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Abstract—Recently, the privacy guarantees of information dis-
semination protocols have attracted increasing research interests,
among which the gossip protocols assume vital importance in
various information exchange applications. In this work, we study
the privacy guarantees of gossip protocols in general networks
in terms of differential privacy and prediction uncertainty. First,
lower bounds of the differential privacy guarantees are derived
for gossip protocols in general networks in both synchronous
and asynchronous settings. The prediction uncertainty of the
source node given a uniform prior is also determined. For the
private gossip algorithm, the differential privacy and prediction
uncertainty guarantees are derived in closed forms in the
asynchronous setting. Moreover, considering that these two metrics
may be restrictive in some scenarios, the relaxed variants are
proposed. It is found that source anonymity is closely related to
some key network structure parameters in the general network
setting. Then, we investigate information spreading in wireless
networks with unreliable communications, and quantify the
tradeoff between differential privacy guarantees and information
spreading efficiency. Finally, considering that the attacker may
not be present at the beginning of the information dissemination
process, the scenario of delayed monitoring is studied and the
corresponding differential privacy guarantees are evaluated.

Index Terms—Information spreading, gossip protocols, differ-
ential privacy, prediction uncertainty.

I. INTRODUCTION

It is well-known that most people are six or fewer social
connections away from each other. Recently, the explosive
development of the Internet and social networks makes it easy
for people to disseminate their information to the rest of the
world. Gossip protocols, in which networked nodes randomly
choose a neighbor to exchange information, have been widely
adopted in various applications for information dissemination
due to their simplicity and efficiency. For instance, they can
be used to spread and aggregate information in dynamic
networks like mobile networks, wireless sensor networks, and
unstructured P2P networks [2]–[5]. Combined with stochastic
gradient descent methods, gossip protocols are also adapted to
implement distributed machine learning [6], [7]. In particular,
the authors of [7] propose to transmit differentially private
gradient information through gossip protocols. Nonetheless,
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they focus on the privacy of the shared gradient information
rather than the anonymity of the source.

With the arising concerns of privacy exposure, information
sources often prefer to stay anonymous while disseminating
sensitive information. Gossip protocols are believed to provide
a certain form of source anonymity since most nodes do not
get informed directly by the source, and the origin of the
information becomes increasingly blurred as the spreading
proceeds. In this regard, source identification and protection
of gossip protocols have attracted significant research interests
(e.g., see [8], [9] and the references therein). Various criteria
and estimators have been developed to determine the source
node, including rumor centrality [10]–[12], Jordan centrality
[13]–[15], Gaussian source estimator [16]–[18], Markov Chain
Monte Carlo-based estimator [19], Bayesian source estimator
[20] and maximum a posteriori estimator [21]. Instead of
focusing on source identification, [9], [22], [23] proposed
adaptive diffusion protocols to hide the source node. However,
the existing approaches usually assume some specific network
structures (e.g., tree graphs) and attacking techniques (e.g.,
maximum likelihood estimator), and therefore don’t easily
generalize.

To study the privacy of gossip protocols in a formal and
rigorous setting, the concept of differential privacy [24], which
was originally introduced in data science, is adapted to measure
the source anonymity of gossip protocols in [25]. However,
their study is restricted to complete networks, which may not
be a good model in practice. For example, practical networks
often have a network diameter much larger than 1 (41 for
the Facebook network [26]). In [1], we study the fundamental
limits on the privacy of gossip-based information-spreading
protocols in general networks. In this work, we further derive
the privacy guarantees of the private gossip algorithm [25] in
closed form and present extensive numerical results on various
network structures. In addition, we propose two new metrics,
i.e., the candidate-set-based differential privacy and prediction
uncertainty, to better capture the practical privacy concerns of
the source node. More specifically, our main contributions are
summarized as follows.

1) Lower bounds of the differential privacy guarantees of
general gossip protocols are derived for general networks
in both synchronous and asynchronous settings. The
prediction uncertainty of the source node given a uniform
prior is also determined.

2) For the private gossip algorithm [25], the differential
privacy guarantees and prediction uncertainty are de-
rived in closed form. In addition, considering that the
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original differential privacy and prediction uncertainty
may be restrictive in some scenarios, candidate set-based
differential privacy and prediction uncertainty variants
are proposed. Numerical results are presented to show
the privacy guarantees of the private gossip algorithm in
different network structures.

3) The privacy guarantees of standard gossip and private
gossip protocols are further studied in a wireless setting,
where communications are assumed to be unreliable. It
is found that wireless interference can enhance the differ-
ential privacy while slowing down the spreading process.
Through analysis and simulations, the tradeoff between
the differential privacy guarantees and the information
spreading efficiency is revealed.

4) The effect of the additional uncertainty induced by delayed
monitoring on the privacy guarantees is shown.

The remainder of this work is organized as follows. Section
II discusses the related work. Section III introduces the
system model. The privacy guarantees of gossip protocols
are presented in Section IV. The privacy-spreading tradeoff of
gossip protocols in wireless networks is discussed in Section
V. Section VI investigates the privacy guarantee of gossip
protocols in the delayed monitoring scenario. Conclusion and
future works are discussed in Section VII.

II. RELATED WORK

Gossip protocols are widely adopted to model the spreading
of infectious diseases [27] and information dissemination in
dynamic networks [2]–[5]. On the one hand, in terms of
epidemic spreading [28], it is essential to accurately identify
the source nodes. In this sense, locating the source of a
gossip mechanism has attracted significant research efforts
(e.g., see [8] and the references therein). Various criteria
have been proposed to determine the source node. [10], [11]
proposed rumor centrality which measures the number of
distinct propagation paths originating from the source, and
the node with the maximum rumor centrality is identified
as the source node in regular trees. [12] designated a set of
nodes as suspicious sources and considered the node with
the maximum rumor centrality in the set of the suspicious
sources as the source node. [13]–[15] proposed Jordan centrality
which considers the source node associated with the optimal
sample path (which is the path that most likely leads to the
observations of the entity that intends to identify the source
node) as the propagation origin. Various estimators have also
been proposed, such as, Gaussian source estimator [16]–[18],
Markov chain Monte Carlo-based estimator [19], Bayesian
source estimator [20], maximum a posteriori estimator [21]
and maximum likelihood estimator [29], [30]. [31] proposed
a types-center method that serves as an approximation of
the maximum-likelihood source estimator. [32] introduced a
Gaussian weighted averaging correlation coefficient to evaluate
the likelihood of possible sources. [33] proposed a latent
space mapping-based method for source identification, and
[34] proposed a machine learning-based source identifier for
social networks. Different from most of the aforementioned

techniques that consider static networks, [35]–[39] studied the
source identification problem in time-varying networks, and
[40] studied the source identification in multiplex networks.
[41] considered both truth and rumor diffusions and identified
the sources of truth and rumor simultaneously. [42] considered
source identification in the process of contact tracing in
epidemic spreading.

On the other hand, in terms of information spreading
on social media platforms, it may be preferred to protect
the anonymity of the message authors. To the best of our
knowledge, there are only a few works on preserving the
anonymity of the source node. [9], [22], [23] proposed adaptive
diffusion protocols to hide the source node. However, the
privacy of the source node is only guaranteed in tree graphs.
Moreover, it is recently shown that the adaptive diffusion
protocols fail to protect the source node when the adversary
has access to multiple observations [43]. [44] showed that the
source node can escape detection by modifying the network
structure. In this sense, it is of particular interest to quantify
the privacy of gossip protocols with a formal privacy notion
and investigate the impact of network structures.

Recently, differential privacy [24] has emerged as a strong
candidate for privacy measure due to its strong information-
theoretic guarantees. It finds applications in a wide variety of
areas, such as location privacy preservation [45], privacy-aware
data release [46], and privacy-preserving deep learning [47],
to name a few. [25] first adopted the concept of differential
privacy to study the privacy guarantees of gossip protocols
and proposed the private gossip algorithm. Nonetheless, it only
considered the complete network graph. In this work, we study
the privacy guarantees of gossip protocols in general networks
and investigate the impact of imperfect communications among
the nodes and delayed observation from the adversary.

III. SYSTEM MODEL

In this section, we first introduce the considered gossip
protocols and the time model in Section III-A and Section III-B,
respectively. Then, we introduce the threat model that describes
the capability of the adversary in Section III-C. Finally, the
formal privacy notions are detailed in Section III-D. Important
notations used in this article are summarized in Table I.

A. Gossip Protocol

Given a connected network G = (V,E) of arbitrary topology,
where V = {0, 1, ..., n− 1} is the node set and E is the set of
connecting edges, a node (source) initially possesses a piece
of information and needs to deliver it to all the other nodes
in the network. All the nodes are assumed to share the same
communication protocol gossip. Each time an informed node
i performs gossip, it will contact one of its neighboring nodes
j ∈ Ni uniformly at random (i.e., with probability 1/di, where
di is the degree of node i). The whole information dissemination
process terminates after all the nodes are informed. Same as
[25], we focus on the gossip protocols based on the “push”
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TABLE I: Important notations

G the connected network.
V the set of nodes.
n the number of nodes.
di the degree of node i.
I the set of the informed nodes.
Ac the set of active nodes

α
the probability that the activities of the active nodes are
observed by the attacker.

S the event observed by the attacker.
D(i) the source indicator that the i-th node is the source.

p
(i)
G (S)

the conditional probability of the observation event S
given the network graph G and the source node i.

(ϵ, δ) the differential privacy parameters.
c the prediction uncertainty.

pG(I0|S)
the posterior probability of the source node being I0 given
the observation event S .

Q the candidate set of the source node.
Cβ(i) the decay centrality of node i.
DG the diameter of the graph.
A[j, i] the probability of the active node j contacting node i.
Am the m-th power of A.

P (j → i)
the probability of secret message spreading from source
node j to another node i.

f
the failure probability of the communications between
two nodes.

CG the cover time of a random walk in network G.

Tas
the spreading time of standard gossip given perfect
communication.

action1 in this work, and consider the following two specific
gossip protocols, which are given in Algorithm 1.

1) Standard Gossip: All informed nodes remain active (i.e.,
continuously performing gossip) during the spreading
process.

2) Private Gossip [25]: Once an active informed node
(initially it is the source) performs gossip, it turns inactive,
and the newly informed node takes over the source role.

Algorithm 1 Gossip Algorithms

1: Require: The number of nodes n, the source node k.
2: Ensure: The informed node set I = {0, 1, · · · , n− 1}
3: Initialization: Informed node set I ← {k}, active node

set Ac ← {k}
4: while |I| < n do
5: The active node in Ac performs gossip and another

node j is informed
6: {

I ← I ∪ {j}, Ac ← Ac ∪ {j}, for standard gossip,

I ← I ∪ {j}, Ac ← {j}, for private gossip.
7: end while

B. Time Model

Both synchronous and asynchronous time models are consid-
ered. In the former, all nodes share a global discrete time clock.
Each time the clock ticks, all active informed nodes perform

1In the corresponding “pull” action, uninformed nodes are active and try to
solicit the information from informed nodes. The “push” action is dominant
for information spreading in social and mobile networks. In addition, such a
study is also conservative in the sense that it gives the attacker an advantage
by only monitoring the “push” actions.

Uninformed and 

Informed Nodes

Sensor

Attacker

(i = 4, t = 0)            Synchronous

(i = 2, t = 1)     Observed Events

(i = 1, t = 3)

….

(i = 4|t = 0.5s)       Asynchronous

(i = 2|t = 1.2s)   Observed Events

(i = 1|t = 2.2s)

….
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(i = 4, t = 1)           Actual Events

(i = 2, t = 1)

….
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(i = 4|t = 0.5s)      Actual Events

(i = 2|t = 1.2s)
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Fig. 1: Sensor Monitoring and Observations

the gossip action simultaneously, and the informed node set is
updated accordingly, counted as one round. In the asynchronous
time model, each node has its own internal clock, which ticks
according to a Poisson process, with the mean interval between
two ticks equivalent to that of one round in the synchronous
model. The gossip action and update of the informed node set
is performed each time the clock of an active informed node
ticks.

C. Threat Model

The goal of the attacker is to identify the source node based on
its observations (i.e., attack on confidentiality and privacy).
It is assumed that the attacker can monitor the ongoing
communications in the whole network, through, e.g., deploying
a sufficient number of sensors throughout the field. With a
probability of 0 < α ≤ 1, the sensors can correctly observe the
identities of the active nodes at each gossip step. Specifically,
as shown in Fig. 1, the observed event has the form of
S = ((i, t)), i ∈ V, t ∈ {0, 1, 2, · · · } in the synchronous
setting, which indicates that the attacker knows node i performs
the gossip action at time slot t. In the asynchronous setting,
however, the attacker does not know the exact time of each
observed event, but only the relative order of the nodes’
activities. The observed event in this case is represented by
S = ((i|t)), where the condition t stands for the latent time
information unknown to the attacker.

D. Privacy Model

In this work, differential privacy is adopted to measure the
information leakage of the gossip protocols. In particular, a ran-
domized algorithm R with domain N|χ| is (ϵ, δ)-differentially
private if for all S ⊆ Range(R ) and for any two databases
x, y that differ on a single element [24]:

Pr[R (x) ∈ S ] ≤ eϵPr[R (y) ∈ S ] + δ, (1)
where parameter ϵ ≥ 0 is the privacy budget while δ ≥ 0 is the
tolerance level for the violation of the ϵ bound. Specifically,
given the privacy budget ϵ and the tolerance level δ, Eq. (1)
implies that the randomized algorithm guarantees that the
privacy loss is bounded by ϵ with a probability of at least
1 − δ. Intuitively, the smaller the ϵ and the δ, the better the
privacy. Consider a source indicator database of the format
D(i) = [0, ..., di = 1, ..., 0] with exactly one nonzero value
di = 1 if node i is the source. Given D ≜ {D(i)}n−1

i=0 and the
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graph G as the input, a gossip protocol can be treated as a
randomized algorithm with the output set S (i.e., the range)
consisting of all possible observation sequences by the attacker
during the execution of the protocol.

Definition 1. [25] Given a general network G, a gossip
protocol is (ϵ, δ)-differentially private in G if for all obser-
vations S ⊆ S and for any two source indicator vectors
D(i),D(j), i, j ∈ V :

p
(i)
G (S) ≤ eϵp

(j)
G (S) + δ, (2)

where p
(i)
G (S) = Pr[S |G,D(i)] is the conditional probability

of an observation event S given the network graph G and the
source indicator vector D(i).

In this work, considering the fact that, due to the topological
and observation model constraints, there may exist some (rare)
events S such that p

(j)
G (S) = 0 (e.g., if Si,0 is the observed

event that node i performs gossip at time 0 in the synchronous
setting, then p

(j)
G (Si,0) = 0, ∀j ̸= i), additional tolerance level

is needed to ensure the privacy guarantees. Thus, for the privacy
guarantees of general gossip protocols, we mainly focus on the
study of the tolerance level δ. For the private gossip algorithm
(i.e., Algorithm 1 with private gossip) in the asynchronous
setting, we are able to derive the corresponding differential
privacy level ϵ and give some analysis.

In addition to differential privacy, it is also desirable to
study privacy guarantees of information dissemination protocols
from a more pertinent perspective, i.e., source identification
through prediction or detection. Reusing the above example,
there always exist some events S such that p

(i)
G (S) > 0 for

some i but p(j)G (S) = 0, ∀j ̸= i ∈ V , which satisfy an arbitrary
privacy budget ϵ with a tolerance level of δ (if p

(i)
G (S) ≤ δ).

However, the identity of the source (i.e., node i) can still
be easily inferred. Therefore, it is further required that some
prediction uncertainty be guaranteed for a given differentially
private protocol, which is defined as [25]:

Definition 2. [25] Given a general network G, the prediction
uncertainty of a gossip protocol is defined for a uniform prior
pG(I0) on source nodes and any i ∈ {0, 1, ..., n− 1} as:

c = min
i,S⊆S

(
pG(I0 ̸= {i}|S)
pG(I0 = {i}|S)

)
= min

i,S⊆S

(
1

pG(I0 = {i}|S)

)
− 1, ∀p(i)G (S) > 0,

(3)

where I0 stands for the initial informed node set and its
element represents the source node.

Remark 1. The connection between prediction uncertainty
and differential privacy is illustrated below. For any ob-
servation S ⊆ S, differential privacy guarantees that the
posterior probabilities of the attacker observing S given
different source nodes are bounded by (2), i.e., the source
nodes do not change the distribution of the observations
much. Prediction uncertainty guarantees that the posterior
probability of node i being the source node given S satisfies
pG(I0 = {i}|S) ≤ pG(I0 ̸= {i}|S)/c, i.e., the observations
do not change the attacker’s knowledge about the source

nodes much. Especially, because of the uniform prior pG(I0),
pG(I0 ̸={i}|S)
pG(I0={i}|S) =

∑
j ̸=i p

(j)
G (S)

p
(i)
G (S)

holds by the Bayes’ formula.
Prediction uncertainty is an appealing metric in this study as
it measures the privacy guarantees from the source prediction
perspective with a much smaller cardinality than the classic
privacy budget (which requires the study of all pairs of p(i)G (S)
and p

(j)
G (S)). Moreover, given a prediction uncertainty c, it

can be shown that pG(I0 = {i}|S) ≤ 1
c+1 , ∀i, S; therefore a

larger c indicates better source anonymity.

In order to further remedy the aforementioned issue of
differential privacy, a relaxed differential privacy variant, termed
differential privacy within a candidate set, is proposed. Its
definition is given as follows.

Definition 3. Given a general network G, a gossip protocol
is (ϵ, δ)-differentially private within a candidate set Q in G if
for all observations S ⊆ S and for any two source indicator
vectors D(i),D(j), i, j ∈ Q ⊆ V :

p
(i)
G (S) ≤ eϵp

(j)
G (S) + δ, (4)

where p
(i)
G (S) = Pr[S |G,D(i)] is the conditional probability

of an observation event S given the network graph G and the
source indicator vector D(i).

Remark 2. The only difference between differential privacy
and differential privacy within a candidate set is that the
privacy guarantee is ensured for the source nodes falling in a
candidate set Q instead of the whole network V . Note that the
notion of differential privacy is highly conservative (considering
the worst-case scenario). If there exists a node i such that
p
(i)
G (S) = 0, the probability of node i being the source is 0

from the attacker’s perspective. In such a case, the attacker can
always differentiate node i from other nodes, which means that
the differential privacy guarantee will be violated with a high
probability. However, on the one hand, it does not necessarily
mean that the gossip protocols cannot provide effective source
privacy protection. Particularly, it may be difficult for the
attacker to distinguish any pairs of other nodes except node i
in the network (e.g., pjG(S) = pzG(S), ∀j ̸= z ∈ V \ {i}). On
the other hand, in practice, it may not be necessary for the
source node to hide itself in the whole network. Instead, it may
be enough to make itself indistinguishable from a subset of
the network (e.g., its neighbors). Our definition of differential
privacy within a candidate set measures the privacy guarantee
of the gossip protocols in such scenarios. Especially, as long as
p
(j)
G (S) > 0, ∀j ∈ Q , δ = 0 is always feasible for differential

privacy within the candidate set Q . In addition, when Q =
V , it is equivalent to the original definition of differential
privacy. Therefore, it can be understood as a relaxed version
of differential privacy.

Similarly, the prediction uncertainty within a candidate set
is defined as follows.

Definition 4. Given a general network G, the prediction
uncertainty of a gossip protocol within the candidate set Q is
defined for a uniform prior pG(I0) on source nodes over the
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candidate set Q as:

c = min
i∈Q ,S⊆S

(∑
j ̸=i∈Q pG(I0 = {j}|S)
pG(I0 = {i}|S)

)
, ∀p(i)G (S) > 0. (5)

IV. PRIVACY OF GOSSIP PROTOCOLS IN GENERAL
NETWORKS

In this section, the privacy guarantees of gossip protocols
are investigated. The intuition behind the privacy preservation
capability of the gossip protocols is as follows. Given the
threat model in Section III-C, there is a chance that active
nodes perform gossip successfully and the attacker fails to
catch it. If the first observed event of the attacker is that
node i performs gossip at time t = k, it can conclude that
the source node is within the k-hop neighborhood of node i.
However, without additional information, the attacker cannot
tell exactly which node among the k-hop neighbors of node i
is the source. In the meantime, it becomes even more difficult
for the attacker to identify the source node if it does not
have access to the exact time t of the observed event (which
corresponds to the asynchronous case). The identity of the
source node is therefore better protected. In the following, we
make the above intuition rigorous and present the formal privacy
guarantees of the gossip protocols. More specifically, we first
analyze the privacy guarantees of general gossip protocols
in Section IV-A, followed by our analyses on the private
gossip algorithm and the corresponding numerical illustration
in Section IV-B and Section IV-C, respectively. Considering
that the original differential privacy and prediction uncertainty
may not be good measures for source anonymity, we further
investigate differential privacy and prediction uncertainty within
the candidate set in Section IV-D. For the general gossip
protocols, general results concerning the lower bounds of
the tolerance level δ and the upper bounds of the prediction
uncertainty c are obtained. For the private gossip algorithm
in the asynchronous setting, the pure version of differential
privacy (δ = 0) is feasible, and the corresponding differential
privacy level ϵ and prediction uncertainty c are derived.

A. General Gossip Protocols

In this subsection, the privacy guarantees of general gossip
protocols in general networks are studied. To facilitate our
following analysis, we need the following lemma and the
definition of decay centrality.

Lemma 1. Given any gossip protocol in a graph G, let
S ⊆ S and there are two constants w

(i)
G (S), w(j)

G (S) such that
p
(i)
G (S) ≥ w

(i)
G (S) and p

(j)
G (S) ≤ w

(j)
G (S). If the gossip protocol

satisfies (ϵ, δ)-differential privacy, then δ ≥ maxS,i,j(w
(i)
G (S)−

eϵw
(j)
G (S)).

Lemma 1 readily follows from the definition of differential
privacy; its proof is omitted in the interest of space.

Definition 5. [48] Given a network G and a decay parameter
β, 0 < β < 1, the decay centrality of node i is defined as

Cβ(i) =
∑
j ̸=i

βd(i,j), (6)

1

6

5
4

3

2
1

2

3

4

5 6

Fig. 2: Node 1 and node 6 are more distinguishable in the right network.

where d(i, j) is the length of the shortest path between node i
and j.

Remark 3. Decay centrality measures the ease of a node
reaching out to other nodes in the network. A large decay
centrality indicates the central positioning of a node and its
easiness to reach other nodes. The difficulty increases as β
decreases.

Our main result concerning the privacy guarantees of general
gossip protocols in a general network is given below.

Theorem 1. Given a connected network G with n nodes
and diameter DG = maxi,j∈V,i̸=j d(i, j), and considering the
observation model described in Section III-C with parameter
α, if a gossip protocol satisfies (ϵ, δ)-differential privacy for
any ϵ ≥ 0 and c-prediction uncertainty, then we have δ ≥ α
and c = 0 in the synchronous setting. In the asynchronous
setting,

δ ≥ max

[
α− eϵ(1− α)DG , α− eϵ

1− α

n− 1

]
(7)

and

c ≤ min
i∈V

C1−α(i)

α
, (8)

where C1−α(i) is the decay centrality of node i with decay
parameter 1− α.

Proof: Please see Appendix A.

Remark 4. Some interpretations of the results of Theorem 1
are in order. It can be observed that the asynchronous setting
provides better privacy guarantees than the synchronous setting
since the attacker has less information (i.e., the timing of the
events) in this case. Note that differential privacy considers
the worst-case scenario. In the synchronous setting, when the
attacker detects the activity of a node at time 0, it can infer that
the corresponding node is the source immediately. Therefore,
the prediction uncertainty is 0 due to this worst-case event, and
the privacy guarantees are determined by the attacker’s sensing
capability α in the synchronous setting. In the asynchronous
setting, however, the attacker could not directly infer the source
solely based on the first-observed event due to the lack of
associated timing. A counter-example can be found in Fig. 1.

As a result, the structure of the network plays an important
role in the asynchronous setting. In the context of information
spreading, if two nodes are further apart, it takes more time
for the information to be spread from one to the other; this
duration gives the attacker more opportunities to differentiate
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the detected events, which leads to potentially higher privacy
loss of the source node’s identity. For instance, in the left
network of Fig. 2, considering the event S1,0, i.e., node 1’s
activity is the first observed event by the attacker in the
asynchronous setting, the probability of this event given that
the source is 6 is p

(6)
G (S1,0) ≤ (1 − α) and the probability

of this event given that the source is 1 is p
(1)
G (S1,0) ≥ α.

But in the right network, the corresponding probabilities are
p
(6)
G (S1,0) ≤ (1− α)5 and p

(1)
G (S1,0) ≥ α, which makes S1,0 a

more distinguishable event in the right network. Therefore, the
network diameter DG, as the distance measure of the whole
network, captures the potential privacy loss and becomes a key
factor of the differential privacy lower bound in (7); an example
of the relationship between the differential privacy tolerance
level bound and the network diameter is shown in Fig. 3. The
same logic is reflected on the prediction uncertainty given in
(8). The smaller the decay centrality a network has (i.e., the
nodes are more distant from each other), the more likely the
attacker can identify the source node through its observations.
Therefore, the inherent network structure imposes a certain limit
on privacy preservation concerning the source node identity,
which applies to all information spreading protocols and calls
for other privacy protection mechanisms, to be further explored
in future work.

In addition, it can be seen that as the attacker’s sensing
capability α increases the privacy guarantees decrease (i.e., δ
increases and c decreases). In particular, for an omnipresent
attacker with α = 1, we have δ = 1 and c = 0 even in the
asynchronous setting.

Finally, given (7), the lower bound of the differential privacy
level ϵ in the asynchronous setting for a given δ can be obtained
as follows

eϵ ≥ max

[(
α− δ

(1− α)DG

)
,

(
(α− δ)(n− 1)

1− α

)]
. (9)

B. Private Gossip Algorithm in the Asynchronous Setting

While the privacy guarantees of general gossip protocols are
studied in Section IV-A, in this subsection, we investigate the
private gossip algorithm (i.e., Algorithm 1 with private gossip)
in more detail. Particularly, the differential privacy level ϵ and
the prediction uncertainty c of the private gossip algorithm
for general graphs in the asynchronous setting are examined,
and closed-form expressions can be obtained owing to special

1
3

2

41/2

1/2

1/2

1/2 1/2

1/2

1/2

1/2

Fig. 4: The index of the active node inthe private gossip algorithm for a ring
graph with 4 nodes. Each node has two neighbors and the probability of it

contacting each neighboring node is 1
2

. For instance, if node 1 is active (i.e.,
the Markov chain is in state 1) at time m− 1, then the probabilities of node

2 and node 4 being active at time m are both 1
2

.

characteristics of private gossip.2. In this case, the asynchronous
setting is of more interest since there is no need for the nodes
to coordinate and perform gossip simultaneously.

In this case, since only one node is active at each time slot,
the index of the active node can be modeled as a Markov
chain with a transition probability matrix A. The (j, i)-th entry
of A, denoted by A[j, i], measures the probability of node j
contacting node i once it becomes active. Fig. 4 shows an
exemplary Markov chain of a ring graph with 4 nodes. In
addition, to facilitate the discussion, we further define another
matrix Âi as follows.

Âi[j, k] =


A[j, k], if j ̸= i,

0, if j = i and j ̸= k,

1, if j = k = i.

(10)

Remark 5. Note that Âi corresponds to the transition prob-
ability matrix of the Markov chain by setting node i as an
absorbing state (i.e., node i will not push its message to any
other nodes). Let Âm

i denote the m-th power of the matrix Âi.
Then, given the source node j, Âm

i [j, i] and Âm−1
i [j, i] are

the probabilities of node i being active at time m and m− 1,
respectively. Note that if node i is active at time m− 1, it is
active at time m with probability 1 since it is an absorbing state.
In this sense, given the source node j, the probability of node i
being active for the first time at time m is Âm

i [j, i]−Âm−1
i [j, i].

To facilitate the discussion, we introduce the following
quantity.

Definition 6. The probability of secret message spreading from
the source node j to another node i, denoted by P (j → i), is
defined as the probability that, given the source node j, node
i becomes active for the first time before the attacker observes
the first event.

Remark 6. In the asynchronous setting, P (j → i) measures
the similarity between node j and node i from the attacker’s
perspective. Intuitively, given source node j, if node i becomes
active before the attacker observes the first event, the attacker
cannot differentiate node j and node i based on its observation.
The larger the P (j → i), the more difficult it is for the attacker
to differentiate node j and node i.

2We note that only one node is active at each time instance in the private
gossip algorithm
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With such consideration, the following lemma can be proved.

Lemma 2. For the private gossip algorithm, given a general
network G with source node j and the observation model
described in Section III-C with parameter α, the probability
of secret message spreading from the source node j to another
node i for the first time is given by

P (j → i) = α
∞∑

m=0

(1−α)mÂm
i [j, i] = α(I−(1−α)Âi)

−1[j, i],

(11)
where I is an identity matrix and Âi is the transition probability
matrix defined in (10).

Proof: Please see Appendix B.
Given Lemma 2, the privacy guarantees of the private gossip

algorithm can be shown as follows.

Theorem 2. Given a general network G and the observation
model described in Section III-C with parameter α, the
private gossip algorithm is (ϵ, 0)-differentially private in the
asynchronous setting, where

ϵ = ln

(
max
j ̸=i∈V

1

α(I − (1− α)Âi)−1[j, i]

)
. (12)

The prediction uncertainty of the private gossip algorithm in
the asynchronous setting is given by

c = min
i∈V

∑
j ̸=i∈V

α(I − (1− α)Âi))
−1[j, i]. (13)

Proof: Please see Appendix C.

Remark 7. Note that ϵ = ln
(
maxj ̸=i∈V

1
P (j→i)

)
and P (j →

i) = α
∑∞

m=0(1 − α)mÂm
i [j, i]. For any m < d(j, i), it can

be verified that Âm
i [j, i] = 0. On the other hand, (1 − α)m

decreases exponentially. In this sense, P (j → i) is supposed
to decrease (and therefore ϵ will increase) as d(j, i) increases,
which verifies our discussion about the importance of the
network structure (i.e., diameter) on differential privacy.

In particular, given the (ϵ, 0)-differential privacy guarantee,
the corresponding tolerance level δ(ϵ′) can be obtained for any
ϵ′ > 0 using the following corollary.

Corollary 1. Any (ϵ, 0)-differentially private mechanism is
also (ϵ′, δ(ϵ′))-differentially private for all ϵ′ > 0, where

δ(ϵ′) = Φ

(
− ϵ′

µ1
+

µ1

2

)
− eϵ

′
Φ

(
− ϵ′

µ1
− µ1

2

)
, (14)

and µ1 = −2Φ−1( 1
1+eϵ ).

Proof: Please see Appendix D.

C. Numerical Illustration

In this subsection, we examine the privacy guarantees of the
private gossip algorithm numerically for several well-known
graph topologies.3

Fig. 5 and Fig. 6 show the differential privacy level ϵ
and prediction uncertainty c of the private gossip algorithm,
respectively. In particular, in a complete graph, every node is
connected to all the other nodes in the graph. A star graph is
a graph in which a central node is connected to all the other
nodes and the central node is their only neighbor. A ring graph
is a graph that consists of a single cycle in which every node
has exactly two edges incident with it. For the grid graph, we
consider a two-dimensional square grid. These four graphs
are deterministic (i.e., given the number of nodes, the graph
structures are fixed). We also consider three random graphs,
i.e., the regular graph, the Erdős Rényi (ER) graph, and the
Geometric Random (GR) graph. An ER graph is a graph in
which each node is randomly connected to another node with
a certain probability. A GR graph is constructed by randomly
placing the nodes in some metric space with the euclidean
distance and connecting two nodes by an edge if and only
if their distance is less than a specified parameter. A regular
graph is a graph in which every node is randomly connected to
a fixed number of nodes. In our simulation, we generate these
three random graphs using the NetworkX package in Python
such that the average degrees are 10.

It can be observed that as the number of nodes increases,
the differential privacy level ϵ increases for all the graphs. On
the one hand, in general, as the number of nodes increases, the
probability of each node i being active given the source node
j (and therefore P (j → i)) decreases.4. On the other hand, the
inequality in (2) should be satisfied for any pair of nodes. That
being said, as the number of nodes increases, more inequalities
need to be satisfied, which enforces a larger ϵ.

For prediction uncertainty, different graphs exhibit different
trends. One possible reason is that for the complete graph
and the regular graph, almost all the nodes are the same from
the attacker’s viewpoint. As a result, as the number of nodes
increases, it becomes more difficult to identify the source node.
On the other hand, since prediction uncertainty considers the
worst-case scenario, as the number of nodes increases, the
probability that there exists a node different from the other
nodes (e.g., with a small degree) increases in the ER graph and
the GR graph. As a result, the prediction uncertainty decreases
as the number of nodes increases.

Given the same number of nodes, it can be seen from Fig.
5 and Fig. 6 that the regular graph and the complete graph (a
special regular graph with the degree of n− 1) perform well
in terms of both differential privacy and prediction uncertainty.
This may be due to the fact that in these graphs every node
has the same degree while none of the nodes are distant from

3We note that unless otherwise noted, the differential privacy level and
prediction uncertainty in the figures are the numerical evaluations of ϵ and c
derived in the theorems.

4Note that in the private gossip, only one node is active at each time slot
and the active node randomly selects its neighbors to push the message
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Fig. 10: c v.s. rewiring probability
(n = 500, α = 0.5)

the others. As a result, all the nodes look the same from the
attacker’s perspective. It is worth mentioning that despite that
the ring graph and the grid graph can be considered as regular
graphs with degrees of 2 and 4, respectively,5 the diameters of
these two graphs are large (which also leads to small decay
centrality since a large diameter indicates a large shortest path
length between the nodes). Therefore, the attacker can still
differentiate two distant nodes. Fig. 7 and Fig. 8 show the
diameters and the decay centrality of the aforementioned four
graphs for comparison.

We also investigated the differential privacy and prediction
uncertainty performance of small-world graphs. Particularly, the
impact of edge rewiring probability on Watts-Stongatz small-
world graphs [49] is examined. To generate a Watts-Stongatz
graph, a ring graph with 500 nodes is first created. Then, each
node in the ring is connected with its 10/20/50 nearest neighbors.
Finally, each edge (x, y) in the graph is replaced by another
edge (x, z) with a rewiring probability, where z is randomly
sampled from the node set V . Considering that regular graphs
provide good differential privacy and prediction uncertainty
performance, we also consider the impact of edge rewiring on
regular graphs. Similarly, we first generate a random regular
graph6 with 500 nodes and a degree of 10/20/50. Then, the
same edge rewiring as that for Watts-Stongatz graphs is applied.
The results are presented in Fig. 9 and Fig. 10.

As the rewiring probability increases, more irregularity is
introduced. For regular graph with rewiring, it can be observed
that the differential privacy level ϵ increases and the prediction
uncertainty c decrease with the increase of rewiring probability,
which supports our conjecture that regular graph provides good
privacy performance. For Watts-Stongatz graphs, however, the
differential privacy level ϵ decreases as the rewiring probability
increases. This is mainly because the ring structure has a

5Strictly speaking, the 2-dimensional square grid graph is not regular.
However, it is close to a regular graph since most of the nodes have the
same degree of 4.

6Note that there are usually multiple regular graphs with the same degree,
given a fixed number of nodes.

large diameter, the diameter quickly decreases as the rewiring
probability increases, which leads to a smaller ϵ. For the
prediction uncertainty, as we can see in Fig. 6 and Fig. 7,
the prediction uncertainty of the ring graph remains almost
the same as the number of nodes (and therefore the diameter)
increases. It seems that the improvement in diameter cannot
fully compensate for the negative impact of the introduced
irregularity. As a result, the prediction uncertainty c decreases
as the rewiring probability increases.

In summary, given the number of nodes, a graph usually
has a smaller ϵ and a larger c (and therefore better differential
privacy and prediction uncertainty) if it has a small diameter
and all the nodes have similar degrees.

D. Privacy Guarantees of the Private Gossip Algorithm within
a Candidate Set

Since both differential privacy and prediction uncertainty
consider the worst-case scenario, they may not necessarily
be good measures for source anonymity. To further illustrate
this idea, the differential privacy and prediction uncertainty of
the private gossip algorithm within a candidate set is examined
in this subsection. More specifically, the following theorem
can be proved.

Theorem 3. Given a general network G and the observation
model described in Section III-C with parameter α, the private
gossip algorithm is (ϵ, 0)-differentially private within the
candidate set Q , where

ϵ = ln

(
max

k/∈Q ,j ̸=i∈Q

{
1

α(I − (1− α)Âi)−1[j, i]
,

(I − (1− α)Âk)
−1[j, k]

(I − (1− α)Âk)−1[i, k]

})
.

(15)

The prediction uncertainty of the private gossip algorithm
within the candidate set Q is given by

c = min
i∈Q ,k/∈Q

{ ∑
j ̸=i∈Q

α(I − (1− α)Âi)
−1[j, i],

∑
j ̸=i∈Q α(I − (1− α)Âi)

−1[j, k]

α(I − (1− α)Âi)−1[i, k]

}
.

(16)

Proof: Please see Appendix E.

Remark 8. We note that in (15) (similarly (16)), the first term
corresponds to the events for which the attacker observes the
activities from the nodes in the candidate set before those from
the nodes outside the candidate set. Therefore, it is similar to
that in Theorem 2. The second term corresponds to the events
for which the attacker first observes the activities from the
nodes outside the candidate set.

Fig. 11 and Fig. 12 show the differential privacy level ϵ and
prediction uncertainty c of the private gossip algorithm for the
three random graphs within a candidate set, respectively. The
average degrees of all the graphs are set to 10. In particular, the
candidate set Q contains a randomly selected source node and
its 1-hop neighbors. 15,000 Monte Carlo runs are performed
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for each graph, and the average ϵ and c within the candidate
set Q are presented.

Different from the results in Fig. 5 and Fig. 6, the GR graph
performs better than the ER graph and the regular graph. This
is because, in the GR graph, there exist some clusters that
are well connected locally. In addition, the 1-hop neighboring
nodes of a node are likely to be in the same cluster. As a result,
it is more difficult for the attacker to distinguish two nodes in
the candidate set for the GR graph.

Remark 9. The above results show that the original differential
privacy and prediction uncertainty may have limitations in mea-
suring the privacy guarantees of gossip protocols. Particularly,
Fig. 5 and Fig. 6 show that the regular graph has a smaller
differential privacy level ϵ and a larger prediction uncertainty c
than the GR graph. However, it does not necessarily mean that
the regular graph always provides better privacy protection.
Fig. 11 and Fig. 12 show that the GR graph performs better
than the regular graph in terms of differential privacy and
prediction uncertainty within the 1-hop neighbors. In practice,
the attacker can often obtain some side information about the
source. For instance, the source of the leaked information about
a company usually has a close connection to the company. In
this case, the source may not be interested to hide itself among
all the nodes in the whole network, but instead among those
closely related to the company. That being said, if the source
node cares more about hiding itself among a subset of nodes
(e.g., its 1-hop neighbors), differential privacy and prediction
uncertainty within the corresponding candidate set may serve
as better privacy metrics.

Fig. 13 and Fig. 14 show the impact of average degree on
ϵ and c for the three random graphs. It can be observed that
as the average degree increases, ϵ’s of the ER graph and the
regular graph first increase and then decrease. Intuitively, ϵ
depends on two parameters: the size of the candidate set and
the connectivity of the graphs. As the average degree increases,
the size of the candidate set becomes larger, while the graphs

become better connected. When the average degree is small,
the impact of the candidate set size dominates that of the
connectivity. As a result, increasing the average degree leads to
a larger ϵ. When the average degree is large enough, the impact
of the connectivity dominates that of the candidate set size.
Therefore, a larger average degree corresponds to a smaller
ϵ. The same analysis can be applied to prediction uncertainty.
On the other hand, for the GR graph, as the average degree
increases, the number of nodes in the candidate set increases.
Since the nodes in the candidate set are usually well connected
(like a complete graph), it is similar to the complete graph with
an increasing number of nodes. As a result, the trends of the
curves for the GR graph are similar to those of the complete
graph in Fig. 5 and Fig. 6.

V. PRIVACY-SPREADING TRADEOFF OF GOSSIP PROTOCOLS
IN WIRELESS NETWORKS

Up to this point, the communications among the nodes in
the network are assumed to be perfect. In many real-world
applications, however, the information spreading between two
nodes may be realized through wireless communications [3],
[50]. With such consideration, the privacy guarantees of gossip
protocols in wireless networks are investigated in this section.
It is assumed that the communications between the network
nodes and between the attacker and its deployed sensors are
prone to errors due to various interferences. To simplify the
analysis, a failure probability is considered in this setting: Due
to interferences, the communications will fail with a probability
of f between two nodes during the gossip step, and it is
assumed that the attacker fails to receive a report from any of
its deployed sensors about the detected events with the same
probability f .7 Note that the failure probability f , induced
by detrimental effects in wireless channels, is different from
the detection probability α that is due to the limitation in
the eavesdropping capability (e.g., computation power) of the
sensors. In this case, the privacy guarantees of gossip protocols
are characterized by the following theorem.

Theorem 4. Considering the same setting as in Theorem 1, with
the additional constraint that both the legitimate communication
and the adversarial reporting fail with a probability f , the
gossip-based protocols can guarantee (ϵ, δ)-differential privacy
with δ ≥ α(1− f) and c-prediction uncertainty with c = 0 in
the synchronous setting, and δ ≥ max[α(1−f)−eϵ(1−α(1−
f))DG , α(1 − f) − eϵ 1−α(1−f)

n−1 ] and c ≤ min
i∈V

C1−α(1−f)(i)

α(1−f) in
the asynchronous setting.

The privacy guarantees of the private gossip algorithm are
characterized in the following theorem.

Theorem 5. Consider the same setting as in Theorem 2, with
the additional constraint that both the legitimate communication
and the adversarial reporting fail with a probability f , the

7As the first work in this area, this simplified assumption is adopted to
facilitate the characterization of the tradeoff between privacy and spreading
speed. More realistic assumption concerning two different but correlated failure
probabilities [51] warrants further study.
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private gossip algorithm is (ϵ, 0)-differentially private in the
asynchronous setting, where

ϵ = ln

(
max
j ̸=i∈V

1

α(1− f)(I − (1− α(1− f))Âi)−1[j, i]

)
.

(17)
The prediction uncertainty of the private gossip algorithm in
the asynchronous setting is given by
c = min

i∈V

∑
j ̸=i∈V

α(1− f)(I − (1− α(1− f)Âi))
−1[j, i]. (18)

The proofs of the above theorems readily follow from the
previous results and the details are omitted in the interest of
space.

Adding artificial noise is a typical way to enhance privacy in
practical applications [47]. In wireless networks, interference
is a natural source for privacy enhancement as it hampers the
attacker’s observations of the network activities, which can
be further strengthened through approaches such as friendly
jamming [52]. However, the information spreading process is
impeded as well in such scenarios. The information spreading
time of the standard and the private gossip protocols, in this
case, is given below.

Theorem 6. In a wireless network G in which the communi-
cations fail with a probability of f , we have

1) In the synchronous setting, the private gossip takes
CG/(1− f) rounds on average to inform all nodes in the
network, where CG is the cover time of a random walk
in network G.

2) In the asynchronous setting, the private gossip takes
CG/(1− f) time on average, while the standard gossip
takes Tas/(1 − f) time on average to finish spreading,
where Tas is the spreading time of standard gossip when
the communication is perfect.

Proof: Please see Appendix F.

Remark 10. For standard gossip in the synchronous setting,
multiple random walks can exist during the spreading process,
which renders the analysis of unreliable spreading challenging
in general networks. But we conjecture that a similar result as
in the synchronous setting may hold.

The above results indicate a trade-off between privacy and
the spreading speed of gossip protocols, which is further
explored through simulations below. In particular, following
the existing literature in information spreading (e.g., [53],
[54]), ER networks and GR Networks with a total number
of n = 100000 nodes and average node degree of 10 are
considered. Each point in the following figures is obtained
through simulations with 5 network instances and 100 Monte
Carlo runs for each instance. The average 90% spreading time
is considered [50]. The privacy-spreading tradeoffs for ER
and GR networks for the standard gossip algorithm in the
synchronous and asynchronous settings are shown in Fig. 15
and Fig. 16, respectively. It is assumed that α = 0.5 and privacy
budget ϵ = 1 without loss of generality. The corresponding
privacy lower bounds δ in the x-axis are calculated for the
considered ER and GR networks using Theorem 4 given the

f
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Sweet Operation Points

Fig. 15: DP v.s. spreading speed in
the synchronous setting

f
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Sweet Operation Points

Fig. 16: DP v.s. spreading speed in
the asynchronous setting

failure probability f (one-to-one correspondence). Similar
results are obtained for the private gossip algorithm and
omitted here due to the space constraint.

Remark 11. Through analysis, it can be seen that the spreading
time is inversely proportional to 1− f while the privacy lower
bound δ is proportional to 1−f . From Fig. 15 and Fig. 16, it can
be seen that when δ increases from 0.05 to 0.1, for GR networks,
the average spreading time decreases from around 3600 and
2600 to 1800 and 1300 in the synchronous and asynchronous
settings, respectively. This means that we can trade a small
loss of privacy for dramatic improvement in spreading time.
On the other hand, for ER networks or GR networks with
large δ (small f ), the average spreading time increases slowly
as δ decreases. Therefore, the privacy guarantees of gossip
protocols can be strengthened with a small loss of spreading
time (e.g., the sweet operation points in Fig. 15 and Fig. 16),
which suggests that methods like adding artificial noise can
be useful in privacy-preserving information spreading.

VI. PRIVACY OF GOSSIP PROTOCOLS IN DELAYED
MONITORING

The analyses above assume that the attacker monitors the
whole information spreading process right from the beginning.
In practice, the attacker may not be able to monitor the ongoing
communications in the network as soon as the spreading
process starts. Therefore, in this section, we try to quantify
the differential privacy of general gossip protocols when the
monitoring is delayed. To avoid complications, it is assumed
that the communications between nodes and the reception
at the attacker are perfect. In addition, the attacker knows
the global time in the synchronous setting or the number of
communication that has occurred in the asynchronous setting
since the beginning of information spreading.

Theorem 7. Considering the same setting as in Theorem 1,
if the attacker starts monitoring the information spreading
process t rounds (or t steps of gossip communications in the
asynchronous case) after it begins and t < DG, the gossip-
based protocols can guarantee (ϵ, δ)-differential privacy with
δ ≥ 1

dt
max

α in the synchronous setting. In the asynchronous
setting

δ ≥max

[
1

dtmax(t+ 1)!
α− eϵ(1− α)DG−t,

1

dtmax(t+ 1)!
α− eϵ

1− 1
dt
max(t+1)!α

n− 1
, 0

]
,

(19)
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in which dmax = maxi∈V di is the largest node degree.

Proof: Please see Appendix G.

Remark 12. Gossip protocols are not able to protect the
source’s identity effectively during the early stage of infor-
mation spreading. As the spreading process continues, more
and more randomness is introduced, leading to stronger and
stronger privacy. Therefore, in delayed monitoring, it becomes
more difficult for the attacker to identify the source node as
the delay increases.

Theorem 8. Given a general network G and the observation
model described in Section III-C with parameter α, if the
attacker starts monitoring the information spreading process t
steps of gossip communications after it begins, the private gos-
sip algorithm is (ϵ, 0)-differentially private in the asynchronous
setting, where
eϵ =

max
i∈V,j ̸=z∈V

At[j, i] +
∑

k ̸=i∈V At[j, k]α(I − (1− α)Âi)
−1[k, i]

At[z, i] +
∑

k ̸=i∈V At[z, k]α(I − (1− α)Âi)−1[k, i]
.

(20)
The prediction uncertainty of the private gossip algorithm in
the asynchronous setting is given by

c = min
i∈V,z∈V

{
∑

j ̸=i∈V [At[j, z] +
∑

k ̸=z∈V At[j, k]α(I − (1− α)Âz)
−1[k, z]]

At[i, z] +
∑

k ̸=z∈V At[i, k]α(I − (1− α)Âz)−1[k, z]

}
.

(21)

Proof: Please see Appendix H.

Remark 13. Note that in (20), α(I − (1 − α)Âi)
−1[k, i] =

P (k → i) = α
∑∞

m=0(1 − α)mÂm
i [k, i]. For any k ̸=

i, Â0
i [k, i] = I[k, i] = 0. Therefore,

α(I − (1− α)Âi)
−1[k, i] = α

∞∑
m=1

(1− α)mÂm
i [k, i]

≤ α

∞∑
m=1

(1− α)m = 1− α.

(22)

As a result,
At[j, i] +

∑
k ̸=i∈V

At[j, k]α(I − (1− α)Âi)
−1[k, i]

< At[j, i] +
∑

k ̸=i∈V

At[j, k] = 1.
(23)

On the other hand,
At[z, i] +

∑
k ̸=i∈V

At[z, k]α(I − (1− α)Âi)
−1[k, i]

> At[z, i] min
k ̸=i∈V

α(I − (1− α)Âi)
−1[k, i]

+
∑

k ̸=i∈V

At[z, k]α(I − (1− α)Âi)
−1[k, i]

≥ min
k ̸=i∈V

α(I − (1− α)Âi)
−1[k, i].

(24)

Comparing Eq. (20) with Eq. (12), we can see that the ϵ in
Theorem 8 is smaller than that in Theorem 2, i.e., in delayed
monitoring, the differential privacy guarantee is enhanced.
Similar result can be obtained for prediction uncertainty.
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Fig. 17: ϵ v.s. delay time (α = 0.5)
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Fig. 18: c v.s. delay time (α = 0.5)

Fig. 17 and Fig. 18 show the impact of delay time t on the
differential privacy level ϵ and the prediction uncertainty c for
different graphs, respectively. In addition to the synthetically
generated graphs with 500 nodes, we also examine a real-world
network “Ego-Facebook” which consists of friends lists from
4,039 Facebook users [55]. It can be observed that as the
delay time increases, ϵ (c) decreases (increases) significantly
for the ER graph, the regular graph and the complete graph.
This is because, in these graphs, within the delay time t, the
information is quickly spread to the rest of the nodes in the
graph, which makes it difficult for the attacker to identify
the source. For the GR graph and “Ego-Facebook”, however,
during the delay time, it is likely that the information remains
in the same cluster that the source node belongs to. As a result,
it is still not difficult for the attacker to distinguish the nodes
across clusters.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, the privacy guarantees of gossip-based protocols
in general networks are investigated. Bounds on differential
privacy and prediction uncertainty of gossip protocols in general
networks are obtained. For the private gossip algorithm, the
differential privacy and prediction uncertainty guarantees are
derived in closed form. It is found that these two metrics are
closely related to some key network structure parameters, such
as network diameter and decay centrality, in the (arguably)
more interesting asynchronous setting. Moreover, considering
that differential privacy and prediction uncertainty may be
restrictive in some scenarios, the relaxed variants of these two
metrics are proposed. In wireless networks, through a simplified
modeling for unreliable communications, the tradeoff between
privacy and spreading efficiency is revealed, and it is suggested
that natural or artificial interference can enhance the privacy
of gossip protocols with the cost of a decrease in spreading
speed. Finally, in delayed monitoring, it is verified that the
privacy of gossip protocols is enhanced as the delayed time
increases, and the corresponding effect is quantified.

Many interesting problems remain open in this line of
research besides those already mentioned above. Investigating
more appropriate privacy metrics and designing more effec-
tive privacy-aware gossip protocols for different observation
models (e.g., network snapshot [8]) and network structures are
interesting future directions.

APPENDIX A
PROOF OF THEOREM 1

Proof: First, for the synchronous setting, let Si,0 be the
event that node i’s activity is observed by the attacker’s sensors
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at time 0. Then, the probability that such an event happens
given the source node is i is p

(i)
G (Si,0) = α. If the source node

is any other node j ̸= i, p(j)G (Si,0) = 0 since node i cannot
initialize a communication if it is not a source node at time 0.
Therefore, δ ≥ α and c = 0.

In the asynchronous setting, let Si,0 be the event that
node i’s activity is observed by the attacker’s sensors
as its first observed event. It can be seen that, if the
source node is i, then p

(i)
G (Si,0) = p

(i)
G (Si,0|Ti,0)p

(i)
G (Ti,0) +

p
(i)
G (Si,0|T i,0)p

(i)
G (T i,0) ≥ α, where Ti,0 stands for the event

that the source node is detected during its first communication.
If the source node is j, we can consider the following event,
denoted as Od(i,j): there is no communication detected by the
sensors in the network after d(i, j) gossip actions have been
executed from the beginning. Then we have
p
(j)
G (Si,0) = p

(j)
G (Si,0

⋂
Od(i,j)) + p

(j)
G (Si,0

⋂
Od(i,j))

= p
(j)
G (Si,0

⋂
Od(i,j))

≤ p
(j)
G (Od(i,j)) = (1− α)d(i,j),

(25)

where the second equality is due to the fact that Si,0
⋂
Od(i,j) =

∅, as it takes at least d(i, j) communications for the information
to be delivered to node i from node j. Since p

(i)
G (Si,0) ≥ α,

by applying Lemma 1, we have
δ ≥ max

i,j
(α− eϵ(1− α)d(i,j)) = α− eϵ(1− α)DG . (26)

On the other hand, since
∑

j∈V p
(i)
G (Sj,0) = 1, there exists a

node l ∈ V such that
p
(i)
G (Sl,0) ≤

1

n− 1

∑
j∈V,j ̸=i

p
(i)
G (Sj,0)

=
1− p

(i)
G (Si,0)

n− 1
≤ 1− α

n− 1
.

(27)

This implies δ ≥ α− eϵ 1−α
n−1 . By Eq. (26), we have

δ ≥ max

[
α− eϵ(1− α)DG , α− eϵ

1− α

n− 1

]
. (28)

Meanwhile, as we have p
(j)
G (Si,0) ≤ (1−α)d(i,j), the detection

uncertainty can be calculated as

c = min
i,S

(∑
j ̸=i p

(j)
G (S)

p
(i)
G (S)

)
≤ min

i

∑
j ̸=i(1− α)d(i,j)

α

= min
i∈V

C1−α(i)

α
.

(29)

APPENDIX B
PROOF OF LEMMA 2

Proof: Let Pm(j → i) denote the probability that node i is
active at time m for the first time before the attacker observes
the first event given the source node j. Then we have

P (j → i) =

∞∑
m=1

Pm(j → i). (30)

Recall from Remark 5 that the probability of node i being
active at time m for the first time is Âm

i [j, i] − Âm−1
i [j, i].

Therefore, we have
Pm(j → i) = (1− α)m[Âm

i [j, i]− Âm−1
i [j, i]]. (31)

Plugging (31) into (30) yields

P (j → i) =
∞∑

m=1

(1− α)m[Âm
i [j, i]− Âm−1

i [j, i]]

=
∞∑

m=1

(1− α)mÂm
i [j, i]−

∞∑
m=1

(1− α)mÂm−1
i [j, i]

=
∞∑

m=1

(1− α)mÂm
i [j, i]−

∞∑
m=1

(1− α)m+1Âm
i [j, i]

− (1− α)Â0
i [j, i]

=
∞∑

m=1

α(1− α)mÂm
i [j, i]− (1− α)I[j, i]

= α
∞∑

m=0

(1− α)mÂm
i [j, i].

(32)
Since Âi is a right stochastic matrix, it is known that its
eigenvalues |λÂi

| ≤ 1. Therefore, the eigenvalues of (1 −
α)Âi are strictly less than 1. As a result, (32) can be written
alternatively as

P (j → i) = α
∞∑

m=0

(1− α)mÂm
i [j, i]

= α(I − (1− α)Âi)
−1[j, i],

(33)

which completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Proof: Let Si,0 denote the event such that node i’s activity
is observed by the attacker as its first observation. Then, for
any j ̸= i we have

pjG(Si,0) = P (j → i)piG(Si,0) ≤ piG(Si,0). (34)
Some discussions about (34) are given as follows. Given

the source node j, the event Si,0 happens only if: 1) node i
becomes active for the first time before the attacker observes
its first event (otherwise Si,0 will not happen since node i will
not perform gossip before it becomes active); 2) the attacker
observes node i’s activity as its first observation after node i
becomes active for the first time. The probability of part 1)
is P (j → i) by its definition. Furthermore, for private gossip,
at each time slot, only one node is active. In this case, the
probability of part 2) is the same as piG(Si,0).

On the other hand, by Lemma 2

piG(Si,0) =
1

P (j → i)
pjG(Si,0)

=
1

α(I − (1− α)Âi)−1[j, i]
pjG(Si,0).

(35)

Combining (34) and (35) yields

pjG(Si,0) ≤ piG(Si,0) =
1

P (j → i)
pjG(Si,0)

≤ max
j ̸=i∈V

1

α(I − (1− α)Âi)−1[j, i]
pjG(Si,0).

As a result, the condition in Definition 1 (i.e., piG(Si,0) ≤
eϵpjG(Si,0) and pjG(Si,0) ≤ eϵpiG(Si,0) hold for any pair of
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i ̸= j ∈ V ) is satisfied for any ϵ such that

eϵ ≥ max

{
1, max

j ̸=i∈V

1

α(I − (1− α)Âi)−1[j, i]

}
= max

j ̸=i∈V

1

α(I − (1− α)Âi)−1[j, i]
.

Since a smaller ϵ indicates better privacy, we have

eϵ = max
j ̸=i∈V

1

α(I − (1− α)Âi)−1[j, i]
. (36)

Taking logarithm on both sides of (36) gives the results in
Theorem 2.

Regarding the prediction uncertainty, we have
pG(I0 ̸= {i}|Si,0)
pG(I0 = {i}|Si,0)

=

∑
j ̸=i∈V p

(j)
G (Si,0)

p
(i)
G (Si,0)

=

∑
j ̸=i∈V α(I − (1− α)Âi)

−1[j, i]p
(i)
G (Si,0)

p
(i)
G (Si,0)

=
∑

j ̸=i∈V

α(I − (1− α)Âi)
−1[j, i].

(37)

For any k ̸= i ∈ V , it can be shown that
pG(I0 ̸= {i}|Sk,0)
pG(I0 = {i}|Sk,0)

=

∑
j ̸=i∈V p

(j)
G (Sk,0)

p
(i)
G (Sk,0)

=
p
(k)
G (Sk,0) +

∑
j ̸=i,k∈V p

(j)
G (Sk,0)

p
(i)
G (Sk,0)

=
p
(k)
G (Sk,0) +

∑
j ̸=i,k∈V α(I − (1− α)Âk)

−1[j, k]p
(k)
G (Sk,0)

α(I − (1− α)Âk)−1[i, k]p
(k)
G (Sk,0)

=
1 +

∑
j ̸=i,k∈V α(I − (1− α)Âk)

−1[j, k]

α(I − (1− α)Âk)−1[i, k]

≥
∑

j ̸=k∈V α(I − (1− α)Âk)
−1[j, k]

α(I − (1− α)Âk)−1[i, k]

≥
∑

j ̸=k∈V

α(I − (1− α)Âk)
−1[j, k] =

pG(I0 ̸= {k}|Sk,0)
pG(I0 = {k}|Sk,0)

,

(38)
where the first and the second inequality both hold when
P (i→ k) = α(I − (1− α)Âk)

−1[i, k] = 1.
As a result.

c = min
i,S⊆S

(
pG(I0 ̸= {i}|S)
pG(I0 = {i}|S)

)
= min

i

∑
j ̸=i∈V

α(I − (1− α)Âi)
−1[j, i],

(39)

which completes the proof.

APPENDIX D
PROOF OF COROLLARY 1

Proof: The proof of Corollary 1 readily follows from the
following results on Gaussian differential privacy.

Theorem. [56] A mechanism is µ-Gaussian differentially
private if and only if it is (ϵ, δ(ϵ))-differentially private for all
ϵ ≥ 0, where

δ(ϵ) = Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
. (40)

Given any (ϵ, 0)-differentially private mechanism, it can be
shown that it is also µ1-Gaussian differentially private with

µ1 = −2Φ−1( 1
1+eϵ ). Applying µ1 and the above theorem

completes the proof. Interested readers may refer to [56] for
more details.

APPENDIX E
PROOF OF THEOREM 3

Proof: Let Si,0 denote the event such that node i’s activity
is observed by the attacker as its first observation. For any
j ̸= i ∈ Q , similar to the proof of Theorem 2, we have
p
(j)
G (Si,0) = α(I − (1− α)Âi)

−1[j, i]p
(i)
G (Si,0) ≤ p

(i)
G (Si,0),

(41)
and

p
(i)
G (Si,0) =

1

α(I − (1− α)Âi)−1[j, i]
p
(j)
G (Si,0). (42)

For any k /∈ Q and j ̸= i ∈ Q , we have
p
(j)
G (Sk,0) = α(I − (1− α)Âk)

−1[j, k]p
(k)
G (Sk,0), (43)

and
p
(i)
G (Sk,0) = α(I − (1− α)Âk)

−1[i, k]p
(k)
G (Sk,0), (44)

Therefore,

p
(j)
G (Sk,0) =

α(I − (1− α)Âk)
−1[j, k]

α(I − (1− α)Âk)−1[i, k]
p
(i)
G (Sk,0). (45)

As a result, following the same analysis as that in the proof of
Theorem 2, we have

eϵ = max
k/∈Q ,j ̸=i∈Q

{
1

α(I − (1− α)Âi)−1[j, i]
,

(I − (1− α)Âk)
−1[j, k]

(I − (1− α)Âk)−1[i, k]

}
.

(46)

Taking logarithm on both sides of (46) gives the result in
Theorem 3.

Regarding the prediction uncertainty, recall that for any
S ⊆ S, we have

pG(I0 ̸= {i}|S)
pG(I0 = {i}|S)

=

∑
j ̸=i∈Q p

(j)
G (S)

p
(i)
G (S)

. (47)

Similar to the proof of Theorem 2, for any event Si,0 ⊆ S and
j ̸= i ∈ Q , it can be shown that

pG(I0 ̸= {i}|Si,0)
pG(I0 = {i}|Si,0)

=

∑
j ̸=i∈Q p

(j)
G (Si,0)

p
(i)
G (Si,0)

=

∑
j ̸=i∈Q α(I − (1− α)Âi)

−1[j, i]p
(i)
G (Si,0)

p
(i)
G (Si,0)

=
∑

j ̸=i∈Q

α(I − (1− α)Âi)
−1[j, i].

(48)

For any event Sk,0 ⊆ S such that k ∈ Q ,
pG(I0 ̸= {i}|Sk,0)
pG(I0 = {i}|Sk,0)

≥ pG(I0 ̸= {k}|Sk,0)
pG(I0 = {k}|Sk,0)

. (49)

For any event Sk,0 ⊆ S such that k /∈ Q , we have
pG(I0 ̸= {i}|Sk,0)
pG(I0 = {i}|Sk,0)

=

∑
j ̸=i∈Q p

(j)
G (Sk,0)

p
(i)
G (Sk,0)

=

∑
j ̸=i∈Q α(I − (1− α)Âk)

−1[j, k]p
(k)
G (Sk,0)

α(I − (1− α)Âk)−1[i, k]p
(k)
G (Sk,0)

=

∑
j ̸=i∈Q α(I − (1− α)Âk)

−1[j, k]

α(I − (1− α)Âk)−1[i, k]
.

(50)
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Therefore,

c = min
i∈Q ,k/∈Q

{ ∑
j ̸=i∈Q

α(I − (1− α)Âi)
−1[j, i],

∑
j ̸=i∈Q α(I − (1− α)Âi)

−1[j, k]

α(I − (1− α)Âi)−1[i, k]

}
,

(51)
which completes the proof.

APPENDIX F
PROOF OF THEOREM 6

Proof: The spreading process can be considered as a
Markov Chain with each state representing the number of
informed nodes Ninf in the graph. Let Xk ≜ {Ninf = k}
denote the k-th state of the Markov Chain. For standard gossip
in the asynchronous setting and private gossip (in both the
synchronous and the asynchronous settings), due to the fact
that only one node in the graph is active at any time during
the spreading process, the state can only move from Xk to
Xk+1 for all k ∈ {0, 1, ..., n − 1}. Each gossip action can
be considered as a Bernoulli trial (successful if a previously
uninformed node is informed). Given a failure probability of
f , the corresponding successful probability decreases by a
factor of 1/(1− f). In this sense, the expected interstate time,
which is essentially the expected time between two consecutive
successful gossip actions, is amplified by a factor of 1/(1− f).
As a result, the final expected time to reach the final state,
i.e., the expected spreading time is 1/(1 − f) times that of
the perfect communication scenario. Finally, private gossip is
a single random walk in both synchronous and asynchronous
settings, and CG is the expected time to inform all nodes in
the graph.

APPENDIX G
PROOF OF THEOREM 7

Proof: In the synchronous setting, consider two nodes i, j
such that d(i, j) = DG, and the event that node i’s activity
is observed by the attacker at the moment when it starts
monitoring, which is denoted as Si,0. Considering another node
k such that d(k, i) = t, the probability that i is informed at
round t is

p
(k)
G (i ∈ It) ≥

∏
m∈pk→i

pk→i:L(pk→i)=t

1

dm
≥ (

1

dmax
)t, (52)

where pk→i is a path from node k to node i and L(pk→i) is
the length of this path. Then p

(k)
G (Si,0) ≥ ( 1

dmax
)tα. It is clear

that p(j)G (Si,0) = 0 since it takes at least DG > t rounds for the
information to be delivered to node i from node j. Therefore,
by Lemma 1, δ ≥ ( 1

dmax
)tα.

In the asynchronous setting, again, consider two nodes i, j
such d(i, j) = DG, and let Si,0 denote the event that node i’s
activity is the first one observed by the attacker. If j is the
source node, denote the set of informed and active nodes after
t steps of communications as INAt(j). From this set, find the
node k ∈ INAt(j) that has the shortest path to node i. Clearly,
it requires at least d(k, i) (≥ (DG−t)) steps for the information

to reach node i from any node in INAt(j). Consider OINAt→i

as the event that no communication is observed by the attacker
during the process that the information flows from INAt(j)
to node i. Then,
p
(j)
G (Si,0) = p

(j)
G (Si,0

⋂
OINAt→i)

≤ p
(j)
G (OINAt→i) ≤ (1− α)d(k,i) ≤ (1− α)DG−t.

(53)
Also, considering another node l such that d(l, i) = t, the
probability that node i is informed at the tth step from the
beginning of information spreading is

p
(l)
G (i ∈ It) ≥ (

∏
m∈pl→i

pl→i:L(pl→i)=t

1

dm
)
1

t!
≥ 1

dtmaxt!
, (54)

where 1
t! is the probability that all nodes in a path pl→i

are activated (whose clocks tick) in a fixed order so that
the information reaches node i after t steps from node
l. Finally, the probability that node i is activated and its
gossip action is observed by the attacker is α

t+1 . Therefore,
p
(l)
G (Si,0) ≥ α

dt
max(t+1)! . By Lemma 1 and the same logic as

Eq. (27), we have Eq. (20).

APPENDIX H
PROOF OF THEOREM 8

Proof: Let p(i)G,t(Si,0) denote the probability of the attacker
observing Si,0 given source node i in the scenario where the
attacker starts monitoring the information spreading process t
steps of gossip communications after it begins. In this sense,
p
(j)
G,0(Si,0) is the probability of the event Si,0 if the source is

node j and the attacker starts monitoring in the beginning
of the information spreading process. In the following, the
relationship between p

(j)
G,t(Si,0) and p

(j)
G,0(Si,0) is derived, after

which similar analysis to the proof of Theorem 2 can be applied
to obtain the differential privacy level ϵ. Particularly, for any
j ∈ V , we have

p
(j)
G,t(Si,0)

=
∑
k∈V

At[j, k]p
(k)
G,0(Si,0)

= At[j, i]p
(i)
G,0(Si,0) +

∑
k ̸=i∈V

At[j, k]p
(k)
G,0(Si,0)

= At[j, i]p
(i)
G,0(Si,0)

+
∑

k ̸=i∈V

At[j, k]α(I − (1− α)Âi)
−1[k, i]p

(i)
G,0(Si,0).

(55)

Therefore, following the same analysis as that in the proof of
Theorem 2, we have

eϵ = max
i∈V,j ̸=z∈V

p
(j)
G,t(Si,0)

p
(z)
G,t(Si,0)

= max
i∈V,j ̸=z∈V

At[j, i] +
∑

k ̸=i∈V At[j, k]α(I − (1− α)Âi)
−1[k, i]

At[z, i] +
∑

k ̸=i∈V At[z, k]α(I − (1− α)Âi)−1[k, i]
.

(56)
Regarding the prediction uncertainty, recall that for any
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j ∈ V and Sz,0 ⊆ S,
p
(j)
G,t(Sz,0) = At[j, z]p

(z)
G,0(Sz,0)

+
∑

k ̸=z∈V

At[j, k]α(I − (1− α)Âz)
−1[k, z]p

(z)
G,0(Sz,0).

(57)

Then, for any i, z ∈ V , we have
pG(I0 ̸= {i}|Sz,0)
pG(I0 = {i}|Sz,0)

=

∑
j ̸=i∈V p

(j)
G,t(Sz,0)

p
(i)
G,t(Sz,0)

=

∑
j ̸=i∈V [At[j, z] +

∑
k ̸=z∈V At[j, k]α(I − (1− α)Âz)

−1[k, z]]

At[i, z] +
∑

k ̸=z∈V At[i, k]α(I − (1− α)Âz)−1[k, z]
,

(58)
which completes the proof.
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