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We report on an elementary quantum network of two atomic ions separated by 230m. The ions
are trapped in different buildings and connected with 520(2)m of optical fiber. At each network
node, the electronic state of an ion is entangled with the polarization state of a single cavity photon;
subsequent to interference of the photons at a beamsplitter, photon detection heralds entanglement
between the two ions. Fidelities of up to (88.2+2.3−6.0)% are achieved with respect to a maximally
entangled Bell state, with a success probability of 4 × 10−5. We analyze the routes to improve these
metrics, paving the way for long-distance networks of entangled quantum processors.

The realization of quantum networks [1, 2] that link
cities and countries would open up powerful new appli-
cations in information security [3], distributed comput-
ing [4, 5], precision sensing [6, 7] and timekeeping [8].
These applications require distributed quantum network
nodes that, first, can be entangled via the exchange
of photons over long distances and, second, can store
and process quantum information encoded in registers of
qubits. A handful of experiments have demonstrated re-
mote entanglement of two quantum-logic-capable qubits,
including ions in linear Paul traps [9, 10], optically
trapped neutral atoms [11, 12], color centers in dia-
mond [13], quantum dots [14, 15] and superconduct-
ing qubits [16]; furthermore, three-node entanglement
of color centers was recently achieved [17]. These ele-
mentary networks have been extended to entangle quan-
tum systems in separate buildings: two diamond color
centers 1.3 km apart [18] and two neutral atoms 400m
apart [19, 20].

Quantum network nodes based on trapped ions [21]
promise high-fidelity quantum-gate operations on reg-
isters of tens of qubits [22, 23], coherence times ex-
ceeding one hour [24], efficient interfacing with telecom-
wavelength photons [25, 26] and precision sensing and
metrology [27–29]. Building on the first demonstra-
tion of remote-ion entanglement [9], significant improve-
ments in both rate and fidelity [10, 30] have recently en-
abled device-independent quantum key distribution [31]
and enhanced timekeeping [32], and a multispecies node
has been demonstrated [33]. Remote entanglement of
trapped ions more than a few meters apart has not pre-
viously been reported.

In this Letter, we report on the entanglement of two
trapped ions separated by 230m. The two ions are in sep-
arate buildings, connected via 520(2)m of optical fiber,
and controlled by independent lasers and electronics.

Their entanglement is heralded by the coincident detec-
tion of two infrared photons that travel through the fiber.
In contrast to implementations based on spontaneous
emission [9, 10, 12–15, 17, 19, 20, 30, 33], our photon
generation method is based on a cavity-mediated Raman
process providing tunable entangled states [34] and high
efficiency [35], which are advantageous for establishing
long-distance entanglement [36]. Remote ion–ion entan-
glement is characterized by quantum state tomography
and analyzed for a range of time windows for coincident
detection. A detailed model is developed that captures
the observed trade-off between the fidelity of remote en-
tanglement and the heralding efficiency and shows how
significant improvements can be made in the future.

Each node in our quantum network (Fig. 1(a),(b))
consists of a single 40Ca+ atom confined in a linear
Paul trap and coupled to a 20mm cavity for photon
collection at 854 nm. A photon is generated at each
node via a bichromatic cavity-mediated Raman transi-
tion (Fig. 1(c)) [34]. Here, a Raman laser pulse ap-
plied to the ion ideally generates the maximally entan-
gled ion–photon state |ψk〉 = 1/

√
2
(
|DV〉+ eiθk |D′H〉

)
,

where |D〉 and |D′〉 are the respective Zeeman states
|32D5/2,mj = −5/2〉 and |32D5/2,mj = −3/2〉, |V〉 and
|H〉 are the vertical and horizontal polarization compo-
nents of a photon emitted into the cavity vacuum mode,
and θk is a phase set at node k ∈ {A,B}. The photon
exits the cavity and is coupled into single-mode optical
fiber. Two photons, one from each node, arrive at a
photonic Bell-state measurement (PBSM) setup, where
their spatial modes are overlapped on a balanced beam-
splitter [37–39]. Coincident detection of orthogonally po-
larized photons ideally heralds the maximally entangled
ion–ion states

|Ψ±〉 = 1/
√
2
(
|DAD

′
B〉 ± eiφ |D′

ADB〉
)
, (1)
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FIG. 1. The two-node quantum network. a) Satellite image
(Google Earth, image: Landsat / Copernicus). Nodes A and
B are located in separate buildings, connected via a 520(2)m
optical-fiber link and have a 230m line of sight separation.
b) Nodes consist of an ion, a linear Paul trap (four yellow
electrodes) and a cavity comprised of two mirrors. The pho-
tonic Bell-state measurement (PBSM) setup contains a beam
splitter (BS), polarizing beam splitters (PBS) and photon de-
tectors. c) Energy-level diagram for 40Ca+. When an ion is in
state |S〉 and no photons are in the cavity, a laser pulse con-
taining two tones generates the ion–photon entangled state
1/

√
2
(
|DV〉+ eiθ|D′H〉

)
, where |V〉 and |H〉 are the polariza-

tion components of a cavity photon and θ is a phase [34].
The frequency difference ∆2−∆1 is equal to the one between
|D′〉 = 32D5/2,mj = −3/2 and |D〉 = 32D5/2,mj = −5/2.

with phase φ = θA − θB, where subscripts indicate the
ion node. The state |Ψ+〉 is obtained if the two coin-
cident detection events occur in the same output mode
of the beamsplitter, while |Ψ−〉 is obtained if coincident
detection occurs in opposite output modes.

Which-path information for the two photons should
be erased in the PBSM, which requires both temporal
and spectral indistinguishability of the photon wavepack-
ets. Each node has control software and hardware that
executes a finite-length and node-specific remote entan-
glement sequence: a list of operations to perform. Each
control system is referenced to its own 10MHz GPS clock
source. Temporal synchronization of the two sequences
to within a 30 ns jitter is achieved via a handshake be-
tween the control systems at the start of each sequence.
The handshake signal is sent over a dedicated optical
fiber in a fiber bundle connecting the two labs, which also
contains the fiber for single-photon distribution. Offsets
in the arrival times of temporal photon wavepackets at
the PBSM, e.g., due to optical path differences, are com-
pensated for by introducing sequence delays.

Spectral indistinguishability of the photons requires
matching the resonant frequencies of the remote cavities.
This is achieved via periodic calibration at 20min inter-
vals: 854 nm laser light that is resonant with the cavity
at Node A is sent to Node B over a third fiber in the bun-
dle, and the length of the Node B cavity is adjusted until
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FIG. 2. Entanglement between ion qubits. (a) Single-photon
wavepackets measured at each node in a separate calibration
experiment. Shown are histograms of photon counts per 1 µs
time bin for ion-entangled photons from Node A only (orange)
and Node B only (green). The gray region indicates when the
Raman laser pulse is on. The dashed black lines indicate the
window within which coincidence events are evaluated during
entanglement experiments. (b) Success probability for a co-
incidence event heralding either |ψ+〉 or |ψ−〉 to occur as a
function of T . (c) Experimentally reconstructed density ma-
trices ρ+(T ) and ρ−(T ), for T = 1 µs. Bar heights indicate
amplitudes of matrix entries; colors indicate phases. Ampli-
tudes of the entries for |Ψ±〉〈Ψ±| are outlined for comparison.
(d) Fidelity F± as a function of T . Markers indicate measured
values; error bars correspond to one standard deviation. Solid
lines show an empirical model discussed in the main text, with
shaded regions indicating uncertainties. Dashed lines show a
partial model omitting photon distinguishability.

it is resonant with this light. Also at 20min intervals,
the polarization rotation of the fiber that carries single
photons is characterized and corrected for [40].

The remote entanglement sequences at each node con-
tain a loop in which up to 20 attempts are made to
establish ion–ion entanglement. Each attempt contains
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0.3ms of state initialization, via Doppler cooling and op-
tical pumping, followed by a Raman laser pulse of 50 µs
to generate a photon. In the case of coincident photon
detection within a 50 µs window that encompasses the
single-photon wavepackets, the sequence exits the loop,
and the ion qubits are measured. Ion-qubit measurement
consists of laser-driven single-qubit rotations to set the
measurement basis, followed by state detection via elec-
tron shelving for 1.5ms, at which point the sequence is
concluded.
The remote ion–ion state is characterized via quantum

state tomography, for which the sequence is repeated for
all nine combinations of the Pauli measurement bases
for two ion qubits [41]. Tomographic reconstruction,
via the maximum likelihood technique, yields the den-
sity matrices ρ±(T ), where ρ+ and ρ− are reconstructed
for the coincidences corresponding to ideally |Ψ+〉 and
|Ψ−〉, respectively, and T is the maximum time differ-
ence for which entanglement is heralded between coinci-
dent photons. A fidelity F±(T ) ≡ 〈Ψ±|ρ±(T )|Ψ±〉 > 0.5
proves entanglement of the remote ions. Uncertainties
for F±(T ) and for all quantities derived from the density
matrices are obtained via Monte Carlo resampling [40].
Data were acquired over seven hours, including inter-

spersed calibrations. For each basis measurement set-
ting, 17min of data were acquired on average. In total,
13 656 928 attempts were made to generate remote entan-
glement, resulting in 3960 coincidence events within the
interval [t = 5.5 µs, t = 23 µs] (Fig. 2(a)), correspond-
ing to a 0.029% probability of two-photon coincidence
per attempt, which we define as the success probabil-
ity. Here t = 0 indicates the start of the 50 µs detection
window, and the narrower interval has been chosen to
improve signal to noise. The remote entanglement rate
during the data acquisition time is thus 0.43 sec−1. The
fidelities of the reconstructed states are F+(17.5 µs) =
(58.7+2.1−2.3)% and F−(17.5 µs) = (58.0+2.5−2.9)%,
where T = 17.5 µs corresponds to all possible coinci-
dences within the 17.5 µs window.
When we take a subset of the data, corresponding to

coincidences separated by smaller values of T , entangled
ion–ion states are generated with higher fidelity, at the
cost of a lower success probability (Fig. 2(b)). The den-
sity matrices shown in Fig. 2(c) correspond to T = 1 µs,
for which we recorded 491 coincidence events, that is,
a remote entanglement rate of 3.1min−1. The fidelities
of the reconstructed states are F+(1 µs) = (88.2 + 2.3 −
6.0)% and F−(1 µs) = (82.2 + 2.5− 6.4)%. We optimize
F± over the phase φ in Eq. 1 because we did not deter-
mine θA and θB independently; this optimization yields
φ = 81.2°. We then fix this value of φ for all subsequent
data points. In Fig. 2(d), we plot the measured fidelities
for values of T between 0.75 µs and 17.5 µs.
A decrease in fidelity as T increases is to be ex-

pected: for example, spontaneous emission during the
Raman process provides information on which ion gen-
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FIG. 3. (a) Number of coincidences recorded for orthogonal
(blue) and parallel (red) polarization projections of photons
from Nodes A and B, for the same data set as in Fig. 2.
Data are plotted as a function of the time difference τ be-
tween photon detection events, binned in 0.5 µs intervals. Er-
ror bars indicate Poissonian statistics. (b) Diamonds show
the two-photon interference visibility calculated from the co-
incidence data after correction for background counts and de-
tector efficiencies, using Eq. 2. The shaded region indicates
the propagation of Poissonian uncertainties. Lines show a
master-equation model discussed in the main text.

erated which cavity photon [42–44], that is, scattering
introduces which-path information. To predict our ex-
perimentally determined fidelities, we have developed an
empirical model for the ion–ion density matrix heralded
by two-photon detection. The model contains photon dis-
tinguishability along with two other sources of infidelity:
detector background counts and imperfect ion–photon
entanglement. The values of F±(T ) calculated using this
density-matrix model are plotted in Fig. 2(d) along with
the measured values. We will first explain the contribu-
tions of photon distinguishability to this model and will
afterwards discuss the other sources of infidelity [40].

To account for photon distinguishability, we em-
ploy a two-qubit dephasing channel, which reduces
the off-diagonal elements of the ideal density matri-
ces |Ψ±〉〈Ψ±| [40]. The probability for dephasing in
the channel is parameterized by the Hong-Ou-Mandel
(HOM) interference visibility, which provides direct in-
formation about photon indistinguishability [45]. For
unit visibility, no dephasing occurs, while for a visibil-
ity of zero, all off-diagonal matrix elements are zero.

The HOM visibility is extracted from the photon co-
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incidence data by sorting all events into two sets: co-
incidences with identical polarization and with orthogo-
nal polarization. Photons with identical polarization will
exit the balanced beamsplitter at the same output port if
they are otherwise indistinguishable, generating a HOM
dip in coincidence counts at the two output ports [46].
Orthogonally polarized photons are distinguishable and
thus exhibit no HOM effect; their cross-correlation func-
tion allows us to normalize the HOM dip and thereby
to calculate the interference visibility. In Fig. 3(a), the
number of coincidence events is plotted for both sets of
data as a function of the time difference τ between pho-
ton detection events, for a time bin δ = 0.5 µs. The HOM
dip at τ = 0 can be clearly observed. The interference
visibility is then obtained from the data of Fig. 3(a) via
the following procedure: First, the number of expected
coincidences between photons and detector background
counts is subtracted from the number of measured co-
incidences for each time bin. Next, the data sets are
corrected for the detector efficiencies, which have been
independently measured [40]. We define N‖,kδ and N⊥,kδ

as the corrected numbers of coincidences for the time bin
centered at τ = kδ for k ∈ Z, where the symbols ‖ and
⊥ indicate identical and orthogonal photon polarization,
respectively. Finally, the interference visibility is calcu-
lated as a function of the coincidence window T :

V (T ) = 1−
∑

(−T+δ/2)≤kδ≤(T−δ/2)N‖,kδ∑
(−T+δ/2)≤kδ≤(T−δ/2)N⊥,kδ

(2)

In Fig. 3(b), V (T ) is plotted for coincidence windows
up to 17.5 µs, as in Fig. 2(d), and for 0.5 µs time bins.
The maximum visibility corresponds to 101(6)% for T =
0.25 µs.
Our empirical model also includes detector background

counts and imperfect ion–photon entanglement. For
background counts, we use a white-noise channel based
on the independently measured count rates of the four
detectors. For ion–photon entanglement, we assume that
imperfections translate as a two-qubit depolarizing chan-
nel on the ion–ion state [40]. Ion–photon entanglement
was characterized in a calibration measurement at each
node via quantum state tomography immediately prior to
ion–ion entanglement, and fidelities of (92.9+0.4−0.5)%
and (95.5+0.6−0.9)% with respect to a maximally entan-
gled state were obtained at Nodes A and B, respectively.
The empirical model is used to calculate the theoretical

fidelities of Fig. 2(d): The solid lines are calculated from
the full model, taking into account all three sources of in-
fidelity, while the dashed lines are calculated when pho-
ton distinguishability is excluded from the model. Dif-
ferent values are predicted for F+ and F− due to the use
of superconducting nanowire detectors at two of the four
beamsplitter outputs, which have lower dark-count rates
than the single-photon-counting modules at the other
two outputs. Based on the agreement between measured
and modeled fidelities in Fig. 2(d), we conclude that the

model captures the relevant properties of our setup and
that the observed decline in fidelity as a function of T is
due to the corresponding decline in visibility.

For insight into how, in the future, visibility could
be maintained for larger coincidence windows—thereby
increasing the probability to establish remote entangle-
ment with a given fidelity—we have developed a master-
equation model based on that of Ref. [44]. This model
considers three independently estimated noise processes
that result in non-transform-limited (and therefore dis-
tinguishable) photons at each node: frequency jitter of
the Node A cavity by 60 − 100 kHz, Raman-laser phase
noise, and spontaneous emission. All parameter values
used in the model are statistically consistent with inde-
pendent estimates and determined via comparison of the
model to measured single-photon wavepackets [40]. The
predicted visibility is plotted in Fig. 3(b) for upper and
lower estimates of the frequency jitter (green lines). It
can be seen that the model is consistent with the visibil-
ity data.

We now look to the master-equation model to under-
stand the impact of future improvements. Setting the
technical noise contributions of cavity jitter and laser
phase noise to zero, as shown in orange in Fig. 3(b),
improves the model visibility. In addition, selecting only
those ion–photon entanglement events for which no spon-
taneous emission occurs, corresponding to transform-
limited photons, leads to the most significant improve-
ment in the model visibility (blue line). The remaining
visibility imperfections are due to mismatch between the
temporal wavepackets of the transform-limited photons
produced at each node.

With regards to the technical noise contributions, we
expect to suppress both cavity jitter and laser phase noise
to negligible levels by improving the lock electronics and
the passive cavity used as a laser reference at Node A.
Meanwhile, temporal wavepacket mismatch can be ad-
dressed through amplitude shaping of the Raman laser
pulse [47]. It is spontaneous emission that poses the most
significant challenge. Using our existing setup, multi-ion
superradiant states can be harnessed to boost the frac-
tion of photons generated without prior spontaneous de-
cay [42]; in future ion–cavity nodes, further gains can
be obtained through judicious choice of the mirror prop-
erties and cavity geometry [35]. All these steps will in-
crease the probability to generate transform-limited pho-
tons in each entanglement attempt. Additional steps can
be taken to increase the attempt rate, namely, in the
short term, implementing more efficient cooling and state
detection protocols, and in the long term, coupling ions
to fiber-based cavities with stronger coherent coupling
and faster decay rates [48]. It is notable that the success
probabilities shown in Fig. 2(b) are comparable to those
achieved over a few meters in Ref. [10], and that in future
long-distance networks limited by photon travel time, it
will be success probabilities that determine entanglement
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rates [36].

In conclusion, we have verified entanglement over
the longest trapped-ion network to date, with fidelities
up to (88.2 + 2.3 − 6.0)% with respect to a maximally
entangled state. A trade-off between fidelity and
coincidence-window length was explained with the help
of two models: an empirical model for the two-ion
density matrix and a master-equation model to predict
the interference visibility. Based on these models, we
anticipate that we will be able to obtain significantly
higher rates across this cavity-mediated network while
maintaining high fidelities. Furthermore, in contrast to
prior remote-ion entanglement [9, 10, 30], which has
been mediated by ultraviolet photons, our use of infrared
photons enables efficient single-stage quantum frequency
conversion to the telecom C band [26], providing a
direct route to extend the quantum channel to hun-
dreds of kilometers. While the experiments presented
here relied on just one ion at each node, a particular
strength of the trapped-ion platform is the capability
for quantum-information processing with dozens of
addressed qubits in a single trap [22, 23] and fidelities
sufficient for fault-tolerant gate operations and error
correction [49, 50]. This capability provides a route to
robust logical qubit encodings at network nodes [51],
separate communication and information processing
functionalities within each node [5, 21], and quantum
repeaters requiring Bell state measurements and either
purification or error correction [52].
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Generation of non-classical light using semiconductor
quantum dots, Adv. Quantum Technol. 3, 1900007
(2020).

[46] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of



7

subpicosecond time intervals between two photons by in-
terference, Phys. Rev. Lett. 59, 2044 (1987).

[47] D. A. Fioretto, Towards a flexible source for indis-
tinguishable photons based on trapped ions and cavi-
ties, Ph.D. thesis, Leopold-Franzens-Universität Inns-
bruck (2020).

[48] P. Kobel, M. Breyer, and M. Köhl, Deterministic spin-
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I. ION-TRAP NETWORK NODES

Overview. The ion-trap network nodes are both in
room-temperature vacuum chambers and employ the
same basic design. Specifically, a macroscopic linear Paul
trap is rigidly suspended from the top flange of each vac-
uum chamber; thus, the ion’s motional mode along the
trap’s axis of symmetry (the axial mode) is vertical, and
the two other modes (radial modes) lie in the horizon-
tal plane. An in-vacuum optical cavity around the ion
trap is mounted via nanopositioning stages on the bot-
tom flange of each chamber; the cavity axis is a few de-
grees off horizontal. Both cavities are 20 mm long and in
the near-concentric regime, corresponding to microscopic
waists at the ion location. Ions are loaded into each trap
using a resistively heated oven of atomic calcium and a
two-photon ionization process driven by lasers at 422 nm
and 375 nm. Details on Node A can be found in [1–3].
Details on Node B can be found in [4–6].

Cavity parameters. At Node A, the transmission of
the cavity mirrors at 854 nm was measured to be
13(1) ppm for the output mirror and 1.3(3) ppm for the
second mirror [2], with a probability of 20(2) % that a
photon in the cavity mode leaves the cavity through the
output mirror [7]. At Node B, the measured transmis-
sion values at 854 nm are 90(4) ppm for the output mirror
and 2.9(4) ppm for the second mirror, and the proba-
bility that a photon leaves through the output mode is
78(3) % [5]. The decay rates of the cavity fields, mea-
sured via cavity ringdown, are κA = 2π× 68.4(6) kHz [3]
and κB = 2π × 70(2) kHz [5].

Trap frequencies. At Node A, the frequencies of
the axial and radial modes are (ωax, ωr1, ωr2) = 2π ×
(1.13, 1.70, 1.76) MHz. At Node B, they are 2π ×
(0.92, 2.40, 2.44) MHz [5].

Ion-cavity geometry. For the remaining discussions in
this section, we use a Cartesian coordinate system with
three orthogonal axes: x, y and z. At each node, the z
axis is the ion trap’s axis of symmetry, defined by the
line connecting the trap’s DC endcap electrodes, which

∗ Correspondence should be send to ben.lanyon@uibk.ac.at

is the axis of the ion’s motion at frequency ωax. The
xz plane is defined as the plane containing both the z
axis and the cavity axis. The cavity axis subtends an
angle with respect to the x axis of 4° at both Node A
and Node B [2, 6, 8].

Quantization axis. At each node, the atomic quan-
tization axis is chosen to be parallel to the axis of an
applied static magnetic field. This magnetic-field axis is
set to subtend an angle of 45° with respect to the z axis
and to be perpendicular to the cavity axis; at Node B, it
is likely that it is a few degrees off from perpendicular.
At Node A, a magnetic field of 4.2303(2) G is set by DC
currents in coils attached to the outside of the vacuum
chamber. At Node B, a magnetic field of 4.1713(4) G is
set by permanent magnets attached to the outside of the
vacuum chamber. Both field strengths are measured via
Ramsey spectroscopy of a single ion.

Laser beam geometry. A bichromatic laser field at
393 nm drives the cavity-mediated Raman transition.
At each node, the propagation direction of the Raman
laser field is parallel to the magnetic-field axis. The
field is circularly polarized in order to maximize the
coupling strength on the |S〉 ≡

∣∣42S1/2,mj = −1/2
〉

to

|P 〉 ≡
∣∣42P3/2,mj = −3/2

〉
transition. This coupling is

depicted in Fig. 1c of the main text.

At Node A, Doppler cooling and state detection are
implemented using 397 nm laser fields along two axes and
a 866 nm field along a third axis. Optical pumping and
ion-qubit rotations are implemented using a 729 nm field
that lies in the xz plane at an angle of 45° with respect
to the z axis.

At Node B, Doppler cooling is implemented using a sin-
gle beam path that lies in the xz plane at an angle of 45°
with respect to the z axis, along which both 397 nm and
866 nm laser fields are sent. Optical pumping is imple-
mented using a second, circularly polarised, 397 nm laser
field in a direction parallel to the magnetic-field axis. Ion-
qubit rotations are implemented using a 729 nm field at
an angle of 45° with respect to the z axis.
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II. FIBER-OPTIC CHANNELS

Fiber bundles. The laboratories in which Nodes A
and B are located are connected with two optical fiber
bundles, each of which contains eight single-mode opti-
cal fibers. The bundles are installed along the same path
between the laboratories, which follows underground cor-
ridors but includes a section several tens of meters in
length that is exposed to outdoor air. Three optical sig-
nals are sent between the laboratories using the fiber bun-
dles, each in a different fiber:

1. 854 nm single photons,

2. 1550 nm laser light carrying digital trigger signals,

3. 854 nm laser light that is used to match the reso-
nance frequencies of the cavities.

Signal 1 is sent through one of the bundles. Signals 2 and
3 are sent through different fibers in the other bundle.
None of the fibers are polarization maintaining.

Stabilization of fiber polarization dynamics. Signal 1
consists of single photons that travel from Node A
over one fiber bundle and through local fiber extensions
to reach the photonic Bell-state measurement (PBSM)
setup introduced in the main text. Every 20 minutes
during attempts to generate remote ion entanglement,
the polarization rotation of this fiber channel is char-
acterized and corrected for, a process that takes a few
minutes.

The polarization rotation is characterized via quan-
tum process tomography, for which six input states are
injected sequentially into the channel: single photons
with horizontal, vertical, diagonal, antidiagonal, right-
circular, and left-circular polarizations. The single pho-
tons are produced at Node A via a monochromatic cavity-
mediated Raman process that is repumped continuously
at 854 nm; this process generates linearly polarized pho-
tons with a measured contrast ratio of 10.5:1. After exit-
ing the vacuum chamber, the photons pass through mo-
torized waveplates, which we use to prepare the six input
states.

For each input state, the output state is analyzed us-
ing existing components at the PBSM setup (a polariz-
ing beam splitter and photon detectors) along with ad-
ditional waveplates. We perform measurements in suf-
ficiently many bases to reconstruct each output state
via quantum state tomography. A numerical search
is then carried out over the data from all six states
to find the nearest unitary polarization rotation, which
we identify as the transformation of the fiber chan-
nel. Finally, at the input to the PBSM setup, the an-
gles of three waveplates—a half-waveplate sandwiched by
two quarter-waveplates—are set so that collectively, the
waveplates implement the inverse of the unitary oper-
ation, thereby correcting for the transformation of the
channel.

III. PHOTONIC BELL-STATE MEASUREMENT
(PBSM) SETUP

A simplified schematic of the PBSM setup is shown
in Fig. 1b of the main text. The three waveplates de-
scribed in the previous paragraph are not depicted in
the figure. They are located between the output fiber
coupler from Node A and the nonpolarizing beamsplit-
ter. Two additional waveplates—also not depicted—are
located between the output fiber coupler from Node B
and the nonpolarizing beamsplitter. They consist of a
quarter-waveplate and a half-waveplate and are used for
calibration and analysis of the ion–photon state from
Node A.

As shown in Fig. 1b, the PBSM setup has four single-
photon detectors: two for each output mode of the
nonpolarizing beamsplitter. In one of the beamsplit-
ter output paths, the two detectors are single-photon
counting modules (SPCMs); in the other output path,
they are superconducting nanowire single-photon detec-
tors (SNSPDs).

To determine the background counts and efficiency for
each detector, we execute the same sequence as used for
ion–ion entanglement (described in detail in Sec. IV) with
one difference: photon detection does not terminate the
photon-generation loop. In order to evaluate the val-
ues from each node separately, we block the beam path
from the other node. First, we define the background
window as the interval [t = 70µs, t = 100µs], where, as
in the main text, t = 0 indicates the start of the 50µs
detection window. No photons generated by an ion are
expected in this window as the Raman laser pulse has
been off for at least 20µs. We determine the mean value
of background counts per second as well as the proba-
bility of a background count during the detection win-
dow pbg−detr , where the detection window is defined as
[t = 5.5µs, t = 23µs].

Next, we determine the mean photon number within
the detection window and subtract pbg, yielding the prob-
ability pkdetr

of detecting a photon at detector r due to the
Raman process at node k ∈ {A,B} within this window.
All values are summarized in Tab. I. These values are
used in the empirical model of Sec. VII in order to eval-
uate the influence of background counts on the ion-ion
density matrices.

IV. EXPERIMENTAL SEQUENCES

Initialization and handshake. At each node, we im-
plement a finite-length and node-specific sequence. The
sequences at both Nodes A and B begin with Doppler
cooling a single ion for at least 1.52 ms. Subsequently,

1. Node A sets TTLA→B high on a 1550 nm commu-
nication channel to Node B (Signal 2 in Sec. II).

2. Upon receipt of the high TTLA→B , Node B sets
TTLB→A high on another communication channel
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detector r
background

(1/s) pbg−detr (%) pAdetr (%) pBdetr (%)

SPCM1 9.69 0.017 0.08 1.30

SPCM2 9.37 0.016 0.12 1.96

SNSPD1 0.25 0.0004 0.19 2.82

SNSPD2 2.00 0.0035 0.24 3.62

TABLE I. Background counts, background-count probability
within each detection window, and background-subtracted de-
tection probability for each node, for each of the four detec-
tors.

on the same optical fiber to Node A. (The optical
multiplexer supports four communication channels
on one fiber.)

3. Upon receipt of the high TTLB→A, Node A sets
TTLA→B to low.

4. Upon receipt of the low TTLA→B , Node B sets
TTLB→A to low, completing the handshake.

Appropriate wait times are added between the opera-
tions to allow for processing and signal travel time at
both nodes. The shortest time for a handshake is about
10 µs. We estimate remote clock-frequency mismatch of
at most 50 mHz, which has a negligible effect on sequence
synchronization given the maximum sequence length of
11.9 ms.

Following the handshake, the sequences at both nodes
enter a photon generation loop.

Photon generation loop. Each iteration of the loop
consists of the following operations:

1. Doppler cooling,

• Node A: 63 µs

• Node B: 60µs + wait time

2. optical pumping,

• Node A: 280 µs

• Node B: 60µs + wait time

3. a bichromatic Raman laser pulse,

• Node A: 50 µs

• Node B: 50µs

4. a wait time for a signal that heralds coincident pho-
ton detection to be received at both nodes.

Each iteration lasts 420µs. The loop is iterated up to
20 times. In the absence of coincident photon detec-
tion within any of the 20 iterations, the intialization and

handshake are repeated. In the case of coincident detec-
tion of two photons produced within the same iteration,
the loop is terminated, and the sequences proceed to ion-
qubit measurement.

Ion-qubit measurement. Measurement of the ion’s
electronic state at each node proceeds in three steps:

1. A 729 nm π-pulse maps the state |D〉 ≡∣∣32D5/2,mj = −5/2
〉

to |S〉 at Node A. As a re-
sult, information that was encoded in a superpo-
sition of |D〉 and |D′〉 ≡

∣∣32D5/2,mj = −3/2
〉

at
each node is now encoded in a superposition of |S〉
and |D′〉. At the same time, at Node B, a 729 nm
π-pulse maps the state |D〉 ≡

∣∣32D5/2,mj = −3/2
〉

to |S〉, so that the encoding is in a superposition
of |S〉 and |D〉. It is irrelevant whether |D′〉 or |D〉
is used for the measurement encoding; the exper-
imenters at the two nodes just happened to make
different choices.

• Node A: 5.2 µs

• Node B: 11.1 µs

2. An optional 729 nm π/2-pulse is implemented on
the |S〉 to |D′〉 transition at Node A and on the
|S〉 to |D〉 transition at Node B [9]. The pulse is
implemented when the ion-qubit is to be measured
in the Pauli σx or σy basis; we set the optical phase
of the pulse to determine in which of the two bases
the measurement is made. The pulse is not imple-
mented when the ion-qubit is to be measured in the
σz basis.

• Node A: 4.3 µs

• Node B: 7.81 µs

3. A projective fluorescence measurement on the
397 nm 42S1/2 ↔ 42P1/2 transition determines
whether the ion is in |S〉 or |D′〉 at Node A, and
whether it is in |S〉 or |D〉 at Node B. A photomul-
tiplier tube is used to collect fluorescence.

• Node A: 1.5 ms

• Node B: 1.5 ms

V. ION-ION STATE FIDELITIES

In this section, we explain how uncertainties are calcu-
lated for the ion–ion state fidelities presented in the main
text.

As described in the main text, the joint state of two
remote ions is characterized via quantum state tomogra-
phy, yielding the density matrices ρ±(T ), where ρ+ and
ρ− are reconstructed for the coincidences that should her-
ald the Bell states |Ψ+〉 and |Ψ−〉, respectively, and T is
the maximum time difference between coincident pho-
tons for which entanglement is heralded. The state ρ+

is obtained if coincident detection occurs in the output
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path of the beamsplitter in which the SNSPDs are placed,
while ρ− is obtained if coincident detection occurs in op-
posite beamsplitter outputs, i.e., for the two combina-
tions of a coincidence at one SPCM and one SNSPD.
The fidelity is determined according to the expression
F±(T ) ≡ 〈Ψ±|ρ±(T )|Ψ±〉.

We use Monte Carlo resampling [10] to obtain the un-
certainties in F±(T ): Recall that ρ±(T ) is determined
from a set of measurement outcomes, which we can ex-
press as a vector. It is assumed that noise on these mea-
surement outcomes is due to projection noise. We numer-
ically generate M = 200 vectors of “noisy” observations
based on a multinomial distribution around the experi-
mentally recorded values. For each of these vectors, we
reconstruct a density matrix just as for the experimen-
tal data, via the maximum likelihood technique. As a
result, for each state ρ±(T ) reconstructed directly from
the raw data, we have M states reconstructed from sim-
ulated data. We calculate the value of some quantity of
interest, e.g., the fidelity F±(T ), not only for ρ±(T ) but
also for the associated M states, yielding a distribution
D of values with mean Fm and standard deviation δ. The

uncertainties are then given by F±(T )
+(Fm+δ−F )
−(F−Fm+δ).

If F±(T ) is optimized over the phase φ of the Bell
state, then this calculation is carried out for each value
of φ.

VI. ION-PHOTON STATE FIDELITIES

Here, we provide more details on the calibration mea-
surement of ion–photon entanglement that was carried
out at each node immediately prior to ion–ion entangle-
ment.

For the ion–photon state generated at Node B, pho-
tons were analyzed using the PBSM setup, details of
which are given in Sec. III. Specifically, photon counts
were recorded on the two SNSPDs. For the ion–photon
state generated at Node A, photons were analyzed using
a separate setup in the Node A laboratory.

For each ion–photon state, measurements are made in
all nine combinations of the Pauli measurement bases
for two qubits [11]. The measurement basis of the pho-
ton is changed using waveplates in the photon analy-
sis path. Tomographic reconstruction via the maximum
likelihood technique yields the ion–photon density ma-

trices ρion−photon
k for k ∈ {A,B}. The fidelities given

in the main text are calculated as 〈Ψθ
k|ρion−photon

k |Ψθ
k〉,

where
∣∣Ψθ

k

〉
= 1/

√
2
(
|DV〉+ eiθ|D′H〉

)
is the maximally

entangled two-qubit state nearest to the state ρion−photon
k ,

found by numerical optimization over θ.
The method used to determine uncertainties in these

fidelities is described in Sec. V, where we replace the
vector of ion–ion measurement outcomes by a vector of
ion–photon measurement outcomes.

VII. EMPIRICAL MODEL FOR THE ION–ION
DENSITY MATRIX

The target states for ion–ion entanglement are the two
Bell states in Eq. 1 of the main text:

|Ψ±〉 = 1/
√

2
(
|DAD′B〉 ± eiφ |D′ADB〉

)
. (S1)

The corresponding density matrices are ρ± = |Ψ±〉 〈Ψ±|.
Here we describe an empirical model for the density ma-
trix ρ heralded by two-photon detection in our experi-
ments. For this model, we adapt ρ± to account for three
sources of infidelity: detector background counts, pho-
ton distinguishability due to spontaneous emission, and
imperfect ion–photon entanglement.

We first account for detector background counts. We
define pmn as the probability to detect the ion at Node A
in state m and the ion at Node B in state n in a single ex-
perimental trial, where m,n ∈ {D,D′}. In the absence of
detector background counts and all other imperfections,
pDD = pD′D′ = 0. We write

pDD = pph−bg/4 + pbg−bg/4,

pD′D′ = pDD,

pDD′ = pph−ph/2 + pph−bg/4 + pbg−bg/4,

pD′D = pDD′ , (S2)

where pph−bg, pbg−bg, and pph−ph are the probabilities
to detect a coincidence in a single experimental trial be-
tween a photon and a background count, between two
background counts, and between two photons. The scal-
ing factors account for the chance to measure a certain
ion-ion correlator given a coincidence. An underlying as-
sumption of Eqs. (S2) is that when a coincidence due to
one or two background counts occurs, it is equally likely
to find the two ions in each of their four possible states.
This assumption is valid for the Bell states considered
here, and it will still be valid when we introduce a depo-
larizing channel to model imperfect ion-photon entangle-
ment later in this section.

The ion–ion density matrix that accounts for back-
ground counts is given by
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ρ±bg =
1∑

m,n pmn

|D′AD′B〉 |D′A,DB〉 |DA,D
′
B〉 |DA,DB〉






pD′D′ 0 0 0 〈D′A,D′B|
0 pD′D ±e−iφpph−ph/2 0 〈D′A,DB|
0 ±eiφpph−ph/2 pDD′ 0 〈DA,D

′
B|

0 0 0 pDD 〈DA,DB|
(S3)

The matrix ρbg can also be expressed as

ρ±bg =
1∑

m,n pmn

(pph−ph

2
ρ± +

ptot−bg

4
1

)
, (S4)

where ptot−bg = pph−bg + pbg−bg and 1 is the two-qubit
identity matrix. Here one sees more clearly that the
background-count model acts to add white noise to the
ion-ion state.

In general, for a given detector combination det1 and
det2, one can write the coincidence probabilities as:

pph−ph = pA
det1 × pB

det2 + pB
det1 × pA

det2

pph−bg = (pA
det1 + pB

det1)× pbg−det2

+ (pA
det2 + pB

det2)× pbg−det1

pbg−bg = pbg−det1 × pbg−det2 (S5)

where pkdetr
is the probability of detecting a photon at

detector r emitted by node k ∈ {A,B} and pbg−detr is
the probability to get a background count within the de-
tection window at detector r. Note that we use four de-
tectors, two of which are SNSPDs and two of which are
SPCMs. Background counts and efficiencies have been
measured independently for each detector (Sec. III), from
which we calculate the probabilities in Eq˙ (S5).

Second, we account for photon distinguishability us-
ing a two-qubit dephasing channel. We define a com-
pletely dephased density matrix, for which we set the
off-diagonal elements of ρbg to zero:

ρbg,dephase =
1∑

m,n pmn



pD′D′ 0 0 0

0 pD′D 0 0
0 0 pDD′ 0
0 0 0 pDD




(S6)

The probability for dephasing in the channel is parame-
terized by the Hong-Ou-Mandel interference visibility V .
The density matrix ρ±dist accounts for both background
counts and photon distinguishability:

ρ±dist = V × ρ±bg + (1− V )× ρbg,dephase. (S7)

As discussed in the main text, the value of V is experi-
mentally determined as a function of the coincidence win-
dow for photon detection. In the absence of background
counts or other imperfections, Eq. (S7) predicts an ion–
ion state of the form ρ±(1 + V )/2 + ρ∓(1 − V )/2. An

equivalent model of the effect of photon distinguishability
on entanglement swapping is derived in the Supplemental
Material of Ref. [12]; see in particular Eq. (S29).

Finally, we account for imperfect ion–photon entangle-
ment at Nodes A and B, for which we introduce a two-
qubit depolarizing channel. We define F ′ip,k to be the fi-
delity of ion–photon entanglement with respect to a max-
imally entangled state at node k, where F ′ip,k has been
corrected for background counts, and we define ρdepol to
be a completely depolarized density matrix:

ρdepol =
1

4
1. (S8)

If we assume that the infidelity 1−F ′ip,k is due to depolar-
izing noise, and that the entanglement-swapping process
that creates ion–ion entanglement between Nodes A and
B is perfect, then the fidelity of ion–ion entanglement
with respect to a maximally entangled state is given by
[13]

F ′ii =
1

4

(
1 + 3

(
4F ′ip,A − 1

3

)(
4F ′ip,B − 1

3

))
. (S9)

We can then describe the depolarizing channel that gen-
erates the state with fidelity F ′ii with a parameter λ [14]:

ρ± = λ× ρ±dist + (1− λ)× ρdepol, (S10)

where

λ =
4F ′ii − 1

3
. (S11)

We thus arrive at the density matrix ρ from which the
fidelities plotted in Fig. 2d of the main text are calcu-
lated:

F±model =
〈
Ψ±
∣∣ ρ±

∣∣Ψ±
〉
. (S12)

In Fig. 2d, the fidelities are plotted as a function of co-
incidence window. To calculate ρ for a given coincidence
window T , we take into account the visibility V (T ) and
the background counts that (on average) occur within the
detection window. The depolarizing correction is treated
as independent of T . To calculate the dashed lines in
Fig. 2d, we omit the second step in this model—the de-
phasing channel parameterized by the visibility— and de-
termine ρ only taking into account detector background
counts and imperfect ion–photon entanglement.
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The ion–photon entanglement fidelities at Nodes A
and B without background-count subtraction are given
in the main text. After background-count subtraction,
these values are F ′ip,A = (93.8 + 0.4− 0.5)% and F ′ip,B =

(95.6 + 0.7− 0.8)%.

VIII. MASTER-EQUATION MODEL FOR
TWO-PHOTON INTERFERENCE VISIBILITY

A. The master equation

We present in this section the master-equation model
of the ion–cavity system. We start with the Hamiltonian,
then review the noise terms, and conclude the section
with the master equation that is relevant for the descrip-
tion of the experiment.

Ultimately the model is used to predict the visibility
of the interference obtained by combining on a beam-
splitter two photons emitted from the two nodes of the
ion-trap quantum network (Fig. 3b of the main text).
As a first step, we calculate the joint ion–photon states
produced at each node. Then the ions are traced out and
the interference visibility is computed from the marginal

states of the two photons.

1. Hamiltonian of the bichromatic cavity-mediated Raman
transition

We start by presenting our model for a single 40Ca+

ion trapped inside a cavity and driven by laser light. We
restrict the atom model to a simple four-level system that
includes the sublevels of direct importance for the exper-
iment: |S〉 , |P 〉 , |D〉 , and |D′〉 (see Fig. 1). The ion is
initially prepared in |S〉. The |S〉−|P 〉 transition is driven
off-resonantly with a bichromatic laser field with frequen-
cies ω1 and ω2 and Rabi frequencies Ω1 and Ω2. The
bichromatic field is detuned from the |S〉−|P 〉 transition
frequency ωPS by ∆1 = ω1 − ωPS and ∆2 = ω2 − ωPS .
In addition, an exchange interaction between the ion and
the cavity couples the |P 〉−|D〉 transition to the emission
and absorption of a photon with vertical polarization into
the cavity and the |P 〉 − |D′〉 transition to the emission
and absorption of a photon with horizontal polarization.
The cavity has frequency ωc. The vertically and horizon-
tally polarized cavity modes are described with bosonic

operators â†v or â†h, and the corresponding coupling con-
stants are denoted g1 and g2.

The Hamiltonian H of the ion-cavity system is given by

H/h̄ = ωc(â†hâh + â†vâv) + ωPS |P 〉〈P |+ ωDS |D〉〈D|+ ωD′S |D′〉〈D′|

+
1

2

(
Ω1e

iω1t + Ω1e
−iω1t

)(
|S〉〈P |+ |P 〉〈S|

)
+

1

2

(
Ω2e

iω2t + Ω2e
−iω2t

)(
|S〉〈P |+ |P 〉〈S|

)

+ g1

(
|D〉〈P |+ |P 〉〈D|

) (
â†v + âv

)
+ g2

(
|D′〉〈P |+ |P 〉〈D′|

)(
â†h + âh

)
.

(S13)

Note that the energies of the ion levels are defined with respect to |S〉. An effective Hamiltonian with a simpler form
can be obtained by noting that the cavity is initially empty and consequently, the atom-cavity system remains in the
four level manifold {|S, 0〉, |P, 0〉, |D, 1v〉, |D′, 1h〉}, where 0 and 1 are cavity photon numbers and subscripts indicate
polarization. The corresponding Hilbert space is labelled HC . Below, we shorten the notation to |D, 1v〉 = |D, 1〉
and |D′, 1h〉 = |D′, 1〉 as there is no ambiguity with the polarization of the cavity photon. Under the rotating wave
approximation, the effective Hamiltonian HC

t is given by

HC
t /h̄ = −∆1 |P, 0〉〈P, 0|+

(
∆c1 −∆1

)
|D, 1〉〈D, 1|+

(
∆c2 −∆1

)
|D′, 1〉〈D′, 1|

+
1

2

(
Ω1 + Ω2e

i(ω2−ω1)t
)
|S, 0〉〈P, 0|+ 1

2

(
Ω1 + Ω2e

−i(ω2−ω1)t
)
|P, 0〉〈S, 0|

+ g1

(
|D, 1〉〈P, 0|+ |P, 0〉〈D, 1|

)
+ g2

(
|D′, 1〉〈P, 0|+ |P, 0〉〈D′, 1|

)
.

(S14)

In the rotating frame |P 〉L.F. → eiω1t |P 〉R.F., |1〉L.F. → eiωct |1〉R.F., |D〉L.F. → ei(ω1−ωc)t |D〉R.F., and |D′〉L.F. →
ei(ω1−ωc)t |D′〉R.F., where L.F. and R.F. stand for lab frame and rotating frame. Here, we have introduced the cavity
detunings ∆c1 = ωc − ωPD and ∆c2 = ωc − ωPD′ , with ωPD = ωPS − ωDS and ωPD′ = ωPS − ωD′S . In the subspace
HE spanned by {|D, 0〉 , |D′, 0〉}, the Hamiltonian is simply

HE/h̄ =
(
∆c1 −∆1

)
|D, 0〉〈D, 0|+

(
∆c2 −∆1

)
|D′, 0〉〈D′, 0| . (S15)

In the experiment, the detunings are calibrated with respect to the observed resonance frequency. It is thus
natural to define the detunings ∆′1 = ∆1 − |δS | and ∆′2 = ∆2 − |δS | that incorporate the AC Stark shift δs =
Ω2

1/(4∆1)+Ω2
2/(4∆2) calculated for the |S〉−|P 〉 transition. In terms of the new detunings, the Hamiltonian is recast
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FIG. 1. Representation of the energy levels |S〉 , |P 〉 , |D〉 ,
and |D′〉 relevant for the experiment. The frequencies of the
bichromatic laser field are denoted ω1 and ω2, with corre-
sponding Rabi frequencies Ω1 and Ω2 and detunings ∆1 and
∆2 from |P 〉. The cavity frequency is ωc, and g1 and g2 are
the cavity coupling constants. The Stark shift due to the
bichromatic field is δs. (Note that in Fig. 1 of the main text,
δs is set to zero for simplicity.)

to

HC
t /h̄ = −(∆′1 + |δs|) |P, 0〉〈P, 0|+

(
∆c1 −∆′1 − |δs|

)
|D, 1〉〈D, 1|+

(
∆c2 −∆′1 − |δs|

)
|D′, 1〉〈D′, 1|

+
1

2

(
Ω1 + Ω2e

i(ω2−ω1)t
)
|S, 0〉〈P, 0|+ 1

2

(
Ω1 + Ω2e

−i(ω2−ω1)t
)
|P, 0〉〈S, 0|

+ g1

(
|D, 1〉〈P, 0|+ |P, 0〉〈D, 1|

)
+ g2

(
|D′, 1〉〈P, 0|+ |P, 0〉〈D′, 1|

)
,

HE/h̄ =
(
∆c1 −∆′1 − |δs|

)
|D, 0〉〈D, 0|+

(
∆c2 −∆′1 − |δs|

)
|D′, 0〉〈D′, 0| .

(S16)

The total Hamiltonian is denoted Ht = HC
t +HE .

2. Noise terms

In addition to the Hamiltonian evolution, there are
noise terms that affect the dynamics of the system. We
review them below.

Spontaneous decay of the ion. To account for sponta-
neous decay of the P level to S, D or D′ (outside of the
cavity mode), we introduce the noise operators

Lsp =
√

2γsp |S, 0〉〈P, 0| ,
Ldp =

√
2γdp |D, 0〉〈P, 0| ,

Ld′p =
√

2γd′p |D′, 0〉〈P, 0| ,
(S17)

where γsp, γdp, and γd′p are atomic polarization decay
rates. These operators pick a phase in the rotating frame.
However, these phases do not influence the master equa-
tion (see Eq. (S21)) and can thus be ignored.

Laser noise. A finite coherence time of the Raman
drive laser can be modelled by a process in which each of
the Rabi frequencies Ω1 and Ω2 (which originate from the
same laser field) has a small chance to acquire a random
phase eiϕt at each moment of time. Since the level |S, 0〉

only couples to other levels by absorbing a laser photon,
the laser phase noise can be accounted for in the master
equation by introducing a dephasing channel that reduces
the coherences |S, 0〉〈P, 0|, |S, 0〉〈D, 1|, and |S, 0〉〈D′, 1|.
This is done by introducing the noise operator

Lss =
√

2γss |S, 0〉〈S, 0| . (S18)

Cavity jitter. The cavity jitter stems from slow drifts
of the cavity frequency away from the reference frequency
between recalibration steps, which we attribute to im-
perfect active stabilization of the cavity length. The res-
onator is a massive system, so that the cavity length
drifts on timescales much slower than the duration of the
Raman pulse. Therefore, we assume the cavity frequency
ωc to be fixed during a single iteration of the experi-
ment (i.e., an attempt to generate a single photon). On
the other hand, ωc can change from one iteration to the
next. We thus assume that for each iteration, the cavity
frequency is a Gaussian random variable with standard
deviation γclj , which is well justified because the data
analysis of the run sequence is unordered. That is, at
each iteration, ω̂c is sampled from the Gaussian distribu-
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tion

p(ω̂c) =
1√
2π

exp

(
− (ω̂c − ωc)2

2γ2
clj

)
. (S19)

Concretely, this means that we solve the dynamics of
the two ion–cavity systems for fixed values of ω̂c that
are sampled from p(ω̂c). The final state is a mixture of
these solutions. In practice, to compute the model for ω̂c,
we take a discrete ensemble of 2kmax + 1 equally spaced
values ωk = wc + ∆k for |k| ≤ kmax, then renormalize
the distribution by a constant such that it sums to one:∑
k p(ωk) = 1, that is, the contribution of each frequency

in the ensemble is weighted by the distribution. For the
numerical analysis below, we take kmax = 6 for Node A
(yielding 13 possible values for ω̂c), and we neglect the
effect of the cavity lock jitter for Node B (fixing ω̂c = ωc)
as it is estimated to be an order of magnitude smaller.

Photon emission The possibility for the photon to
leave the cavity gives rise to two noise operators

L4 =
√

2κ |D, 0〉〈D, 1|
L5 =

√
2κ |D′, 0〉〈D′, 1|

(S20)

with κ the cavity field decay rate. In our rotating
frame, the noise operators are time dependent: L4 =√

2κ |D, 0〉〈D, 1| e−iωct, L5 =
√

2κ |D′, 0〉〈D′, 1| e−iωct.
For the master equation, however (see Eq. (S21)), the
phase of the noise operators plays no role. Note that
the noise channels L4 and L5 encompass all cavity decay
processes, including transmission, scattering, and absorp-
tion at both mirrors. Only a fraction of these photons
are transmitted through the output mirror and sent to
the PBSM.

3. The master equation for the full dynamics

To capture not only the unitary dynamics of the ion-
cavity system but also decoherence and photon emission
from the cavity, we use the master equation

%̇t = −i [Ht, %t]/h̄+
∑

i

(
Li%tL

†
i −

1

2
{L†iLi, %t}

)
, (S21)

where the density matrix %t is defined
on the six-level subspace H spanned by
{|S, 0〉, |P, 0〉, |D, 1〉, |D′, 1〉, |D, 0〉, |D′, 0〉}. The in-
dex i includes all the terms described above, that is,
i = sp, ss, dp, d′p, 4, 5. The probability density (rate)
for a noise event Li to occur at time t is denoted by

Pi(t) = trLi%tL
†
i . The event leaves the system in the

state

%t|i =
Li%tL

†
i

trLi%tL
†
i

. (S22)

B. Photon envelope and scattering rates

In this section, we solve the dynamics of the master-
equation model developed in Sec. VIII A for the ion–
cavity system. As we will see, it is enough to model
the system’s state inside the four-dimensional subspace
HC for this purpose. Below, the density matrix is thus
restricted to this subspace.

Knowledge of the ion–cavity state is sufficient to pre-
dict the scattering rates and the temporal envelopes of
photons leaving the cavity. Through a comparison be-
tween the prediction of our theoretical model and the ex-
perimental data for the photon temporal envelopes, we
are able to fix free parameters in the model, including
the cavity loss, cavity jitter and the overall detection ef-
ficiency.

1. Ion-cavity dynamics

In the master equation given in Eq. (S21), different
noises play different roles. The terms Lsp and Lss leave
the system in a state in theHC subspace where it can still
emit a photon. However, if the noise events Ldp, Ld′p, L4,
or L5 occur, no photon can be emitted afterwards as the
system is projected into HE . Since we are only interested
in the evolution branch that can lead to the emission of
a photon, we solve the master equation with the system
remaining inside HC , that is,

%̇t =− i [HC
t , %t]/h̄+

∑

i=sp,ss

(
Li%tL

†
i −

1

2
{L†iLi, %t}

)

−
∑

i=dp,d′p,4,5

1

2
{L†iLi, %t}.

(S23)

Note that the solution of this equation is not trace pre-
serving, as it ignores the branches where Ldp, Ld′p, L4, or
L5 happen. In fact, the trace of %t gives the probability
that none of these noises have happened before time t.

2. Photon envelope

We are primarily interested in the emission of a photon
from each cavity to the PBSM setup when the ion-cavity
system is initially in state %0 = |S, 0〉〈S, 0|. If a pho-
ton is generated in the cavity mode, it leaves the cavity
with rate 2κ. To compute the probability that a photon
of a given polarization (horizontal or vertical) is emit-
ted at time t, it is thus sufficient to solve the master
equation (S23) for the initial state %0 = |S, 0〉〈S, 0| and
compute

pv(t) = 2κ 〈D, 1| %t |D, 1〉
ph(t) = 2κ 〈D′, 1| %t |D′, 1〉 .

(S24)
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FIG. 2. Single-photon temporal wavepacket emitted from
Node B and detected on the PBSM setup. Orange squares
and blue circles correspond to vertical and horizontal polariza-
tions. Squares and circles represent experimental data; error
bars are calculated from Poissonian statistics. Lines are the
envelopes found theoretically, which have been multiplied by
η = 1/10.5 ≈ 0.095.

The envelope of this photon is thus defined by the func-
tions pv(t) and ph(t). In the presence of cavity jitter,
the photon envelopes are the weighted averages over the
different cavity frequency values

p̄v(t) =
∑

k

p(ωk) pv(t|ωk),

p̄h(t) =
∑

k

p(ωk) ph(t|ωk),
(S25)

where pv(t|ωk) and ph(t|ωk) give the probabilities that a
photon of a given polarization leaves the cavity at time t
for a fixed cavity frequency ωk. The photon envelopes of
Eq. (S24) and Eq. (S25) can be compared with the time
histograms of click events obtained at the PBSM setup.
For these measurements, data are taken when only one
node is sending photons, while the other is blocked.

In Fig. 2, we compare our model with data obtained
from Node B. To obtain agreement between the ob-
served detection rates and the model, we have multi-
plied the predicted emission rate p̄h(v)(t) by a factor
1/10.5 ≈ 0.095, which corresponds to the overall detec-
tion efficiency η, including detector efficiencies, photon
loss in the channel, and scattering and absorption losses
contained in the noise channels L4 and L5.

In Fig. 3, we compare our model with data obtained
from Node A. Here as well, the predicted emission rates
at time t are multiplied by a prefactor that accounts for
the detection efficiency. In contrast to the comparison
in Fig. 2, here we include cavity jitter, that is, we use
Eq. (S25) instead of Eq. (S24). All parameters used for
the numerical simulation are reported in Table. II.
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FIG. 3. Single-photon temporal wavepacket emitted from
Node A and detected a few meters away. Orange squares
and blue circles correspond to vertical and horizontal polar-
izations. Squares and circles represent experimental data; er-
ror bars are calculated from Poissonian statistics. Lines are
the envelopes found theoretically, which have been multiplied
by η = 1/14.47 ≈ 0.069 (above) and η = 1/12.46 ≈ 0.08 (be-
low). Cavity jitter has been added with γclj = 0.06 (above)
and γclj = 0.1 (below). Both parameter regimes are consis-
tent with the data, that is, are within the uncertainties of
experimentally determined values for η and γclj .

3. Scattering rates

To compute the interference visibility in the next sec-
tion, we need to predict the scattering rates of the ion-
cavity system back to its initial state. Once Eq. (S23)
has been solved and the state %t has been computed, the
rate of scattering back to to |S, 0〉 can be obtained as

Ps(t) = tr
(

(L†spLsp + L†ssLss)%t
)
. (S26)

Note that whenever such a scattering event occurs, the
system is projected onto the state |S, 0〉 at the corre-
sponding time.
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Node Ω1 Ω2 g ∆1 ∆2 κ γsp γdp + γd′p γss γclj η
A 43.8 30.9 0.77 412.8206 419.8574 0.0684 10.74 0.75 0.01 0.06 – 0.1 0.069– 0.08
B 24.76 21.05 1.2 414.0917 421.2091 0.07 10.74 0.75 0 0 0.095

TABLE II. The parameters that are used in the theoretical model to simulate the experimental data. All parameters have
units of MHz and must be multiplied by 2π. In order to obtain the coupling strengths g1 and g2 shown in Fig. 1, we multiply g
with the relevant atomic transition strength and with the projection of the transition polarization onto the photon polarization
[2].

C. The full state of the photon

The photon envelopes pv(t) and ph(t) defined in
Eq. (S24) give the probabilities for photon emission at
different times, but they do not tell us how coherent the
emission process is. In particular, they do not tell us
about the purity of the state of the emitted photon (for
a fixed polarization) and are not sufficient to predict the
interference visibility between two photons coming from
different nodes. A more detailed analysis is thus required.

Such an analysis is reported below in three steps. First,
we compute the ion–cavity state conditional on no noise
events occurring during the evolution. Combining this
pure state with the scattering rate computed in the pre-
vious section, we compute the actual ion–photon state.
Finally, tracing out the ion, we obtain the full state of
the photon emitted from each cavity and use it to predict
the interference visibility.

1. No-noise branch

To compute the final ion–photon state, our first step
is to extract from the master equation the branch that
corresponds to the evolution branch on which no noise
events occur. This is given by the equation

ρ̇ = −i[HC
t , ρ]/h̄− 1

2
{
∑

i

L†iLi, ρ}, (S27)

where we have simply removed all post-noise terms

LiρtL
†
i . This equation can be cast in the form

ρ̇t = −Dtρt − ρtD†t ,

with Dt = iHC
t /h̄+

1

2

∑

i

L†iLi.
(S28)

One sees that if the state is initially pure, ρt0 =
|Ψt0〉〈Ψt0 |, it will remain pure in the no-noise-branch evo-
lution, that is, the evolution given by the Schrödinger
equation

∣∣∣Ψ̇t

〉
= −Dt |Ψt〉 , (S29)

with a non-Hermitian Hamiltonian Dt. The norm
of the state decreases in general as d

dt‖ |Ψt〉 ‖ =

−〈Ψt|
∑
i L
†
iLi |Ψt〉, reflecting the fact that the system

leaves the no-noise branch whenever a noise event occurs.

The solution of Eq. (S29) can be expressed formally by
defining the time-ordered propagator

|Ψt〉 = Vt0(t− t0) |Ψt0〉 ,
Vt0(τ) = T

[
e−

∫ t0+τ
t0

Dsds
]
,

(S30)

where T [•] is the time-ordering operator.
For our noise model, the initial state for the no-noise

evolution is always pure and given by |Ψt0〉 = |S, 0〉 for
some time t0 where t0 is determined by a noise event pro-
jecting the system onto |S〉, as discussed below. Let us
denote

∣∣Ψt|t0
〉

the state of the system at time t, given
that it was prepared in |S, 0〉 at time t0 ≤ t and no
scattering events occurred in between, that is, given
that the system has evolved between t0 and t follow-
ing the no-noise branch. This state is the solution of∣∣∣Ψ̇t|t0

〉
= −Dt

∣∣Ψt|t0
〉

and can also be expressed as

∣∣Ψt|t0
〉

= Vt0(t− t0) |S, 0〉 . (S31)

It is worth noting that the Hamiltonian has a time
dependence, meaning that time-translation symmetry is
broken: Vt1(τ) 6= Vt0(τ), that is, the evolution for a dura-
tion τ depends on the start time. Nevertheless, in our nu-
merical computations we ignore this asymmetry and use
the approximation

∣∣Ψt|t0
〉
≈
∣∣Ψ(t−t0)|0

〉
. This approx-

imation results in a substantial computational speedup.
We have established the validity of this approximation by
comparing its results with the results of a time-dependent
model for several values of t0.

2. Ion–cavity state revisited

At this point, we know how to compute the scattering
rate Ps(t) and the state

∣∣Ψt|t0
〉
. It is then convenient to

express the total state of the system in the form

%t =
∣∣Ψt|0

〉〈
Ψt|0

∣∣+

∫ t

0

dsPs(s)
∣∣Ψt|s

〉〈
Ψt|s

∣∣

≈
∣∣Ψt|0

〉〈
Ψt|0

∣∣+

∫ t

0

dsPs(s)
∣∣Ψt−s|0

〉〈
Ψt−s|0

∣∣ ,
(S32)

where in the second step, we use the approximation∣∣Ψt|t0
〉
≈
∣∣Ψ(t−t0)|0

〉
discussed above. This expression

captures the fact that given a state at a certain time, the
system will either evolve without noise until t (no-noise
branch), trigger a noise event Lss or Lps at a later time
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t′ (s ≤ t′ ≤ t) that keeps it within the four-dimensional
manifold HC , or trigger one of the other four noise events
that causes it to leave HC (and never emit a photon that
is sent to the PBSM setup). Note that the probability
that at time t, the most recent scattering event happened
at time s ≤ t is dsPs(s)‖

∣∣Ψt|s
〉
‖, which explains the

term in the integral of Eq. (S32).

3. Ion–photon state

We now show that the decomposition of the state %t
in the form proposed in Eq. (S32) results in a natural
description of the entangled state of the ion and the cav-
ity photon. First, note that the states entering in the
decomposition (Ψt|s) are pure, i.e., Eq. (S32) gives an
explicit decomposition of %t into pure states. For a pure
ion–cavity state |Ψt〉, the probability amplitude that a
photon leaves the cavity after a time duration dt (cor-
responding to the L4 and L5 decay channels when the
photon is traced out) is obtained from

dt Et |Ψt〉 ≡
dt
√

2κ
(
|D, 0〉〈D, 1| a†v(t) + |D′, 0〉〈D′, 1| a†

h
(t)
)
|Ψt〉 ,

(S33)

where the ion–cavity state is projected into the HE sub-
space. Here we have introduced the creation and annihi-
lation operators for the continuous temporal (and polar-
ization) modes outside the cavity directed to the PBSM

setup, which satisfy [av(t), a†v(t′)] = [ah(t), a†h(t′)] =
δ(t − t′). Thus, for the ion–cavity system evolving in
the no-noise branch, with the system in state |S, 0〉 at
time s and in

∣∣Ψt|s
〉

at time t, we can associate a proba-
bility amplitude that a photon is emitted from the cavity
towards the PBSM setup in an infinitesimal time window
[t′, t′ + dt′] with s ≤ t′ and t′ + dt′ ≤ t. These events are
coherent and described by the states E′t dt′

∣∣Ψt′|s
〉
|0〉t′ ,

where |0〉t′ is the vacuum state of all the temporal modes
in the interval [t′, t′ + dt′]. It follows that the no-noise
evolution branch corresponds to a branch where a single
photon has been coherently emitted, which is described
by the state

(∫ t

s

dt′ e−i(t−t′)HEEt′
∣∣Ψt′|s

〉)
|0〉 =

√
2κ

∫ t

s

dt′×
(
|D, 0〉 e−i(t−t′)(∆c1−∆′

1−|δs|)
〈
D, 1

∣∣Ψt′|s
〉
a†v(t′)

+ |D′, 0〉 e−i(t−t′)(∆c2−∆′
1−|δs|)

〈
D′, 1

∣∣Ψt′|s
〉
a†h(t′)

)
|0〉 .
(S34)

Here, |0〉 denotes all the temporal modes of the photons
traveling to the PBSM setup. In Eq. (S34), the term

e−i(t−t′)HE describes the evolution of the ion–cavity sys-
tem following the emission of a photon at time t′. Re-
call from Eq. (S16) that the states |D, 0〉 and |D′, 0〉
acquire phases |D, 0〉 7→ e−i(t−t′)(∆c1−∆′

1−|δs| |D, 0〉 and

|D′, 0〉 7→ e−i(t−t′)(∆c2
−∆′

1−|δs|) |D′, 0〉 between the times
t′ and t, as given by the energies of the Hamiltonian HE .
To shorten the notation, it is convenient to introduce the
complex amplitudes

α(t′|s) = eit′(∆c1
−∆′

1−|δs|)
〈
D, 1

∣∣Ψt′|s
〉
,

β(t′|s) = eit′(∆c2
−∆′

1−|δs|)
〈
D′, 1

∣∣Ψt′|s
〉
.

(S35)

Then in the photon-emitted branch of the evolution, with
the ion–cavity system prepared in |S, 0〉 at time s, the
ion–photon state at time t is given by

∣∣Φt|s
〉

=
√

2κ
(
|D, 0〉

∫ t

s

dt′α(t′|s)a†v(t′)

+ eit(∆c1−∆c2 ) |D′, 0〉
∫ t

s

dt′β(t′|s)a†h(t′)
)
|0〉 .
(S36)

This state can be rewritten as
∣∣Φt|s

〉
= |D, 0〉

∣∣Vt|s
〉

+ eit(∆c1
−∆c2

) |D′, 0〉
∣∣Ht|s

〉
(S37)

with the unnormalized single-photon states

∣∣Vt|s
〉

=
√

2κ

∫ t

s

dt′α(t′|s)a†v(t′) |0〉 ,

∣∣Ht|s
〉

=
√

2κ

∫ t

s

dt′β(t′|s)a†h(t′) |0〉 .
(S38)

From this point on, we will write |D〉 and |D′〉 instead of
|D, 0〉 and |D′, 0〉 since there is no ambiguity concerning
the absence of cavity photons.

From the decomposition in pure states of the ion–
cavity state given in Eq. (S32), we can now deduce the
full (unnormalized) ion–photon state associated with the
evolution branch in which a single cavity photon has been
emitted towards the PBSM setup:

ρEt =
∣∣Φt|0

〉〈
Φt|0

∣∣+

∫ t

0

dsPs(s)
∣∣Φt|s

〉〈
Φt|s

∣∣ , (S39)

with the pure states
∣∣Φt|s

〉
given in Eqs. (S36) and (S37).

4. The marginal state of the photon

From the ion–photon state ρEt (Eq. (S39)) (with an
empty cavity), it is straightforward to compute the
marginal state σt of the emitted photon by tracing out
the ion–cavity system. We obtain

σt = trion−cavity ρ
E
t = Vt + Ht, (S40)

with

Vt =
∣∣Vt|0

〉〈
Vt|0
∣∣+

∫ t

0

dsPs(s)
∣∣Vt|s

〉〈
Vt|s
∣∣ ,

Ht =
∣∣Ht|0

〉〈
Ht|0

∣∣+

∫ t

0

dsPs(s)
∣∣Ht|s

〉〈
Ht|s

∣∣ .
(S41)



12

Here the density matrices Vt and Ht are not normalized.
Their traces corresponds to the probabilities that a ver-
tically or horizontally polarized photon has been emitted
outside of the cavity in the mode of interest before time t.

Note that the components of the states in Eq. (S41)
can be conveniently written as

Vt =

∫ t

0

P̃s(s)
∣∣Vt|s

〉〈
Vt|s
∣∣

with P̃s(s) = Ps(s) + δ(s)

(S42)

such that
∫ t

0
ds δ(s)

∣∣Vt|s
〉〈
Vt|s
∣∣ =

∣∣Vt|0
〉〈
Vt|0
∣∣, with an

equivalent expression for Ht. It is then straightforward
to include the effects of cavity jitter, as we now show.

5. Effects of cavity jitter

We first remark that the above derivation of the ion–
photon state assumes that the cavity frequency ωc is con-
stant, which is not the case in the presence of cavity jitter,
where ω̂c is a random variable distributed according to
p(δw), as discussed earlier in the context of Eq. (S19).
Nevertheless, the effects of cavity jitter on the final state
can be straightforwardly included, as we now discuss.

In our model, we take a discrete set of possible val-
ues: ω̂c ∈ {ωk}13

k=1. The final ion-cavity state is then a
mixture

ρ̄Et =
∑

k

p(ωk)ρ
E,(δωk)
t for δωk = ωk − ωc,

(S43)

where each state ρ
E,(δw)
t takes the form

ρ
E,(δw)
t =

∣∣∣Φ(δw)
t|0

〉〈
Φ

(δw)
t|0

∣∣∣

+

∫ t

0

dsP(δw)
s (s)

∣∣∣Φ(δw)
t|s

〉〈
Φ

(δw)
t|s

∣∣∣ ,

α(δw)(t′|s) = eit′(∆̂c1
−∆′

1−|δs|)
〈
D, 1

∣∣∣Ψ(δw)
t′|s

〉

= eit′(∆c1
+δw−∆′

1−|δs|)
〈
D, 1

∣∣∣Ψ(δw)
t′|s

〉

β(δw)(t′|s) = eit′(∆̂c2
−∆′

1−|δs|)
〈
D′, 1

∣∣∣Ψ(δw)
t′|s

〉

= eit′(∆c2
+δw−∆′

1−|δs|)
〈
D′, 1

∣∣∣Ψ(δw)
t′|s

〉
;

(S44)

see Eqs. (S37) and (S38). Here P(δw)
s (s) and

∣∣∣Ψ(δw)
t|s

〉
are

obtained similarly to Ps(s) in Eq. (S26) and
∣∣Ψt|s

〉
in

Eq. (S31) for a shifted cavity frequency ωc + δw.
The final state of the emitted photon also becomes a

statistical mixture over the possible values of the cavity
frequency ωc + δωk:

V̄t =
∑

k

p(ωk)V
(δωk)
t , H̄t =

∑

k

p(ωk)H
(δωk)
t ,

(S45)

with

V
(δω)
t =

∫ t

0

P̃
(δω)

s (s)
∣∣∣V (δω)
t|s

〉〈
V

(δω)
t|s

∣∣∣ ,

H
(δω)
t =

∫ t

0

P̃
(δω)

s (s)
∣∣∣H(δω)

t|s

〉〈
H

(δω)
t|s

∣∣∣ ,
∣∣∣V (δω)
t|s

〉
=
√

2κ

∫ t

s

dt′α(δω)(t′|s)a†v(t′) |0〉 ,
∣∣∣H(δω)

t|s

〉
=
√

2κ

∫ t

s

dt′β(δω)(t′|s)a†h(t′) |0〉 .

(S46)

D. Visibility of a Hong-Ou-Mandel-type
interference

At this point, we know how to compute the state of the
photon emitted by a single node, and we are ready to an-
alyze the interference between photons coming from two
nodes. First, note that we are only interested in events
where two photons are detected at the PBSM setup. For
such an event to occur (neglecting background counts), a
single photon has to be emitted from both Nodes A and
B, as fully captured by the non-normalized state Ht+Vt

given in Eq. (S40). We first model the two-photon inter-
ference by considering the cavity frequency to be fixed.
We then come back to the effect of cavity jitter towards
the end of this section.

1. Two-photon state

To fix our notation, we denote the single-photon states
of Eq. (S41) as VA

t , VB
t , HA

t and VB
t for Nodes A and

B. The underlying pure states will be denoted

∣∣∣V A
t|s

〉
=
√

2κ

∫ t

s

dt′αA(t′|s)a†v(t′) |0〉
∣∣∣HA

t|s

〉
=
√

2κ

∫ t

s

dt′βA(t′|s)a†h(t′) |0〉
∣∣∣V B
t|s

〉
=
√

2κ

∫ t

s

dt′αB(t′|s)b†v(t′) |0〉
∣∣∣HB

t|s

〉
=
√

2κ

∫ t

s

dt′βB(t′|s)b†h(t′) |0〉

(S47)

with the natural notation for the bosonic operators
av(t), ah(t) and bv(t), bh(t) for Nodes A and B respec-

tively. The scattering rates are PA
s (s) and PB

s (s). The
overall density matrix Σt describing the two photons (one
emitted from each node) at time t is thus the tensor prod-
uct of the (unnormalized) states emitted from each node:

Σt = (VA
t + HA

t )⊗ (VB
t + HB

t ). (S48)
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FIG. 4. Representation of the detection scheme for interfering
two photons from two distant nodes in a photonic Bell-state
measurement (PBSM). The bosonic operators associated to
the fields leaving the cavity at Node A (B) are labeled ah and
av (bh and bv). The fields are combined on a nonpolarizing
beamsplitter at a central station. Two detectors preceded
by a polarizing beamsplitter are placed at each output of the
nonpolarizing beamsplitter. The detected fields are called uh,
uv, rh and rv.

2. Model of the PBSM

Given the two photon states, we now consider the
PBSM; see Fig. 4. The beamsplitter output modes u
and r are linked to the input modes a and b via

(
u

r

)
=

1√
2

(
1 i
i 1

)(
a

b

)
⇔
(
a

b

)
=

1√
2

(
1 −i
−i 1

)(
u

r

)
.

(S49)

Each output mode of the (nonpolarizing) beamsplitter
consists of a polarizing beamsplitter followed by two
detectors; each detector detects one of the four modes
uh, uv, rh and rv.

Let us consider the coincidence events where two clicks
occur at detectors on opposite outputs of the beamsplit-
ter, that is, clicks at detector pairs {uh, rh}, {uh, rv},
{uv, vh} or {uv, rv}. We denote the rate of such coinci-
dences for detector uh(v) at time t1 and detector rh′(v′)

at time t2 as deth(v),h′(v′)(t1, t2), that is, detv,h(t1, t2)dt2

corresponds to the probability to get a click at uv in the
time interval [t1, t1 + dt] and a click at rh in the time
interval [t2, t2 + dt], for example. The rate detv,h(t1, t2)
corresponds to a POVM density

Ev,h(t1, t2) = ηuvηrh |v(t1), h(t2)〉〈v(t1), h(t2)| (S50)

with |v(t1), h(t2)〉 = u†v(t1)r†h(t2) |0〉, where ηuv is the
overall detection efficiency of detector uv and ηrh is
the overall detection efficiency of detector rh. Analo-
gously, one defines POVM densities related to the other
relevant coincidence rates Eh,v(t1, t2), Eh,h(t1, t2) and
Ev,v(t1, t2), with

Eπ1,π2
(t1, t2) =

ηuπ1 ηvπ2 u
†
π1

(t1)r†π2
(t2) |0〉〈0|uπ1

(t1)rπ2
(t2),

(S51)

which describes the event where the upper detector for
polarization π1 clicks at time t1 and the right detector
for polarization π2 clicks at time t2. In principle, one can
also compute the probability of events where both upper
detectors or both right detectors click at different times,
but here we are not interested in those events.

3. Coincidence rates for orthogonally polarized photons

Let us now compute the coincidence rates for two clicks from orthogonally polarized photons. We will explicitly
compute the rate detv,h(t1, t2). By the Born rule, one has

detv,h(t1, t2) = tr ΣtEv,h(t1, t2)

= tr
(
HA
t ⊗HB

t + HA
t ⊗VB

t + VA
t ⊗HB

t + VA
t ⊗VB

t

)
Ev,h(t1, t2)

= tr
(
HA
t ⊗VB

t + VA
t ⊗HB

t

)
Ev,h(t1, t2)

=
ηuvηrh

4

(
trHA

t a
†
h(t2) |0〉〈0| ah(t2)

)(
trVB

t b
†
v(t1) |0〉〈0| bv(t1)

)

+
ηuvηrh

4

(
trHA

t a
†
v(t1) |0〉〈0| av(t2)

)(
trVB

t b
†
h(t1) |0〉〈0| bh(t2)

)
,

(S52)
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or simply

detv,h(t1, t2) =
ηuvηrh

4

(
pA

h (t2)pB
v (t1) + pA

v (t1)pB
h (t2)

)
. (S53)

where pA
h (t2) = trHA

t a
†
h(t2) |0〉〈0| ah(t2) is the probability density that Node A emits a horizontally polarized photon

at time t2, and the probability densities for a vertically polarized photon and for Node B are defined equivalently.
This coincidence rate can already be computed from the ion-cavity state according to Eq. (S24) because photons of
orthogonal polarization do not interfere.

Similarly, one finds

deth,v(t2, t1) =
ηuhηrv

4

(
pA

h (t2)pB
v (t1) + pA

v (t1)pB
h (t2)

)
. (S54)

4. Coincidence rates for photons with identical polarization

It is more interesting to analyze the detection rates for two detectors sensitive to the same polarization. For example,
consider deth,h(t1, t2), which is related to the projector on

|h(t1), h(t2)〉 = u†h(t1)r†h(t2) |0〉

=
1

2
(a†h(t1) + ib†h(t1))(ia†h(t2) + b†h(t2)) |0〉

=
1

2
(a†h(t1)b†h(t2)− a†h(t2)b†h(t1)) |0〉+ . . .

(S55)

The dots here indicate terms with two photons emitted by a single node; these terms can be ignored as Σt has no
support on such states. For t1, t2 ≤ t, the rate is thus given by

deth,h(t1, t2) = ηuhηrh tr Σt |h(t1), h(t2)〉〈h(t1), h(t2)|
= ηuhηrh tr

(
HA
t ⊗HB

t + HA
t ⊗VB

t + VA
t ⊗HB

t + VA
t ⊗VB

t

)
|h(t1), h(t2)〉〈h(t1), h(t2)|

= ηuhηrh trHA
t ⊗HB

t |h(t1), h(t2)〉〈h(t1), h(t2)|

=
ηuhηrh

4

∫ t

0

dsds′ P̃A
s (s)P̃B

s (s′)
∣∣∣
〈
HA
t|s, H

B
t|s′
∣∣∣
(
a†h(t1)b†h(t2)− a†h(t2)b†h(t1)

)
|0〉
∣∣∣
2

=
ηuhηrh

4

∫ t

0

dsds′ P̃A
s (s)P̃B

s (s′)
∣∣∣βA(t1|s)βB(t2|s′)− βA(t2|s)βB(t1|s′)

∣∣∣
2

.

(S56)

Similarly,

detv,v(t1, t2) =
ηuvηrv

4

∫ t

0

dsds′ P̃A
s (s)P̃B

s (s′)
∣∣∣αA(t1|s)αB(t2|s′)− αA(t2|s)αB(t1|s′)

∣∣∣
2

. (S57)

In the integrals above, in order to use a more compact notation, we formally extend the function α(t|s) = β(t|s) to times
t < s by setting α(t|s) = β(t|s) = 0 for t < s, as it is impossible for the photon to be emitted from the cavity before a
scattering event to the |S, 0〉 level. One can easily see from Eqs. (S56) and (S57) that for indistinguishable pure photons,

that is, αA(t|s) = αB(t|s) and βA(t|s) = βB(t|s), and no scattering, that is, P̃A
s (s) = P̃B

s (s) = δ(s), the photons bunch
perfectly as expected at the outputs of the nonpolarizing beamsplitter, that is, deth,h(t1, t2) = detv,v(t1, t2) = 0.

5. Interference visibility

Since we can now compute the coincidence rates at all
pairs of detection times (t1, t2) (Eqs. (S56) and (S57)),
we are also able to calculate the two-photon interference
visibility. To do so, let us first define probabilities to

detect two clicks delayed by at most T :

Detπ1,π2
(T ) ≡

∫

|t1−t2|≤T
dt1dt2 detπ1,π2

(t1, t2). (S58)

Then the two-photon interference visibility is by defini-
tion given by

V (T ) = 1− Deth,h(T ) + Detv,v(T )

Detv,h(T ) + Deth,v(T )
, (S59)



15

which one computes with the help of Eqs. (S53), (S54),
(S56), (S57), and (S58).

To account for the effects of the cavity jitter at Node
A, we simply replace the detection probabilities above
with average quantities

Detπ1,π2
(T ) =

∑

k

p(ωk)Det(δωk)
π1,π2

(T ), (S60)

which are obtained by averaging the detection probabili-
ties over the possible values of ωk, as discussed previously
in Sec. VIII C 5.

6. Comparison with the experimental data

In this section, we focus on Fig. 3b of the main text,
in which the interference visibility computed with the
theoretical model presented above is compared with the
experimentally determined values. The figure has already
been explained and discussed in the main text; our goal
here is to make the connection clear between the notation
used in the previous sections and the values in the plot.

The green solid line and green dashed line in Fig. 3b,
which have the lowest values for visibility as a function of
coincidence window, are computed with the model dis-
cussed above. The only difference between the two is

the value of the cavity jitter parameter γclj for Node A,
which is given by γclj = 0.1 MHz for the dashed line
and γclj = 0.06 MHz for the solid line. Both values are
consistent with independently characterized experimen-
tal parameters within uncertainties.

Next, we compute the visibility expected in the absence
of both laser noise (γss = 0) and cavity jitter (γclj = 0),
which is plotted in orange. These are “technical” noises
that could be reduced to negligible values by realistic
improvements to the setup at Node A.

Finally, the top (blue) line provides information about
the role of the mismatch between pure photon wavepack-
ets. Concretely, we consider the case γss = γclj = 0
and compute the interference visibility between pure pho-

tons with the wavepackets
∣∣∣HA(B)

t|0

〉
and

∣∣∣V A(B)
t|0

〉
given

in Eq. (S47), which describe the photonic states with no
scattering on the |S〉 − |P 〉 transition during their evo-
lution. The difference between the orange line and the
blue line is thus solely due to the photon purity, that is,
to the fact that the orange line takes into account emitted
photons that are not pure due to spontaneous emission
from |P 〉 to |S〉. This effect can be in principle reduced
by improving the coherent coupling strengths g1 and g2

between the ion and the cavity modes. Note that the
computation of the average number of scattering events
from |P 〉 to |S〉 per experimental run gives 2.1 for Node
B and 5.3 for Node A.
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