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Abstract— Spatiotemporal patterns of spike trains convey
critical information in a biological neural network. Second-
order memristive devices, whose internal state variables offer
short- and long-term temporal dynamics, have been employed
to natively decode the temporal correlation of spiking patterns
through bio-realistic implementation of synaptic learning rules.
In this work, we demonstrate that a single artificial post-
synaptic neuron equipped with an array of second-order
memristive synapses can localize a precise spatiotemporal firing
pattern, which repeats irregularly within an equally dense
background of Poisson spiking events, in an unsupervised
fashion.
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I. INTRODUCTION

In biological networks, sparse, binary spiking events carry
critical information and induce synaptic plasticity, allowing
the system to achieve remarkable processing and learning
capabilities while consuming little energy. Taking inspiration
from biology, spiking neural networks (SNNs) are promising
for the efficient implementation of neural networks. However,
synaptic learning rules, such as spike-timing dependent
plasticity (STDP), typically requires complex circuit design to
implement and induces significant overhead in area and power
consumption. Second-order memristive devices[ 1], where the
evolution of the second-order state variable natively possesses
the required temporal dynamics, can bio-realistically emulate
synaptic plasticity with simple pulses, achieving synaptic
functions in a compact and efficient manner. Memristor-based
networks with STDP function have been employed for
temporal information processing, including correlation pattern
detection[2, 3], synaptic connection pattern reconstruction[4,
5] and coincidence detection[6].

In biology, repeated occurrence of precise spatiotemporal
patterns has been detected across cortical regions and is
believed to encode critical information for downstream
processing[7-9]. Yet, it is computationally expensive to
extract the spiking patterns from a very noisy background.
Surprisingly, it has been shown theoretically that a single post-
synaptic neuron can learn through STDP rule to identify the
repeated precise pattern with high fidelity and selectivity[10].
In this article, we aim to demonstrate how this information
processing capability can be realized by a second-order
memristor network in a bio-plausible fashion with device-
model based simulation. The effects of device non-idealities
on the detection accuracy will also be investigated.

II. SECOND-ORDER MEMRISTOR DEVICE AND MODEL

A. Second-order Memristor with STDP

STDP learning rule has been implemented in a number
of studies with memristors[12-15]. However, precise pulse
shape and overlap need to be engineered in a first-order
device due to the lack of native mechanisms to encode timing
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information. In a second-order memristor, the native
temporal dynamics of a second state variable such as the local
temperature can be used to natively implement STDP
learning rule with simple, non-overlapping pulses, as shown
in Fig. la. Additionally, the STDP time constants can be
controlled through device structure or material engineering,
for example, by inserting a heat insulation (HI) layer that can
slow down the temperature decay process. Fig. 1b shows the
measured STDP characteristics in such a tantalum-oxide
based memristor device, fabricated with and without the
inserted HI layer, respectively. The measured data can be
well-fitted curves resembling those observed in biological
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Fig. 1. (a) Top view of a fabricated second-order memristor device with
heat insulation (HI) layers. (b) Device structure, showing the switching
layer and the HI layers. (¢) Temperature profile of the device with and
without HI layers, simulated immediately after the forming pulse. (d)
Pulse schemes with pre- and post-synaptic spikes. The spontaneous
decay of the internal temperature naturally encodes the relative timing
information, and the enhanced temperature together with the input spike
collaboratively induce the conductance change. (e) Natively
implemented STDP characteristics of memristors with (blue) and
without (red) HI layers. Dots with error bar are experimental data and
the curves are fitted STDP functions.

synapses. Fig. 1¢ shows the pre- and post-spikes used in the
measurements, and the evolution of the second-order state
variable (temperature) due to Joule heating and spontaneous
relaxation, as well as the response of the first-order state
variale (conductive filament size) that natively decodes the
relative timing information in the pre- and post-spike pairs

[1].

III. MEMRISTOR NETWORK FOR SPATIOTEMPORAL PATTERN
DETECTION

A. System Overview

Fig. 2a illustrates the structure of the proposed memristor-
network. The top electrode (TE) of each memristive synapses
receives the spikes from one pre-synaptic neuron. The 1,000
pre-synaptic neurons fire spikes following Poisson
distributions at similar rates of approximately 2,000 Hz for
the entire 4.5s simulation duration. For a specific time period
(i.e. 0.5ms), a selected group of the input neurons fire a
deterministic spiking pattern instead, while the unselected
neurons keep firing Poisson spikes. In the baseline test case,
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the selected neurons correspond to 50% of the entire
population and were chosen randomly. The precise firing
pattern repeats with irregular intervals, and the average
occurance rate is 0.25 in the baseline case. Fig. 2b shows the
raster plot of 100 randomly selected neurons, with neurons 0-
49 involved in the pattern and neurons 50-99 not involved in
the pattern. The target spatiotemporal pattern (marked by red)
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Fig. 2. (a) Overview of the memristor network. A post-synaptic LIF
neuron is connected with an array of second-order memristive synapses
and receives incoming spikes from 1,000 afferents. (b) Raster plot of
100 random selected neurons, with 50 neurons in the selected group.
The 0.5ms long firing pattern is repeated at irregular intervals with
baseline probability of 0.25throughout the entire 4.5s simulation
duration. In the plot, the neurons have been re-ordered so that neurons
involved in the pattern are shown as neurons 0-49, and the patern is
marked in red. The bottom plot shows the average firing rate of all
afferents over a 0.1ms bin. The right plot displays the firing rate of
individual neurons averaged across the simulation period.

cannot be distinguished from the background “distractor”
(marked by blue) in terms of firing rate. A single post-
synaptic neuron (membrane time constant Twm=100 pus )
integrates the input spikes via the memritive synapses and
fires an action potential every time the membrane potential
crosses over the defined threshold (membrane threshold
Vu=200 in baseline case). The post-synaptic spikes are
applied to the bottom electrode of all memristive synapses.
The post-synaptic neuron is modelled as a leaky integrate and
fire (LIF) neuron using Gerstner’s Spike Response Model
[10]. The generation of the input spikes and the simulation of
the post-synaptic neuron follow the description in [11].

The second-order memristor synapses naturally evolve in
response to the applied pre- and post-synaptic spike trains.
Simulation of the synaptic weight updates is based on the
STDP function experimentally measured from devices with
HI layers, shown in Fig. 1b. Specifically, a multiplicative
STDP learning rule is used with the following parameters:
Ap=0.37, Ae=0.3, 1,=48.6us, 1¢=85.2us , n=0.01.

w—n*(w—O.Z)*Ad*exp(j—:), At <0
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B. Results

The initial weights of all synapses are set as 0.65
(normalized between 0-1), and the post-synaptic neuron fires
periodically both in and outside the pattern duration in the
initial stage, as shown in the top panel of Fig. 3b. This is due
to the largely random spiking inputs to the post-neuron. The
synaptic weights are then naturally updated according to the
relative time between pre- and post-synaptic spikes following
the observed STDP behavior. If the spike trains of the pre- and
post-synaptic neurons do not have temporal correlation, the
corresponding synaptic weight will gradually stabilize at the
value where LTP and LTD balance out each other (~0.45 for
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our device). If the pre-synaptic spikes contribute to the firing
of the post-synaptic neuron, the corresponding synaptic
weights will be strengthened. The next time the same pre-
synaptic spiking pattern arrives, the enhanced synaptic
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Fig. 3. (a) Post-synaptic spike latency, tiency, as a function of post-
neuron discharges, showing the selectivity emergence and latency
reduction over time. (b) The membrane potential of the post-synaptic
neuron in three stages: initial, middle and final. The grey boxes
represent the pattern occurance. The post-synaptic neuron transits from
periodic firing with no selectivity in the initial stage to the selective
firing only within the repeated pattern in the middle stage. From the
middle to the final stage the post-synaptic neuron firing then tracks back
to the beginning of the target pattern, further reducing tiaency.

weights will further promote the firing of the post-synaptic
neuron, therefore forming a positive feedback loop to enhance
the temporal causal relationship.

In the initial stage, the periodic post-synaptic spikes
potentiate some afferent connections, and the selection is by
chance. Among them, the connections whose corresponding
input neurons fire the same input pattern repeatedly will then
be gradually potentiated, causing the post-synaptic neuron to
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Fig. 4. (a) Evolution of device conductance distribution throughout the
simulation duration. Synapses whose input neurons are involved in the
pattern are colored as magenta, and the other synapses whose input
neurons are not involved in the pattern are colored as gray. (b) Raster plot
of the 1,000 input neurons in the final 0.1ms of the simulation. The neurons
are reordered so that neurons 0-499 are involved in the pattern and 500-
999 are not involved. The plot is color coded based on the corresponding
synaptic weights of the neurons. The grey rectangle marks the target
spatiotemporal firing pattern. (c) The post-synaptic membrane potential
induced by the input spikes shown in (b). The red vertical line and grey
box mark the beginning and the duration of the spatiotemporal pattern,
respectively.

fire more closely following the target pattern. Fig. 3 plots the
post-synaptic spike latency with respect to the beginning of
the target patterns (tutency), as a function of the post-synaptic
neuron discharges (firing). It is clearly shown that titency
changes from an initial random distribution to a concentrated
band around 0.17ms. The selectivity emerges after around
1,000 post-synaptic firing events, when the temporally
uncorrelated connections are depressed, and the correlated
ones are strengthened. As shown in the middle panel of Fig.



3b, the post-synaptic neuron ceases to respond to the other
“Interfering” background spikes, and only respond to the
target spatiotemporal pattern. Fig. 4a depicts the evolution of
synaptic weights. The weights correlating to the pattern start
to separate from the synaptic weights that are irrelevant to the
pattern. As discussed earlier, the non-patterned weights settle
down to ~0.45 after sufficient inputs. After the selectivity has
been established, every time the post-synaptic neuron spikes
within the pattern, the synapses of the afferents that fire
slightly before the post-synaptic spike will be further
potentiated, strengthening the causal relationship. Therefore,
as the learning continues, the post-synaptic neuron tracks back
through the pattern and tiaency decreases from around 0.17ms
to 0.07ms, as shown in Figs 3a,b. The latency reduction will
saturate when all the weights reach the maximum value.

The final stage of the simulation is shown in Fig. 4b and c.
The input spikes in the last 0.1ms are color-coded according
to the corresponding synaptic weights. The post-synaptic
neuron membrane potential is plotted in Fig. 4c. The synaptic
weights whose input neurons are involved in the early stage of
the pattern have been potentiated, therefore contributing to a
significant EPSP of the post-synaptic neuron and causing the
post-synaptic neuron to fire, while those whose input neurons
follow right after the post-synaptic spike are depressed to
lower values. The spatiotemporal pattern is essentially a
sequence of coincidence events. The post-synaptic neuron
learns the temporal causality through the evolution of synaptic
weights via STDP learning and acts as a coincidence detector.
When the precise coincident events of input neurons arrive,
the post-synaptic neuron will emit a spike, while it will remain
quiet during equally dense background spikes.

C. Influence of Neural Network Parameters

Here, we investigate how the system performance can be
affected by different network parameters. The evaluation is
performed based on two factors: true positive rate (TPR) and
number of false alarm spikes in the final 1.5s simulation
duration. The first one is also referred to as the hit rate, which
calculates the ratio of the patterns with post-synaptic spike and
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Fig. 5. Impact of different neural network parameters. True positive rate
(blue) and false alarm (orange) are evaluated as a function of (a) Jitter, (b)
Initial weight, (c) Percentange of spike delected within the pattern, and (d)
Proportion of afferents involved in the pattern.
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the total number of patterns. The number of false alarm
represents the number of post-synaptic spiking events outside
the pattern.

As STDP is sensitive to time, the first parameter we check
is the spike jittering. Fig. 5a shows that adding a 0.0 1ms jitter
to the input spikes reduces the TPR from 91.8% to 83.1%,
while false alarm remains zero up to 0.02ms jitter. Sharp
deterioration of system performance is observed when the
jitter increases from 0.03ms to 0.04ms. Considering the fact
that the time constant of post-synaptic membrane potential is
0.1lms, a 0.04ms jitter can impair the temporal causality
between the pre- and post-synaptic pulses, thus causing the
failure of pattern recognition.

We also analyzed the effects of initial weights. In general,
the system shows similar performance, where TPR is over 0.9
and the false alarm maintains near zero. The time it takes for
the emergence of selectivity, however, will be affected by the
initial weights. For the case of having initial weights ~0.5, the
post-synaptic neuron rapidly learns the pattern after only 250
discharges. This is due to the fact that the initial weights are
closer to the stabilization value of the non-patterned weights
(~0.45), therefore a few post-synaptic discharges can
effectively suppress the non-patterned connections. While for
higher initial weights as 0.8, it takes around 1,500 discharges
before the initial selectivity is developed. In the end, the
latency of the post-synaptic spike all converges to a similar
value in the final stage of simulation, which means different
initial weights have little influence on the system
performance. We note that cases where all initial weights are
set below 0.4 failed to converge, as the weights are too low to
initiate post-synaptic events, therefore no weight updates can
be induced.

Another parameter we studied is the portion of afferents
involved in the pattern (p, 0.5 was used as the baseline case).
With only 25% of afferents involved, the system can reliably
detect the pattern with TPR over 80%. It is interesting to find
that instead of increasing with p, TPR drops when p increased
from 0.3 to 0.45. When p= 0.3, tiatency is 0.148ms, while tiatency
is 0.092ms when the p= 0.45. Larger titency means the post-
neuron has a longer time to integrate the weighted inputs.
Additionally, longer tuwency means that a larger part of
connections within the pattern will be potentiated, and fewer
connections will be depressed. These effects combine together
and lead to better performance at p=0.35 than p=0.45. It is not
surprising to see that further increase of p beyond 0.45 leads
to an improvement of the system performance, as more
neurons repeatedly coincide to spikes within the pattern. The
learning process will therefore be accelerated, and the selected
weights can be potentiated to the maximum value within
shorter time.

D. Device Non-idealities

Finally, the impact of different device non-idealities is
evaluated. Standard deviations from 5% to 20% are added for
each simulation parameter, which cover the range of
experimentally measured variation in actual devices.

We first try to add variation to the initial weights, as the
conductance update is dependent on the current device status.
As shown in Fig. 6a, the initial weight variation has no impact
on the system performance. As long as the simulation duration
is long enough, the weights will gradually learn and reach the
same distribution in the end.



The amplitude (Ap/Ad) and time constant (tp/Td) variations
among devices in STDP updates are investigated in Figs. 6b
and c. The system shows no obvious deterioration in
performance up to 20% variation. This can be explained by
the fact that the pattern involves the firing events of a
population of neurons instead of a single neuron. The device-
to-device variations are essentially averaged out by the
population. As the post-synaptic neuron integrates the inputs
from all afferents, it is not vulnerable to the variations in
individual devices.
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Fig. 6. Impact of device non-idealities. True positive rate (blue) and false
alarm (orange) are evaluated considering the influence of (a) Initial weight
variation, (b) Device-to-device amplitude variation, (¢) Device-to-device
time constant variation, (d) Cycle-to-cycle variation.

As the conductance update of memristive devices is
stochastic in nature, we also evaluate cycle-to-cycle
variations. The system performance, as plotted in Fig. 6d, is
not affected. The weight change of devices for each spiking
event is essentially small, which means the learning is
progressive and cumulative. The final weights are determined
by the accumulation of thousands of discharges, where cycle-
to-cycle variation gets cancelled out.

These evaluations confirm the robustness of the proposed
system to the inherent device non-idealities. The memristor-
based system can thus reliably act as a coincidence detector
even with considerable amount of variations.

IV. CONCLUSION

Memristors are promising candidates to construct compact
and energy-efficient neuromorphic systems. By taking
advantage of the intrinsic dynamics of second-order state
variables, 2"-order memristors can natively implement STDP
learning rule in a bio-plausible manner. We demonstrate that
a single post-synaptic neuron when combined with second-
order memristive synapses can learn to detect a spatio-
temporal spiking pattern covered by interfering background
spikes at similar firing rates. The STDP rule selectively
potentiates the synapses of the input neurons whose firing

events contribute to the post-synaptic neuron firing and
depresses the synapses of the input neurons that tend to fire
right after the post-synaptic spike. The synapses of the other
input neurons whose spike trains has no temporally correlation
with the post-synaptic spikes gradually evolve to a value
where LTP and LTD are balanced. As the learning proceeds,
the post-synaptic neuron develops selectivity and tracks back
to the beginning of the pattern. The system also shows high
robustness to device non-idealities and different neural
network parameters.
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