9.56M 1.01 798K 11.98× 1.02 1.05M 9.10×

design6 93.6M 34.8M 26.7M 1.01 977K 30.40× 1.02 1.46M 18.29×

design7 117M 43.6M 31.0M 1.01 1.29M 24.03× 1.03 1.66M 18.67×

A. Runtime Performance

Our partitioning framework can quickly separate the STA
graph and completes the PBA process on multiple GPUs. We
compare the performance of the CPU baseline against our
framework by reporting 100K critical paths. Before comparing
the performance, we first verify our framework does not induce
any loss of accuracy compared to the baseline. We can achieve
this because we duplicate circuit pins in the shared logic. So
we also record the replication factor to indicate the marginal
cost introduced by our framework. We define replication factor

as the average number of times that a circuit pin shows up
in all partitions combined. For example, replication factor=1
implies that our partitioning framework is not duplicating any
pin and the STA graph is perfectly separated. We experiment
with four GPUs because running with single GPU is slower
and wastes parallelism from independent partitions. Table I
shows an overview of our experiments. Our framework main-
tains an obvious performance advantage for designs ranging
from 1.5M gates to 43.6M gates. We can observe that, as the
size of the design increases, the margin of our advantage grows
larger. We start with 7.72× speed-up on netcard_iccad

with 1.5M gates. We then achieve 12× speed-up for designs
around 10M gates. By the last design with 43.6M gates, we
reach 24.03× speed-up with 4 partitions. To the extreme, we
have also tested designs above 50M gates. The CPU baseline
could not finish in 24 hours so the design is not provided in
the table. However, our framework can complete in less than
an hour.

Our framework does not restrict equal partition number
with the GPU device number. It is common that we need
smaller partitions to accommodate the PBA workload on
GPU. Therefore, we also provide statistics for experiments
with 8 partitions. Since partitioning takes the majority of the
runtime, graph partitioning will cost longer runtime with more
partitions. Depending on different STA graph topology, this
cost varies. For example, there is nearly no runtime difference
in leon2_iccad and netcard_iccad. In design3, the
runtime almost doubles. However, our framework still outper-
forms the CPU baseline with 5.40–18.67× speed-up. Besides
the promising runtime performance, we also want to highlight
our low space cost. In all our experiment benchmarks, a circuit

pin is not replicated more than once for 4–8 partitions. We
will discuss more about the quality of the partitions in the
subsequent section.

B. Partition Quality and Cost

Our partitioning strategy provides balanced partitions with
low marginal cost. To demonstrate this, we first measure the
GPU runtime of four partitions running on respective GPU
devices. Figure 4 shows the runtime distribution of four GPU
devices analyzing four partitions. We can observe that the GPU
runtime closely matches with each other between different
devices. The maximum runtime differences are 15.7% for
design2, 13.2% for design3, 15.1% for design4, and 19.2%
for design5. The runtime variations between devices are low
compared to the averaged runtime. This runtime distribution
reflects that partitions generated by our framework are bal-
anced.

To understand the marginal cost of our partitioning frame-
work, we plot the replication factor as a function of partition
number between 2–10. We choose four largest and densest
real designs from the golden reference[14]. These designs
are very difficult to separate or partition. For example, in
designs leon2_iccad and leon3mp_iccad, about 90%
of the endpoints share common logic in the circuit graph.
As shown in Figure 5, our partitioning framework maintains
replication factor less than 2.0 on these designs between 2–
10 partitions. Looking at the trend of replication factor in
leon2_iccad, leon3mp_iccad, and netcard_iccad,
we observe higher cost if we are requesting more partitions.
This is expected since many endpoints are tightly grouped
in these designs. An exception to this trend is b19_iccad,
where endpoints are sparsely connected. In this case, our
partitioning framework can easily capture this feature and
make almost perfect partitions. In general, our framework
ensures low partitioning cost on dense designs and nearly zero
cost on sparse designs.

C. Device Management and Workload Balancing

Our Taskflow device manager balances the device workload
when the number of partitions exceeds the number of devices.
As shown in Figure 6, we compare the runtime distribution
of GPU devices with 16 partitions against four partitions on

0 1 2 3
0

200

400

600

800

1,000

650

562 562 572

GPU device index

G
P

U
ru

n
ti

m
e

(m
s)

design2

0 1 2 3
0

200

400

600

800

1,000

689
635

700

618

GPU device index

G
P

U
ru

n
ti

m
e

(m
s)

design3

0 1 2 3
0

200

400

600

800

1,000

745

655 647 665

GPU device index

G
P

U
ru

n
ti

m
e

(m
s)

design4

0 1 2 3
0

200

400

600

800

1,000

714

792
851

764

GPU device index

G
P

U
ru

n
ti

m
e

(m
s)

design5

Fig. 4: Runtime distribution of four GPU devices executing PBA workload over four partitions.

2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

1.06
1.12

1.21
1.32

1.38 1.37

1.51 1.52

1.65

Number of STA graph partitions

R
ep

li
ca

ti
o

n
fa

ct
o

r

leon2 iccad

2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

1.02

1.15 1.13 1.15

1.31
1.26

1.33 1.31

1.59

Number of STA graph partitions

R
ep

li
ca

ti
o

n
fa

ct
o

r
leon3mp iccad

2 3 4 5 6 7 8 9 10

1

1.5

2

2.5

1.12
1.18

1.35 1.36

1.21

1.50
1.41

1.50
1.58

Number of STA graph partitions

R
ep

li
ca

ti
o

n
fa

ct
o

r

netcard iccad

2 3 4 5 6 7 8 9 10
0.9

1

1.1

1.2

1.00 1.00
1.01

1.00
1.01

1.00
1.01

1.00 1.00

Number of STA graph partitions

R
ep

li
ca

ti
o

n
fa

ct
o

r

b19 iccad

Fig. 5: Replication factor with respect to the number of STA graph partitions.

a 50M-gate design. With 16 partitions on four GPU devices,
we maintain balanced execution time between devices. We
can also observe overall 29% runtime increases compared to
four partitions since we are invoking four times more CUDA
API calls per device with 16 partitions. To summarize, our
Taskflow device manager effectively balances the workloads
between GPU devices.

0 1 2 3
0

1,000

2,000

3,000

1,675 1,810 1,668 1,605

2,098 2,164 2,246 2,227

GPU device index

G
P

U
ru

n
ti

m
e

(m
s)

50M-gate design

#partitions=4

#partitions=16

Fig. 6: Runtime distribution comparison between #partitions=4,16

IV. CONCLUSION

In this paper, we have introduced a fast STA graph par-
titioning framework that can accelerate the PBA workload
on multiple GPUs. We obtain balanced graph partitions by
separating an weighted endpoint graph. We ensure the PBA
workloads can execute on these partitions independently. We
balance the workload between GPU devices by a smart device
manager. Experiments show that our framework can accelerate
PBA by 12–24× for designs above 10M gates.

ACKNOWLEDGMENT

We are grateful for the support of National Science Foun-
dation (NSF) grants, CCF-2126672, CCF-2144523, OAC-
2209957, and TI-2229304.

REFERENCES

[1] J. Bhasker et al., Static Timing Analysis for Nanometer Designs: A
Practical Approach. Springer, 2009.

[2] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “Fast path-based timing
analysis for cppr,” in IEEE/ACM ICCAD, 2014, pp. 596–599.

[3] T. Huang and M. Wong, “UI-Timer 1.0: An Ultrafast Path-Based Timing
Analysis Algorithm for CPPR,” IEEE TCAD, vol. 35, no. 11, pp. 1862–
1875, 2016.

[4] T. Huang, C. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast Task-
Based Parallel Programming Using Modern C++,” in IEEE IPDPS,
2019, pp. 974–983.

[5] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing Sys-
tem,” in IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 33, no. 6, 2022, pp. 1303 – 1320.

[6] C.-H. Chiu and T.-W. Huang, “Composing Pipeline Parallelism Using
Control Taskflow Graph,” in ACM HPDC, 2022, pp. 283––284.

[7] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated Critical
Path Generation with Path Constraints,” in IEEE/ACM ICCAD, 2021.

[8] C.-H. Chiu and T.-W. Huang, “Efficient Timing Propagation with Si-
multaneous Structural and Pipeline Parallelisms,” in ACM/IEEE Design
Automation Conference (DAC), 2022.

[9] F. Peng, C. Yan, C. Feng, J. Zheng, S. Wang, D. Zhou, and X. Zeng,
“A General Graph Based Pessimism Reduction Framework for Design
Optimization of Timing Closure,” in ACM/IEEE DAC, 2018, pp. 1–6.

[10] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2020.

[11] Z. Guo, T. W. Huang, and Y. Lin, “GPU-Accelerated Static Timing
Analysis,” in IEEE/ACM ICCAD, 2020, pp. 1–9.

[12] G. Guo, T.-W. Huang, Y. Lin, and W. Martin.D.F, “GPU-accelerated
Path-based Timing Analysis,” in IEEE/ACM DAC, 2021.

[13] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[14] T. Huang and M. Wong, “OpenTimer: A high-performance timing
analysis tool,” in IEEE/ACM ICCAD, 2015, pp. 895–902.

[15] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors,” in IEEE/ACM SC, 2009.

[16] P. Sanders and C. Schulz, “Think Locally, Act Globally: Highly Bal-
anced Graph Partitioning,” in SEA, ser. LNCS, vol. 7933. Springer,
2013, pp. 164–175.

