
A Newton-CG based barrier method for finding a second-order

stationary point of nonconvex conic optimization with complexity

guarantees

Chuan He ∗ Zhaosong Lu ∗

November 2, 2021 (Revised: June 23, 2022; September 30, 2022)

Abstract

In this paper we consider finding an approximate second-order stationary point (SOSP) of

nonconvex conic optimization that minimizes a twice differentiable function over the intersection

of an affine subspace and a convex cone. In particular, we propose a Newton-conjugate gradient

(Newton-CG) based barrier method for finding an (ε,
√
ε)-SOSP of this problem. Our method is not

only implementable, but also achieves an iteration complexity of O(ε−3/2), which matches the best

known iteration complexity of second-order methods for finding an (ε,
√
ε)-SOSP of unconstrained

nonconvex optimization. The operation complexity, consisting of O(ε−3/2) Cholesky factorizations

and Õ(ε−3/2 min{n, ε−1/4}) other fundamental operations, is also established for our method.1

Keywords Nonconvex conic optimization, second-order stationary point, barrier method, Newton-

conjugate gradient method, iteration complexity, operation complexity

Mathematics Subject Classification 49M05, 49M15, 65F10, 90C06, 90C60

1 Introduction

In this paper we consider the conic constrained optimization problem:

min
x
{f(x) : Ax = b, x ∈ K}, (1)

where A ∈ Rm×n is of full row rank, b ∈ Rm, and K ⊆ Rn is a closed and pointed convex cone with

nonempty interior. Assume that problem (1) has at least an optimal solution. In addition, assume

that Slater’s condition holds for this problem, i.e., Ωo = {x : Ax = b, x ∈ intK} 6= ∅, and f is twice

continuously differentiable and nonconvex on Ωo, where intK denotes the interior of K.

In recent years there have been numerous developments on algorithms with complexity guarantees for

finding an approximate second-order stationary point (SOSP) of some special cases of problem (1). In

particular, cubic regularized Newton methods [1, 11, 30], trust-region methods [16, 17, 26], quadratic

regularization method [6], accelerated gradient-type method [9], second-order line-search method [35],

inexact regularized Newton method [18], and Newton-CG method [34] were proposed for finding an

approximate SOSP of a special case of (1) with A = 0, b = 0 and K = Rn, that is, an unconstrained

smooth optimization problem

min
x
f(x), (2)

where ∇2f is assumed to be Lipschitz continuous in a certain level set of f . These methods enjoy an

iteration complexity of O(ε−3/2) for finding an (ε,
√
ε)-SOSP x of (2) that satisfies

‖∇f(x)‖ ≤ ε, λmin(∇2f(x)) ≥ −
√
ε,

∗Department of Industrial and Systems Engineering, University of Minnesota, USA (email: he000233@umn.edu,

zhaosong@umn.edu). The work of the second author was partially supported by NSF Award IIS-2211491.
1The number n is the problem dimension and Õ(·) represents O(·) with logarithmic terms omitted.

1

where ε ∈ (0, 1) is a tolerance parameter, and λmin(·) denotes the minimum eigenvalue of the associated

matrix. This iteration complexity is proved to be optimal in [10, 12]. In addition to iteration complexity,

the operation complexity of the methods [1, 9, 16, 34, 35] was also studied, which is measured by the

amount of fundamental operations consisting of gradient evaluations and Hessian-vector products of f .

Under some suitable assumptions, it was shown that these methods have an operation complexity of

Õ(ε−7/4) for finding an (ε,
√
ε)-SOSP of (2) with high probability. Similar operation complexity bounds

are also achieved by some gradient-based algorithms with random perturbations (e.g., see [2, 23, 39]).

Recently, a log-barrier Newton-conjugate gradient (Newton-CG) method was proposed in [32] for

finding an approximate SOSP of a special case of (1) with A = 0, b = 0 and K = Rn+, namely, the problem

min
x
{f(x) : x ≥ 0}, (3)

where ∇2f is assumed to be Lipschitz continuous in a certain subset of the interior of Rn+. Instead of

solving (3) directly, this method applies a preconditioned Newton-CG method, which is a variant of

Newton-CG method [34], to minimize a log-barrier function associated with (3). Under some suitable

assumptions, it was shown in [32] that this method has an iteration complexity of O(ε−3/2) and an

operation complexity of Õ(ε−7/4) for finding an (ε,
√
ε)-SOSP x of (3) that satisfies

x > 0, ∇f(x) ≥ −εe, ‖X̄∇f(x)‖∞ ≤ ε, λmin(X̄∇2f(x)X̄) ≥ −
√
ε (4)

with high probability, where e is the all-ones vector, and X̄ is a diagonal matrix whose ith diagonal

entry is min{xi, 1}. Besides, the earlier work [4] proposed an interior-point method with an iteration

complexity of O(ε−3/2) for finding a point x satisfying the first, third and last relations in (4) with X̄

being replaced by X = Diag(x), where Diag(x) is a diagonal matrix with x on its diagonal. This method

solves a preconditioned second-order trust-region subproblem per iteration. More recently, a projected

Newton-CG method with complexity guarantees was proposed in [37] for finding an approximate SOSP

of a more general form of (3) with only a subvector of x being nonnegative.

In addition, an interior-point method was proposed in [21] for finding an approximate SOSP of a

special case of (1) with K = Rn+, that is, a linearly constrained smooth optimization problem

min
x
{f(x) : Ax = b, x ≥ 0}. (5)

This method solves a preconditioned second-order trust-region subproblem per iteration, which minimizes

a possibly nonconvex quadratic function over the intersection of a linear subspace and an Euclidean ball.

Under some suitable assumptions, it was shown in [21] that this method has an iteration complexity of

O(ε−3/2) for finding an (ε,
√
ε)-SOSP x of (5) that satisfies

Ax = b, x > 0, ∇f(x) +ATλ ≥ −εe, ‖X(∇f(x) +ATλ)‖∞ ≤ ε,

dT (X∇2f(x)X +
√
εI)d ≥ 0 ∀d ∈ {d : AXd = 0}

for some λ ∈ Rm. It is worth mentioning that this method requires solving the associated trust-region

subproblems exactly, which is typically an impossible task. Thus, this method is not implementable in

general.

Besides, several methods including trust-region methods [8, 15], sequential quadratic programming

method [7], two-phase method [13, 14], penalty method [20], and augmented Lagrangian (AL) type

methods [3, 5, 22, 36, 38] were developed for finding an SOSP of nonconvex equality constrained

optimization. In addition, a projected gradient descent method with random perturbations was proposed

in [25] for nonconvex optimization with linear inequality constraints.

The aforementioned methods are not suitable for finding an approximate SOSP of problem (1) in

general. On the other hand, in the concurrent work [19], the authors proposed a Hessian barrier algorithm

and studied its iteration complexity for finding an approximate SOSP of problem (1). This algorithm

nicely generalizes the cubic regularized Newton method [30] to problem (1). However, it requires solving

many cubic regularized projected Newton subproblems exactly, which is typically impossible to implement.

To the best of our knowledge, there is yet no implementable method with complexity guarantees in the

literature for finding an approximate SOSP of problem (1).

Inspired by [4, 21, 32, 34], in this paper we develop an implementable method with complexity

guarantees for finding an approximate SOSP of problem (1). Our main contributions are as follows.

2

• We introduce a novel notion of an approximate SOSP of (1), by the use of the self-concordant

barrier function associated with the cone K and the study of optimality conditions of (1).

• We propose an implementable Newton-CG based barrier method for finding an approximate

SOSP of (1), whose main operations consist of Cholesky factorizations and other fundamental

operations including Hessian-vector products of f , matrix multiplications, and backward or forward

substitutions to a triangular linear system. This method generalizes the log-barrier Newton-CG

method [32] proposed for (3) to the optimization problems with affine and general conic constraints,

and thus provides an affirmative answer to the open question raised by O’Neill and Wright at the

end of [32].

• We show that under mild assumptions, the proposed method achieves an iteration complexity of

O(ε−3/2) and also an operation complexity, consisting of O(ε−3/2) Cholesky factorizations and

Õ(ε−3/2 min{n, ε−1/4}) other fundamental operations mentioned above, for finding an (ε,
√
ε)-SOSP

of (1) with high probability. When K is the nonnegative orthant, these complexity results match

the best known ones for finding an (ε,
√
ε)-SOSP of (2) or (3) with high probability (e.g., see

[16, 32, 34]).

• The complexity results of our method are established under the assumption that ∇2f is locally

Lipschitz continuous in a certain subset of Ωo (see Assumption 1(b)). Such an assumption is weaker

than the one based on the global Lipschitz continuity of ∇2f usually imposed in the literature

(e.g., see [32]). As a consequence, our method is applicable to the problems with a broader class of

objective functions f (see Section 5 for more discussion).

The rest of this paper is organized as follows. In Section 2, we introduce some notation and study

some properties of logarithmically homogeneous self-concordant barrier functions. In Section 3, we study

optimality conditions of problem (1) and introduce an approximate counterpart of them. In Section 4, we

propose a Newton-CG based barrier method. Finally, we establish iteration and operation complexity

results for the proposed method in Section 5.

2 Notation and preliminaries

In this section we introduce some notation and also study some properties of a logarithmically homogeneous

self-concordant barrier function for a closed convex cone that will be used in this paper.

Throughout this paper, let Rn denote the n-dimensional Euclidean space and 〈·, ·〉 denote the standard

inner product. We use ‖ · ‖ to denote the Euclidean norm of a vector or the spectral norm of a matrix. We

denote by λmin(H) the minimum eigenvalue of a real symmetric matrix H. For any two real symmetric

matrices M1 and M2, M1 �M2 means that M2−M1 is positive semidefinite. For any positive semidefinite

matrix M , M1/2 denotes a positive semidefinite matrix such that M = M1/2M1/2. For the closed convex

cone K, its interior and dual cone are denoted by intK and K∗, respectively. For any x ∈ K, the normal

cone of K at x is denoted by NK(x). For any t ∈ R, we let sgn(t) be 1 if s ≥ 0 and let it be −1 otherwise.

In addition, we use order notation O(·) in its usual sense, and notation Õ(·) to represent the order with

hidden logarithmic factors.

Logarithmically homogeneous self-concordant (LHSC) barrier functions have played a crucial role in

the development of interior point methods for solving convex conic programming (see the monograph

[29]). The design and analysis of the Newton-CG based barrier method in this paper also heavily rely

on an LHSC barrier function. Throughout this paper, we assume that the cone K is equipped with a

ϑ-logarithmically homogeneous self-concordant (ϑ-LHSC) barrier function B for some ϑ ≥ 1. That is,

B : intK → R satisfies the following conditions:

(i) B is convex and three times continuously differentiable in intK, and moreover, |ϕ′′′(0)| ≤ 2(ϕ′′(0))3/2

holds for all x ∈ intK and u ∈ Rn, where ϕ(t) = B(x+ tu);

(ii) B is a barrier function for K, that is, B(x) goes to infinity as x approaches the boundary of K;

(iii) B satisfies the logarithmically homogeneous property :

B(tx) = B(x)− ϑ ln t ∀x ∈ intK, t > 0. (6)

3

For the details of LHSC barrier function and its examples, we refer the reader to [29] and the references

therein.

For any x ∈ intK, the function B induces the following so-called local norms:

‖v‖x :=
(
vT∇2B(x)v

)1/2 ∀v ∈ Rn,

‖v‖∗x :=
(
vT [∇2B(x)]−1v

)1/2 ∀v ∈ Rn,

‖M‖∗x := max
‖v‖x≤1

‖Mv‖∗x ∀M ∈ Rn×n . (7)

In the remainder of this section, we study some properties of the ϑ-LHSC barrier function B that will

be used subsequently in this paper.

Lemma 1. Let x ∈ intK and β ∈ (0, 1) be given. Then the following statements hold for the ϑ-LHSC

barrier function B.

(i) (‖∇B(x)‖∗x)2 = −xT∇B(x) = ‖x‖2x = ϑ.

(ii) −∇B(x) ∈ intK∗.

(iii) {y : ‖y − x‖x < 1} ⊂ intK.

(iv) For any y satisfying ‖y − x‖x ≤ β, it holds that

(1− β)‖v‖∗x ≤ ‖v‖∗y ≤ (1− β)−1‖v‖∗x ∀v ∈ Rn . (8)

(v) B(x+ d) ≤ B(x) +∇B(x)T d+ 1
2d
T∇2B(x)d+ 1

3(1−β)‖d‖
3
x whenever ‖d‖x ≤ β.

(vi) {s : ‖s+∇B(x)‖∗x ≤ 1} ⊆ K∗.

Proof. The proof of statements (i), (ii), and (iii) can be found in [29, Proposition 2.3.4], [29, Theorem 2.4.2],

and [29, Theorem 2.1.1], respectively.

We now prove statement (iv). Let y be such that ‖y − x‖x ≤ β. It follows from [29, Theorem 2.2.1]

that

(1− β)2∇2B(x) � ∇2B(y) � (1− β)−2∇2B(x),

which, together with the positive definiteness of ∇2B(x) and ∇2B(y), implies that

(1− β)2[∇2B(x)]−1 � [∇2B(y)]−1 � (1− β)−2[∇2B(x)]−1.

Statement (iv) then immediately follows from these relations.

We next prove statement (v). Let d ∈ Rn be such that ‖d‖x ≤ β. By [28, Theorem 4.1.8], one has

B(x+ d) ≤ B(x) +∇B(x)T d+ ρ(‖d‖x), (9)

where ρ(t) = − ln(1− t)− t. Notice that ρ(t) =
∑∞
k=2 t

k/k for each t ∈ (0, 1), and ‖d‖2x = dT∇2B(x)d.

Using these, ‖d‖x ≤ β < 1 and (9), we obtain that

B(x+ d) ≤ B(x) +∇B(x)T d+ 1
2d
T∇2B(x)d+

∑∞
k=3

‖d‖kx
k

≤ B(x) +∇B(x)T d+ 1
2d
T∇2B(x)d+

‖d‖3x
3

∑∞
k=3 β

k−3

= B(x) +∇B(x)T d+ 1
2d
T∇2B(x)d+

‖d‖3x
3(1−β) .

Hence, statement (v) holds as desired.

We finally prove statement (vi). By [29, Theorem 2.4.1], we know that B∗ is a ϑ-LHSC barrier

function for the cone −K∗, where B∗ is the conjugate of B defined as

B∗(y) = sup
x∈intK

{〈y, x〉 −B(x)} ∀y ∈ int(−K∗).

4

For any y ∈ int(−K∗), let ‖ · ‖′y be the local norm induced by B∗, that is, ‖s‖′y =
√
sT∇2B∗(y)s for any

s ∈ Rn. Since x ∈ intK, notice from statement (ii) that ∇B(x) ∈ int(−K∗). Also, from the proof [29,

Theorem 2.4.2], one has ∇2B∗(∇B(x)) = [∇2B(x)]−1. It then follows that

‖s‖′∇B(x) =
√
sT∇2B∗(∇B(x))s =

√
sT [∇2B(x)]−1s = ‖s‖∗x ∀s ∈ Rn .

In view of this and statement (iii) with K and x replaced respectively by −K∗ and ∇B(x), one has that

{s : ‖s−∇B(x)‖∗x < 1} = {s : ‖s−∇B(x)‖′∇B(x) < 1} ⊂ int(−K∗).

Taking the closure on both sides of this relation implies that statement (vi) holds.

The following lemma shows that [∇2B(x)]−1 is bounded in the intersection of a unit sphere and intK,

which is crucial for the development of this paper.

Lemma 2. The matrix [∇2B(x)]−1 is bounded in the intersection of a unit sphere and intK, that is,

γ <∞, where

γ := sup
x∈intK,‖x‖=1

‖[∇2B(x)]−1‖. (10)

Proof. Let x ∈ intK with ‖x‖ = 1 be arbitrarily chosen, y a fixed interior point of K, and r̃ = ‖x− y‖.
Then there exists some r > 0 such that the Euclidean ball centered at y with radius r is included in K.

By this and the convexity of K, one can observe that x+ α(y − x) ∈ K for all α ∈ [0, (r̃ + r)/r̃].2 It then

follows that πx(y) ≤ r̃/(r̃ + r), where πx(·) is the Minkowski function of K with the pole at x defined as

πx(z) = inf{t > 0 : x+ t−1(z − x) ∈ K} ∀z.

Notice that ‖x‖ = 1 and r̃ = ‖x− y‖. Hence, r̃ ≤ 1 + ‖y‖, which together with πx(y) ≤ r̃/(r̃ + r) implies

that

πx(y) ≤ 1 + ‖y‖
1 + ‖y‖+ r

=: ∆y.

By this and [29, Proposition 2.3.2], one has

∇2B(y) �
(

1 + 3ϑ

1− πx(y)

)2

∇2B(x) �
(

1 + 3ϑ

1−∆y

)2

∇2B(x).

It follows that

0 � [∇2B(x)]−1 �
(

1 + 3ϑ

1−∆y

)2

[∇2B(y)]−1.

Using this, ∆y ∈ (0, 1) and the arbitrary choice of x, we conclude that

sup
x∈intK,‖x‖=1

‖[∇2B(x)]−1‖ ≤
(

1 + 3ϑ

1−∆y

)2

‖[∇2B(y)]−1‖ <∞.

The following theorem shows that ‖[∇2B(x)]−1‖ is at most in the order of ‖x‖2 for all x ∈ intK.

Theorem 1. Let γ be defined in (10). Then ‖[∇2B(x)]−1‖ ≤ γ‖x‖2 for every x ∈ intK, and [∇2B(x)]−1

is bounded in any nonempty bounded subset of intK.

Proof. Differentiating both sides of (6) twice with respect to x, we have

t2∇2B(tx) = ∇2B(x) ∀x ∈ intK, t > 0.

Letting t = 1/‖x‖, we further obtain that

1

‖x‖2
∇2B

(
x

‖x‖

)
= ∇2B(x) ∀x ∈ intK.

It then follows that

[∇2B(x)]−1 = ‖x‖2[∇2B(x/‖x‖)]−1 ∀x ∈ intK,
which together with (10) implies that ‖[∇2B(x)]−1‖ ≤ γ‖x‖2 for every x ∈ intK. It immediately follows

that [∇2B(x)]−1 is bounded in any nonempty bounded subset of intK.

2By convention, δ/0 is set to ∞ for any δ > 0 throughout this paper.

5

Note that [∇2B(x)]−1 is well-defined in intK but undefined on the boundary of K. To capture its

behavior as x approaches the boundary of K, we next introduce a terminology called the limiting inverse

of the Hessian of B, denoted by ∇−2B, which is a generalization of [∇2B]−1.

Definition 1 (limiting inverse of the Hessian of B).

∇−2B(x) =

{
M : M = lim

k→∞
[∇2B(xk)]−1 for some {xk} ⊂ intK with xk → x as k →∞

}
∀x ∈ K.

(11)

From Theorem 1, we know that [∇2B(x)]−1 is bounded in any nonempty bounded subset of intK,

which implies that ∇−2B(x) 6= ∅ for every x ∈ K. In addition, since [∇2B(x)]−1 is continuous in intK,

one can see that ∇−2B(x) becomes a singleton {[∇2B(x)]−1} for any x ∈ intK. Thus, ∇−2B is indeed a

generalization of [∇2B]−1.

Notice that Lemma 1(iii) only holds at any x ∈ intK. With the aid of the limiting inverse of ∇2B, we

next generalize Lemma 1(iii) to the one that holds at every point in K.

Theorem 2. For any x ∈ K, it holds that

{x+M1/2d : ‖d‖ < 1} ⊆ K ∀M ∈ ∇−2B(x).

Proof. Let M ∈ ∇−2B(x) be arbitrarily chosen. It then follows from (11) that there exists some

{xk} ⊂ intK such that xk → x and [∇2B(xk)]−1 → M as k → ∞. By the nonsingularity of ∇2B(xk),

the definition of ‖ · ‖xk , and Lemma 1(iii), one can observe that

{xk + [∇2B(xk)]−1/2d : ‖d‖ < 1} = {y : ‖y − xk‖xk < 1} ⊂ intK.

Taking limit on both sides of this relation as k →∞, we obtain that {x+M1/2d : ‖d‖ < 1} ⊆ K. Hence,

the conclusion holds.

3 Optimality conditions

In this section we study optimality conditions of problem (1). In particular, we first derive some first-

and second-order optimality conditions for (1), and then introduce a definition of approximate first- and

second-order stationary points of (1).

Suppose that x∗ is a local minimizer of problem (1). By this and the assumption that Slater’s condition

holds for (1), it follows that there exists a Lagrangian multiplier λ∗ ∈ Rm such that

∇f(x∗) +ATλ∗ ∈ −NK(x∗). (12)

This is a classical first-order optimality condition of problem (1). One can easily obtain an inexact

counterpart of it. However, its inexact counterpart is not suitable for the design and analysis of a

Newton-CG based barrier method for solving (1). Due to this, we next derive an alternative first-order

optimality condition for (1).

Theorem 3 (first-order optimality condition). Let x∗ be a local minimizer of problem (1) and

M ∈ ∇−2B(x∗) be arbitrarily chosen. Suppose that f is continuously differentiable at x∗. Then there

exists a Lagrangian multiplier λ∗ ∈ Rm such that

∇f(x∗) +ATλ∗ ∈ K∗, (13)

M1/2(∇f(x∗) +ATλ∗) = 0. (14)

Proof. Since x∗ is a local minimizer of (1), we know from above that there exists a Lagrangian multiplier

λ∗ ∈ Rm such that (12) holds. Note that K is a closed convex cone. It is not hard to verify −NK(x∗) ⊆ K∗,
which along with (12) leads to (13).

We next prove (14). Since M ∈ ∇−2B(x∗), it follows from Theorem 2 that {x∗+M1/2d : ‖d‖ < 1} ⊆ K.

By this and (12), one has

dTM1/2(∇f(x∗) +ATλ∗) ≥ 0 ∀d with ‖d‖ < 1,

which implies M1/2(∇f(x∗) +ATλ∗) = 0, and hence (14) holds as desired.

6

The first-order optimality conditions (13) and (14) appear to be different from the classical one (12).

Nonetheless, the following proposition shows that they are essentially equivalent, and both are related to

the complementary slackness condition (15).

Proposition 1. Let x∗ ∈ K, λ∗ ∈ Rm, and M ∈ ∇−2B(x∗) be given. Then the following statements

hold.

(i) The relations (13) and (14) hold if and only if (12) holds.

(ii) The relation (13) and the complementary slackness condition

〈x∗,∇f(x∗) +ATλ∗〉 = 0 (15)

hold if and only if (12) holds.

(iii) The relations (13) and (14) hold if and only if (13) and (15) hold.

Proof. Firstly, by the same argument as used in the proof of Theorem 3, one can see that if (12) holds,

then (13) and (14) hold.

Secondly, we show that if (13) and (14) hold, then (15) holds. To this end, suppose that (13) and (14)

hold. Since M ∈ ∇−2B(x∗), it follows from (11) that there exists some {xk} ⊂ intK such that xk → x∗

and [∇2B(xk)]−1 →M as k →∞. By these, (14), and Lemma 1(i), one has that

|〈x∗,∇f(x∗) +ATλ∗〉| = lim
k→∞

|〈xk,∇f(xk) +ATλ∗〉|

≤ lim
k→∞

‖[∇2B(xk)]1/2xk‖‖[∇2B(xk)]−1/2(∇f(xk) +ATλ∗)‖

=
√
ϑ‖M1/2(∇f(x∗) +ATλ∗)‖ = 0,

where the inequality uses Cauchy-Schwarz inequality. Hence, (15) holds as desired.

Thirdly, we show that if (13) and (15) hold, then (12) holds. To this end, suppose that (13) and (15)

hold. Then we have

〈x− x∗,∇f(x∗) +ATλ∗〉 (15)
= 〈x,∇f(x∗) +ATλ∗〉

(13)

≥ 0 ∀x ∈ K,

which yields ∇f(x∗) +ATλ∗ ∈ −NK(x∗), and hence (12) holds.

Combining the above arguments, we can conclude that statements (i), (ii) and (iii) hold.

The classical second-order optimality condition for constrained optimization problems was well studied

in the literature (e.g., see [31]). It can be easily specialized to problem (1). However, its verification is

generally hard since a sophisticated critical cone is involved (e.g., see [27, 33]). We next derive a weaker

yet verifiable second-order optimality condition. Strictly speaking, it shall be called a weak second-order

optimality condition. For the ease of reference, we simply call it a second-order optimality condition.

Theorem 4 (second-order optimality condition). Let x∗ be a local minimizer of problem (1) and

M ∈ ∇−2B(x∗) be arbitrarily chosen. Suppose that f is twice continuously differentiable at x∗. Then

there exists a Lagrangian multiplier λ∗ ∈ Rm such that (13), (14), and additionally

dTM1/2∇2f(x∗)M1/2d ≥ 0 ∀d ∈ C(M) (16)

hold, where

C(M) := {d : AM1/2d = 0}. (17)

Proof. It follows from Theorem 3 that (13) and (14) hold. We now prove (16). Indeed, it suffices to prove

that (16) holds for any d ∈ C(M) with ‖d‖ ≤ 1. To this end, let d ∈ C(M) with ‖d‖ ≤ 1 be arbitrarily

chosen. By this, M ∈ ∇−2B(x∗) and Theorem 2, one has that {x∗ + tM1/2d : t ∈ (−1, 1)} ⊆ K and

A(x∗ + tM1/2d) = b. In view of these and the fact that x∗ is a local minimizer of (1), we can observe

that t∗ = 0 is a local minimizer of the problem

min
t∈(−1,1)

{
ψ(t) = f(x∗ + tM1/2d)

}
.

7

By its second-order necessary optimality condition at t∗ = 0, one has that

0 ≤ ψ′′(0) = dTM1/2∇2f(x∗)M1/2d

for any d ∈ C(M) with ‖d‖ ≤ 1. It implies that the relation (16) holds.

Theorems 3 and 4 provide first- and second-order necessary optimality conditions for problem (1).

For convenience, we refer to a feasible point x∗ of (1) as a first-order stationary point of (1) if it together

with some λ∗ ∈ Rm satisfies (13) and (14). We further refer to it as a second-order stationary point of

(1) if it additionally satisfies (16). Due to the sophistication of the problem, it is generally impossible

to find an exact first- or second-order stationary point of (1). Instead, we are interested in finding an

approximate counterpart of them that is defined as follows.

Definition 2 (εg-first-order stationary point). For any εg > 0, a point x is called an εg-first-order

stationary point (εg-FOSP) of (1) if it together with some λ ∈ Rm satisfies

Ax = b, x ∈ intK, (18)

∇f(x) +ATλ ∈ K∗, (19)

‖∇f(x) +ATλ‖∗x ≤ εg. (20)

Definition 3 ((εg, εH)-second-order stationary point). For any εg, εH > 0, a point x is called an

(εg, εH)-second-order stationary point ((εg, εH)-SOSP) of (1) if it together with some λ ∈ Rm satisfies

(18)-(20) and additionally

dT [∇2B(x)]−1/2∇2f(x)[∇2B(x)]−1/2d ≥ −εH‖d‖2 ∀d ∈ C([∇2B(x)]−1), (21)

where C(·) is defined in (17).

Remark 1. (i) One can see that if a point x ∈ intK satisfies (20) and (21), then it nearly satisfies

(14) and (16) with x∗ replaced by x. Thus, the εg-FOSP and (εg, εH)-SOSP introduced in Definitions

2 and 3 are indeed an approximate counterpart of the FOSP and SOSP of problem (1). In addition,

when K = Rn+, they are stronger than the approximate FOSP and SOSP introduced in [21, 32, 37]

for problem (3) or (5). Also, for a general cone K, they are stronger than the ones introduced in

[19]. Specifically, the approximate FOSP and SOSP found by the methods in [19, 21, 32, 37] satisfy

(18), (20) and (21) respectively, while only approximately satisfying (19).

(ii) Upon a suitable change of variable, one can see that (21) is equivalent to

dT∇2f(x)d ≥ −εH‖d‖2x ∀d ∈ {d : Ad = 0}. (22)

(iii) The relations (20) and (22) involve the local norms ‖ · ‖∗x and ‖ · ‖x. It is interesting to observe that

they possess a scale-invariant property. That is, they hold at a point x ∈ intK for problem (1) if

and only if they hold at a point y = W−1x ∈ int(W−1K) for the problem

min
y
{f(Wy) : AWy = b, y ∈W−1K}, (23)

where W is a nonsingular matrix. It shall be noted that B(Wy) is an LHSC barrier function for the

cone W−1K and the local norms used in (20) and (22) for problem (23) are defined in terms of the

barrier function B(Wy).

4 A Newton-CG based barrier method

In this section we develop a Newton-CG based barrier (NCGB) method for finding an approximate

second-order stationary point of problem (1). Instead of solving (1) directly, the NCGB method solves by

a preconditioned Newton-CG method the barrier problem

min
x
{φµ(x) := f(x) + µB(x)} s. t. Ax = b (24)

8

for a suitable choice of parameter µ > 0. In particular, we first introduce a damped preconditioned

Newton system and review a capped CG method for solving it in Subsections 4.1 and 4.2, respectively.

Then we present a minimum eigenvalue oracle in Subsection 4.3 that can be used to estimate the minimum

eigenvalue of a real symmetric matrix. Finally, we present a NCGB method for solving problem (1) in

Subsection 4.4.

4.1 Damped preconditioned Newton system

In this subsection we introduce a damped preconditioned Newton system that will be used subsequently

to develop a NCGB method for solving problem (1).

Since our goal is to find an approximate second-order stationary point of problem (1), it would be

natural to apply the classical projected Newton method to solve (24). However, ill-conditioning could

be an issue for this method. To see this, suppose that xk is a current approximate solution to (24) that

satisfies Axk = b and xk ∈ intK. To generate the next iterate xk+1, the classical projected Newton

method attempts to find a search direction by solving the subproblem

min
d̄
∇φµ(xk)T d̄+

1

2
d̄T∇2φµ(xk)d̄ s. t. Ad̄ = 0. (25)

Notice that ∇2φµ(xk) becomes ill-conditioned as xk is close to the boundary of K, which could cause

iterative methods to converge slowly when applied to solve (25). To remedy this, we instead consider the

following preconditioned subproblem

min
d̃
∇φµ(xk)TMkd̃+

1

2
d̃TMT

k ∇2φµ(xk)Mkd̃ s. t. AMkd̃ = 0, (26)

which is obtained from (25) by letting d̄ = Mkd̃, where Mk is a matrix such that

[∇2B(xk)]−1 = MkM
T
k .

3 (27)

Let Qk denote the projection matrix for the projection from Rn to the null space of AMk, that is,

Qk = I −MT
k A

T (AMkM
T
k A

T)−1AMk. (28)

By letting d̃ = Qkd̂, one can see that (26) is equivalent to

min
d̂
∇φµ(xk)TMkQkd̂+

1

2
d̂TQTkM

T
k ∇2φµ(xk)MkQkd̂,

which leads to a preconditioned (projected) Newton system

(PTk ∇2φµ(xk)Pk)d̂ = −PTk ∇φµ(xk), (29)

where

Pk = MkQk = Mk −MkM
T
k A

T (AMkM
T
k A

T)−1AMk. (30)

For a similar reason as pointed out in [34] for smooth nonconvex unconstrained optimization, CG method,

when applied to (29), may not be able to produce a sufficient descent direction for (24). Therefore, we

instead consider a damped counterpart of (29), namely, the damped preconditioned Newton system

(PTk ∇2φµ(xk)Pk + 2
√
εI)d̂ = −PTk ∇φµ(xk) (31)

for some ε > 0. In the next subsection, we review a capped CG method proposed in [34] that can be

suitably applied to (31) for finding a sufficient descent direction for (24).

3As will be discussed in Section 5, there is no need to compute such Mk explicitly.

9

4.2 A capped conjugate gradient method

In this subsection we review a capped conjugate gradient (CG) method that was proposed in [34] for

solving a possibly indefinite linear system

(H + 2εI)d̂ = −g, (32)

where 0 6= g ∈ Rn, ε > 0, and H ∈ Rn×n is a symmetric matrix. This capped CG method is a modification

of the classical CG method (e.g., see [31]). It terminates within a finite number of iterations, and outputs

either an approximate solution d̂ of (32) satisfying ‖(H + 2εI)d̂ + g‖ ≤ ζ̂‖g‖ and d̂THd̂ ≥ −ε‖d̂‖2 for

some ζ̂ ∈ (0, 1) or a direction d̂ such that d̂THd̂ < −ε‖d̂‖2. For the ease of latter reference, these two

types of outputs are classified by SOL and NC, respectively.4 The capped CG method [34] is presented in

Algorithm 3 in Appendix A. Its detailed motivation and explanation can be found in [34]. This method

will be subsequently applied to the damped preconditioned Newton system (31) arising in NCGB method

for finding a sufficient descent direction for (24).

The following theorem states some properties of Algorithm 3.

Theorem 5. Consider applying Algorithm 3 to the linear system (32) with g 6= 0, ε > 0, and H being a

n× n symmetric matrix. Then the following statements hold.

(i) The output d̂ of Algorithm 3 is a nonzero vector.

(ii) The number of iterations of Algorithm 3 is Õ(min{n, ε−1/2}).

Proof. (i) One can observe that the output d of Algorithm 3 satisfies ‖(H + 2εI)d̂ + g‖ ≤ ζ̂‖g‖ or

d̂THd̂ < −ε‖d̂‖2. By this, g 6= 0 and ζ̂ ∈ (0, 1), one can easily see that d̂ 6= 0.

(ii) From [34, Lemma 1], we know that the number of iterations of Algorithm 3 is bounded by

min{n, J(U, ε, ζ)}, where J(U, ε, ζ) is the smallest integer J such that
√
TτJ/2 ≤ ζ̂, where U, ζ̂, T and τ

are the values returned by Algorithm 3. In addition, it was shown in [34, Section 3.1] that

J(U, ε, ζ) ≤
⌈(√

κ+
1

2

)
ln

(
144(
√
κ+ 1)2κ6

ζ2

)⌉
,

where κ = O(ε−1) is an output by Algorithm 3. Then one can see that J(U, ε, ζ) = Õ(ε−1/2). It thus

follows that the number of iterations of Algorithm 3 is Õ(min{n, ε−1/2}).

4.3 A minimum eigenvalue oracle

In this subsection we present a minimum eigenvalue oracle (Algorithm 1), which will subsequently be

used to check whether the second-order optimality condition of problem (1) nearly holds at a given point.

In particular, given a symmetric matrix H and ε > 0, this oracle either certifies λmin(H) ≥ −ε with high

probability or finds a unit vector v such that vTHv ≤ −ε/2. The Lanczos method is often used as a

solver in this oracle (e.g., see [9, 32, 34]).

The following theorem justifies that Algorithm 1 can produce a desirable output after running the

Lanczos method for a certain number of iterations. Its proof directly follows from [34, Lemma 2].

Theorem 6. Consider Algorithm 1 with tolerance ε > 0, probability parameter δ ∈ (0, 1), and symmetric

matrix H ∈ Rn×n as its input. Let N(ε, δ) be defined in (33). Then Algorithm 1 runs at most N(ε, δ)

iterations. Moreover, it either finds a sufficiently negative curvature direction v satisfying vTHv ≤ −ε/2
and ‖v‖ = 1; or provides a certificate that λmin(H) ≥ −ε holds with probability at least 1−

√
2.75nδ‖H‖

−1/2

.

Remark 2. Generally, computing ‖H‖ may not be cheap when n is large. Nevertheless, ‖H‖ can be

efficiently estimated by a randomization scheme with high confidence (e.g., see the discussion in [34,

Appendix B3]).

4SOL and NC stand for ‘approximate solution’ and ‘negative curvature’, respectively.

10

Algorithm 1 A minimum eigenvalue oracle

Input : symmetric matrix H ∈ Rn×n, tolerance ε > 0, and probability parameter δ ∈ (0, 1).

Output: a sufficiently negative curvature direction v satisfying vTHv ≤ −ε/2 and ‖v‖ = 1; or a certificate that

λmin(H) ≥ −ε with probability at least 1−
√

2.75nδ‖H‖
−1/2

.

Apply the Lanczos method [24] to estimate λmin(H) starting with a random vector uniformly generated on the

unit sphere, and run it for at most

N(ε, δ) := min
{
n, 1 +

⌈
ε−1/2 ln δ−1

⌉}
(33)

iterations.

(i) If a unit vector v with vTHv ≤ −ε/2 is found at some iteration, terminate and return v.

(ii) Otherwise, it certifies that λmin(H) ≥ −ε holds with probability at least 1 −
√

2.75nδ‖H‖
−1/2

.

4.4 A Newton-CG based barrier method for problem (1)

In this subsection we propose a Newton-CG based barrier (NCGB) method for solving problem (1). In

each iteration, our NCGB method starts by checking whether the current iterate xk and the associated

Lagrangian multiplier estimates λ
(1)
k and λ

(2)
k satisfy certain approximate first-order optimality conditions

of (1). If not, then the capped CG method (Algorithm 3) is applied to the damped preconditioned

Newton system (31) to obtain either an inexact damped Newton direction or a sufficiently negative

curvature direction, and the next iterate xk+1 is generated by performing a line search along this direction.

Otherwise, the current iterate xk is already an approximate first-order stationary point of (1), and

a minimum eigenvalue oracle (Algorithm 1) is further invoked to either obtain a sufficiently negative

curvature direction and generate the next iterate xk+1 via a line search, or certify that xk is an approximate

SOSP of (1) with high probability and terminate the method.

For the convenience of presentation, we let

Rk = −(AMkM
T
k A

T)−1AMkM
T
k , (34)

where Mk satisfies (27). In view of (30) and (34), it is easy to verify that

Pk = (I +RTkA)Mk. (35)

We are now ready to present our NCGB method in Algorithm 2 for solving problem (1), in which Qk,

Pk and Rk are defined in (28), (30) and (34), respectively. The study of its complexity results is deferred

to Section 5. In what follows, we make some remarks about Algorithm 2.

Remark 3. (i) Though Algorithm 2 finds a stochastic (ε,
√
ε)-SOSP of (1), such a point is in fact also

a deterministic ε-FOSP of (1), that is, it satisfies (18)-(20) deterministically.

(ii) Algorithm 2 can be easily modified to suit some other needs. In particular, if one is only interested

in finding an ε-FOSP of (1), it suffices to remove from Algorithm 2 the parts related to Algorithm

1. In addition, if one is interested in finding a deterministic (ε,
√
ε)-SOSP of (1), it is sufficient

to replace Algorithm 1 by a deterministic oracle for estimating the minimum eigenvalue of a real

symmetric matrix.

(iii) It is worth noting that Algorithm 2 uses a hybrid line search criterion inspired by [37, Algorithm 1],

which is a combination of the quadratic descent criterion (39) and the cubic descent criterion (40).

In contrast, the Newton-CG type of methods in [32, 34] always use a cubic descent criterion regardless

of the type of search directions. As a benefit of the hybrid line search criteria, the iteration and

operation complexity of Algorithm 2 has a quadratic dependence on the Lipschitz constant of ∇2f

(see Theorems 8 and 9 below), which is superior to the cubic dependence achieved by the methods in

[32, 34] for solving problems (2) and (3), respectively.

5 Complexity results

In this section we establish iteration and operation complexity results for the Newton-CG based barrier

method, namely, Algorithm 2.

11

Algorithm 2 A Newton-CG based barrier method for (1)

Let Pk, Qk and Rk be defined in (30), (28) and (34), respectively.

Input : ε ∈ (0, 1), x0 ∈ Ωo, ζ ∈ (0, 1), β ∈ [
√
ε, 1), θ ∈ (0, 1), η ∈ (0, 1), δ ∈ (0, 1), and ϑ ≥ 1 (the parameter of

B).

Set

x−1 = x0, d−1 = 0, µ =
(1− β)ε

2((1− β)2 +
√
ϑ)
, d type=NC, α−1 = 0, λ

(2)
−1 = 0;

for k = 0, 1, 2, . . . do

Set λ
(1)
k ← Rk∇φµ(xk), where Rk is given in (34);

if d type=SOL and αk−1 = 1 then

λ
(2)
k ← Rk−1(∇2f(xk−1)Pk−1d

k−1 +∇φµ(xk−1));

else

λ
(2)
k ← λ

(2)
k−1;

end if

if min{‖∇f(xk) +ATλ
(1)
k + µ∇B(xk)‖∗xk , ‖∇f(xk) +ATλ

(2)
k + µ∇B(xk−1)‖∗xk} > (1− β)µ then

Call Algorithm 3 with H = PTk ∇2φµ(xk)Pk, ε =
√
ε, g = PTk ∇φµ(xk), accuracy parameter ζ, and

bound U = 0 to obtain outputs d̂k, d type;

if d type=NC then

dk ← − sgn(gT d̂k) min

{
|(d̂k)TPTk ∇2φµ(xk)Pkd̂

k|
‖d̂k‖3

,
β

‖Qkd̂k‖

}
d̂k; (36)

else {d type=SOL}

dk ← min

{
1,

β

‖Qkd̂k‖

}
d̂k; (37)

end if

Go to Line Search;

else

Call Algorithm 1 with H = PTk ∇2f(xk)Pk, ε =
√
ε, and δ > 0;

if Algorithm 1 certifies that λmin(PTk ∇2f(xk)Pk) ≥ −
√
ε then

Output xk and terminate;

else {Sufficiently negative curvature direction v returned by Algorithm 1}
Set

dk ← − sgn(vTPTk ∇φµ(xk)) min

{
|vTPTk ∇2φµ(xk)Pkv|,

β

‖Qkv‖

}
v; (38)

Go to Line Search;

end if

end if

Line Search:

if d type=SOL then

Find αk = θjk , where jk is the smallest nonnegative integer j such that

φµ(xk + θjPkd
k) < φµ(xk)− η

√
εθ2j‖dk‖2; (39)

else {d type=NC}
Find αk = θjk , where jk is the smallest nonnegative integer j such that

φµ(xk + θjPkd
k) < φµ(xk)− ηθ2j‖dk‖3/2; (40)

end if

xk+1 = xk + αkPkd
k;

end for

12

Recall that the cone K is assumed to be equipped with a ϑ-logarithmically homogeneous self-concordant

barrier function B for some ϑ ≥ 1. We now make some additional assumptions that will be used throughout

this section.

Assumption 1. (a) There exist µ̄ ≥ µ and φ ∈ R such that

φµ̃(x) ≥ φ ∀µ̃ ∈ (0, µ̄], x ∈ Ωo, (41)

S =
⋃

µ̃∈(0,µ̄]

{x ∈ Ωo : φµ̃(x) ≤ φµ̃(x0)} is bounded, (42)

where Ωo is defined in Section 1, x0 ∈ Ωo is the initial point of Algorithm 2, µ is given in Algorithm 2,

and φµ̃ is given in (24).

(b) There exists LH > 0 such that

‖∇2f(y)−∇2f(x)‖∗x ≤ LH‖x− y‖x ∀x ∈ S, y ∈ {y : ‖y − x‖x ≤ β}, (43)

where S is given in (42), and β ∈ (0, 1) is an input of Algorithm 2.

(c) The quantities Ug, UH are finite, where

Ug := sup
x∈S
‖∇f(x)‖∗x, UH := sup

x∈S
‖∇2f(x)‖∗x. (44)

We now make some remarks about Assumption 1.

(i) Assumption 1(a) is reasonable. In particular, the assumption in (41) means that the barrier problem

(24) is uniformly bounded below whenever the barrier parameter is no larger than µ̄. It usually

holds for the problems for which the barrier method converges. On the other hand, in case that

(41) fails to hold, one can instead solve a perturbed counterpart of (1):

min
x
{f(x) + σ‖x‖2 : Ax = b, x ∈ K} (45)

for some σ > 0. It can be shown that a desired approximate FOSP and SOSP of (1) can be found

by solving (45) with a sufficiently small σ. Moreover, (41) with f(x) being replaced by f(x) +σ‖x‖2
holds for (45). Indeed, let µ̄ > 0 be arbitrarily chosen and f∗ be the optimal value of (1). Then for

all µ̃ ∈ (0, µ̄] and x ∈ Ωo, one has

f(x) + σ‖x‖2 + µ̃B(x) ≥ f∗ + min
z∈Ωo
{σ‖z‖2 + µ̃B(z)} ≥ f∗ + µ̃ min

z∈Ωo
{(σ/µ̄)‖z‖2 +B(z)}

≥ f∗ − µ̄ | min
z∈Ωo
{(σ/µ̄)‖z‖2 +B(z)}| > −∞,

where the last inequality is due to the strong convexity of (σ/µ̄)‖z‖2 +B(z). Hence, the assumption

in (41) holds for (45) as desired.

Besides, the assumption in (42) clearly holds if Ωo is bounded, which is assumed in [21] for K = Rn+.

Also, it can be shown that S ⊆ S1 ∪ S2, where

S1 = {x ∈ Ωo : f(x) ≤ f(x0) + µ̄+ 2µ̄[B(x0)]+, B(x) ≥ −1− [B(x0)]+},

S2 =
{
x ∈ Ωo : f(x)

−B(x) ≤
[f(x0)]+

1+[B(x0)]+
+ 2µ̄, B(x) ≤ −1− [B(x0)]+

}
,

and [t]+ = max{t, 0} for all t ∈ R. Thus the assumption in (42) holds if S1 and S2 are bounded,

which, for example, holds for f(x) = `(x) +
∑n
i=1 x

p
i , B(x) = −

∑n
i=1 lnxi and K = Rn+ that are

studied in [4], where ` : Rn → R+ is a loss function and p > 0.

(ii) Assumption 1(b) means that ∇2f is locally Lipschitz continuous in S with respect to the local

norms. It holds if ∇2f is globally Lipschitz continuous in intK, which is implicitly assumed in [32]

for the case where A = 0, b = 0 and K = Rn+. Compared to the usual global Lipschitz continuity

assumption on ∇2f in intK, Assumption 1(b) is generally weaker and holds for a broader class of

problems. For example, Assumption 1(b) holds for the problem with f(x) =
∑
i x

p
i and K = Rn+ for

some p ∈ (0, 1), while ∇2f is not globally Lipschitz continuous in intK.

13

(iii) Since S is assumed to be bounded, Assumption 1(c) can easily hold under some additional yet

mild assumption on f . For example, by the boundedness of S and Theorem 1, one can see that

Assumption 1(c) holds if ∇f and ∇2f are continuous in K. In addition, one can verify that

Assumption 1(c) also holds if f and ∇f are locally Lipschitz continuous in S with respect to the

local norms, that is,

|f(y)− f(x)| ≤ Ug‖x− y‖x ∀x ∈ S, y ∈ {y : ‖y − x‖x ≤ β},

‖∇f(y)−∇f(x)‖∗x ≤ UH‖x− y‖x ∀x ∈ S, y ∈ {y : ‖y − x‖x ≤ β}.

These relations hold for a broad class of problems, such as the one with f(x) =
∑
i x

p
i and K = Rn+

for some p ∈ (0, 1). Note that Assumption 1(c) is generally weaker than the one imposed in [32] that

∇f and ∇2f are bounded in some level set of f , which, for example, does not hold for f(x) =
∑
i x

p
i

and K = Rn+ for some p ∈ (0, 1).

(iv) As will be shown in Lemma 4, each iterate xk of Algorithm 2 lies in S. By this and Assumption 1(c),

one can see that

‖∇f(xk)‖∗xk ≤ Ug, ‖∇2f(xk)‖∗xk ≤ UH . (46)

In addition, as a consequence of Assumption 1(b), the following two inequalities hold, which will play

a crucial role in our subsequent analysis.

Lemma 3. Under Assumption 1(b), the following inequalities hold:

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖∗x ≤
1

2
LH‖y − x‖2x ∀x ∈ S, y ∈ {y : ‖y − x‖x ≤ β}, (47)

f(y) ≤ f(x)+∇f(x)T (y−x)+
1

2
(y−x)T∇2f(x)(y−x)+

1

6
LH‖y−x‖3x ∀x ∈ S, y ∈ {y : ‖y−x‖x ≤ β},

(48)

where S and LH are given in (42) and (43), respectively.

Proof. Fix any x ∈ S and y ∈ {y : ‖y − x‖x ≤ β}. One has

‖∇f(y)−∇f(x)−∇2f(x)(y − x)‖∗x = ‖
∫ 1

0
[∇2f(x+ t(y − x))−∇2f(x)]dt(y − x)‖∗x

(7)

≤ ‖
∫ 1

0
[∇2f(x+ t(y − x))−∇2f(x)]dt‖∗x · ‖y − x‖x

≤
∫ 1

0
‖∇2f(x+ t(y − x))−∇2f(x)‖∗xdt · ‖y − x‖x

(43)

≤ LH
∫ 1

0
‖t(y − x)‖xdt · ‖y − x‖x = 1

2LH‖y − x‖
2
x,

and hence (47) holds. We next prove (48). Indeed, one has

f(y)− f(x)−∇f(x)T (y − x)− 1
2 (y − x)T∇2f(x)(y − x)

= 〈
∫ 1

0
[∇f(x+ t(y − x))−∇f(x)−∇2f(x)t(y − x)]dt, y − x〉

≤ ‖
∫ 1

0
[∇f(x+ t(y − x))−∇f(x)−∇2f(x)t(y − x)]dt‖∗x · ‖y − x‖x

≤
∫ 1

0
‖∇f(x+ t(y − x))−∇f(x)−∇2f(x)t(y − x)‖∗xdt · ‖y − x‖x

(47)

≤ 1
2LH

∫ 1

0
‖t(y − x)‖2xdt · ‖y − x‖x = 1

6LH‖y − x‖
3
x,

where the last inequality follows from (47) with y replaced by x+ t(y − x) for t ∈ [0, 1].

5.1 Iteration complexity

In this subsection we establish iteration complexity results for Algorithm 2 for solving problem (1). Before

proceeding, we establish several lemmas that will be used later.

The following lemma shows that all the iterates generated by Algorithm 2 belong to the set S.

Lemma 4. Let {xk}k∈K be all the iterates generated by Algorithm 2, where K is a subset of consecutive

nonnegative integers starting from 0. Then xk ∈ S for every k ∈ K, where S is given in (42).

14

Proof. We prove this lemma by induction. By the choice of x0, one knows that x0 ∈ Ωo, and hence

x0 ∈ S due to (42). Suppose that xk ∈ S is generated at iteration k of Algorithm 2, and moreover, xk+1

is generated at iteration k + 1. We now show that xk+1 ∈ S. Indeed, notice from Algorithm 2 that

xk+1 = xk + αkPkd
k with αk ∈ (0, 1] and dk given in one of (36)-(38). It follows from (36)-(38) that

‖Qkdk‖ ≤ β. By these, (27) and (30), one has that

‖xk+1 − xk‖xk = αk‖Pkdk‖xk ≤ ‖Pkdk‖xk

(30)
= ‖MkQkd

k‖xk

(27)
= ‖Qkdk‖ ≤ β. (49)

In view of xk ∈ S and (42), one can see that xk ∈ Ω0. Hence, Axk = b and xk ∈ intK. Using (49),

xk ∈ intK, β < 1 and Lemma 1(iii), we obtain that xk+1 ∈ intK. In addition, it follows from (30) that

APkd
k = A[Mk −MkM

T
k A

T (AMkM
T
k A

T)−1AMk]dk = 0,

which, together with Axk = b and xk+1 = xk+αkPkd
k, implies that Axk+1 = b. It follows that xk+1 ∈ Ωo.

Observe from Algorithm 2 that {φµ(xk)}k∈K is descent, and hence φµ(xk+1) ≤ φµ(x0). By this, xk+1 ∈ Ωo,

µ ≤ µ̄ and (42), one can conclude that xk+1 ∈ S, and hence the induction is completed.

The lemma below states some properties of the direction dk arising in Algorithm 2 that results from

applying Algorithm 3 to (32) with H = PTk ∇2φµ(xk)Pk, ε =
√
ε, g = PTk ∇φµ(xk). Its proof is similar to

the ones in [32, Lemma 7] and [34, Lemma 3] and thus omitted here.

Lemma 5. Suppose that the direction dk results from the output d̂k of Algorithm 3 with a type specified

in d type at some iteration k of Algorithm 2. Let Qk and Pk be given in (28) and (30), respectively. Then

the following statements hold.

(i) If d type=SOL, then dk satisfies

√
ε‖dk‖2 ≤ (dk)T

(
PTk ∇2φµ(xk)Pk + 2

√
εI
)
dk, (50)

‖dk‖ ≤ 1.1ε−1/2‖PTk ∇φµ(xk)‖, (51)

(dk)TPTk ∇φµ(xk) = −γk(dk)T
(
PTk ∇2φµ(xk)Pk + 2

√
εI
)
dk, (52)

where γk = max{‖Qkd̂k‖/β, 1}. If ‖Qkd̂k‖ ≤ β, then dk also satisfies

‖(PTk ∇2φµ(xk)Pk + 2
√
εI)dk + PTk ∇φµ(xk)‖ ≤

√
εζ‖dk‖/2. (53)

(ii) If d type=NC, then dk satisfies (dk)TPTk ∇φµ(xk) ≤ 0 and

(dk)TPTk ∇2φµ(xk)Pkd
k

‖dk‖2
≤ −‖dk‖ ≤ −

√
ε.

The next lemma considers the case where the direction dk in Algorithm 2 results from the output

of Algorithm 3 with d type=SOL, and moreover, the unit step length is accepted by the line search

procedure. For this case, it will be shown that ‖dk‖ cannot be too small or the next iterate xk+1 is an

approximate first-order stationary point.

Lemma 6. Suppose that the direction dk results from the output of Algorithm 3 with d type=SOL at

some iteration k of Algorithm 2, and the unit step length is accepted by the line search procedure, that is,

xk+1 = xk + Pkd
k. Then we have ‖dk‖ ≥ cd

√
ε or

‖∇f(xk+1) +ATλ
(2)
k+1 + µ∇B(xk)‖∗xk+1 ≤ (1− β)µ, (54)

where

cd =
(1− β)3

(LH + ζ + 4)[(1− β)2 +
√
ϑ] + 1− β

, λ
(2)
k+1 = Rk(∇2f(xk)Pkd

k +∇φµ(xk)), (55)

and Pk and Rk are given in (30) and (34), respectively.

15

Proof. Since dk results from the output d̂k of Algorithm 3 with d type=SOL, it follows from Algorithm 2

that (37) holds for dk and d̂k. In addition, one can observe from (49) that ‖xk+1 − xk‖xk ≤ β. Also, by

Lemma 4, one has that xk ∈ S. Hence, (47) holds for x = xk and y = xk+1. Let Qk be given in (28). We

now divide the rest of the proof into two separate cases below.

Case 1) ‖Qkd̂k‖ ≥ β. It then follows from (37) that dk = βd̂k/‖Qkd̂k‖. In addition, one can observe

from Algorithm 2 that β ≥
√
ε. By these and ‖Qk‖ = 1, we have

√
ε ≤ β = ‖Qkdk‖ ≤ ‖Qk‖‖dk‖ = ‖dk‖. (56)

Notice from (55) that cd ≤ 1, which together with (56) implies that ‖dk‖ ≥ cd
√
ε and thus the conclusion

holds.

Case 2) ‖Qkd̂k‖ < β. Notice that if ‖dk‖ ≥ cd
√
ε, the conclusion of this lemma holds. Hence, it suffices

to consider the case where ‖Qkd̂k‖ < β and ‖dk‖ < cd
√
ε. We next show that (54) holds in this case. To

this end, suppose for the rest of the proof that ‖Qkd̂k‖ < β and ‖dk‖ < cd
√
ε. Since d type=SOL and

‖Qkd̂k‖ < β, one can see from Lemma 5(i) that (53) holds for dk. By (30), (53) and the definition of φµ,

one has that
1

2

√
εζ‖dk‖

(53)

≥
∥∥(PTk ∇2φµ(xk)Pk + 2

√
εI
)
dk + PTk ∇φµ(xk)

∥∥
=

∥∥(PTk (∇2f(xk) + µ∇2B(xk))Pk + 2
√
εI
)
dk + PTk ∇φµ(xk)

∥∥
=

∥∥∥PTk (∇2f(xk)Pkd
k +∇φµ(xk)

)
+ µPTk ∇2B(xk)Pkd

k + 2
√
εdk
∥∥∥

≥
∥∥∥PTk (∇2f(xk)Pkd

k +∇φµ(xk)
)∥∥∥− µ‖PTk ∇2B(xk)Pkd

k‖ − 2
√
ε‖dk‖

(30)

≥
∥∥∥PTk (∇2f(xk)Pkd

k +∇φµ(xk)
)∥∥∥− µ‖Qk‖2‖MT

k ∇2B(xk)Mk‖‖dk‖ − 2
√
ε‖dk‖

=
∥∥∥PTk (∇2f(xk)Pkd

k +∇φµ(xk)
)∥∥∥− µ‖dk‖ − 2

√
ε‖dk‖, (57)

where the first equality is due to the definition of φµ, the second inequality is due to the triangle inequality,

and the last equality follows from the fact that ‖Qk‖ = 1 and MT
k ∇2B(xk)Mk = I (due to (27)). Using

(8), (27), (35), ‖xk+1 − xk‖xk ≤ β, and the definition of λ
(2)
k+1, we obtain that∥∥∥PTk (∇2f(xk)Pkd

k +∇φµ(xk)
)∥∥∥

(35)
=
∥∥∥MT

k

(
∇2f(xk)Pkd

k +∇φµ(xk)
)

+MT
k A

TRk

(
∇2f(xk)Pkd

k +∇φµ(xk)
)∥∥∥

=
∥∥∥MT

k

(
∇2f(xk)Pkd

k +∇φµ(xk) +ATλ
(2)
k+1

)∥∥∥
(27)
=
∥∥∥∇2f(xk)Pkd

k +∇f(xk) +ATλ
(2)
k+1 + µ∇B(xk)

∥∥∥∗
xk

(8)

≥ (1− β)
∥∥∥∇2f(xk)Pkd

k +∇f(xk) +ATλ
(2)
k+1 + µ∇B(xk)

∥∥∥∗
xk+1

, (58)

where the second equality follows from the definition of λ
(2)
k+1. Combining (57) with (58) yields∥∥∥∇2f(xk)Pkd

k +∇f(xk) +ATλ
(2)
k+1 + µ∇B(xk)

∥∥∥∗
xk+1

≤ (ζ
√
ε+ 2µ+ 4

√
ε)‖dk‖

2(1− β)
. (59)

In addition, by ‖Qk‖ = 1 and (49), one has that

‖Pkdk‖xk = ‖Qkdk‖ ≤ ‖dk‖. (60)

Also, notice from (55) and Algorithm 2 that 0 < cd < 1 and µ = (1− β)ε/[2((1− β)2 +
√
ϑ)], respectively.

Using these, (8), (47), (59), (60), ‖xk+1 − xk‖xk ≤ β, and ‖dk‖ < cd
√
ε, we have that∥∥∥∇f(xk+1) +ATλ

(2)
k+1 + µ∇B(xk)

∥∥∥∗
xk+1

≤
∥∥∇f(xk+1)−∇2f(xk)Pkd

k −∇f(xk)
∥∥∗
xk+1 +

∥∥∥∇2f(xk)Pkd
k +∇f(xk) +ATλ

(2)
k+1 + µ∇B(xk)

∥∥∥∗
xk+1

16

(8)

≤ (1− β)−1
∥∥∇f(xk+1)−∇2f(xk)Pkd

k −∇f(xk)
∥∥∗
xk +

∥∥∥∇2f(xk)Pkd
k +∇f(xk) +ATλ

(2)
k+1 + µ∇B(xk)

∥∥∥∗
xk+1

(47)(59)

≤
LH‖Pkdk‖2xk

2(1− β)
+

(ζ
√
ε+ 2µ+ 4

√
ε)‖dk‖

2(1− β)

(60)

≤ LH‖dk‖2

2(1− β)
+

(ζ
√
ε+ 2µ+ 4

√
ε)‖dk‖

2(1− β)

<
LHcdε

2(1− β)
+

(ζ + 4)cdε

2(1− β)
+

cdµ

1− β
=

(LH + ζ + 4)[(1− β)2 +
√
ϑ] + 1− β

(1− β)2
cdµ = (1− β)µ,

where the first inequality follows from the triangle inequality, the last inequality uses ‖dk‖ < cd
√
ε,

0 < cd < 1 and ε ≤ 1, the first equality uses µ = (1− β)ε/[2((1− β)2 +
√
ϑ)], and the last equality follows

from the definition of cd. Hence, (54) holds as desired.

The following lemma shows that if the direction dk in Algorithm 2 results from the output of Algorithm

3 with d type=SOL, then the associated step length αk is well-defined, and moreover, the next iterate

xk+1 is an approximate first-order stationary point or φµ(xk)− φµ(xk+1) cannot be too small.

Lemma 7. Suppose that the direction dk results from the output of Algorithm 3 with d type=SOL at

some iteration k of Algorithm 2. Then the following statements hold.

(i) The step length αk is well-defined, and moreover,

αk ≥ min

1,

√
6(1− β)(1− η)εθ√

1.1[LH(1− β) + 1/2](Ug + µ
√
ϑ)

 , (61)

where Ug is defined in (44).

(ii) The relation (54) holds for (xk+1, λ
(2)
k+1) or φµ(xk)− φµ(xk+1) > csolε

3/2 holds, where

csol = ηmin

{
c2d,

[
6(1− β)(1− η)θ

LH(1− β) + 1/2

]2
}
, (62)

and λ
(2)
k+1 and cd are given in (55).

Proof. For notational convenience, let H = PTk ∇2φµ(xk)Pk and g = PTk ∇φµ(xk). Since d type=SOL, it

follows from Lemma 5(i) that (50), (51) and (52) hold. Also, by ϑ ≥ 1, ε < 1 and 0 < β < 1, one has that

µ =
(1− β)ε

2[(1− β)2 +
√
ϑ]
≤ (1− β)ε

2[(1− β)2 + 1]
≤ ε

4
<

1

4
. (63)

In addition, by Lemma 4, one has that xk ∈ S. Also, one can observe from (49) that ‖θjPkdk‖xk ≤ β for

all j ≥ 0. Hence, (48) holds for x = xk and y = xk + θjPkd
k for all j ≥ 0.

We are now ready to prove statement (i). If (39) holds for j = 0, then the line search procedure

chooses the unit step length, i.e., αk = 1, and hence statement (i) holds. We now suppose that (39) fails

for j = 0. Let us consider all j ≥ 0 that violate (39). For any such j, by using (48), (50), (52), (60),

Lemma 1(v), and µ < 1/4, one has that

−η
√
εθ2j‖dk‖2 ≤ φµ(xk + θjPkd

k)− φµ(xk) = f(xk + θjPkd
k)− f(xk) + µ[B(xk + θjPkd

k)−B(xk)]

≤ θj∇f(xk)TPkd
k + θ2j

2 (dk)TPTk ∇2f(xk)Pkd
k + LH

6 θ3j‖Pkdk‖3xk + µθj∇B(xk)TPkd
k

+µθ2j

2 (dk)TPTk ∇2B(xk)Pkd
k + µ

3(1−β)θ
3j‖Pkdk‖3xk

= θjgT dk + θ2j

2 (dk)THdk + LH(1−β)+2µ
6(1−β) θ3j‖Pkdk‖3xk

(52)
= −θjγk(dk)T (H + 2

√
εI)dk + θ2j

2 (dk)THdk + LH(1−β)+2µ
6(1−β) θ3j‖Pkdk‖3xk

= −θj
(
γk − θj

2

)
(dk)T (H + 2

√
εI)dk − θ2j

√
ε‖dk‖2 + LH(1−β)+2µ

6(1−β) θ3j‖Pkdk‖3xk

(50)(60)

≤ −θj
(
γk − θj

2

)√
ε‖dk‖2 − θ2j

√
ε‖dk‖2 + LH(1−β)+2µ

6(1−β) θ3j‖dk‖3

≤ −θjγk
√
ε‖dk‖2 + LH(1−β)+1/2

6(1−β) θ3j‖dk‖3,

17

where the first inequality is due to the violation of (39), the first equality follows from the definition of φµ,

the second inequality uses (48) and Lemma 1(v), the second equality follows from H = PTk ∇2φµ(xk)Pk
and g = PTk ∇φµ(xk), and the last inequality is due to µ < 1/4. Using the last inequality above,

γk = max{‖Qkd̂k‖/β, 1} ≥ 1, θ ∈ (0, 1), η ∈ (0, 1) and the fact that dk 6= 0 (see Theorem 5), we obtain

that
LH(1− β) + 1/2

6(1− β)
θ2j ≥ (γk − ηθj)

√
ε‖dk‖−1 ≥ (1− η)

√
ε‖dk‖−1, (64)

which, together with θ ∈ (0, 1), implies that all j ≥ 0 that violate (39) must be bounded above. Hence,

there does exist the smallest positive integer jk such that (39) holds for j = jk, and thus αk is well-

defined. We next show that (61) holds for αk. Indeed, we know from Lemma 1(i), (30) and (46) that

‖∇B(xk)‖∗xk =
√
ϑ, Pk = MkQk, and ‖∇f(xk)‖∗xk ≤ Ug, respectively. By these, ‖Qk‖ = 1, (27) and (51),

one has that

‖dk‖
(51)

≤ 1.1ε−1/2‖PTk ∇φµ(xk)‖ ≤ 1.1ε−1/2(‖PTk ∇f(xk)‖+ µ‖PTk ∇B(xk)‖)

≤ 1.1ε−1/2(‖MT
k ∇f(xk)‖+ µ‖MT

k ∇B(xk)‖) (27)
= 1.1ε−1/2(‖∇f(xk)‖∗xk + µ‖∇B(xk)‖∗xk)

≤ 1.1ε−1/2(Ug + µ
√
ϑ). (65)

Notice from Algorithm 2 that j = jk − 1 violates (39) and hence (64) holds for j = jk − 1. By αk = θjk

and (64) with j = jk − 1, one has that

αk = θjk ≥

√
6(1− β)(1− η)

LH(1− β) + 1/2
θε1/4‖dk‖−1/2, (66)

which together with (65) implies that (61) holds.

We next prove statement (ii) by considering three separate cases.

Case 1) αk = 1 and ‖dk‖ < cd
√
ε. It follows from Lemma 6 that (54) holds for (xk+1, λ

(2)
k+1).

Case 2) αk = 1 and ‖dk‖ ≥ cd
√
ε. By these, (39) and (62), one has

φµ(xk)− φµ(xk+1) > η
√
ε‖dk‖2 ≥ ηc2dε3/2 ≥ csolε

3/2,

and hence statement (ii) holds.

Case 3) αk < 1. It implies that (39) fails for j = 0. As seen from the proof of statement (i), (64) holds

for j = 0 and (66) also holds. By setting j = 0 in (64), one has

‖dk‖ ≥ 6(1− β)(1− η)

LH(1− β) + 1/2

√
ε.

Using this, (39), (62) and (66), we obtain that

φµ(xk)− φµ(xk+1) > η
√
εα2
k‖dk‖2 ≥ η

6(1− β)(1− η)θ2ε

LH(1− β) + 1/2
‖dk‖ ≥ η

[
6(1− β)(1− η)θ

LH(1− β) + 1/2

]2

ε3/2 ≥ csolε
3/2,

and hence statement (ii) holds.

The next lemma shows that if the direction dk in Algorithm 2 results from the output of Algorithm 3

with d type=NC, then the associated step length αk is well-defined, and moreover, the reduction on the

function value of φµ, i.e., φµ(xk)− φµ(xk+1), cannot be too small.

Lemma 8. Suppose that the direction dk results from the output of Algorithm 3 with d type=NC at some

iteration k of Algorithm 2. Let

cnc =
η

2
min

{
1,

[
3(1− β)(1− η)θ

LH(1− β) + 1/2

]2
}
. (67)

Then the following statements hold.

(i) The step length αk is well-defined, and moreover,

αk ≥ min

{
1,

3(1− β)(1− η)θ

LH(1− β) + 1/2

}
. (68)

18

(ii) φµ(xk)− φµ(xk+1) ≥ cncε3/2 holds.

Proof. For notational convenience, let H = PTk ∇2φµ(xk)Pk and g = PTk ∇φµ(xk). Since d type=NC, it

then follows from Lemma 5(ii) that (dk)T g ≤ 0, (dk)THdk ≤ −‖dk‖3, and ‖dk‖ ≥
√
ε. In addition, by

Lemma 4, one has that xk ∈ S. Also, one can observe from (49) that ‖θjPkdk‖xk ≤ β for all j ≥ 0.

Hence, (48) holds for x = xk and y = xk + θjPkd
k for all j ≥ 0. Also, recall from (63) that µ < 1/4.

We are now ready to prove statement (i). If (40) holds for j = 0, then the line search procedure

chooses the unit step length, i.e., αk = 1, and hence statement (i) holds. We now suppose that (40) fails

for j = 0. Let us consider all j ≥ 0 that violate (40). For any such j, by using (48), (60), Lemma 1(v),

(dk)T g ≤ 0, (dk)THdk ≤ −‖dk‖3, and µ < 1/4, one has that

−η2θ
2j‖dk‖3 ≤ φµ(xk + θjPkd

k)− φµ(xk) = f(xk + θjPkd
k)− f(xk) + µ[B(xk + θjPkd

k)−B(xk)]

≤ θj∇f(xk)TPkd
k + θ2j

2 (dk)TPTk ∇2f(xk)Pkd
k + LH

6 θ3j‖Pkdk‖3xk + µθj∇B(xk)TPkd
k

+µθ2j

2 (dk)TPTk ∇2B(xk)Pkd
k + µ

3(1−β)θ
3j‖Pkdk‖3xk

= θjgT dk + θ2j

2 (dk)THdk + LH(1−β)+2µ
6(1−β) θ3j‖Pkdk‖3xk

≤ − θ
2j

2 ‖d
k‖3 + LH(1−β)+1/2

6(1−β) θ3j‖dk‖3,

where the first inequality is due to the violation of (40), the first equality follows from the definition of φµ,

the second inequality uses (48) and Lemma 1(v), the second equality follows from H = PTk ∇2φµ(xk)Pk
and g = PTk ∇φµ(xk), and the last inequality follows from (60), (dk)T g ≤ 0, (dk)THdk ≤ −‖dk‖3 and

µ < 1/4. Using the last inequality above and the fact that dk 6= 0 (see Theorem 5), we obtain that

θj ≥ 3(1− β)(1− η)

LH(1− β) + 1/2
, (69)

which, together with θ ∈ (0, 1), implies that all j ≥ 0 that violate (40) must be bounded above. Hence,

there does exist the smallest positive integer jk such that (40) holds for j = jk, and thus αk is well-defined.

We next prove (68). Indeed, notice from Algorithm 2 that j = jk − 1 violates (40) and hence (69) holds

for j = jk − 1. By αk = θjk and (69) with j = jk − 1, one has that

αk = θjk ≥ 3(1− β)(1− η)θ

LH(1− β) + 1/2
,

which proves (68) as desired.

Statement (ii) immediately follows from (40), (67), (68) and the fact that ‖dk‖ ≥
√
ε.

The following lemma shows that if the direction dk in Algorithm 2 results from calling Algorithm 1,

then the associated step length αk is well-defined, and moreover, φµ(xk)− φµ(xk+1) cannot be too small.

Lemma 9. Suppose that the direction dk results from calling Algorithm 1 at some iteration k of Algorithm

2. Let cnc be defined in (67). Then the following statements hold.

(i) The step length αk is well-defined, and moreover, the relation (68) holds for αk.

(ii) φµ(xk)− φµ(xk+1) > cncε
3/2/64 holds.

Proof. Since dk results from calling Algorithm 1 at some iteration k of Algorithm 2, one has

dk = − sgn(vTPTk ∇φµ(xk)) min

{
|vTPTk ∇2φµ(xk)Pkv|,

β

‖Qkv‖

}
v (70)

for some vector v satisfying that ‖v‖ = 1 and vTPTk ∇2f(xk)Pkv ≤ −
√
ε/2. By (63) and ε ∈ (0, 1), one

has that µ ≤ ε/4 ≤
√
ε/4. Using these relations, and (60) with dk replaced by v, we obtain that

vTPTk ∇2φµ(xk)Pkv = vTPTk ∇2f(xk)Pkv + µvTPTk ∇2B(xk)Pkv ≤ −
√
ε/2 + µ‖Pkv‖2xk

≤ −
√
ε/2 + µ‖v‖2≤ −

√
ε/2 +

√
ε/4 = −

√
ε/4. (71)

19

Notice that ‖Qkv‖ ≤ 1. By this, ε < 1, ‖v‖ = 1, β ≥
√
ε (see Algorithm 2), (70) and (71), one has that

‖dk‖ = min

{
|vTPTk ∇φµ(xk)Pkv|,

β

‖Qkv‖

}
≥ min

{√
ε

4
, β

}
=

√
ε

4
. (72)

In addition, one can observe from (70) that (dk)TPTk ∇2φµ(xk)Pkd
k and vTPTk ∇2φµ(xk)Pkv have the

same sign, which together with (71) implies that (dk)TPTk ∇2φµ(xk)Pkd
k < 0. By this and (70), one has

that

‖dk‖ ≤ |vTPTk ∇2φµ(xk)Pkv| =
|(dk)TPTk ∇2φµ(xk)Pkd

k|
‖dk‖2

= − (dk)TPTk ∇2φµ(xk)Pkd
k

‖dk‖2
.

Hence, we obtain that (dk)TPTk ∇2φµ(xk)Pkd
k ≤ −‖dk‖3. One can also observe from (70) that (dk)TPTk ∇φµ(xk) ≤

0. The rest of the proof follows from these two relations, (72), and the similar arguments as used in the

proof of Lemma 8.

The following theorem shows that each iteration of Algorithm 2 is well-defined, and moreover, each

iterate xk generated by it is a strictly feasible point of problem (1).

Theorem 7. Each iteration of Algorithm 2 is well-defined. Moreover, each iterate xk generated by

Algorithm 2 satisfies that xk ∈ Ωo, that is, Axk = b and xk ∈ intK.

Proof. From Lemma 4, we know that each iterate xk generated by Algorithm 2 satisfies that xk ∈ S,

which together with (42) implies that xk ∈ Ωo, that is, Axk = b and xk ∈ intK. It remains to show that

each iteration of Algorithm 2 is well-defined. To this end, suppose that xk is generated at some iteration

k of Algorithm 2 and the algorithm is not terminated yet at xk. It suffices to show that the next iterate

xk+1 is successfully generated. Indeed, since Algorithm 2 is not terminated yet at xk, then one of the

following two cases must occur. As seen below, the direction dk is successfully obtained regardless of

which case occurs.

Case 1) min{‖∇f(xk) + ATλ
(1)
k + µ∇B(xk)‖∗xk , ‖∇f(xk) + ATλ

(2)
k + µ∇B(xk−1)‖∗xk} > (1 − β)µ,

where λ
(1)
k and λ

(2)
k are defined in Algorithm 2. It then follows that

‖∇f(xk) +ATλ
(1)
k + µ∇B(xk)‖∗xk > (1− β)µ. (73)

Claim that PTk ∇φµ(xk) 6= 0. Indeed, notice from Algorithm 2 that λ
(1)
k = Rk∇φµ(xk). By this, (24),

(27), (35) and (73), one has that

‖PTk ∇φµ(xk)‖ (35)
= ‖MT

k (I +ATRk)∇φµ(xk)‖ (27)
= ‖∇φµ(xk) +ATRk∇φµ(xk)‖∗xk

= ‖∇f(xk) +ATλ
(1)
k + µ∇B(xk)‖∗xk

(73)
> (1− β)µ,

and hence PTk ∇φµ(xk) 6= 0 as claimed. Since PTk ∇φµ(xk) 6= 0, it follows from Theorem 5 that d̂k can be

obtained from applying Algorithm 3 to (32) with H = PTk ∇2φµ(xk)Pk, ε =
√
ε, g = PTk ∇φµ(xk). The

direction dk is then obtained from d̂k according to (36) or (37).

Case 2) vTPTk ∇2f(xk)Pkv < −
√
ε/2 for some unit vector v returned from calling Algorithm 1 with

H = PTk ∇2f(xk)Pk and ε =
√
ε. In this case, the direction dk is obtained from v according to (38).

In addition, it follows from Lemmas 7-9 that the step length αk is well-defined. Hence, the next

iterate xk+1 is successfully generated by xk+1 = xk + αkPkd
k

In the next theorem we establish iteration complexity results for Algorithm 2.

Theorem 8. Let

K1 =

⌈
φ0 − φ

min{csol, cnc}
ε−3/2

⌉
+

⌈
64(φ0 − φ)

cnc
ε−3/2

⌉
+ 1, (74)

K2 =

⌈
64(φ0 − φ)

cnc
ε−3/2

⌉
+ 1, (75)

where φ0 = f(x0) + µ̄max{B(x0), 0}, µ̄ and φ are given in Assumption 1, and csol and cnc are defined

in (62) and (67), respectively. Then the following statements hold.

20

(i) The total number of calls of Algorithm 1 in Algorithm 2 is at most K2.

(ii) The total number of calls of Algorithm 3 in Algorithm 2 is at most K1.

(iii) Algorithm 2 terminates in at most K1 +K2 iterations. Its output xk is a deterministic ε-first-order

stationary point for some k ≤ K1 + K2. Moreover, it is an (ε,
√
ε)-second-order stationary point

with probability at least 1−
√

2.75nδ‖Hk‖−1/2

, which is bounded below by 1−
√

2.75nδU
−1/2
H , where

Hk = PTk ∇2f(xk)Pk and UH is given in (44).

Proof. (i) Suppose for contradiction that the total number of calls of Algorithm 1 in Algorithm 2 is more

than K2. Observe from Algorithm 2 that each of these calls except the last one returns a sufficient negative

curvature direction. Hence, these calls would totally return at least K2 sufficient negative curvature

directions. In addition, recall from Lemma 9(ii) that each of such directions results in a reduction on the

function value of φµ at least by cncε
3/2/64. Also, since µ ≤ µ̄ and xk ∈ S, one can observe that

φµ(x0) = f(x0) + µB(x0) ≤ f(x0) + µ̄max{B(x0), 0} = φ0, φµ(xk) ≥ φ ∀k ∈ K,

where K is given in Lemma 4. Besides, notice that {φµ(xk)}k∈K is descent. Based on these observations,

one would have

K2cncε
3/2/64 ≤

∑
k∈K

[φµ(xk)− φµ(xk+1)] ≤ φµ(x0)− φ ≤ φ0 − φ,

which contradicts with (75). Hence, statement (i) holds.

(ii) Suppose for contradiction that the total number of calls of Algorithm 3 in Algorithm 2 is

more than K1. By statement (i) and Algorithm 2, one can observe that the total number of calls

of Algorithm 3 that produce an iterate xk satisfying ‖∇f(xk) + ATλ
(1)
k + µ∇B(xk)‖∗xk ≤ (1 − β)µ or

‖∇f(xk) +ATλ
(2)
k +µ∇B(xk−1)‖∗xk ≤ (1−β)µ is at most K2. Using these, and Lemmas 7 and 8, one can

further observe that the total number of iterations of Algorithm 2, at which Algorithm 3 is called and the

next iterate reduces the function value of φµ at least by min{csol, cnc}ε3/2, would be at least K1 −K2 + 1.

Combining these observations with the fact that {φµ(xk)}k∈K is descent, one then would have

(K1 −K2 + 1) min{csol, cnc}ε3/2 ≤
∑
k∈K

[φµ(xk)− φµ(xk+1)] ≤ φµ(x0)− φ ≤ φ0 − φ,

where K is given in Lemma 4. This together with (75) leads to a contradiction with (74).

(iii) Since either Algorithm 3 or Algorithm 1 is called at each iteration of Algorithm 2, it follows

from statements (i) and (ii) that Algorithm 2 terminates in at most K1 +K2 iterations. Suppose that

Algorithm 2 terminates at iteration k for some k ≤ K1 +K2. One can observe from Algorithm 2 and

Theorem 6 that

‖∇f(xk) +ATλk + µ∇B(x̃)‖∗xk ≤ (1− β)µ (76)

for some (x̃, λk) ∈ {(xk, λ(1)
k), (xk−1, λ

(2)
k)}, and additionally, λmin(PTk ∇2f(xk)Pk) ≥ −

√
ε holds with a

probability at least 1−
√

2.75nδ‖Hk‖−1/2

, where Hk = PTk ∇2f(xk)Pk. In addition, it follows from (49) and

the definition of x̃ that ‖xk−x̃‖x̃ ≤ β. By these and Lemma 1(iv), one has ‖∇f(xk)+ATλk+µ∇B(x̃)‖∗x̃ ≤
µ, which yields

‖(∇f(xk) +ATλk)/µ+∇B(x̃)‖∗x̃ ≤ 1.

Using this and Lemma 1(vi), we have (∇f(xk) +ATλk)/µ ∈ K∗. Hence, (19) holds for (xk, λk). We next

show that (20) also holds for (xk, λk). Indeed, by x̃ ∈ intK, ‖xk − x̃‖x̃ ≤ β, and Lemma 1(i) and (iv),

one has that

‖∇B(x̃)‖∗xk ≤ (1− β)−1‖∇B(x̃)‖∗x̃ = (1− β)−1
√
ϑ.

By this, (76), and µ = (1− β)ε/[2((1− β)2 +
√
ϑ)], one has that

‖∇f(xk) +ATλk‖∗xk ≤ ‖∇f(xk) +ATλk + µ∇B(x̃)‖∗xk + µ‖∇B(x̃)‖∗xk

≤ (1− β)µ+ µ
√
ϑ

1−β = (1−β)2+
√
ϑ

1−β µ = ε/2 < ε,

21

and hence (20) holds for (xk, λk) as desired. In addition, we know from Theorem 7 that Axk = b and

xk ∈ intK. Combining these results, we conclude that xk is a deterministic ε-first-order stationary point.

Finally, recall that Hk = PTk ∇2f(xk)Pk, Pk = MkQk, ‖Qk‖ = 1, and xk ∈ S. In view of these, (7), (27)

and (44), one has that

‖Hk‖ = ‖PTk ∇2f(xk)Pk‖ ≤ ‖MT
k ∇2f(xk)Mk‖ = max

‖u‖
xk≤1

‖MT
k ∇2f(xk)u‖

= max
‖u‖

xk≤1
‖∇2f(xk)u‖∗xk = ‖∇2f(xk)‖∗xk ≤ UH .

Hence, we have 1−
√

2.75nδ‖Hk‖−1/2 ≥ 1−
√

2.75nδU
−1/2
H .

Remark 4. From Theorem 8, one can see that Algorithm 2 has an iteration complexity of O(ε−3/2) for

finding an (ε,
√
ε)-second-order stationary point of problem (1), which matches the best known iteration

complexity achieved by the methods [1, 6, 9, 11, 16, 17, 18, 21, 26, 30, 32, 34, 35] for finding an

(ε,
√
ε)-second-order stationary point of problem (2), (3) or (5).

5.2 Operation complexity

In this subsection we discuss operation complexity of Algorithm 2 for solving problem (1), which is

measured by its total main operations that depend on the type of the cone K.

Notice that Algorithm 1 with H = PTk ∇2f(xk)Pk or Algorithm 3 with H = PTk ∇2φµ(xk)Pk is called

at iteration k of Algorithm 2. Also, observe that the main operation of Algorithms 1 and 3 per iteration

is the product of H and a vector v. In addition, λ
(1)
k , λ

(2)
k , ‖∇f(xk) + ATλ

(1)
k + µ∇B(xk)‖∗xk and

‖∇f(xk) +ATλ
(2)
k +µ∇B(xk−1)‖∗xk need to be computed at iteration k of Algorithm 2. However, one can

observe that their computational cost is no higher than that of the product of H and v. Also, it is clear

that the computational cost of the product of PTk ∇2f(xk)Pk and v is no higher than that of the product

of PTk ∇2φµ(xk)Pk and v. Thus, we only focus on the product of H and v with H = PTk ∇2φµ(xk)Pk. We

now discuss how to compute Hv by utilizing the structure of PTk ∇2φµ(xk)Pk. In view of (27), (28) and

(30), one has

Hv = PTk ∇2φµ(xk)Pkv = QkM
T
k ∇2f(xk)MkQkv + µQkM

T
k ∇2B(xk)MkQkv

= QkM
T
k ∇2f(xk)MkQkv + µQkv = v5 + µv1,

where

v1 = Qkv, v2 = Mkv
1, v3 = ∇2f(xk)v2, v4 = MT

k v
3, v5 = Qkv

4.

Thus, the computation of Hv is broken into that of vi for 1 ≤ i ≤ 5. In what follows, we discuss how to

compute them, and also analyze their associated operation cost.

1. Notice that v1 and v5 are both a product of Qk and a vector. Let us consider computing Qku for

some vector u. By (28), one has

Qku = (I −MT
k A

T (AMkM
T
k A

T)−1AMk)u = u−MT
k A

T (AMkM
T
k A

T)−1AMku = u− u5,

where

u1 = Mku, u2 = Au1, u3 = (AMkM
T
k A

T)−1u2, u4 = ATu3, u5 = MT
k u

4.

Observe that AMkM
T
k A

T can be computed by N = MT
k A

T and AMkM
T
k A

T = NTN . The

computation of N = MT
k A

T involves m products of MT
k and a vector. Once N is available, the

operation cost of computing NTN is O(m2n). In addition, when AMkM
T
k A

T and u2 are available,

the operation cost of computing u3 is O(m3). Also, once u1 and u3 are available, the operation

cost of computing u2 and u4 is O(mn). By these observations and the fact that m ≤ n, one can see

that the main operation of computing Qku consists of m+ 2 products of Mk or MT
k and a vector,

and also one product of an m× n matrix and its transpose.

22

2. Based on the above discussion, one can observe that the computation of v1, v2, v4, and v5 involves

2m+ 6 products of Mk or MT
k and a vector in total. We now discuss how to compute the product

of Mk or MT
k and a vector. Observe from (27) that ∇2B(xk) = M−Tk M−1

k . Thus, M−Tk can be

obtained as the Cholesky factor of ∇2B(xk), which is computed only once in each iteration of

Algorithm 2. Once M−Tk is available, the product of Mk or MT
k and a vector can be computed by

applying backward or forward substitution to a linear system with coefficient matrix M−1
k or M−Tk .

3. Once v2 is available, the computation of v3 only involves the product of ∇2f(xk) and v2.

Consequently, once the Cholesky factor M−Tk of ∇2B(xk) is computed in each iteration of Algorithm 2,

the main computation of Hv consists of:

• 2m+ 6 backward or forward substitutions to a linear system with coefficient matrix M−1
k or M−Tk ;

• one product of an m× n matrix and its transpose;

• one product of ∇2f(xk) and a vector.

When K is the nonnegative orthant, its associated LHSC is B(x) = −
∑n
i=1 lnxi and ∇2B(xk) is a

diagonal matrix. The operation cost of the Cholesky factorization of ∇2B(xk) is O(n). In addition, the

operation cost of 2m+ 6 backward or forward substitutions to a linear system with coefficient matrix

M−1
k or M−Tk is O(mn). Thus, the main operation of computing Hv consists of one product of an m× n

matrix and its transpose, and one product of ∇2f(xk) and a vector.

When K is a general cone, such as a second-order or semidefinite cone, the operation cost of the

Cholesky factorization of ∇2B(xk) (including the evaluation of ∇2B(xk)) is typically at least O(n3).

In addition, the operation cost of 2m + 6 backward or forward substitutions to a linear system with

coefficient matrix M−1
k or M−Tk is O(mn2).

The above discussion and Theorems 5(ii), 6 and 8 lead to the following operation complexity results

for Algorithm 2, which are represented by its total main operations that depend on the type of the cone

K.

Theorem 9. Let K1 and K2 be given in (74) and (75), respectively, and let

N̄ = Õ
(

min{n, ε−1/4}K1 + min
{
n, 1 +

⌈
ε−1/4 ln δ−1

⌉}
K2

)
.

Then the following statements hold.

(i) When K is the nonnegative orthant, the total main operations of Algorithm 2 consist of N̄ Hessian-

vector products of f and N̄ products of an m× n matrix and its transpose.

(ii) When K is a general cone, the total main operations of Algorithm 2 consist of K1 +K2 Cholesky

factorizations of the Hessian of B, N̄ Hessian-vector products of f , and (2m+ 6)N̄ backward or

forward substitutions to a linear system with a lower or upper triangular coefficient matrix.

Remark 5. Recall from Theorem 8 that K1 = O(ε−3/2) and K2 = O(ε−3/2). In view of these and

Theorem 9, we observe that

(i) when K is the nonnegative orthant, Algorithm 2 achieves an operation complexity of Õ(ε−3/2 min{n, ε−1/4}),

measured by the amount of main operations consisting of Hessian-vector products of f and also

products of an m× n matrix and its transpose, for finding an (ε,
√
ε)-second-order stationary point

of (1) with high probability;

(ii) when K is a general cone, Algorithm 2 requires at most O(ε−3/2) Cholesky factorizations of the

Hessian of B and Õ(ε−3/2 min{n, ε−1/4}) other fundamental operations, consisting of Hessian-vector

products of f and backward or forward substitutions to a lower or upper triangular linear system,

for finding an (ε,
√
ε)-second-order stationary point of (1) with high probability.

In addition, when A = 0, b = 0 and K is the nonnegative orthant, the aforementioned operation complexity

for Algorithm 2 matches the best known ones of second-order methods for finding an (ε,
√
ε)-second-order

stationary point of problem (2) or (3) with high probability (e.g., see [16, 32, 34]).

23

References

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. Finding approximate local minima faster

than gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of

Computing, pages 1195–1199, 2017.

[2] Z. Allen-Zhu and Y. Li. Neon2: Finding local minima via first-order oracles. arXiv preprint

arXiv:1711.06673, 2017.

[3] R. Andreani, G. Haeser, A. Ramos, and P. J. Silva. A second-order sequential optimality condition

associated to the convergence of optimization algorithms. IMA J. Numer. Anal., 37(4):1902–1929,

2017.

[4] W. Bian, X. Chen, and Y. Ye. Complexity analysis of interior point algorithms for non-Lipschitz

and nonconvex minimization. Math. Program., 149(1):301–327, 2015.

[5] E. G. Birgin, G. Haeser, and A. Ramos. Augmented Lagrangians with constrained subproblems and

convergence to second-order stationary points. Comput. Optim. Appl., 69(1):51–75, 2018.

[6] E. G. Birgin and J. M. Mart́ınez. The use of quadratic regularization with a cubic descent condition

for unconstrained optimization. SIAM J. Optim., 27(2):1049–1074, 2017.

[7] J. F. Bonnans and G. Launay. Sequential quadratic programming with penalization of the displace-

ment. SIAM J. Optim., 5(4):792–812, 1995.

[8] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. A trust region algorithm for nonlinearly constrained

optimization. SIAM J. Numer. Anal., 24(5):1152–1170, 1987.

[9] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Convex until proven guilty: dimension-free

acceleration of gradient descent on non-convex functions. In International Conference on Machine

Learning, pages 654–663. PMLR, 2017.

[10] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points I.

Math. Program., 184:71–120, 2020.

[11] C. Cartis, N. I. Gould, and P. L. Toint. Adaptive cubic regularisation methods for unconstrained

optimization. Part I: motivation, convergence and numerical results. Math. Program., 127(2):245–295,

2011.

[12] C. Cartis, N. I. Gould, and P. L. Toint. Worst-case evaluation complexity and optimality of

second-order methods for nonconvex smooth optimization. In Proceedings of the 2018 International

Conference of Mathematicians (ICM 2018), Rio de Janeiro. World Scientific, 2018.

[13] C. Cartis, N. I. Gould, and P. L. Toint. Optimality of orders one to three and beyond: characterization

and evaluation complexity in constrained nonconvex optimization. J. Complex., 53:68–94, 2019.

[14] D. Cifuentes and A. Moitra. Polynomial time guarantees for the Burer-Monteiro method. arXiv

preprint arXiv:1912.01745, 2019.

[15] T. F. Coleman, J. Liu, and W. Yuan. A new trust-region algorithm for equality constrained

optimization. Comput. Optim. Appl., 21(2):177–199, 2002.

[16] F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright. Trust-region Newton-CG with strong

second-order complexity guarantees for nonconvex optimization. SIAM J. Optim., 31(1):518–544,

2021.

[17] F. E. Curtis, D. P. Robinson, and M. Samadi. A trust region algorithm with a worst-case iteration

complexity of O(ε−3/2) for nonconvex optimization. Math. Program., 1(162):1–32, 2016.

[18] F. E. Curtis, D. P. Robinson, and M. Samadi. An inexact regularized Newton framework with

a worst-case iteration complexity of O(ε−3/2) for nonconvex optimization. IMA J. Numer. Anal.,

39(3):1296–1327, 2019.

24

[19] P. Dvurechensky and M. Staudigl. Hessian barrier algorithms for non-convex conic optimization.

arXiv preprint arXiv:2111.00100, 2021.

[20] F. Goyens, A. Eftekhari, and N. Boumal. Computing second-order points under equality constraints:

revisiting fletcher’s augmented lagrangian. arXiv preprint arXiv:2204.01448, 2022.

[21] G. Haeser, H. Liu, and Y. Ye. Optimality condition and complexity analysis for linearly-constrained

optimization without differentiability on the boundary. Math. Program., 178(1):263–299, 2019.

[22] C. He, Z. Lu, and T. K. Pong. A Newton-CG based augmented Lagrangian method for finding

a second-order stationary point of nonconvex equality constrained optimization with complexity

guarantees. 2022. Submitted.

[23] C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent escapes saddle points faster

than gradient descent. In Conference On Learning Theory, pages 1042–1085. PMLR, 2018.

[24] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue by the power and Lanczos

algorithms with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094–1122, 1992.

[25] S. Lu, M. Razaviyayn, B. Yang, K. Huang, and M. Hong. Finding second-order stationary points

efficiently in smooth nonconvex linearly constrained optimization problems. Advances in Neural

Information Processing Systems, 33:2811–2822, 2020.

[26] J. M. Mart́ınez and M. Raydan. Cubic-regularization counterpart of a variable-norm trust-region

method for unconstrained minimization. J. Glob. Optim., 68(2):367–385, 2017.

[27] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and nonlinear programming.

Math. Program., 39(2):117–129, 1987.

[28] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer

Science & Business Media, 2003.

[29] Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex Programming.

SIAM, Philadelphia, 1994.

[30] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.

Math. Program., 108(1):177–205, 2006.

[31] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[32] M. O’Neill and S. J. Wright. A log-barrier Newton-CG method for bound constrained optimization

with complexity guarantees. IMA J. Numer. Anal., 41(1):84–121, 2021.

[33] P. M. Pardalos and G. Schnitger. Checking local optimality in constrained quadratic programming

is NP-hard. Oper. Res. Lett., 7(1):33–35, 1988.

[34] C. W. Royer, M. O’Neill, and S. J. Wright. A Newton-CG algorithm with complexity guarantees for

smooth unconstrained optimization. Math. Program., 180(1):451–488, 2020.

[35] C. W. Royer and S. J. Wright. Complexity analysis of second-order line-search algorithms for smooth

nonconvex optimization. SIAM J. Optim., 28(2):1448–1477, 2018.

[36] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented

Lagrangian framework for nonconvex optimization with nonlinear constraints. Advances in Neural

Information Processing Systems, 32, 2019.

[37] Y. Xie and S. J. Wright. Complexity of projected Newton methods for bound-constrained optimization.

arXiv preprint arXiv:2103.15989, 2021.

[38] Y. Xie and S. J. Wright. Complexity of proximal augmented lagrangian for nonconvex optimization

with nonlinear equality constraints. J. Sci. Comput., 86(3):1–30, 2021.

[39] Y. Xu, R. Jin, and T. Yang. Neon+: Accelerated gradient methods for extracting negative curvature

for non-convex optimization. arXiv preprint arXiv:1712.01033, 2017.

25

Appendix

A A capped conjugate gradient method

In this part we present a capped CG method proposed in [34] for finding either an approximate solution

of (32) or a negative curvature direction of the matrix H, which has been discussed in Subsection 4.2.

The detailed motivation and explanation of this method can be found in [34].

Algorithm 3 A capped conjugate gradient method

Input : Symmetric matrix H ∈ Rn×n, vector g 6= 0, damping parameter ε ∈ (0, 1), desired relative accuracy

ζ ∈ (0, 1).

Optional input: scalar U ≥ 0 such that ‖H‖ ≤ U (set to 0 if not provided).

Output: d type, d̂.

Secondary output: final values of U, κ, ζ̂, τ, and T .

Set

H̄ := H + 2εI, κ :=
U + 2ε

ε
, ζ̂ :=

ζ

3κ
, τ :=

√
κ√

κ+ 1
, T :=

4κ4

(1−
√
τ)2

,

y0 ← 0, r0 ← g, p0 ← −g, j ← 0.

if (p0)T H̄p0 < ε‖p0‖2 then

Set d̂ = p0 and terminate with d type = NC;

else if ‖Hp0‖ > U‖p0‖ then

Set U ← ‖Hp0‖/‖p0‖ and update κ, ζ̂, τ, T accordingly;

end if

while TRUE do

αj ← (rj)T rj/(pj)T H̄pj ; {Begin Standard CG Operations}
yj+1 ← yj + αjp

j ;

rj+1 ← rj + αjH̄p
j ;

βj+1 ← ‖rj+1‖2/‖rj‖2;

pj+1 ← −rj+1 + βj+1p
j ; {End Standard CG Operations}

j ← j + 1;

if ‖Hpj‖ > U‖pj‖ then
Set U ← ‖Hpj‖/‖pj‖ and update κ, ζ̂, τ, T accordingly;

end if

if ‖Hyj‖ > U‖yj‖ then

Set U ← ‖Hyj‖/‖yj‖ and update κ, ζ̂, τ, T accordingly;

end if

if ‖Hrj‖ > U‖rj‖ then

Set U ← ‖Hrj‖/‖rj‖ and update κ, ζ̂, τ, T accordingly;

end if

if (yj)T H̄yj < ε‖yj‖2 then

Set d̂← yj and terminate with d type = NC;

else if ‖rj‖ ≤ ζ̂‖r0‖ then
Set d̂← yj and terminate with d type = SOL;

else if (pj)T H̄pj < ε‖pj‖2 then

Set d̂← pj and terminate with d type = NC;

else if ‖rj‖ >
√
Tτ j/2‖r0‖ then

Compute αj , y
j+1 as in the main loop above;

Find i ∈ {0, . . . , j − 1} such that

(yj+1 − yi)T H̄(yj+1 − yi) < ε‖yj+1 − yi‖2;

Set d̂← yj+1 − yi and terminate with d type = NC;

end if

end while

26

