

A multiphysics model to predict periventricular white matter hyperintensity growth during healthy brain aging

Andreia Caçoloi¹, Berkin Dortdivanlioglu², Henry Rusinek³, Johannes Weickenmeier^{1, **}

¹ Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030

² Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712

³ Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016

** Corresponding Author. Email: johannes.weickenmeier@stevens.edu

Abstract

Periventricular white matter hyperintensities (WMH) are a common finding in medical images of the aging brain and are associated with white matter damage resulting from cerebral small vessel disease, white matter inflammation, and a degeneration of the lateral ventricular wall. Despite extensive work, the etiology of periventricular WMHs remains unclear. We pose that there is a strong coupling between age-related ventricular expansion and the degeneration of the ventricular wall which leads to a dysregulated fluid exchange across this brain-fluid barrier. Here, we present a multiphysics model that couples cerebral atrophy-driven ventricular wall loading with periventricular WMH formation and progression. We use patient data to create eight 2D finite element models and demonstrate the predictive capabilities of our damage model. Our simulations show that we accurately capture the spatiotemporal features of periventricular WMH growth. For one, we observe that damage appears first in both the anterior and posterior horns and then spreads into deeper white matter tissue. For the other, we note that it takes up to 12 years before periventricular WMHs first appear and derive an average annualized periventricular WMH damage growth rate of $15.2 \pm 12.7 \text{ mm}^2/\text{year}$ across our models. A sensitivity analysis demonstrated that our model parameters provide sufficient sensitivity to rationalize subject-specific differences with respect to onset time and damage growth. Moreover, we show that the septum pellucidum, a membrane connecting the frontal horns of the right and left lateral ventricles, delays the onset of periventricular WMH at first, but leads to a higher WMH load in the long-term.

Keywords: periventricular white matter hyperintensities, ventricular wall loading, multiphysics damage model, finite element modeling

¹ 1. Introduction

2 Brain aging involves a myriad of morphological, microanatomical, and neuropathological changes. Many of these
3 are inherently linked to each other such that unique aging and disease mechanisms are challenging to uncover. White
4 matter hyperintensities (WMHs) [1], for example, are found in nearly all brains aged 60 and older [2] and while part of
5 normal aging, they often indicate neurodegenerative diseases and cognitive decline [3]. White matter hyperintensities
6 are detected on fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and are markers of
7 non-specific white matter pathologies that have long been a target of intense research effort to explain the nature of
8 their mechanical, physical, and biochemical functions. [4]. The origin of WMHs is complex, but there appears to
9 be a consensus about the need to differentiate between WMHs based on their location in white matter tissue [5-8].
10 Imaging-based assessment favors a location-specific differentiation between periventricular WMHs, i.e., WMHs in
11 white matter adjacent to the ventricular wall, and deep WMHs, i.e., WMH patches in subcortical white matter [7, 9].
12 WMH pathology shows both several commonalities and many distinct differences between periventricular and deep
13 WMHs [10, 11]. WMHs have distinct vascular risk factors such as hypertension, diabetes, and smoking [12] such
14 that they are generally assumed to be of vascular origin [13] which manifests as ischemia, hypoperfusion, immune
15 activation, blood-brain-barrier dysfunction, altered cell metabolic pathways, and glial injury [14]. Pathological studies
16 of post-mortem brains, however, has shown substantial subependymal gliosis, disruption of the ependymal lining, and

17 astroglial scaring along the ventricular wall [15, 16] which would require distinction in the differentiation between
 18 deep and periventricular WMH etiology.

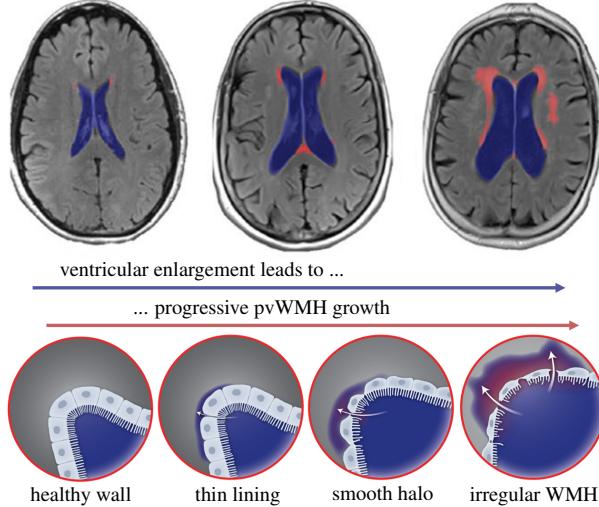


Figure 1: Atrophy-driven periventricular white matter hyperintensity formation and growth. Progressive neurodegeneration causes ventricular expansion (blue region) that creates increasing ventricular wall loading that is accompanied by increasing WMH volume (red region). The healthy ventricular wall, i.e. functional barrier between fluid and tissue formed by ependymal cells, gradually degenerates causing cerebrospinal fluid to leak into periventricular white matter forming thin linings at first which devolve into smooth halos and irregular large WMH areas [17].

19 From a mechanics perspective, brain aging is associated with major brain shape changes which result in substantial
 20 loading on many functional structures in the brain [18]. Cerebral atrophy, which is the result of neurodegenera-
 21 tion across the brain, is characterized by cortical thinning, sulcal widening, and, most importantly here, ventricular
 22 enlargement [19, 21]. Figure 1 schematically shows the process of increasing ventricular volume. We submit that
 23 ventricular enlargement and periventricular WMH growth are coupled: as the ventricular wall expands, the tightly packed
 24 ependymal cells forming this functional barrier between cerebrospinal fluid (CSF) and brain tissue are stretched thin,
 25 and eventually cause CSF to leak into periventricular tissue. Early periventricular WMHs are characterized by thin
 26 linings- mostly in the lateral ventricle's horns- which gradually expand into white matter tissue [17, 22]. Pathological
 27 studies have repeatedly shown that the ependymal cell layer degenerates with age and becomes leaky [15, 16]. Ex-
 28 tensive stretch of the ventricular wall- be it from aging or increased intracranial pressure- results in dysregulated fluid
 29 flow across the fluid-brain barrier [23, 24].

30 We pose that computational modeling is a useful tool to assess the level of mechanical loading associated with cerebral
 31 atrophy and demonstrate that periventricular WMHs may very well be the result- in part- from ventricular wall damage
 32 that causes subsequent white matter inflammation. In previous work, we demonstrated that ventricular enlargement
 33 causes peak ependymal cell stretch in the anterior and posterior horns irrespective of ventricular shape which varies
 34 with age and state of brain health [25]. Additionally, we were able to show that those locations spatially correlate
 35 with the most frequent locations for periventricular WMHs [26]. There is growing evidence that periventricular white
 36 matter undergoes gradual degeneration prior to qualifying as a white matter lesion in T2-weighted MRI or FLAIR
 37 [27, 28].

38 There are two major limitations to better understanding long-term changes of periventricular WMH pathology. On the
 39 one hand, nearly all studies reported in literature suffer from the lack of data at the initial stages when periventricular
 40 WMHs begin to appear [29, 31]. On the other hand, only few studies provide longitudinal data that would illustrate
 41 periventricular WMH progression such that we mostly limited to cross-sectional data which inherently ignores subject-
 42 level factors such as atrophy rate, changes in ventricular shape, and brain anatomy [32].

43 Building on our previous work [25, 26], the objective of our present work is to develop a multiphysics model that
 44 predicts periventricular white matter hyperintensities formation and their subsequent growth into deeper white matter
 45 tissues. We pose that aging-related cerebral atrophy causes ventricular enlargement and thereby leads to a deterioration

46 of the ventricular wall. Besides the deformation field, we incorporate a second field to capture the spreading of
47 periventricular white matter hyperintensity damage into deeper tissue regions. We apply our 2D brain models created
48 from patient data and compare predicted white matter damage to their clinical data. The overall motivation for this
49 work is to demonstrate that mechanics plays a critical role in understanding brain aging and neuropathology and is a
50 useful tool to prognosticate future risk for neurodegeneration.

51 2. Methods

52 2.1. Subject selection and brain model generation

53 In this study, we adapted previously created finite element models of eight cognitively normal subjects from the New
54 York University Alzheimer's Disease Research Center [25] [26]. Subjects had been selected to reflect a broad range
55 of ventricular geometries. Specifically, we picked a male and female subject from the 20th, 40th, 60th, and 80th
56 percentile of total intracranial CSF volume [25]. Subjects provided IRB-approved written consent for a protocol
57 investigating risk factors of cognitive decline and Alzheimer's disease. Each subject underwent structural MRI on
58 a 3T Siemens Magnetome Prisma (Siemens Healthineers USA). The exam included a high-resolution T1-weighted
59 MPRAGE sequence (TR = 2100 ms, TE = 5 ms, TI = 900 ms, FA = 9°, 256 x 256 x 176 matrix, 1 x 1 x 1 mm voxels,
60 GRAPPA2 acceleration) and a FLAIR sequence used to assess WM lesions (TR = 9000 ms, TE = 75 ms, TI = 2500 ms,
61 FA = 120°, 320 x 196 x 40, 0.7 x 0.7 x 4 mm voxels, GRAPPA2 acceleration). Our subjects had no evidence of pathology
62 such as tumor, neocortical infarction, multiple sclerosis, and diabetes. Moreover, they were interviewed according
63 to the Brief Cognitive Rating Scale, rated 1 or 2 on the Global Deterioration Scale (GDS) [33], and scored at least 27
64 points on the Mini Mental State Examination [34].

65 The finite element model generation process used here, closely follows our previous work [25] and is summarized
66 in the top row of Figure 2. First, we selected the axial MRI slice with the largest ventricular surface area and then
67 segmented the image into CSF (gray), gray matter (dark red), and white matter (light red) using Simpleware ScanIP
68 (Synopsis, Mountain View CA). The segmentation is then converted into a two-dimensional FE mesh consisting of
69 linear triangular elements and imported into Abaqus (Dassault Systemes, Vélizy-Villacoublay, France). We mimic the
70 skull by prescribing zero-displacement boundary conditions on the nodes of the outer CSF boundary. The constitutive
71 tissue models applied to CSF and gray and white matter are discussed in Section 2.3. In a last step, we create a copy of
72 each of the eight models in order to incorporate the septum pellucidum, a membrane that separates the anterior horns
73 and runs from the corpus callosum down to the fornix. More specifically, we identify the nodes in our meshes which
74 are closest to the septum's innervation points with white matter and connect them via linear springs with stiffness
75 k=1 N/mm. The proposed spring stiffness ensures that the septum does not deform during atrophy and, therefore,
76 represents the most conservative impact of the septum in brain deformations during aging.

77 2.2. Finite element modeling approach

78 Our proposed WMH damage model is formulated as a multifield finite element problem. We couple cerebral atrophy-
79 related brain deformations governed by morphoelastic shrinking with a periventricular WMH damage field that is
80 governed by a reaction-diffusion equation. In general, simulation outputs, shown in the last image of the first row in
81 Fig. 2, are brain deformations (and associated mechanical loads like our proposed thinning ratio [25]) and a second
82 field that indicates WMH locations. More specifically, shown here for the example of our model F20, we prescribe
83 cerebral atrophy in the form of isotropic volumetric brain tissue shrinking with constant gray and white matter atrophy
84 rates (second row in Fig 2). The resulting brain deformations, shown for 5%, 10%, 15%, and 20% ventricular expansion,
85 respectively, cause tissue stretch which we exclusively evaluate along the ventricular wall (third row in Fig. 2).
86 From the normal and tangential stretch, computed with respect to the ventricular wall, we calculate our thinning ratio
87 which captures how much ependymal cells are stretched thin during aging (fourth row in Fig. 2). In a last step, we
88 define a critical thinning ratio threshold which activates the reaction term of our second field (fifth row in Fig. 2). This
89 approach mimics the leakage of CSF into periventricular tissues which leads to progressive periventricular WMH
90 volume growth. Wherever along the ventricular wall the reaction term is activated, the damage field will gradually
91 diffuse into white matter tissue and indicate where periventricular WMHs are forming.

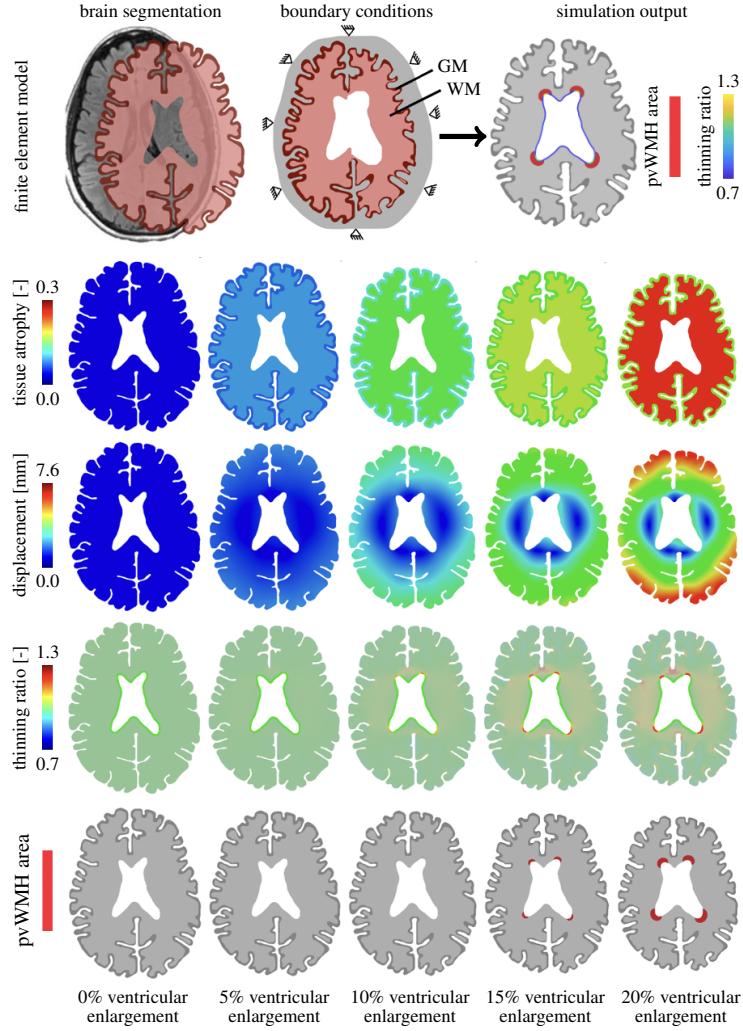


Figure 2: Patient data-based 2D finite element models to simulate periventricular white matter hyperintensity formation (first row). For various levels of ventricular enlargement (columns), we show the underlying age-related brain atrophy (second row) that drives brain deformation (third row) and related ependymal cell thinning (fourth row). Our multiphysics model couples atrophy to a periventricular WMH damage field that captures the white matter regions associated with WMHs (fifth row).

92 2.3. Constitutive model for cerebral atrophy

93 We model the brain's mechanical behavior via nonlinear equations of continuum theory and introduce the mapping
 94 φ from the undeformed, unloaded configuration \mathcal{B}_0 at time t_0 to the deformed, loaded configuration \mathcal{B}_t at time t . We
 95 adopt the conventional notation, $\mathbf{x} = \varphi(\mathbf{X}, t)$, where $\mathbf{x} \in \mathcal{B}_t$ denotes the position vector in the deformed configuration
 96 at time t and $\mathbf{X} \in \mathcal{B}_0$ denotes the position vector of the initial configuration at time t_0 . We introduce the deformation
 97 gradient to characterize local deformations, $\mathbf{F}(\mathbf{X}, t) = \nabla_{\mathbf{X}}\varphi(\mathbf{X}, t)$, and local volume changes by its determinant, $J = \det(\mathbf{F})$. Following our previous work, we model cerebral atrophy as isotropic volumetric shrinking and apply the
 98 classical approach of splitting the deformation gradient into an elastic part \mathbf{F}^e and an atrophy part \mathbf{F}^a [35]. The
 99 multiplicative decomposition of the deformation gradient, $\mathbf{F} = \nabla_{\mathbf{X}}\varphi$, yields
 100

$$\mathbf{F} = \mathbf{F}^e \cdot \mathbf{F}^a. \quad (1)$$

101 The multiplicative split extends to the Jacobian, $J = J^e J^a$, which breaks down into an elastic volume change $J^e =$
 102 $\det(\mathbf{F}^e)$ and volume loss associated with cerebral atrophy $J^a = \det(\mathbf{F}^a)$. To characterize the hyperelastic material

103 behavior of brain tissue, we adopt the neo-Hookean strain energy density function Ψ_0 as the atrophy-weighted elastic
 104 stored energy Ψ , which depends exclusively on the elastic part of the deformation gradient,

$$\Psi_0 = J^a \Psi, \quad \text{with} \quad \Psi = \frac{1}{2} \mu [\mathbf{F}^e : \mathbf{F}^e - 3 - 2 \ln(J^e)] + \frac{1}{2} \lambda \ln^2(J^e). \quad (2)$$

105 Parameters μ and λ are the standard Lamé coefficients which can be expressed via Young's modulus E and the
 106 Poisson's ratio ν in the elastic limit as $\lambda = E\nu/[(1+\nu)(1-2\nu)]$ and $\mu = E/[2(1+\nu)]$. Based on Ψ_0 , the first
 107 Piola-Kirchhoff stress tensor \mathbf{P} is given by

$$\mathbf{P} = \frac{d\Psi_0}{d\mathbf{F}} = J^a \frac{d\Psi}{d\mathbf{F}^e} = J^a [\mu \mathbf{F}^e + [\lambda \ln(J^e) - \mu] \mathbf{F}^{eT}]. \quad (3)$$

108 The Piola-Kirchhoff stress tensor is governed by the quasistatic balance of linear momentum, ignoring the body forces,

$$\mathbf{0} = \text{Div}(\mathbf{P}) \text{ in } \Omega, \quad (4)$$

109 where Ω denotes the domain which is the brain. White and gray matter are assumed to be nearly incompressible with
 110 a Poisson's ratio of 0.45 and a white-to-gray matter stiffness ratio of two [36]. Specifically, experimentally-informed
 111 constants of $\mu = 0.34 \text{ kPa}$ and $\kappa = 3.3 \text{ kPa}$ for gray matter and $\mu = 0.68 \text{ kPa}$ and $\kappa = 6.6 \text{ kPa}$ for white matter
 112 were chosen [36,39]. For simulations conducted here, lateral ventricle elements were removed from the models and
 113 the subarachnoid space was modeled as an ultrasoft compressible material with a Young's modulus of 0.1 kPa and a
 114 Poisson's ratio of 0.30 [35].

115 2.4. Mechanical loading of the ventricular wall

116 We couple atrophy to the damage field via our biomarker, τ , that measures the amount of ependymal cell thinning
 117 along the ventricular wall. The gradual expansion of the ventricles causes the cuboidal ependymal cells forming the
 118 functional barrier of the ventricular wall to be stretched thin, i.e., high planar stretch while undergoing compression
 119 along the cells' apical-basal axes [40]. Ependymal cell loading is evaluated on the basis of characteristic stretches
 120 calculated from the projection of the right Cauchy-Green tensor to obtain λ_n and λ_t , respectively,

$$\lambda_i = \sqrt{\mathbf{r} \cdot \mathbf{C} \mathbf{r}} \quad \text{with} \quad i = \{\mathbf{n}, \mathbf{t}\}, \quad (5)$$

121 where vector \mathbf{r} is either the normal vector \mathbf{n} or the tangential vector \mathbf{t} with respect to the ventricular wall which we
 122 obtain from a diffusion problem on each subject's model *a priori*, respectively. Specifically, before running our dam-
 123 age simulations, we solving the Laplacian diffusion problem on the auxiliary field, \hat{c} , with fixed boundary conditions
 124 of $\hat{c} = 1$ for all nodes on the ventricular surface, $\hat{c} = 0.1$ for all nodes forming the gray matter-CSF interface, and $\hat{c} = 0$
 125 for all nodes on the outer surface of the model, provides the gradient field, i.e., flux, that corresponds to the desired
 126 directions. For the surface elements forming the ventricular wall, we identify the wall's normal vector \mathbf{n} (direction of
 127 steepest gradient) and tangential vector \mathbf{t} (perpendicular to the steepest gradient) and store this information as a state
 128 variable in the finite element model.

129 2.5. Periventricular WMH damage model

130 We model periventricular WMH damage growth as a second field, c , that is governed by a reaction-diffusion model
 131 based on our hypothesis that CSF fluid leaks into periventricular tissue and causes white matter lesions that appears as
 132 hyperintensities in FLAIR images. Wherever along the ventricular wall, the thinning ratio exceeds a critical threshold,
 133 we trigger a source term that drives damage progression in subsequent steps. The general periventricular WMH
 134 damage progression equation is given by

$$\dot{c} = -\nabla \cdot \mathbf{f} + r, \quad (6)$$

135 where $\dot{c} = dc/dt$ denotes the material time derivative of the damage field c , \mathbf{f} is the damage field's flux vector, and
 136 r is a spatial source term that is coupled to the deformation problem. We assume Fourier's law such that the damage
 137 field's flux vector is linearly dependent on the field gradient, i.e. $\mathbf{f} = -k \nabla c$, where k is the conductivity constant.

138 We define the source term r as a sigmoidal curve that depends on the time elapsed since the thinning ratio exceeded a
 139 critical threshold γ^{crit}

$$r = \begin{cases} 0 & \text{if } \tau^{\text{VW}} < \tau^{\text{crit}}, \\ \alpha \cdot [1 + \exp(-\beta(t - t^*))]^{-1} & \text{else,} \end{cases} \quad (7)$$

140 and note that we only evaluate this function for points along the ventricular wall. This approach assumes that the
 141 functional barrier gradually degenerates such that CSF begins to leak until there is a continuous influx of fluid that
 142 drives the periventricular WMH damage field into deep periventricular tissue. Intensity of the damage, α , and the
 143 transition speed from healthy to damaged wall section, β , are material parameters that we may determine in the future
 144 by comparison against a subject's longitudinal imaging data. For the time being, we assume them to be constant for
 145 all subjects with $\alpha = 2$ and $\beta = 12$. The initial periventricular WMH damage is 0 for the entire brain.

146 2.6. Numerical Implementation in Abaqus

147 We run our periventricular WMH damage simulations as a coupled temperature-displacement problem in Abaqus.
 148 We utilize the built-in temperature-displacement elements. In ABAQUS/Standard the temperatures are integrated
 149 using a backward-difference scheme and the nonlinear coupled system is solved using Newton's method. Given the
 150 purely conditional coupling between the two fields, we adopt a sequential displacement and damage progression
 151 solution. This reduces computational cost because we can omit the coupling terms of the Jacobian matrix to obtain an
 152 approximate set of equations

$$\begin{bmatrix} K_{uu} & 0 \\ 0 & K_{cc} \end{bmatrix} \begin{Bmatrix} \Delta u \\ \Delta c \end{Bmatrix} = \begin{Bmatrix} R_u \\ R_c \end{Bmatrix}, \quad (8)$$

153 where Δu and Δc are the respective corrections to the incremental displacement and damage, K_{ij} are submatrices
 154 of the fully coupled Jacobian matrix, and R_u and R_c are the mechanical and periventricular WMH damage residual
 155 vectors, respectively.

Our specific form of the thermo-mechanical analysis can be implemented using the user subroutine UMAT alone.
 Conveniently, we can take advantage of the UMAT-specific variable RPL which captures the volumetric heat generation
 per unit time at the end of an increment and allows us to calculate the thinning ratio-dependent source term for
 the damage field calculations. Abaqus requires that we provide the variable RPL , in our case of the form $RPL = r/J$
 as well as the its variations with respect to the strain increment, $DRPLDE$, and damage field $DRPLDT$ [41] which
 take the form

$$DRPLDE = -\alpha/2 \cdot [1 + \exp(-\beta(t - t^*))]^{-1} J \mathbf{b}^{-1}, \quad (9)$$

$$DRPLDT = 0, \quad (10)$$

156 with the left Cauchy-Green deformation tensor $\mathbf{b} = \mathbf{F}\mathbf{F}^T$. At each integration point we track a total of 11 state
 157 variables. More specifically, we store the normal and tangential vectors which we update for each increment, a flag
 158 for whether the integration point is located at the ventricular wall or not, the normal stretch λ_n , the tangential stretch
 159 λ_t , the thinning ratio γ , and the time t^* at which the thinning ratio of an element lining the ventricular wall exceeds
 160 the critical threshold (γ^{crit}) for the first time. The Ogden model describing gray and white matter material behavior
 161 was implemented following the example of [42].

162 3. Results

163 3.1. Lateral ventricular expansion from atrophy of brain tissues

164 Figure 3 shows the atrophy-related results when lateral ventricular cross-section increased by 20%. In the first row, we
 165 show the undeformed configuration (left) and the displacement magnitude of the deformed configuration (right) for
 166 each of our eight subjects. We observe a fairly consistent displacement pattern across all brains although maximum
 167 displacement magnitudes range from 3.3 mm in model M60 to 7.6 mm in model F20. Two main features stand out:
 168 all brains shorten along the frontal-temporal axis by 6 to 14 mm and the ventricle bulges out while its horns round
 169 out. In the undeformed configuration, the mean gray matter area fraction with respect to total brain area across all
 170 brains is $24.9 \pm 4.4\%$ ($21.9 \pm 1.3\%$ for female models and $27.9 \pm 4.4\%$ for male models) and a white matter area fraction

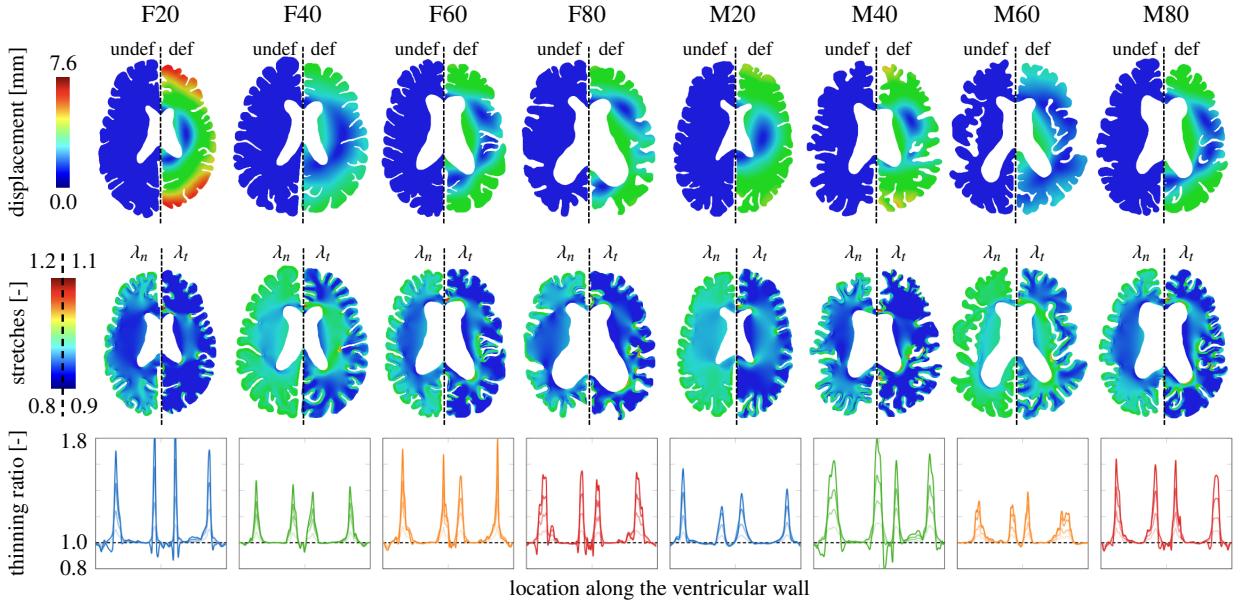


Figure 3: Atrophy-related simulation results. For each model, we show the displacement magnitude field for the undeformed (left hemisphere) and deformed configuration (right hemisphere) to visualize ventricular enlargement (top row). We interpret brain deformations with respect to normal (left hemisphere) and tangential stretch (right hemisphere) in the tissue based on direction vectors obtained from a Laplacian problem *a priori*. We use these fields to calculate the thinning ratio which we exclusively evaluate along the ventricular wall [25, 26] (third row). In the line plots, the solid line in each plot indicates the thinning ratio at 20% ventricular enlargement.

171 of $61.3 \pm 7.2\%$ ($64.1 \pm 5.2\%$ for female models and $58.5 \pm 7.9\%$ for male models). By the point the ventricles expanded
 172 by $20 \pm \%$, mean gray matter area fraction dropped to $21.8 \pm 4.3\%$ and mean white matter area fraction dropped to
 173 $49.2 \pm 5.7\%$.

174 The second row shows the normal stretch (left) and tangential stretch (right) for all models. Normal and tangential
 175 directions were determined prior to the simulation based on solving a Laplacian problem, see Section 2.4. Although
 176 we compute the stretch fields for the entire brain, we focus on the stretch field along the ventricular wall which is
 177 lined by ependymal cells. The normal and tangential stretch capture the cells' mechanical loading state: normal
 178 stretch measure the amount of cellular compression along their apical-basal axis and the tangential stretch measures
 179 the amount of stretch in their planar direction. Along the ventricular wall, maximum ependymal cell stretches localize
 180 in the ventricle's horns where the wall's curvature is the highest.

181 The third row shows the thinning ratio, a measure introduced to capture the amount of ependymal cell thinning along
 182 the wall and computed from both normal and tangential stretch [25, 26]. We parametrize the ventricular wall starting
 183 at the posterior edge of the ventricle's main body and go counterclockwise to plot the change in the thinning ratio as
 184 we move along the wall. The solid line shows the thinning ratio at 20% ventricular enlargement and the three dashed
 185 lines show the distribution of thinning ratios at 5%, 10%, and 15% ventricular enlargement for all eight models,
 186 respectively. We consistently see maximum cell thinning in the ventricle's four horns. For several cases, the anterior
 187 horns (two middle peaks) experience a slightly higher thinning ratio in comparison to the posterior horns (first and
 188 fourth peak). The ventricle's main body experiences minimal ependymal cell thinning and are generally not stretched
 189 much.

190 3.2. Periventricular white matter hyperintensity growth

191 In general, both deep and periventricular white matter hyperintensity volumes tend to increase and drive progressive
 192 functional decline of affected tissue regions [13, 43, 45]. Figure 4 shows our model's prediction where periventricular
 193 WMHs will first appear and how they will subsequently grow as tissue atrophies and the ventricles expand. We
 194 report results for ventricular enlargement by 0%, 10%, 12.5%, 15%, 17.5%, and 20% (rows) for all eight models

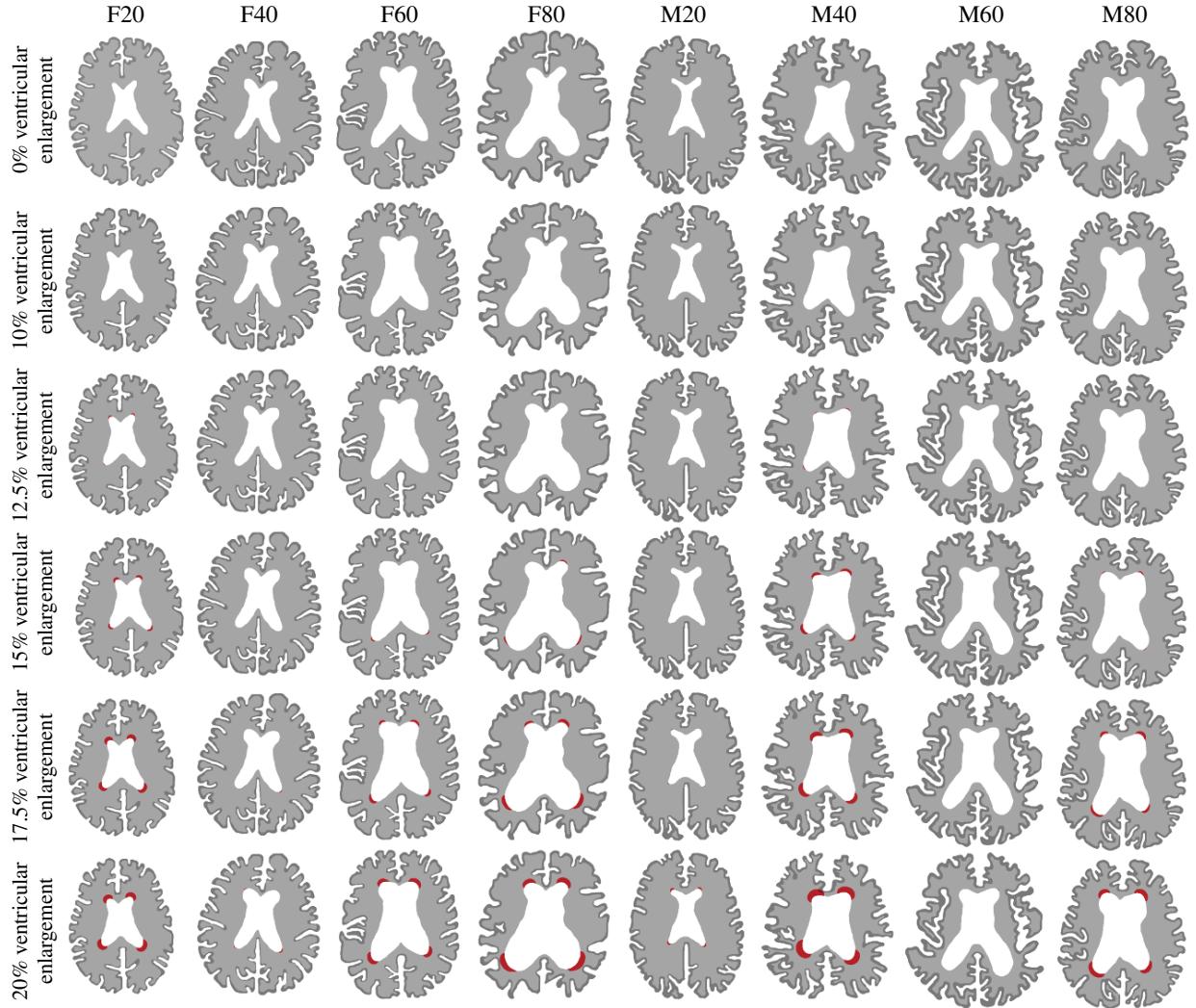


Figure 4: Periventricular white matter hyperintensity (WMH) damage field progression evaluated at 0%, 10%, 12.5%, 15%, 17.5%, and 20% ventricular enlargement for each of our eight models. We observe various damage onset times and spatial progression behaviors that are dependent on initial ventricle and brain shape. We obtain the periventricular WMH damage field after binarizing the damage field variable c which allows us to differentiate between healthy white matter, normal-appearing white matter, and periventricular WMH. We summarized periventricular WMH areas in Table I in the Appendix.

(columns), respectively. The periventricular WMH damage field, given by the degree of freedom c and governed by our damage progression model, is binarized based on a lower threshold of $c = 0.02$ based on the assumption that white matter gradually degenerates as the lesion grows. More specifically, we pose that white matter accumulates a minimal amount of pathology before it appears as an hyperintensity in FLAIR. Strikingly, each model shows a distinctly different periventricular WMH damage field progression behavior except for the fact, that damage appears in the horns first across all models. In models F20 and M40, damage first appears at around 12.5% ventricular enlargement while all other models develop damage latest by 17.5% ventricular enlargement. Once damage appears, we observe that it gradually expands into deeper tissue regions. Each damage field, i.e., independent region along the ventricular wall that experiences damage, develops differently in the sense that no symmetry is observed. Most importantly, brain shape and the ventricle’s geometry clearly influence the onset time and final damage field. At 20% ventricular enlargement, we measure an average periventricular WMH damage area of $108.8 \pm 99.2 \text{ mm}^2$ ($106.6 \pm 74.9 \text{ mm}^2$ across all female models and $111.1 \pm 131.6 \text{ mm}^2$ across all male models). We

207 calculate an average annualized periventricular WMH damage growth rate of $15.2 \pm 12.7 \text{ mm}^2/\text{year}$ across all eight
 208 models ($14.3 \pm 9.3 \text{ mm}^2/\text{year}$, $1.3 \pm 1.8 \text{ mm}^2/\text{year}$, $18.1 \pm 16.2 \text{ mm}^2/\text{year}$, and $29.7 \pm 24.2 \text{ mm}^2/\text{year}$ for models F20, F40,
 209 F60, and F80, respectively, and $2.4 \pm 3.2 \text{ mm}^2/\text{year}$, $28.7 \pm 20.9 \text{ mm}^2/\text{year}$, $0.0 \text{ mm}^2/\text{year}$, and $26.6 \pm 24.8 \text{ mm}^2/\text{year}$ for
 210 models M20, M40, M60, and M80, respectively. Standard deviations are high because of progressive periventricular
 211 WMH growth.

212 3.3. Impact of the septum pellucidum on periventricular white matter hyperintensity growth

213 Figure 5 shows the results for our assessment of the septum's impact on periventricular WMH growth over a 20-year
 214 simulation period. For both models b) without the septum and b) with the septum, we observe a prolonged latent
 215 period before periventricular WMHs appear. In Figures 5a) and b), markers indicate the time point at which our nu-
 216 merically predicted periventricular WMH area matches the respective FLAIR-derived patient data. Figure 5c) shows
 217 the relative difference of the periventricular WMH damage area, A_{pvWMH} , for the model with and without the sep-
 218 tum for each of the eight subjects, which is defined as $\text{rel. diff.} = \left[A_{\text{pvWMH}}^{\text{septum}} - A_{\text{pvWMH}}^{\text{no septum}} \right] / A_{\text{pvWMH}}^{\text{no septum}} \times 100\%$. We
 219 also show the periventricular WMH damage field at the end of the 20-year observation period for all eight models
 220 without the septum (second row) and with the septum (third row). The fourth row shows our patient data to allow
 221 qualitative comparison between the numerically predicted periventricular WMH damage field and white matter lesion

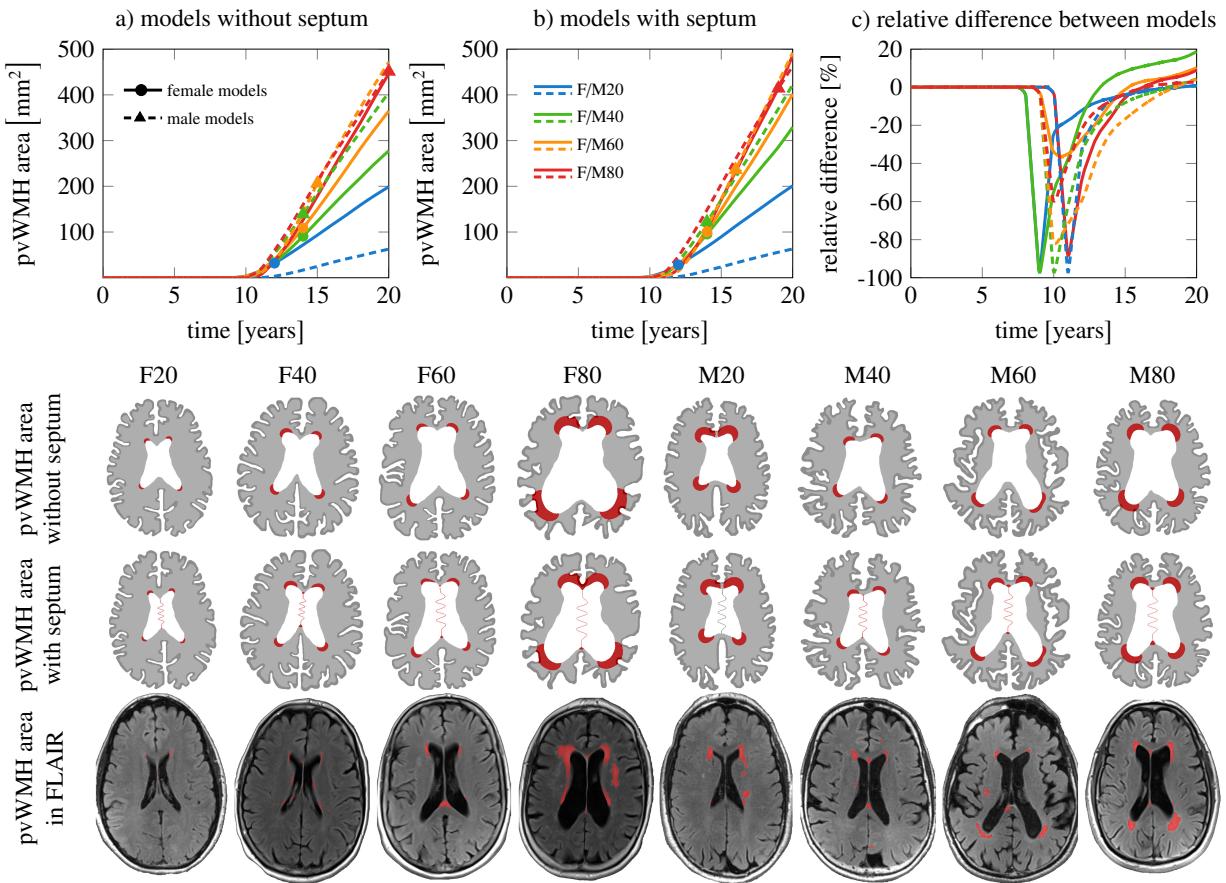


Figure 5: Comparison between models with and without the septum pellucidum: a) periventricular white matter hyperintensity (WMH) progression over time for all eight models without the septum and b) model with the septum. Markers indicate when predicted periventricular WMH area matches our patients' MRI findings. C) relative difference between model without and with septum to see the temporal delay of periventricular WMH onset. Rows two and three show the periventricular WMH damage field after 20 years of aging and indicate that the septum exacerbates the damage field in the long-term. The last row shows the FLAIR patient data associated with our eight models and demonstrates excellent agreement between predicted and clinically observed periventricular WMH locations (red regions).

formation observed in patients with distinctly different ventricular geometries. Irrespective of excluding or including the septum, we generally observe that periventricular WMH is higher the larger the ventricular area, i.e., subjects with larger ventricular area will develop more periventricular WMH damage during the same observation period. More interestingly, however, the comparison between the models, see Fig. 5c, yields two consistent features: initially, the septum significantly delays the onset time of periventricular WMH damage; in the long-term, however, the septum causes larger damage area across all models. At the end of our 20-year simulation period, the septum causes periventricular WMH damage areas that are 1.0%, 18.7%, 10.2%, and 8.9% larger for female models F20, F40, F60, and F80, respectively; for male models M20, M40, M60, and M80, the damage field is 0.6%, 4.3%, 4.3%, and 2.6% larger, respectively, when the septum is included. The septum appears to lower ventricular wall loading during the early atrophy. At the same time, the innervation point with periventricular tissue creates local mechanical loading that induces damage. Although the septum delays damage onset, the averaged annualized periventricular WMH growth rate is $20.6 \pm 15.0 \text{ mm}^2/\text{year}$ and, therefore, higher than in our models that excluded the septum.

3.4. Damage initiation varies along the ventricular wall

Figure 6 shows the average time at which ventricular wall damage is triggered for both all models without (left) and with septum (right). In general, damage appears first in both horns and then spreads along the wall. The ventricle's main body is not at risk at any point during the 20-year observation period. And, most importantly, we observe distinctly longer time to damage onset in the horns if the septum is included. With septum damage takes place at its anterior and posterior insertion points. Models without the septum never develop any damage in those locations. Secondly, damage onset is delayed by around 5-10 years. Damage onset time in the posterior horns compared to the anterior horns differs only by few years. Despite the earlier onset, the commonly sharper radius of the anterior horns leads to faster periventricular WMH damage growth, as shown in previous sections.

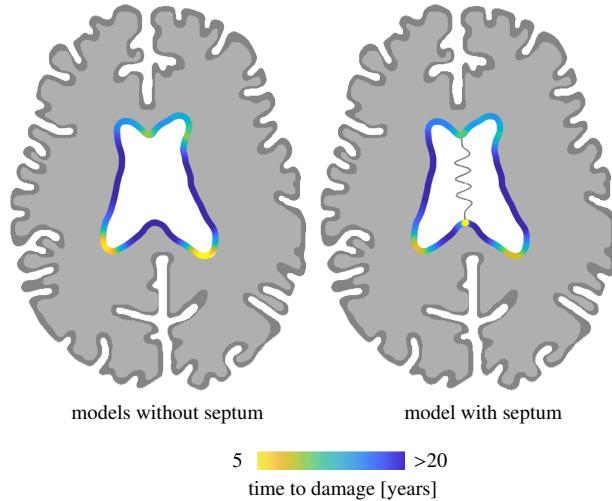
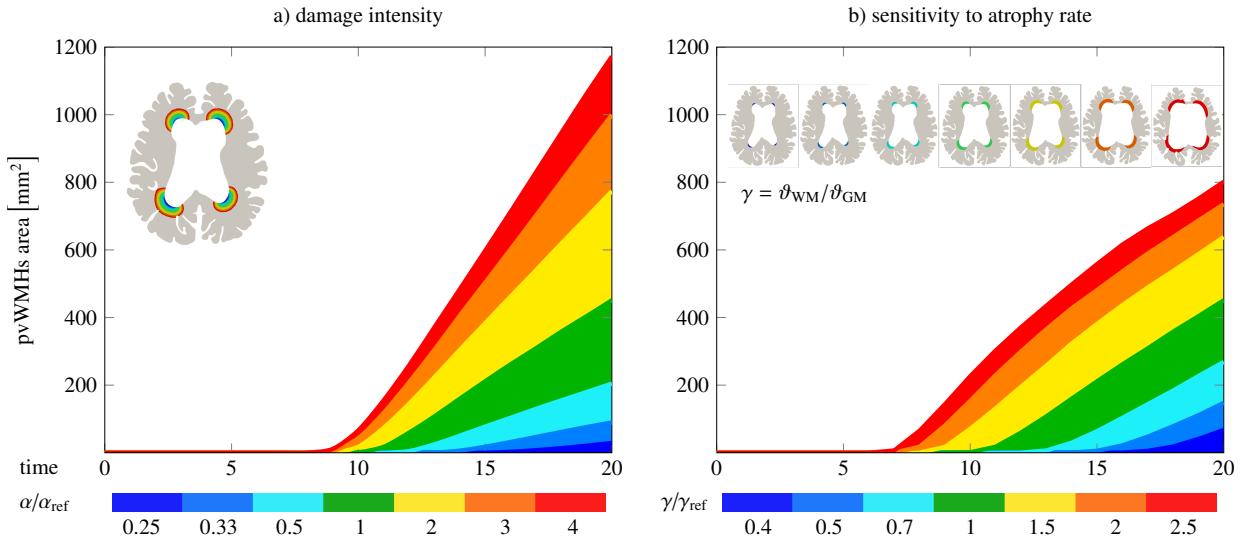



Figure 6: Averaged periventricular white matter hyperintensity damage onset time for models without the septum (left) and with the septum (right). Anterior and posterior horns are affected up to 6 years earlier than most other ventricular wall sections. Moreover, the septum delays periventricular WMH onset on the one hand and adds two additional onset locations, i.e., the anterior and posterior innervation points with white matter, on the other.

Figure 7 shows our model's sensitivity to a) damage intensity, governed by the reaction term of the periventricular WMH damage field, and b) atrophy rate both for the example of model M80. In the first case, we vary the damage intensity value, α , from a factor 1/4 to 4 of its initial value. We observe two main features. On the one hand, lowering α delays the onset of periventricular WMH growth because the damage field takes longer to reach the critical threshold. There is about a 6-year difference in damage onset time. On the other hand, increasing α by a factor 2 increases the periventricular WMH damage area by a factor of 1.72 and increasing α by a factor 4 increases the periventricular

250 WMH damage area by a factor of 2.6. In the second case, we vary the ratio between white and gray matter atrophy
 251 rates, γ , with respect to the default ratio, γ_{ref} . Specifically, we vary the white matter atrophy rate from 0.4 to 2.5.
 252 Similar trends are observed here again. Reducing overall tissue atrophy, i.e., less volume loss during aging, leads
 253 to drastically delayed periventricular WMH damage onset. It takes substantially longer for ventricular wall loading
 254 to exceed the critical threshold necessary to trigger the damage field. By increasing tissue atrophy, periventricular
 255 WMH damage occurs earlier and affects a much larger ventricular wall sections. A 2-fold increase of the white matter
 256 atrophy rate increases the periventricular WMH damage area by a factor of 1.6 by the end of the 20-year observation
 257 period.

258 Figure 7: Model parameter sensitivity analysis. We vary both the damage severity parameter α (left) and white-gray-matter atrophy rate γ (right). While damage severity predominantly increases periventricular WMH area, varying the atrophy rate significantly influences damage onset time.

259 Our multifield simulation approach provides a phenomenological model to predict age-related periventricular white
 260 matter hyperintensity onset and growth. The proposed coupling between mechanical loading of the ventricular wall
 261 and its functional decline resulting in lesion formation provides a realistic explanation for the high prevalence of white
 262 matter hyperintensities in both healthy brain aging and even more so in neurodegenerative diseases.

263 4.1. Comparison of simulation results with clinical observations

264 White matter hyperintensities are a frequent finding in brain imaging of older subjects [46]. Cross-sectional imaging
 265 studies have clearly established that periventricular white matter hyperintensities initiate as thin linings along the
 266 ventricular wall and gradually expand into deeper periventricular tissues with age [9, 17]. In recent years, several
 267 studies have reported longitudinal white matter hyperintensity growth changes which were recently summarized by
 268 Jochems et al. [32]. They report a white matter hyperintensity volume change of 0.25% with respect to intracranial
 269 volume over a median of 3 years or a 0.58 mL white matter hyperintensity volume increase per year across a large
 270 population including healthy and diseased subjects. They also report a trend towards faster white matter hyperintensity
 271 volume growth with increasing age. A direct comparison to our 2D models that focus on periventricular white matter
 272 hyperintensities is not feasible but their reported trends are represented in our data.

273 Previous pathological studies have clearly established that ventricular wall sections typically associated with white
 274 matter hyperintensities show extensive signs of cellular damage and denudation [15, 16]. Prolonged white matter in-
 275flammation and degeneration of the ependymal cell layer leads to astroglial scarring and a breakdown of the previously
 276 regulated fluid and nutrient exchange between cerebral spinal fluid and brain tissue [47].

277 Overall, our simulations show remarkable agreement with our patient data despite the fact that a direct comparison
278 of our numerical results of each model with the subject's FLAIR image is difficult because we construct our models
279 from the patients image and then prognosticate how it will age. Therefore, our simulation results should be compared
280 to a future scan of our subjects. Nonetheless, the overlap between predicted and clinically observed white matter
281 hyperintensity damage is significant.

282 *4.2. Mechanics as the origin of periventricular white matter hyperintensity formation*

283 The initial brain shape heavily influences how atrophy will deform the brain [25, 35]. Additionally, the atrophy
284 rate determines how quickly the ventricular wall reaches its capacity to withstand further stretch without loosing its
285 functional ability to regulate fluid and nutrient exchange between ventricle and tissue. In previous work, we showed
286 that subjects with sharper horns have a higher peak thinning ratio while subjects with smoother horns have a larger wall
287 section that is exposed to an elevated thinning ratio [25]. In the present work, this observation is not only confirmed
288 but also reflected in two distinct damage field features: models with sharper horns form periventricular WMH earlier
289 and models with smoother horns form periventricular WMH damage along longer wall sections.
290 Cross-sectional imaging studies on brain aging have demonstrated that ventricles enlarge extensively and is a sensitive
291 marker to distinguish between normal aging and Alzheimer's disease [48-50]. We computationally confirmed that
292 tissue atrophy causes mostly uniform ventricular expansion during healthy and accelerated aging [35, 51]. Younger
293 brains are characterized by sharper horns and less bulky ventricles while older brains show smoother horns and
294 inflated ventricles [52]. Comparison of our FLAIR images from subjects F/M20/40 with F/M60/80 provides a realistic
295 representation of this transition to a very different ventricle shape with time. Even though age may not be a unique
296 marker for ventricular shape, it is typically assumed that ventricular enlargement is a manifestation of advanced
297 biological age and the result of atrophy and neurodegeneration [18, 51, 53].
298 The emergence of white matter lesions near the septum is often observed in FLAIR imaging [6, 9]. Therefore, we
299 pose that the septum plays a significant structural role in the brain. We demonstrate that the septum delays the onset
300 of periventricular white matter hyperintensities for several years by constraining ventricular enlargement early on but
301 create an additional leakage site due to increased local tissue loading. Additional investigation into the impact of the
302 septum on brain shape changes as well as its mechanical changes during aging is required to identify its relevance to
303 brain health. Despite extensive work on the mechanical characterization of brain tissues, there is little understanding of
304 how aging affects microstructure and how tissue stiffness changes during neuroinflammation. Therefore, we neglect
305 any coupling between periventricular WMH damage and mechanical tissue properties such as stiffness or atrophy
306 rate. It has been shown that aging and neurodegenerative diseases are associated with gradual gray and white matter
307 softening [54, 55]. It has also been shown that glial scars in the brain post injury is associated with tissue softening
308 [56] which in turn, accelerates tissue degeneration and atrophy. Further investigation into tissue changes prior to
309 detectable pathology will be necessary to better understand white matter resilience to mechanics-induced damage
310 [11, 57].

311 *4.3. Limitations*

312 The most critical limitation is the lack of verification of our numerical results against longitudinal imaging data from
313 our subjects. On the one, such data was not available in the database from which we selected our samples. For the
314 other, most longitudinal imaging studies do not cover the time periods similar to the present study. Nonetheless,
315 we believe that our results look promising and will allow to revisit the neuropathological origin of periventricular
316 white matter hyperintensities. Secondly, we use only two dimensional models. The brain's complex anatomy is
317 expected to have a significant impact on ventricular deformation during aging such that future work should consider
318 3D full-brain simulations to assess periventricular WMH damage formation for the whole ventricular wall. Lastly,
319 we do not include two-way coupling between the damage and the deformation field. White matter lesion formation is
320 undoubtedly driving tissue degeneration and a change in the tissue's mechanical properties. There is a critical need
321 to explore the relationship between white matter hyperintensity damage growth and accelerated atrophy and tissue
322 softening.

323 **5. Conclusion**

324 We developed a multifield formulation that predicts periventricular white matter hyperintensity growth based on
 325 atrophy-induced overloading of the ventricular wall. Our predicted periventricular WMH onset locations and area
 326 growth agree with subject data remarkably well and support our hypothesis that mechanical loading of the ependy-
 327 mal cell layer plays a critical role in periventricular white matter hyperintensity formation. Further validation of our
 328 simulation framework will require longitudinal imaging data from several subjects in order to track both their atrophy
 329 and periventricular WMH growth over time. Moreover, it will be interesting to further investigate loss of mechani-
 330 cal integrity during white matter degeneration and to capture the failure of the ventricular surface in a fully coupled
 331 deformation-damage model that includes tissue softening and fluid transport.

332 **Appendix**

333 *Periventricular white matter hyperintensity are growth during aging*

334 In addition to Figure 4 where we show the periventricular WMH damage field, Table II summarizes the respective
 335 periventricular WMH areas [mm²] for 10%, 12.5%, 15%, 17.5%, and 20% ventricular enlargement. While some
 336 models, i.e., F40, M20, and M60, barely develop white matter damage, while all others experience extensive damage
 337 increase. Specifically, once damage was triggered in respective models, we observe an average periventricular WMH
 338 damage area growth of 15.2 ± 12.7 mm²/year across all models without septum and 22.9 ± 14.5 mm²/year across all
 339 models with septum. For models without septum, we observe grow rates [mm²/year] of 14.3 ± 9.3 , 1.3 ± 1.8 , 18.1 ± 16.2 ,
 340 29.7 ± 24.2 , 2.4 ± 3.2 , 28.7 ± 20.9 , 0.0 ± 0.0 , and 26.6 ± 24.8 for F20 through F80 and M20 through M80, respectively.
 341 For models with septum, we observe grow rates [mm²/year] of 18.7 ± 6.3 , 7.6 ± 8.9 , 24.7 ± 21.3 , 36.6 ± 28.2 , 0.0 ± 0.0 ,
 342 39.4 ± 18.5 , 1.4 ± 1.8 , and 32.2 ± 25.4 for F20_{SP} through F80_{SP} and M20_{SP} through M80_{SP}, respectively.

Table 1: Periventricular white matter hyperintensity damage areas at 10%, 12.5%, 15%, 17.5%, and 20% ventricular enlargement for all models without (top group) and with the septum (bottom group).

periventricular WMH area [mm ²]	no septum		F20	F40	F60	F80	M20	M40	M60	M80
	ventricular	enlargement	10.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		12.5%	3.7	0.0	0.0	0.0	0.0	0.2	0.0	0.0
		15.0%	31.9	0.0	3.3	5.9	0.0	52.6	0.0	1.3
		17.5%	93.2	0.1	40.7	78.0	0.2	139.3	0.0	59.4
		20.0%	136.4	2.7	108.8	178.3	9.4	275.1	0.0	159.8
with septum	with septum		F20 _{SP}	F40 _{SP}	F60 _{SP}	F80 _{SP}	M20 _{SP}	M40 _{SP}	M60 _{SP}	M80 _{SP}
	ventricular	enlargement	10.0%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		12.5%	28.2	0.0	2.1	0.5	0.0	35.6	0.0	0.5
		15.0%	89.5	0.0	29.9	58.1	0.0	170.3	0.0	47.3
		17.5%	157.4	1.3	100.0	170.3	0.0	318.5	0.2	148.3
		20.0%	246.5	29.0	246.3	354.3	8.0	472.6	2.9	312.3

343 **Declaration of Competing Interest**

344 The authors declare that the research was conducted in the absence of any commercial or financial relationships that
 345 could be construed as a potential conflict of interest.

346 **Author Contributions**

347 A.C., B.D., H.R., and J.W. designed the research; A.C., H.R., and J.W. performed the research and analysis; and A.C.,
 348 B.D., H.R., and J.W. wrote the paper.

349 **Funding**

350 Berkin Dortdivanlioglu acknowledges funding from the National Science Foundation through the DMREF program
351 under grant number CMMI 2119716. Henry Rusinek acknowledges support from the National Institute of Biomed-
352 ical Imaging and Bioengineering of the National Institutes of Health under award U24EB028980 for developing
353 the FireVoxel software. Johannes Weickenmeier acknowledges support from the National Institute on Aging of the
354 National Institutes of Health under award R21AG067442 and the National Science Foundation through the Leap-
355 Hi program under grant number CMMI 1953323. MRI and clinical data were obtained from the Alzheimer's Dis-
356 ease Research Center supported by the National Institute on Aging of the National Institutes of Health under award
357 P30AG066512.

358 **References**

- 359 [1] J. M. Wardlaw, M. C. Valdés Hernández, S. Muñoz-Maniega, What are white matter hyperintensities made of? relevance to vascular cognitive
360 impairment, *Journal of the American Heart Association* 4 (2015) e001140.
- 361 [2] W. Wen, P. Sachdev, The topography of white matter hyperintensities on brain mri in healthy 60-to 64-year-old individuals, *Neuroimage* 22
362 (2004) 144–154.
- 363 [3] C. Morrison, M. Dadar, S. Villeneuve, D. L. Collins, White matter lesions may be an early marker for age-related cognitive decline,
364 *NeuroImage: Clinical* 35 (2022) 103096.
- 365 [4] M. L. Alosco, M. A. Sugarman, L. M. Besser, Y. Tripodis, B. Martin, J. N. Palmisano, N. W. Kowall, R. Au, J. Mez, C. DeCarli, et al., A
366 clinicopathological investigation of white matter hyperintensities and alzheimer's disease neuropathology, *Journal of Alzheimer's Disease* 63
367 (2018) 1347–1360.
- 368 [5] P. Sachdev, W. Wen, Should we distinguish between periventricular and deep white matter hyperintensities?, *Stroke* 36 (2005) 2342–2344.
- 369 [6] C. DeCarli, E. Fletcher, V. Ramey, D. Harvey, W. J. Jagust, Anatomical mapping of white matter hyperintensities (wmh) exploring the
370 relationships between periventricular wmh, deep wmh, and total wmh burden, *Stroke* 36 (2005) 50–55.
- 371 [7] L. Griffanti, M. Jenkinson, S. Suri, E. Zsoldos, A. Mahmood, N. Filippini, C. E. Sexton, A. Topiwala, C. Allan, M. Kivimäki, et al.,
372 Classification and characterization of periventricular and deep white matter hyperintensities on mri: a study in older adults, *Neuroimage* 170
373 (2018) 174–181.
- 374 [8] N. J. Armstrong, K. A. Mather, M. Sargurupremraj, M. J. Knol, R. Malik, C. L. Satizabal, L. R. Yanek, W. Wen, V. G. Gudnason, N. D.
375 Dueker, et al., Common genetic variation indicates separate causes for periventricular and deep white matter hyperintensities, *Stroke* 51
376 (2020) 2111–2121.
- 377 [9] J. Chen, A. V. Mikheev, H. Yu, M. D. Gruen, H. Rusinek, Y. Ge, Bilateral distance partition of periventricular and deep white matter
378 hyperintensities: Performance of the method in the aging brain, *Academic Radiology* 29 (2020).
- 379 [10] P. Maillard, E. Fletcher, S. N. Lockhart, A. E. Roach, B. Reed, D. Mungas, C. DeCarli, O. T. Carmichael, White matter hyperintensities and
380 their penumbra lie along a continuum of injury in the aging brain, *Stroke* 45 (2014) 1721–1726.
- 381 [11] S. M. Maniega, M. C. V. Hernández, J. D. Clayden, N. A. Royle, C. Murray, Z. Morris, B. S. Aribisala, A. J. Gow, J. M. Starr, M. E.
382 Bastin, et al., White matter hyperintensities and normal-appearing white matter integrity in the aging brain, *Neurobiology of aging* 36 (2015)
383 909–918.
- 384 [12] D. A. Dickie, S. J. Ritchie, S. R. Cox, E. Sakka, N. A. Royle, B. S. Aribisala, M. d. C. V. Hernández, S. M. Maniega, A. Pattie, J. Corley,
385 et al., Vascular risk factors and progression of white matter hyperintensities in the lothian birth cohort 1936, *Neurobiology of aging* 42 (2016)
386 116–123.
- 387 [13] J. Alber, S. Alladi, H.-J. Bae, D. A. Barton, L. A. Beckett, J. M. Bell, S. E. Berman, G. J. Biessels, S. E. Black, I. Bos, et al., White matter
388 hyperintensities in vascular contributions to cognitive impairment and dementia (vcid): knowledge gaps and opportunities, *Alzheimer's &
389 Dementia: Translational Research & Clinical Interventions* 5 (2019) 107–117.
- 390 [14] S. B. Wharton, J. E. Simpson, C. Brayne, P. G. Ince, Age-associated white matter lesions: The mrc cognitive function and a ageing study,
391 *Brain pathology* 25 (2015) 35–43.
- 392 [15] A. J. Jiménez, M. D. Domínguez-Pinos, M. M. Guerra, P. Fernández-Llebrez, J. M. Pérez-Fígares, Structure and function of the ependymal
393 barrier and diseases associated with ependyma disruption, 2014.
- 394 [16] B. A. Shook, J. B. Lennington, R. L. Acabchuk, M. Halling, Y. Sun, J. Peters, Q. Wu, A. Mahajan, D. W. Fellows, J. C. Conover, Ven-
395 triculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain, *Aging cell* 13 (2014)
396 340–350.
- 397 [17] F. Fazekas, J. B. Chawluk, A. Alavi, H. I. Hurtig, R. A. Zimmerman, Mr signal abnormalities at 1.5 t in alzheimer's dementia and normal
398 aging, *American Journal of Neuroradiology* 8 (1987) 421–426.
- 399 [18] Y. Blinkouskaya, A. Caçóilo, T. Gollamudi, S. Jalalian, J. Weickenmeier, Brain aging mechanisms with mechanical manifestations, *Mech-
400 anisms of Ageing and Development* 200 (2021) 111575.
- 401 [19] M. E. Rettmann, M. A. Kraut, J. L. Prince, S. M. Resnick, Cross-sectional and longitudinal analyses of anatomical sulcal changes associated
402 with aging, *Cerebral Cortex* 16 (2006) 1584–1594.
- 403 [20] L. Pini, M. Pievani, M. Bocchetta, D. Altomare, P. Bosco, E. Cavedo, S. Galluzzi, M. Marizzoni, G. B. Frisoni, Brain atrophy in alzheimer's
404 disease and aging, *Ageing research reviews* 30 (2016) 25–48.
- 405 [21] S. N. Lockhart, C. DeCarli, Structural imaging measures of brain aging, *Neuropsychology review* 24 (2014) 271–289.
- 406 [22] G. Sze, S. J. De Armond, M. Brant-Zawadzki, R. L. Davis, D. Norman, T. H. Newton, Foci of mri signal (pseudo lesions) anterior to the
407 frontal horns: histologic correlations of a normal finding, *American Journal of Roentgenology* 147 (1986) 331–337.

408 [23] D. G. Nelles, L.-N. Hazrati, Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function, *Brain Communications* 4 (2022) fcac288.

409 [24] T. H. Milhorat, R. G. Clark, M. K. Hammock, P. P. McGrath, Structural, Ultrastructural, and Permeability Changes in the Ependyma and
410 Surrounding Brain Favoring Equilibration in Progressive Hydrocephalus, *Archives of Neurology* 22 (1970) 397–407.

411 [25] V. L. Visser, H. Rusinek, J. Weickenmeier, Peak ependymal cell stretch overlaps with the onset locations of periventricular white matter
412 lesions, *Scientific Reports* 2021 11:1 11 (2021) 1–12.

413 [26] A. Caçollo, H. Rusinek, J. Weickenmeier, 3d finite-element brain modeling of lateral ventricular wall loading to rationalize periventricular
414 white matter hyperintensity locations, *Engineering with Computers* (2022) 1–17.

415 [27] S. Muñoz Maniega, R. Meijboom, F. M. Chappell, M. d. C. Valdés Hernández, J. M. Starr, M. E. Bastin, I. J. Deary, J. M. Wardlaw, Spatial
416 gradient of microstructural changes in normal-appearing white matter in tracts affected by white matter hyperintensities in older age, *Frontiers
417 in neurology* (2019) 784.

418 [28] M. De Groot, B. F. Verhaaren, R. De Boer, S. Klein, A. Hofman, A. van der Lugt, M. A. Ikram, W. J. Niessen, M. W. Vernooij, Changes in
419 normal-appearing white matter precede development of white matter lesions, *Stroke* 44 (2013) 1037–1042.

420 [29] T. d'Arbeloff, M. L. Elliott, A. R. Knodt, T. R. Melzer, R. Keenan, D. Ireland, S. Ramrakha, R. Poulton, T. Anderson, A. Caspi, et al., White
421 matter hyperintensities are common in midlife and already associated with cognitive decline, *Brain Communications* 1 (2019) fcz041.

422 [30] A. Garnier-Crussard, S. Bougacha, M. Wirth, C. André, M. Delarue, B. Landeau, F. Mézenge, E. Kuhn, J. Goncalves, A. Chocat, et al., White
423 matter hyperintensities across the adult lifespan: relation to age, $\alpha\beta$ load, and cognition, *Alzheimer's Research & Therapy* 12 (2020) 1–11.

424 [31] E. J. Burton, I. G. McKeith, D. J. Burn, M. J. Firbank, J. T. O'Brien, Progression of white matter hyperintensities in alzheimer disease,
425 dementia with lewy bodies, and parkinson disease dementia: a comparison with normal aging, *The American journal of geriatric psychiatry*
426 14 (2006) 842–849.

427 [32] A. C. Jochems, C. Arteaga, F. Chappell, T. Ritakari, M. Hooley, F. Doubal, S. M. Maniega, J. M. Wardlaw, Longitudinal changes of white
428 matter hyperintensities in sporadic small vessel disease: a systematic review and meta-analysis, *Neurology* 99 (2022) e2454–e2463.

429 [33] B. Reisberg, S. Ferris, M. De Leon, T. Crook, et al., Global deterioration scale (gds), *Psychopharmacol Bull* 24 (1988) 661–3.

430 [34] T. N. Tombaugh, N. J. McIntyre, The mini-mental state examination: a comprehensive review, *Journal of the American Geriatrics Society*
431 40 (1992) 922–935.

432 [35] Y. Blinkouskaya, J. Weickenmeier, Brain shape changes associated with cerebral atrophy in healthy aging and alzheimer's disease, *Frontiers
433 in Mechanical Engineering* (2021) 64.

434 [36] J. Weickenmeier, R. de Rooij, S. Budday, P. Steinmann, T. Ovaert, E. Kuhl, Brain stiffness increases with myelin content, *Acta Biomaterialia*
435 42 (2016) 265 – 272.

436 [37] J. van Dommelen, T. van der Sande, M. Hrapko, G. Peters, Mechanical properties of brain tissue by indentation: Interregional variation,
437 *Journal of the Mechanical Behavior of Biomedical Materials* 3 (2010) 158 – 166.

438 [38] T. Kaster, I. Sack, A. Samani, Measurement of the hyperelastic properties of ex vivo brain tissue slices, *Journal of Biomechanics* 44 (2011)
439 1158 – 1163.

440 [39] S. Budday, R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, E. Kuhl, Mechanical properties of gray and white matter brain tissue
441 by indentation, *Journal of the mechanical behavior of biomedical materials* 46 (2015) 318–330.

442 [40] Z. Mirzadeh, Y.-G. Han, M. Soriano-Navarro, J. M. García-Verdugo, A. Alvarez-Buylla, Cilia organize ependymal planar polarity, *Journal
443 of Neuroscience* 30 (2010) 2600–2610.

444 [41] R. Ostwald, E. Kuhl, A. Menzel, On the implementation of finite deformation gradient-enhanced damage models, *Computational Mechanics*
445 64 (2019) 847–877.

446 [42] S. J. Connolly, D. Mackenzie, Y. Gorash, Isotropic hyperelasticity in principal stretches: explicit elasticity tensors and numerical implemen-
447 tation, *Computational Mechanics* 64 (2019) 1273–1288.

448 [43] D. Van Den Heuvel, F. Admiraal-Behloul, V. Ten Dam, H. Olofsen, E. Bollen, H. Murray, G. Blauw, R. Westendorp, A. De Craen,
449 M. Van Buchem, et al., Different progression rates for deep white matter hyperintensities in elderly men and women, *Neurology* 63 (2004)
450 1699–1701.

451 [44] P. Sachdev, W. Wen, X. Chen, H. Brodaty, Progression of white matter hyperintensities in elderly individuals over 3 years, *Neurology* 68
452 (2007) 214–222.

453 [45] P. A. Nyquist, M. Bilgel, R. Gottesman, L. R. Yanek, T. F. Moy, L. C. Becker, J. L. Cuzzocrea, J. Prince, B. A. Wasserman, D. M. Yousen,
454 et al., Age differences in periventricular and deep white matter lesions, *Neurobiology of aging* 36 (2015) 1653–1658.

455 [46] F. De Leeuw, J. C. de Groot, E. Achten, M. Oudkerk, L. Ramos, R. Heijboer, A. Hofman, J. Jolles, J. Van Gijn, M. Breteler, Prevalence of
456 cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. the rotterdam scan study, *Journal of
457 Neurology, Neurosurgery & Psychiatry* 70 (2001) 9–14.

458 [47] R. Roales-Buján, P. Páez, M. Guerra, S. Rodríguez, K. Vío, A. Ho-Plagaro, M. García-Bonilla, L.-M. Rodríguez-Pérez, M.-D. Domínguez-
459 Pinos, E.-M. Rodríguez, et al., Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of
460 ependyma in hydrocephalus, *Acta neuropathologica* 124 (2012) 531–546.

461 [48] P. Coupé, J. V. Manjón, E. Lanuza, G. Catheline, Lifespan changes of the human brain in alzheimer's disease, *Scientific reports* 9 (2019)
462 3998.

463 [49] R. I. Scahill, C. Frost, R. Jenkins, J. L. Whitwell, M. N. Rossor, N. C. Fox, A longitudinal study of brain volume changes in normal aging
464 using serial registered magnetic resonance imaging, *Archives of neurology* 60 (2003) 989–994.

465 [50] A. M. Brickman, L. S. Honig, N. Scarneas, O. Tatarina, L. Sanders, M. S. Albert, J. Brandt, D. Blacker, Y. Stern, Measuring cerebral
466 atrophy and white matter hyperintensity burden to predict the rate of cognitive decline in alzheimer disease, *Archives of neurology* 65 (2008)
467 1202–1208.

468 [51] L. Ferrarini, W. M. Palm, H. Olofsen, M. A. van Buchem, J. H. Reiber, F. Admiraal-Behloul, Shape differences of the brain ventricles in
469 alzheimer's disease, *Neuroimage* 32 (2006) 1060–1069.

470 [52] Y. H. Kwon, S. H. Jang, S. S. Yeo, Age-related changes of lateral ventricular width and periventricular white matter in the human brain: a
471 diffusion tensor imaging study, *Neural regeneration research* 9 (2014) 986.

473 [53] A. C. Jochems, S. M. Maniega, M. d. C. V. Hernández, G. Barclay, D. Anblagan, L. Ballerini, R. Meijboom, S. Wiseman, A. M. Taylor,
474 J. Corley, et al., Contribution of white matter hyperintensities to ventricular enlargement in older adults, *NeuroImage: Clinical* 34 (2022)
475 103019.

476 [54] R. Schmidt, H. Schmidt, J. Haybaeck, M. Loitsfelder, S. Weis, M. Cavalieri, S. Seiler, C. Enzinger, S. Ropele, T. Erkinjuntti, et al., Hetero-
477 geneity in age-related white matter changes, *Acta neuropathologica* 122 (2011) 171–185.

478 [55] C. M. Hall, E. Moeendarbary, G. K. Sheridan, Mechanobiology of the brain in ageing and alzheimer's disease, *European Journal of
479 Neuroscience* 53 (2021) 3851–3878.

480 [56] E. Moeendarbary, I. P. Weber, G. K. Sheridan, D. E. Koser, S. Soleman, B. Haenzi, E. J. Bradbury, J. Fawcett, K. Franze, The soft mechanical
481 signature of glial scars in the central nervous system, *Nature communications* 8 (2017) 14787.

482 [57] Y. Shao, Z. Chen, S. Ming, Q. Ye, Z. Shu, C. Gong, P. Pang, X. Gong, Predicting the development of normal-appearing white matter with
483 radiomics in the aging brain: a longitudinal clinical study, *Frontiers in Aging Neuroscience* 10 (2018) 393.