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Abstract. This study introduces a novel neuromechanical model of rat hindlimbs
with biarticular muscles producing walking movements without ground contact.
The design of the control network is informed by the findings from our previ-
ous investigations into two-layer central pattern generators (CPGs). Specifically,
we examined one plausible synthetic nervous system (SNS) designed to actuate
3 biarticular muscles, including the Biceps femoris posterior (BFP) and Rectus
femoris (RF), both of which provide torque about the hip and knee joints. We
conducted multiple perturbation tests on the simulation model to investigate the
contribution of these two biarticular muscles in stabilizing perturbed hindlimb
walking movements. We tested the BFP and RF muscles under three conditions:
active, only passive tension, and fully disabled. Our results show that when these
two biarticular muscles were active, they not only reduced the impact of external
torques, but also facilitated rapid coordination of motion phases. As a result, the
hindlimb model with biarticular muscles demonstrated faster recovery compared
to our previous monoarticular muscle model.

Keywords: Rat · Biarticular Muscles · Synthetic Nervous System · Stabilization
Analysis

1 Introduction

Recent technological advancements have led to the development of legged robots that
exhibit greater agility and stability, even when encountering unexpected perturbations
during various locomotor tasks [1–4]. Despite these impressive developments, there is
a growing interest in the remarkable ability of animals to effectively solve low-level
joint/gait coordination problems while adapting to changes in their environment. This
highlights the importance of studying natural mechanisms and suggests that researchers
can gain valuable insights into the development of more advanced bio-inspired robots
and prosthetic devices.

Despite the existence of promising bio-inspired robots [5–10] and artificial neural
controllers [11–15], our current understanding of the mechanisms behind dynamic and
robust walking is still insufficient for the development of robots that mimic mammalian
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locomotion. Although the strategies and neural systems responsible for mammalian
locomotion patterns are not yet fully understood, cat locomotion studies using split-belt
treadmills suggest that the spinal cord and its associated peripheral nervous system are
pivotal in generating and adapting these patterns [16–18]. This is consistent with T.G.
Brown’s finding that the cat spinal cord can generate a locomotor rhythm in the absence
of input from higher centers and afferent feedback [19].

Subsequent investigations confirmed Brown’s findings and led to the development
of the widely accepted concept of central pattern generators (CPGs). These are neural
circuits located within the central nervous systems of invertebrates and vertebrates that
can generate rhythmic, coordinated movements such as swimming [20], walking [21–
23], heartbeat [24], breathing and gasping [25]. The “half-center” model [21] is a widely
used model of the spinal CPG that produces rhythmic alternating activity of flexor and
extensor motoneurons during locomotion.

However, the presence of “non-resetting deletions” [26], observed in the movement
of decerebrate cats cannot be explained by a simple “half-center” structure. These “non-
resetting deletions” refer to instances where motoneuron activities are absent for a few
cycles, but then reappear without a phase shift. To address this issue, Rybak’s group
proposed a computational model of the two-layer CPG [27], which allows for separate
control of walking rhythm timing and motoneuron activity pattern during locomotion.

Our previous work incorporated a two-layer CPG into a neuromechanical model of
rat hindlimbs [15], which successfully reproduced repetitive forward walking and “non-
resetting deletions”. However, this neuromechanical model was limited by its simplistic
musculoskeletal configuration with pairs of antagonist muscles at each joint. As a result,
the stability investigations from this model were potentially incomplete. To address
this issue, we have expanded the musculoskeletal configuration to include biarticular
muscles in a simplified model [28] and a full-muscle model [29]. Our current goal is to
investigate how biarticular muscles could contribute to the stabilization of the simulation
model during walking. Specifically, we explore how biarticular muscles linking hip and
knee joint are actuated with a plausible neural configuration that utilizes the preferred
CPG parameters reported in a previous work by our group [30].

2 Methods

To simulate the rat hindlimb walking with biarticular muscles, we used Animatlab [31],
a simulation software that allows for the creation of synthetic nervous systems (SNSs)
and actuation of biomechanical bodies with proprioceptive feedback. The simulations
were conducted in the Vortex physics engine (CM Labs, Montreal, Quebec), which is
integrated into Animatlab and provides realistic physical simulations.

2.1 Biomechanical Modeling

The biomechanical model of the rat hindlimb (shown in Fig. 1A) and muscle parame-
ter values are consistent with our previous model [28]. As in the previous model, the
hindlimb is constrained to move in the sagittal plane and is actuated by the eight most
prominent muscles used in forward locomotion. The hindlimb model consists of five
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monoarticular muscles, including Iliopsoas (IP) and Biceps femoris anterior (BFA),
which actuate the hip joint; grouped Vastii (VA), which actuates the knee joint; and
Soleus (SO) and Tibialis anterior (TA), which actuate the ankle joint. The model also
includes three biarticular muscles shown in red font, including Biceps femoris posterior
(BFP) and Rectus femoris (RF), which link the hip and knee joint and are the primary
focus of investigation in this study; while Gastrocnemii (GA) spans the knee and ankle
joint.

A. B.

F.C.

D.

E.

Fig. 1. Neuromechanical model of rat hindlimbs. (A) Biomechanical model of the rat hindlimbs
from our previous work [28], muscle labeled in red font are biarticular muscles. (B) Schematic
of the general neural control network for a single rat hindlimb. (C) General rhythm generator
configuration. (D) Pattern formation network for the hip joint. (E) Intermediate integration layer
for the BFP and RF muscles. GA PF similarly combines Ankle EXT and Knee FLX signals.
(F) Sensory-motor network for the hip monoarticular muscle pair (BFA & IP). Identical network
designs are used for BFP and RF, VA and GA, and SO and TA. IP: Iliopsoas; BFA: Biceps
femoris anterior; BFP: Biceps femoris posterior; SO: Soleus; RF: Rectus femoris; VA: Vastii;
GA: Gastrocnemii; TA: Tibialis anterior. RG: Rhythm generator; PF: Pattern formation; MN:
motoneuron; IN: Interneuron; EXT: Extensor; FLX: Flexor; RE: Renshaw cell; AD: Adaptor.
Color codes are used to distinguish between neurons and connections. Extensor oscillators are
colored blue,while flexor oscillators are colored red.Motoneurons are colored brown, interneurons
are colored yellow, and pink indicates intermediate pattern formation interneurons for biarticular
muscles. Flexor signals are indicated by arrows with solid fill and white outline, while extensor
signals are represented by arrows with a white fill and solid outline. Arrows with both solid fill
and outline indicate that all signals are conducted to the next region.
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AnimatLab uses a basic linear Hill muscle model from Shadmehr’s work [32, 33] to
generate force and it is illustrated in Fig. 2 below.

Fig. 2. AnimatLab Muscle Model. Adapted from Shadmehr’s work [32, 33].

The muscle model is a spring-damper system with user pre-defined length-tension
and stimulus-tension relationships. Tension, T, developed in the muscle is determined
by the following equation:

dT

dt
= kse

b

(
kpe�x + bẋ −

(
1 + kpe

kse

)
· T + A

)

where �x is the muscle length minus the resting length (if negative, �x = 0), ẋ is
the muscle contraction velocity, kse is the series elastic stiffness and kpe is the parallel
elastic stiffness, b is the linear muscle damping, and A represents the activation level of
the muscle described by:

A = Am∗Al

where Am is the stimulus-tension factor:

Am = Fmax

1 + eC(V0−V ) + B

where Fmax is the maximum muscle force, C describes the slope of the sigmoid, V is
the membrane voltage of the motor neuron, and V0 and B describe the V and F offsets
of the sigmoid. Al is the length-tension factor described as:

Al = 1 − (l − lrest)
2

l2width

where lrest describes the length at which the muscle can provide the most force and lwidth
describes the length from lrest at which the muscle can provide no force. Details of the
muscle parameter design can be found in Deng et al. [28].
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The afferent feedback used in this paper are simplified representations of types Ia,
Ib, and II (shown in Fig. 1) in mammalian systems modeled by Animatlab. Ia feedback
is sensitive to muscle velocity ẋ and total muscle length x, Ib feedback is dependent on
the muscle tension T, and II feedback is dependent on length of parallel elastic element
x1. Ia and Ib feedback are synapsed onto correspondent motoneuron pools as shown in
Fig. 1F. Type II feedback from the hip monoarticular muscles (namely BFA and IP) were
applied directly to the rhythm generator (Fig. 1C) and the pattern formation networks
(Fig. 1D) to coordinate the extensor-flexor timing.

2.2 Neural Modeling

The precise mechanisms underlying control of biarticular muscles are not yet fully
understood. In light of this incomplete understanding, we have developed a hypothesis
for the neural architecture involved in biarticular muscle control, which is depicted in
Fig. 1B. The proposed SNS shares similarities with our previously developed two-layer
CPG network, but features an additional intermediate layer between the CPG network
and the sensory-motor network. This layer processes pattern signals from related joints
and integrates them to produce more precise and accurate patterns for biarticular muscle
control.

In Fig. 1, panels B through F, we employed a color scheme to differentiate between
neurons and connections. Specifically, the extensor oscillators are denoted by the color
blue, while flexor oscillators are represented by the color red. In addition, motoneurons
are depicted in brown, interneurons in yellow, and the intermediate pattern formation
interneurons for biarticular muscles in pink. To further differentiate between flexor and
extensor signals, arrows with a solid fill and white outline are used to indicate flexor
signals, while arrows with a white fill and solid outline depict extensor signals. Arrows
that feature both solid fill and outline indicate that all signals are transmitted to the
following region.

In this study, each neuron node depicted in Fig. 1 represents the average activity of
a population of spiking neurons, and functions as a leaky integrator [34]. All neurons
are modeled as conductance-based, non-spiking compartments; action potentials were
neglected in the model to increase computational efficiency and reduce runtime [35].
This simplification allows us to focus on how signals are transmitted through synapses
and how groups of neurons contribute to network behaviors.

The membrane voltage of a neuron node, V, may be seen as a proxy for the spiking
frequency of a spiking neuron. V varies according to the differential equation:

Cm
dV

dt
= Gm(Erest − V ) +

n∑
i=1

Gs,i ·
(
Es,i − V

)

+ Iapp + GNaP(ENaP − V ) · m∞ · h
where Iapp is external stimulus, Erest is the resting potential of the neuron, t is the
time variable and E stands for a constant reference voltage (i.e. reversal potential). Cm

and Gm are the capacitance and conductance of the cell membrane, respectively. The
conductance, Gs,i is a threshold linear function of the ith incoming (i.e. presynaptic)
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neuron’s voltage. Synapses communicate via piecewise-linear functions described as:

Gs,i = gs,i · min
(
max

(
Vpre − Elo

Ehi − Elo
, 0

)
, 1

)

where gs,i, Elo, and Ehi are constants representing the ith synapse’s maximum con-
ductance, its lower threshold, and its upper threshold, respectively. GNaP(ENaP − V )

is a persistent sodium current present in the oscillator neurons with voltage-dependent
channel activation and deactivation described by m and h:

dh

dt
= h∞(V ) − h

τh(V )
, τh(V ) = τh · h∞(V ) · √

Ah · exp(−Sh(V − Eh))

For each instance of ion use, m∞ and h∞ values were adjusted to match with other
CPG models developed in the field [36, 37]. Both m∞ and h∞ are sigmoidal function
described below:

z∞ = 1

1 + Az · exp(−Sz(V − Ez))

where z represents either m or h, „ and A (factor), S (slope) and E (reversal potential)
are constant parameters, specific to m or h.

The oscillators in the PF incorporate the same persistent sodium current as the RG
ones, which means that they can produce the same rhythm as RG neurons. In our prior
analysis of the two-layer CPG, we primarily investigated the perturbation response of
a single joint (the hip joint) [30]. In this paper, we will investigate how the two-layer
CPG performs in controlling multiple joints while responding to different disturbances.
Our previous investigations [30] showed how different parameters affect coordination
between the RG and PF layers and provides the basis for the parameters chosen in this
work and reported in the Appendix (Tables 1 and 2). The maximum conductance value
(gc) between the RG and PF, are as follows: 0.1µS for the hip joint, 0.05µS for the knee
joint, and 0.02µS for the ankle joint. This allocation of maximum conductance followed
the report from our previous investigations of the two-layer CPG, which suggested that
more distal segments require greater flexibility in responding to perturbations.

Figure 3 provides a graphical representation of the activation of neurons in a two-
layer CPG that controls multiple joints in the hindlimb under unperturbed conditions.
The rhythm generator sets the oscillatory frequency of the joint movements, whereas
the pattern formation network modulates the amplitude of the oscillations and the phase
relationship between the joints.

In particular, each joint’s CPG oscillates at a consistent frequency (time for one step
cycle is around 0.59 s), which is regulated by the rhythm generator. However, the pattern
formation network of each joint exhibits a distinct phase timing (i.e. when compared
to RG) that is unique to that joint. The hip joint exhibits a 5.74% phase delay, while
the knee advances 6.35% and ankle advances 8.32% in phase. This is consistent with
our previous report on gc: The connection strength results in a trade-off between phase-
locking potentials and the amount of phase difference that can exist between the two
layers.
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Fig. 3. Neuron activity for the two-layer CPG controlling multiple joints. The rhythm generator
controls the overall timing of the network. Each joint pattern formation network exhibit different
phase timings, all while maintaining the same oscillation frequency. The hip joint exhibits a 5.74%
phase delay, while the knee joint advances 6.35% and the ankle joint advances 8.32% in phase.
However, the period for one step for all these joints persists at 0.59 s per cycle. The blue lines
represent the membrane voltage for extensor neurons, and the red lines stand for flexor neuron
voltages.

3 Results

We started by manually adjusting the connection strengths and feedback weights of the
hindlimb model, fine-tuning it until it was capable of sustaining its own weight while
achieving repetitive forward walking with biarticular muscles. To further evaluate the
performance of the model, we then suspended the pelvis of the model in the air to allow
the model to perform repetitive movements without ground contact. We did this because
in later experiments, we disabled the biarticular femoral muscles (BFP and RF) which
are important for supporting the body’s weight during movement.

We first perturbed the simulation model by introducing external currents to different
layers of the two-layerCPGandanalyzed themodel’s response. Subsequently,we applied
torque to the hindlimb model’s right femur under three different circumstances: with the
BFP and RF muscles active and functioning normally, with only passive tension in the
BFP and RF (by disabling themotoneuron projection), andwith the BFP and RFmuscles
fully disabled, rendering the model monoarticular at the hip joint.
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3.1 CPG Perturbation Test

Applying an external stimulus current with a magnitude of 2 nA to the flexor neuron of
the rhythm generator from 2 s to 2.1 s (orange area in Fig. 4) resulted in a rapid short step,
followed by a 15.44% phase–delayed step cycle after the perturbation, and subsequent
step cycles exhibited a 15% phase delay.

Fig. 4. Neuron activity when the RG layer is perturbed. An external stimulus with a magnitude
of 2 nA is applied to the flexor neuron of the rhythm generator, starting at 2 s and ending at 2.1 s
(orange area). The external stimulus causes a rapid short step with phase delay of 15.44% for
the next step cycle after injection, followed by 15% phase delays for the subsequent step cycles.
Strong connections (gc = 0.1uS) ensure that the hip strictly follows the signal patterns from the
rhythm generator, while weak connections (gc = 0.05uS for the knee and gc = 0.02uS for the
ankle) result in a less perturbed phase (with a skipped step) of the knee and ankle joints. However,
the knee and ankle still follow the phase timing from the rhythm generator after the perturbation.
Blue lines represent the membrane voltage for extensor neurons, and the red lines stand for flexor
neuron voltages. The solid lines represent the nominal activation of neurons in the two-layer CPG,
while the dashed lines indicate the neuron activations during perturbed motion.

And the resulting patterns depicted in Fig. 4 demonstrate that a strong connection
enables the hip joint to closely adhere to the signal patterns from the rhythm generator
(5.74% phase delays). In contrast, weak connections result in a less disturbed phase
(with a skipped step) of the knee and ankle joints during the disturbance. In either case,
after injection, the neuron activity from the knee and ankle remains synchronized with
the phase timing from the rhythm generator (i.e. the knee advances 6.35% and ankle
advances 8.32% in phase).
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Applying a 2 nA external current to the flexor neuron of the knee pattern formation
network from 2 s to 2.1 s (orange area in Fig. 5) produces results that contradict previous
experiments involving only antagonistic muscle pairs.

Fig. 5. Neuron activity when the knee joint is perturbed. An external stimulus with a magnitude
of 2 nA is applied to the flexor neuron of the knee pattern formation network, starting at 2 s and
ending at 2.1 s (orange area). This perturbation of the knee joint leads to a phase shift in all the
joints. To clarify, the initial step after injection involves advancing the rhythm generator by 5%,
the hip joint by 5.3%, the knee joint by 6.7%, and the ankle joint by 3%. Then, in the subsequent
steps, all joints are advanced by 5.2% in response to the phase-advanced rhythm generator signal.
The membrane voltage of extensor neurons is indicated by blue lines, while that of flexor neurons
is represented by red lines. The solid lines represent the nominal activation of neurons in the
two-layer CPG, while the dashed lines indicate the neuron activations during perturbed motion.

In our prior research on the rat hindlimb simulation model with antagonist muscles,
we found that perturbing the pattern formation network of a single joint did not affect
the neuron activations of the rhythm generator or the motion of other joints. However, in
this current study, we observed a phase shift in other joints when an excitatory stimulus
is applied to the knee flexor neuron of the pattern formation network. Specifically, after
injection, the first step cycle is advanced by 5% for the rhythm generator, 5.3% for the
hip joint, 6.7% for the knee joint and 3% for the ankle joint. Subsequently, following the
signal from the phase-advanced rhythm generator, all the joints are advanced by 5.2%
in the following steps.
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3.2 Joint Torque Perturbation Test

Figure 6 presents neural activity in the pattern formation network for all muscles during
air-walking. The activation pattern for the monoarticular pairs in the hip joint (BFA and
IP, color-coded as blue and red which stand for extension and flexion neuron voltage),
respectively, generally follows the signal pattern depicted in Fig. 3. The same applies
to the monoarticular pairs in the ankle joint (TA and SO). The same applies to the
monoarticular muscles pairs (TA and SO) in the ankle joint. Since these muscles actuate
only a single joint, they require a more straightforward signal pattern to execute their
respective movements. In contrast, the biarticular muscles BFP (present in cyan line),
RF (present in magenta line), and GA (present in pink line) integrate patterned signals
from multiple joint networks, necessitating more complex signaling. As a result, these
muscles exhibit a more intricate activation pattern than monoarticular muscles, which,
in turn, generates a complex motion to control movement across multiple joints.

Fig. 6. Neural activity in the pattern formation network for all the muscles during air-walking.
The monoarticular hip muscles BFA and IP, ankle muscles TA and SO generally follow the signal
activation pattern presented in theFig. 3,whereas the biarticularmusclesBFP,RF, andGA integrate
signal patterns from the actuated joints. Blue lines represent the membrane voltage for extensor
neurons, and the red lines represent the flexor neuron voltages. The cyan line shows the activation
for BFP, magenta presents the membrane voltage for RF, and the pink line depicts the GA.
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When an external torque of 0.1 Nm is applied to the right femur in the simulation,
the response of the biarticular muscles model under three different conditions during
air-walking can be distinguished. As can be seen in Fig. 7, the magnitude of the phase
changes due to the external torque is significantly less in the biarticular muscle models,
regardless of whether there is active tension on the muscle or not. Thus, we conclude
that biarticular muscles can reduce the impact of external perturbations. However, this
reduction in perturbation also influences the motion of other joints, such as the knee and
ankle.

Comparison of nominal and perturbed motions of the leg reveals that active BFA
and RF muscles result in faster restoration when compared to model in which they are
disabled. Interestingly, it was found that the biarticular muscle model with only passive
tension was unable to return to its original step timing after the perturbation ended.

Fig. 7. Nominal (solid lines) and perturbed (dashed lines) joint motion for the biarticular muscles
model under three different conditions: when the BFP and RF muscles are fully active (first row);
when there is only passive tension on the BFP and RF muscles (second row); and when the BFP
and RF muscles are fully disabled (third row). The joint motion profiles are depicted using blue
lines for hip joint motion (orange areas shows when the external torques are applied), black lines
represent knee motion, and red lines stand for ankle motion. The perturbation is an external torque
with magnitude − 0.1 Nm applied to the right femur, starting at the beginning of the second stride
and lasting for 30 percent of the stride period. During the perturbed motion, the full activation of
the BFA and RF muscles results in better stability when compared to the monoarticular hip joint
condition, as it enables faster and better recovery to the original step timing.
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4 Discussion

In this work, we present a neuromechanical model of a rat hindlimb with biarticular
muscles. We expanded on our previous study of biarticular muscle models [28] by
examining the neural control of this model. In other previous work, we conducted an
in-depth investigation of the two-layer CPG [30] and gained a better understanding of
the design of these neural controllers. In this work, we integrated our prior findings to
design a hypothesized SNS that actuates the biarticular muscles BFP and RF muscles
connecting the hip and knee joints, and the GA muscle spanning the knee and ankle
joint.

Biarticular muscles play an important role in locomotion. Previous research by
Markin’s group [38] and Shevtsova et al. [39] has proposed how biarticular muscles
are controlled. Specifically, they suggest that the BFP and RF muscles have their own
individual pattern formation networks. This enables more precise control of these mus-
cles, but complicates the design of the SNS, and may require additional animal data
to help tune the parameters in these individual pattern formation networks. Similarly,
our hypothesized neural architecture comprises multiple components that collectively
govern the timing and coordination of movement between the joints. Specifically, the
rhythm generator plays a critical role in regulating the overall timing of steps, adjusting
the timing of movement phases in each individual joint. The pattern formation networks
for hindlimb joints receive input from the rhythm generator and distribute signals to the
corresponding muscles and intermediate layers, which is necessary for coordinating the
movements of the biarticular muscles. Notably, a difference in our network is that the
muscles are organized into reciprocal synergist pairs and receive signal projections from
joint level pattern formation networks.

In the CPG perturbation test, we found that the rhythm generator plays a crucial role
in controlling the overall timing of the hindlimbs. Specifically, each pattern formation
network of the joints displays distinct phase timings that are sensitive to perturbations
applied at the rhythm generator layer. Strong connections between the rhythm generator
and the hip joint enable the hip joint to closely adhere to the RG step timing during
perturbations, while weaker connections lead to less disturbed phase timings in the knee
and ankle joint. Importantly, the results observed in this study differ from those reported
in previous works for monoarticular actuation. Specifically, we found that disrupting the
knee’s pattern formation network resulted in changes in motion at all the joints. Specif-
ically, changes in knee kinematics affected the intermuscular coordination between the
hip and knee joint, resulting in a cascade of effects. Changes in knee jointmotion affected
both the hip joint’s motion and the phase of the rhythm generator. As the rhythm gen-
erator’s phase shifts, the direct connection between the ankle and the rhythm generator
causes the ankle phase to become correlated with the RG timing. These findings support
our previous analysis of the two-layer CPG and confirm our expectations regarding the
perturbation response of the system.
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Based on the air-walking perturbation test simulation results, we discovered that
biarticular muscles can significantly reduce the impact of external torque. This is evi-
denced by the smaller phase changes observed in the fully active biarticular muscle
models compared to the monoarticular muscle models. However, this reduction in per-
turbation also influences the motion of other joints due to the multi-joint linkage through
biarticular muscles. Additionally, our analysis revealed that activating the BFA and RF
muscles resulted in faster restoration after the perturbation compared to the model with
the biarticular muscles disabled. Interestingly, the biarticular muscle model with only
passive tension on the muscle was unable to revert back to its original step timing after
the perturbation ended, likely due to the considerable magnitude of passive tension as
reported in our previous work [28]. A possible explanation for this is that the passive
tension in the biarticular muscles acts as a large damper in the absence of active tension.
This dampening effect reduces the impact of external torques and minimizes internal
adjustments.

There are some limitations in our work that must be carefully considered. For
instance, the muscle model utilized in AnimatLab does not employ a hyperbolic force-
velocity relationship for the contractile element. It is possible that different muscle
models may have an effect on the quantitative results, though we anticipate the qualita-
tive results will remain the same. Furthermore, the joint angle ranges differ significantly
between the three different situations in the air-walking perturbation test. As the models
being compared are not optimally tuned, we can only conclude that the normal active
biarticular muscle is less affected by external torque and exhibits faster restoration after
perturbation, which provides more stability compared to the fully disabled model. It is
still unclear if all these results will remain the same when each model is tuned for ground
walking and the perturbations are applied in a more realistic environment. Indeed, pre-
vious results from our work indicate that all differences seen in neural perturbation and
air-walking tests may functionally result in little to no difference when applied to ground
walking [30].

While this work has shed light on the functional role of biarticular muscles in sta-
bilizing perturbed locomotion, there are several limitations stemming from the lack of
detailed rat locomotion and EMG data. However, these limitations do not diminish the
value of our findings, which offer important insights into this complex phenomenon and
provide guidelines for designing a neural controller for a biomechanical model with
biarticular muscles. Moving forward, future research should investigate the impact of
different SNS designs and noise on the stability of the model, and should also compare
the results with neural controllers hypothesized by researchers in parallel studies. Also,
a more in-depth analysis investigating perturbations with different amplitude, timing
and directions is necessary to support our conclusion on a more general basis. Over-
all, this work highlights the significance of biarticular muscles in stabilizing the rat
hindlimbs during perturbed locomotion, and the broader implications of our findings for
understanding animal locomotion.
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Appendix

List of Acronyms

CPG Central pattern generator
SNS Synthetic nervous system
BFP Biceps femoris posterior
RF Rectus femoris
GA Gastrocnemii
IP Iliopsoas
BPF Biceps femoris anterior
VA Vastii
SO Soleus
TA Tibialis anterior
RG Rhythm generator
PF Pattern formation
MN Motoneuron
IN Interneuron
RE Renshaw cell
EXT Extensor
FLX Flexor
AD Adaptor

Table 1. Neural parameters

Neuron Cm(nF) Gm(μS) Er
(mV )

GNa(μS) Ah Sh Eh
(mV )

τh
(ms)

Am Sm Em
(mV )

τm
(ms)

RG 5 1 −60 1.5 0.5 −0.6 −60 350 1 0.2 −40 2

PF 5 1 −60 1.5 0.5 −0.6 −60 350 1 0.2 −40 2

MN 5 1 −100 0 – – – – – – – –

IN 5 1 −60 0 – – – – – – – –
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Table 2. Synapse parameters.
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