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Abstract

In this paper we consider finding an approximate second-order stationary point (SOSP) of
nonconvex conic optimization that minimizes a twice differentiable function over the intersection
of an affine subspace and a convex cone. In particular, we propose a Newton-conjugate gradient
(Newton-CG) based barrier method for finding an (e, 1/€)-SOSP of this problem. Our method is not
only implementable, but also achieves an iteration complexity of 0(673/ 2), which matches the best
known iteration complexity of second-order methods for finding an (¢, 1/€)-SOSP of unconstrained
nonconvex optimization. The operation complexity, consisting of (’)(6_3/ 2) Cholesky factorizations
and O(¢~%/? min{n, e */*}) other fundamental operations, is also established for our method.’
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1 Introduction
In this paper we consider the conic constrained optimization problem:
min{f(z) : Az = b,z € K}, (1)

where A € R™*™ is of full row rank, b € R™, and K C R" is a closed and pointed convex cone with
nonempty interior. Assume that problem (1) has at least an optimal solution. In addition, assume
that Slater’s condition holds for this problem, i.e., Q° = {x : Az = b,z € int K} # 0, and f is twice
continuously differentiable and nonconvex on °, where int XC denotes the interior of .

In recent years there have been numerous developments on algorithms with complexity guarantees for
finding an approximate second-order stationary point (SOSP) of some special cases of problem (1). In
particular, cubic regularized Newton methods [1, 11, 30], trust-region methods [16, 17, 26|, quadratic
regularization method [6], accelerated gradient-type method [9], second-order line-search method [35],
inexact regularized Newton method [18], and Newton-CG method [34] were proposed for finding an
approximate SOSP of a special case of (1) with A =0, b = 0 and K = R", that is, an unconstrained
smooth optimization problem

min f(z), (2)
where V2 f is assumed to be Lipschitz continuous in a certain level set of f. These methods enjoy an
iteration complexity of O(e3/2) for finding an (e, /€)-SOSP x of (2) that satisfies

||Vf(l’)|| S €, )\min(vzf(x)) Z 7\/;
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where € € (0,1) is a tolerance parameter, and Anyin(-) denotes the minimum eigenvalue of the associated
matrix. This iteration complexity is proved to be optimal in [10, 12]. In addition to iteration complexity,
the operation complexity of the methods [1, 9, 16, 34, 35] was also studied, which is measured by the
amount of fundamental operations consisting of gradient evaluations and Hessian-vector products of f.
Under some suitable assumptions, it was shown that these methods have an operation complexity of
(7)(6_7/ 4) for finding an (€, 1/€)-SOSP of (2) with high probability. Similar operation complexity bounds
are also achieved by some gradient-based algorithms with random perturbations (e.g., see [2, 23, 39]).
Recently, a log-barrier Newton-conjugate gradient (Newton-CG) method was proposed in [32] for
finding an approximate SOSP of a special case of (1) with A =0, b = 0 and K = R}, namely, the problem

mzln{f(x) cx >0}, (3)

where V2 f is assumed to be Lipschitz continuous in a certain subset of the interior of R’} . Instead of
solving (3) directly, this method applies a preconditioned Newton-CG method, which is a variant of
Newton-CG method [34], to minimize a log-barrier function associated with (3). Under some suitable
assumptions, it was shown in [32] that this method has an iteration complexity of O(¢~3/2) and an
operation complexity of O(e~7/4) for finding an (e, \/€)-SOSP  of (3) that satisfies

©>0, Vf(z)>—ce, [XVf(@)|e <6 Amin(XV2f(2)X) > Ve (4)

with high probability, where e is the all-ones vector, and X is a diagonal matrix whose ith diagonal
entry is min{z;,1}. Besides, the earlier work [4] proposed an interior-point method with an iteration
complexity of O(e~3/2) for finding a point z satisfying the first, third and last relations in (4) with X
being replaced by X = Diag(z), where Diag(z) is a diagonal matrix with « on its diagonal. This method
solves a preconditioned second-order trust-region subproblem per iteration. More recently, a projected
Newton-CG method with complexity guarantees was proposed in [37] for finding an approximate SOSP
of a more general form of (3) with only a subvector of z being nonnegative.

In addition, an interior-point method was proposed in [21] for finding an approximate SOSP of a
special case of (1) with K = R}, that is, a linearly constrained smooth optimization problem

mwm{f(x) Az =0b, x> 0}. (5)

This method solves a preconditioned second-order trust-region subproblem per iteration, which minimizes
a possibly nonconvex quadratic function over the intersection of a linear subspace and an Euclidean ball.
Under some suitable assumptions, it was shown in [21] that this method has an iteration complexity of
O(e73/2) for finding an (e, \/€)-SOSP x of (5) that satisfies

Az =b, >0, Vf(z) + AT > —ee, | X(Vf(z) + ATN)||s < €,
dT (XV2f(2)X +/e[)d >0 Vde {d: AXd =0}

for some A € R™. It is worth mentioning that this method requires solving the associated trust-region
subproblems ezactly, which is typically an impossible task. Thus, this method is not implementable in
general.

Besides, several methods including trust-region methods [8, 15], sequential quadratic programming
method [7], two-phase method [13, 14], penalty method [20], and augmented Lagrangian (AL) type
methods [3, 5, 22, 36, 38] were developed for finding an SOSP of nonconvex equality constrained
optimization. In addition, a projected gradient descent method with random perturbations was proposed
in [25] for nonconvex optimization with linear inequality constraints.

The aforementioned methods are not suitable for finding an approximate SOSP of problem (1) in
general. On the other hand, in the concurrent work [19], the authors proposed a Hessian barrier algorithm
and studied its iteration complexity for finding an approximate SOSP of problem (1). This algorithm
nicely generalizes the cubic regularized Newton method [30] to problem (1). However, it requires solving
many cubic regularized projected Newton subproblems ezactly, which is typically impossible to implement.
To the best of our knowledge, there is yet no implementable method with complexity guarantees in the
literature for finding an approximate SOSP of problem (1).

Inspired by [4, 21, 32, 34], in this paper we develop an implementable method with complexity
guarantees for finding an approximate SOSP of problem (1). Our main contributions are as follows.



e We introduce a novel notion of an approximate SOSP of (1), by the use of the self-concordant
barrier function associated with the cone K and the study of optimality conditions of (1).

e We propose an implementable Newton-CG based barrier method for finding an approximate
SOSP of (1), whose main operations consist of Cholesky factorizations and other fundamental
operations including Hessian-vector products of f, matrix multiplications, and backward or forward
substitutions to a triangular linear system. This method generalizes the log-barrier Newton-CG
method [32] proposed for (3) to the optimization problems with affine and general conic constraints,
and thus provides an affirmative answer to the open question raised by O’Neill and Wright at the
end of [32].

e We show that under mild assumptions, the proposed method achieves an iteration complexity of
O(e73/?) and also an operation complexity, consisting of O(e~3/2) Cholesky factorizations and
O(e=3/2min{n, e 1/4}) other fundamental operations mentioned above, for finding an (e, /¢)-SOSP
of (1) with high probability. When K is the nonnegative orthant, these complexity results match
the best known ones for finding an (e,+/€)-SOSP of (2) or (3) with high probability (e.g., see
(16, 32, 34]).

e The complexity results of our method are established under the assumption that V2f is locally
Lipschitz continuous in a certain subset of Q° (see Assumption 1(b)). Such an assumption is weaker
than the one based on the global Lipschitz continuity of V2f usually imposed in the literature
(e.g., see [32]). As a consequence, our method is applicable to the problems with a broader class of
objective functions f (see Section 5 for more discussion).

The rest of this paper is organized as follows. In Section 2, we introduce some notation and study
some properties of logarithmically homogeneous self-concordant barrier functions. In Section 3, we study
optimality conditions of problem (1) and introduce an approximate counterpart of them. In Section 4, we
propose a Newton-CG based barrier method. Finally, we establish iteration and operation complexity
results for the proposed method in Section 5.

2 Notation and preliminaries

In this section we introduce some notation and also study some properties of a logarithmically homogeneous
self-concordant barrier function for a closed convex cone that will be used in this paper.

Throughout this paper, let R™ denote the n-dimensional Euclidean space and (-, -) denote the standard
inner product. We use || - || to denote the Euclidean norm of a vector or the spectral norm of a matrix. We
denote by Apin(H) the minimum eigenvalue of a real symmetric matrix H. For any two real symmetric
matrices M7 and My, M7 =< M, means that Ms — M is positive semidefinite. For any positive semidefinite
matrix M, M'/? denotes a positive semidefinite matrix such that M = M/2M'/2. For the closed convex
cone K, its interior and dual cone are denoted by int X and K*, respectively. For any x € K, the normal
cone of K at x is denoted by Nic(x). For any t € R, we let sgn(t) be 1 if s > 0 and let it be —1 otherwise.
In addition, we use order notation O(-) in its usual sense, and notation (5() to represent the order with
hidden logarithmic factors.

Logarithmically homogeneous self-concordant (LHSC) barrier functions have played a crucial role in
the development of interior point methods for solving convex conic programming (see the monograph
[29]). The design and analysis of the Newton-CG based barrier method in this paper also heavily rely
on an LHSC barrier function. Throughout this paper, we assume that the cone K is equipped with a
P-logarithmically homogeneous self-concordant (9-LHSC) barrier function B for some ¢ > 1. That is,
B :int £ — R satisfies the following conditions:

(i) B is convex and three times continuously differentiable in int IC, and moreover, |¢"(0)| < 2(¢"(0))3/2

holds for all z € int £ and u € R", where ¢(t) = B(z + tu);
(ii) B is a barrier function for K, that is, B(z) goes to infinity as x approaches the boundary of K;

(iii) B satisfies the logarithmically homogeneous property:

B(tx) = B(z) —dInt VzeintK,t > 0. (6)



For the details of LHSC barrier function and its examples, we refer the reader to [29] and the references
therein.
For any x € int KC, the function B induces the following so-called local norms:

1/2

[v]le = (v"V?B(z)v) Vv € R",
Wllf = TV2B@)] ) v e R,
M5 = max |Mol; VM ER™ )

llvll.<1

In the remainder of this section, we study some properties of the ¥-LHSC barrier function B that will
be used subsequently in this paper.

Lemma 1. Let x € int K and 8 € (0,1) be given. Then the following statements hold for the 9-LHSC
barrier function B.

() (IVB@2)? = ~+TVB() = ]2 = 0.

(ii) —VB(z) € int £*.

(iii) {y: lly —zl. <1} Cint K.

(iv) For any y satisfying ||y — z||. < 8, it holds that

L= B)lvllz < llolly < @ =) Hloll; Vo e R™. (8)

(v) B(z+d) < B(z) + VB(x)"d + §d"V?B(x)d + 55=5; |1d|l7 whenever ||d||, < 8.
(vi) {s:|ls+ VB(x)|r <1} C K*.

Proof. The proof of statements (i), (ii), and (iii) can be found in [29, Proposition 2.3.4], [29, Theorem 2.4.2],
and [29, Theorem 2.1.1], respectively.
We now prove statement (iv). Let y be such that ||y — x|, < 8. It follows from [29, Theorem 2.2.1]
that
(1 - BV2B(x) < V2B(y) < (1 - f) >V*B(),

which, together with the positive definiteness of V2B(z) and V2B(y), implies that
(1= B2 [VB(x) ™ 2 [V2B(y)] ™! = (1= B)?[V?B(x)] .

Statement (iv) then immediately follows from these relations.
We next prove statement (v). Let d € R" be such that ||d||, < 8. By [28, Theorem 4.1.8], one has

B(z +d) < B(x) + VB(2)"d + p(l|d].), 9)

where p(t) = —In(1 — t) — t. Notice that p(t) = Y ;o t*/k for each t € (0,1), and ||d||2 = dT"V?B(z)d.
Using these, ||d||; < 8 <1 and (9), we obtain that

B(z+d) < B(z)+VB(@)d+ 1d"V?B(z)d + Y32, 1l

SR

< B(z)+ VB(@)Td+ 1dTV?B(x)d + L o gh-s

= B)+ VB TV B+

Hence, statement (v) holds as desired.
We finally prove statement (vi). By [29, Theorem 2.4.1], we know that B* is a J-LHSC barrier
function for the cone —K*, where B* is the conjugate of B defined as

B*(y) = sup {(y,z) — B(x)} Vy € int(=K").

z€int I



For any y € int(—K*), let || - ||}, be the local norm induced by B*, that is, |[s[|; = \/s7V2B*(y)s for any
s € R". Since = € int K, notice from statement (ii) that VB(z) € int(—K*). Also, from the proof [29,
Theorem 2.4.2], one has V2B*(VB(x)) = [V2B(z)]~!. It then follows that

1515y = \/sTV2BA(VB(@))s = \[sT[V2B(x)]1s = |ls]; Vs € R"
In view of this and statement (iii) with K and x replaced respectively by —K* and VB(x), one has that
{s: lls = VB@I: < 1} = {5 lls = VB@)lly ey < 1} C int(—K").
Taking the closure on both sides of this relation implies that statement (vi) holds. O

The following lemma shows that [V2B(x)]~! is bounded in the intersection of a unit sphere and int K,
which is crucial for the development of this paper.

Lemma 2. The matriz [V?B(z)]™! is bounded in the intersection of a unit sphere and int K, that is,
v < 0o, where

vi= sup  [[[V?B(2)] 7'l (10)

z€int K, ||z||=1

Proof. Let x € int K with ||z|| = 1 be arbitrarily chosen, y a fixed interior point of K, and 7 = ||x — y||.
Then there exists some r > 0 such that the Euclidean ball centered at y with radius r is included in K.
By this and the convexity of K, one can observe that z + a(y — z) € K for all a € [0, (¥ + r)/7].2 It then
follows that 7, (y) < 7/(¥ + r), where m,(-) is the Minkowski function of K with the pole at = defined as

me(2) =inf{t >0: 2+t (2 —2) €K} V=
Notice that ||z|| = 1 and 7 = ||z — y||. Hence, 7 < 1 + ||y||, which together with 7, (y) < 7/(7 + r) implies

that

1+ ||y
Ta(y) < i =1 Ay,
L+ |yl +r Y

By this and [29, Proposition 2.3.2], one has

VﬂB@o~<<1itjzo>2v23@o<<(;fzi)2v23@y

It follows that

14307
0= IV2B@) ! < (- ) V2B
1-A,
Using this, A, € (0,1) and the arbitrary choice of =, we conclude that

14309
1-A,

sup HW%uWWS( )uw%@WW<m

z€int K, ||z||=1
O
The following theorem shows that ||[[V2B(z)]7!|| is at most in the order of ||z||? for all x € int K.

Theorem 1. Let v be defined in (10). Then ||[VZB(x)]7|| < 7||z||? for every x € int K, and [V2B(x)]!
s bounded in any nonempty bounded subset of int IC.

Proof. Differentiating both sides of (6) twice with respect to x, we have
t*V2B(tx) = V?’B(z) Vz €intk, t > 0.

Letting ¢t = 1/||z||, we further obtain that

1 T
V?B () =V?B(x) Vz€intk.
]| [l

It then follows that
[V2B(x)] ! = [lz|*[V*B(z/|l«)] "' Va € int K,

which together with (10) implies that ||[[V2B(z)]7!|| < v||z||? for every z € int K. It immediately follows
that [V2B(z)]~! is bounded in any nonempty bounded subset of int K. O

2By convention, §/0 is set to co for any ¢ > 0 throughout this paper.



Note that [V2B(z)]~! is well-defined in int K but undefined on the boundary of K. To capture its
behavior as x approaches the boundary of K, we next introduce a terminology called the limiting inverse
of the Hessian of B, denoted by V~2B, which is a generalization of [V2B]~!.

Definition 1 (limiting inverse of the Hessian of B).

V2B(z) = {M M= klim [VZB(z")]7! for some {2*} C int K with % — x as k — oo} Vo e K.
—00

(11)
From Theorem 1, we know that [V2B(z)]~! is bounded in any nonempty bounded subset of int K,
which implies that V=2B(z) # ) for every z € K. In addition, since [V2B(z)]~! is continuous in int K,
one can see that V~2B(x) becomes a singleton {[V2B(z)]~'} for any x € int K. Thus, V™2B is indeed a
generalization of [V2B] ™!,
Notice that Lemma 1(iii) only holds at any = € int . With the aid of the limiting inverse of V2B, we
next generalize Lemma 1(iii) to the one that holds at every point in K.

Theorem 2. For any x € K, it holds that
{x4+MY%d:||d| <1} CK VM eV 2B(x).

Proof. Let M € V~2B(z) be arbitrarily chosen. It then follows from (11) that there exists some
{x*} C int K such that 2* — z and [V2B(2*)]~! — M as k — co. By the nonsingularity of V2B(z*),
the definition of || - ||+, and Lemma 1(iii), one can observe that

{a* + [V2B(@")]"V2d: ||d|| <1} ={y : ||y — 2"|[,» <1} C int K.

Taking limit on both sides of this relation as k — oo, we obtain that {z + M/2d : ||d|| < 1} C K. Hence,
the conclusion holds. O

3 Optimality conditions

In this section we study optimality conditions of problem (1). In particular, we first derive some first-
and second-order optimality conditions for (1), and then introduce a definition of approximate first- and
second-order stationary points of (1).

Suppose that z* is a local minimizer of problem (1). By this and the assumption that Slater’s condition
holds for (1), it follows that there exists a Lagrangian multiplier A* € R™ such that

Viz*)+ ATX € — Ni(z*). (12)

This is a classical first-order optimality condition of problem (1). One can easily obtain an inexact
counterpart of it. However, its inexact counterpart is not suitable for the design and analysis of a
Newton-CG based barrier method for solving (1). Due to this, we next derive an alternative first-order
optimality condition for (1).

Theorem 3 (first-order optimality condition). Let z* be a local minimizer of problem (1) and
M € V72B(z*) be arbitrarily chosen. Suppose that f is continuously differentiable at x*. Then there
exists a Lagrangian multiplier \* € R"™ such that

Vi(x*) + AT € KF, (13)

MY2(Vf(z*) + ATA*) = 0. (14)
Proof. Since z* is a local minimizer of (1), we know from above that there exists a Lagrangian multiplier
A* € R™ such that (12) holds. Note that K is a closed convex cone. It is not hard to verify — A (z*) C K*,
which along with (12) leads to (13).

We next prove (14). Since M € V~=2B(z*), it follows from Theorem 2 that {z*+M2d : ||d|| < 1} C K.
By this and (12), one has

dTMY2(Vf(z*) + ATA) >0 Vd with ||d| < 1,

which implies M'/2(V f(x*) + ATX\*) = 0, and hence (14) holds as desired. O



The first-order optimality conditions (13) and (14) appear to be different from the classical one (12).
Nonetheless, the following proposition shows that they are essentially equivalent, and both are related to
the complementary slackness condition (15).

Proposition 1. Let 2* € K, \* € R™, and M € V~2B(z*) be given. Then the following statements
hold.

(i) The relations (13) and (14) hold if and only if (12) holds.
(ii) The relation (13) and the complementary slackness condition
(x*, Vf(z*)+ AT )Y =0 (15)
hold if and only if (12) holds.
(iii) The relations (13) and (14) hold if and only if (13) and (15) hold.

Proof. Firstly, by the same argument as used in the proof of Theorem 3, one can see that if (12) holds,
then (13) and (14) hold.

Secondly, we show that if (13) and (14) hold, then (15) holds. To this end, suppose that (13) and (14)
hold. Since M € V~2B(x*), it follows from (11) that there exists some {z*} C int K such that z* — x*
and [V2B(2*)]=! — M as k — oo. By these, (14), and Lemma 1(i), one has that

[(@* VH@) + ATN)| = lim [(a%, T f(F) + ATA)]
< lim V2B [[V2B () VAT £ (k) + ATX))

= VIIM2(Vfa*) + ATA)| =0,

where the inequality uses Cauchy-Schwarz inequality. Hence, (15) holds as desired.
Thirdly, we show that if (13) and (15) hold, then (12) holds. To this end, suppose that (13) and (15)
hold. Then we have
* * T\ * (15) * T\ * (13)
(x—2", Vf @)+ A\ = (&, Vfz")+ A" \") > 0 Vrek,
which yields Vf(z*) + ATA* € — N (2*), and hence (12) holds.
Combining the above arguments, we can conclude that statements (i), (i) and (iii) hold. O

The classical second-order optimality condition for constrained optimization problems was well studied
in the literature (e.g., see [31]). It can be easily specialized to problem (1). However, its verification is
generally hard since a sophisticated critical cone is involved (e.g., see [27, 33]). We next derive a weaker
yet verifiable second-order optimality condition. Strictly speaking, it shall be called a weak second-order
optimality condition. For the ease of reference, we simply call it a second-order optimality condition.

Theorem 4 (second-order optimality condition). Let z* be a local minimizer of problem (1) and
M € V~2B(z*) be arbitrarily chosen. Suppose that f is twice continuously differentiable at z*. Then
there exists a Lagrangian multiplier \* € R™ such that (13), (14), and additionally

dEMYPV2 () MY2d >0 Yd e C(M) (16)

hold, where
C(M) :={d: AM'?d = 0}. (17)

Proof. Tt follows from Theorem 3 that (13) and (14) hold. We now prove (16). Indeed, it suffices to prove
that (16) holds for any d € C(M) with ||d|| < 1. To this end, let d € C(M) with ||d|| < 1 be arbitrarily
chosen. By this, M € V~2B(z*) and Theorem 2, one has that {z* + tM'/2d : t € (~1,1)} C K and
A(x* + tM'/2d) = b. In view of these and the fact that z* is a local minimizer of (1), we can observe
that t* = 0 is a local minimizer of the problem

min {w(t) = f(a" +tM1/2d)}.

te(—1,1)



By its second-order necessary optimality condition at t* = 0, one has that
0 S wll(o) _ dTM1/2v2f(x*)M1/2d
for any d € C(M) with ||d|| < 1. It implies that the relation (16) holds. O

Theorems 3 and 4 provide first- and second-order necessary optimality conditions for problem (1).
For convenience, we refer to a feasible point x* of (1) as a first-order stationary point of (1) if it together
with some A* € R™ satisfies (13) and (14). We further refer to it as a second-order stationary point of
(1) if it additionally satisfies (16). Due to the sophistication of the problem, it is generally impossible
to find an exact first- or second-order stationary point of (1). Instead, we are interested in finding an
approximate counterpart of them that is defined as follows.

Definition 2 (¢,-first-order stationary point). For any e, > 0, a point x is called an €4-first-order
stationary point (e;-FOSP) of (1) if it together with some A € R™ satisfies

Az =b, z € int K, (18)
Vf(x)+ AT e K*, (19)
IVF(2) + ATAlL < €. (20)

Definition 3 ((eg4, ezr)-second-order stationary point). For any eg,eg > 0, a point x is called an
(€g, €rr)-second-order stationary point ((eq,er)-SOSP) of (1) if it together with some A € R™ satisfies
(18)-(20) and additionally

d"[V?B(a)) VA f(2)[V2B(2)]7V?d > —e ||| Vd € C([V*B(x)] "), (21)
where C(+) is defined in (17).

Remark 1. (i) One can see that if a point x € int KC satisfies (20) and (21), then it nearly satisfies
(14) and (16) with =* replaced by x. Thus, the e,-FOSP and (e4, € )-SOSP introduced in Definitions
2 and 3 are indeed an approzimate counterpart of the FOSP and SOSP of problem (1). In addition,
when K = R, they are stronger than the approzimate FOSP and SOSP introduced in [21, 32, 37]
for problem (3) or (5). Also, for a general cone K, they are stronger than the ones introduced in
[19]. Specifically, the approximate FOSP and SOSP found by the methods in [19, 21, 32, 37] satisfy
(18), (20) and (21) respectively, while only approzimately satisfying (19).

(ii) Upon a suitable change of variable, one can see that (21) is equivalent to

d"V2f(z)d > —ey||d|2  Vd e {d: Ad=0}. (22)

(ili) The relations (20) and (22) involve the local norms || - ||% and || - ||5. It is interesting to observe that
they possess a scale-invariant property. That is, they hold at a point x € int K for problem (1) if
and only if they hold at a point y = W1z € int(W LK) for the problem

min{f(Wy) : AWy = b, y € WK}, (23)

where W is a nonsingular matriz. It shall be noted that B(Wy) is an LHSC barrier function for the
cone WK and the local norms used in (20) and (22) for problem (23) are defined in terms of the
barrier function B(Wy).

4 A Newton-CG based barrier method

In this section we develop a Newton-CG based barrier (NCGB) method for finding an approximate
second-order stationary point of problem (1). Instead of solving (1) directly, the NCGB method solves by
a preconditioned Newton-CG method the barrier problem

mwin{@b(x) = f(z) + uB(x)} s.t. Az =10 (24)



for a suitable choice of parameter p > 0. In particular, we first introduce a damped preconditioned
Newton system and review a capped CG method for solving it in Subsections 4.1 and 4.2, respectively.
Then we present a minimum eigenvalue oracle in Subsection 4.3 that can be used to estimate the minimum
eigenvalue of a real symmetric matrix. Finally, we present a NCGB method for solving problem (1) in
Subsection 4.4.

4.1 Damped preconditioned Newton system

In this subsection we introduce a damped preconditioned Newton system that will be used subsequently
to develop a NCGB method for solving problem (1).
Since our goal is to find an approximate second-order stationary point of problem (1), it would be

natural to apply the classical projected Newton method to solve (24). However, ill-conditioning could

k

be an issue for this method. To see this, suppose that " is a current approximate solution to (24) that

satisfies Az* = b and 2% € int K. To generate the next iterate z*t1, the classical projected Newton
method attempts to find a search direction by solving the subproblem

1 _
min Ve, (z*)d + §JTV2¢M(xk)d s.t. Ad=0. (25)
d

Notice that V2(;5# (%) becomes ill-conditioned as z* is close to the boundary of K, which could cause
iterative methods to converge slowly when applied to solve (25). To remedy this, we instead consider the
following preconditioned subproblem

~ 1 ~ ~
min Vo, (") Myd + §ETM,Zv2¢u(xk)Mkd s.t. AMd =0, (26)
d

which is obtained from (25) by letting d= Mk(i7 where M}, is a matrix such that
[V2B(z")]~! = MM 3 (27)
Let Q) denote the projection matrix for the projection from R™ to the null space of AMj, that is,
Qr=1— MFAT(AM M AT) "L AM,. (28)
By letting d= Qk(i one can see that (26) is equivalent to
min Vo,(") T MyQud + 5 QF MI V20, (e)MiQud
which leads to a preconditioned (projected) Newton system
(PEV26u(a*) P)d = — PV, ("), (20)

where
P, = MypQp = My, — My MF AT (AM, ME AT~ AM,. (30)

For a similar reason as pointed out in [34] for smooth nonconvex unconstrained optimization, CG method,
when applied to (29), may not be able to produce a sufficient descent direction for (24). Therefore, we
instead consider a damped counterpart of (29), namely, the damped preconditioned Newton system

(PIV2, (") Py + 2Vel)d = =PIV ¢, (z*) (31)

for some € > 0. In the next subsection, we review a capped CG method proposed in [34] that can be
suitably applied to (31) for finding a sufficient descent direction for (24).

3As will be discussed in Section 5, there is no need to compute such M, explicitly.



4.2 A capped conjugate gradient method

In this subsection we review a capped conjugate gradient (CG) method that was proposed in [34] for
solving a possibly indefinite linear system

~

(H + 2el)d = —g, (32)

where 0 # g € R", ¢ > 0, and H € R™*" is a symmetric matrix. This capped CG method is a modification
of the classical CG method (e.g., see [31]). Tt terminates within a finite number of iterations, and outputs
either an approximate solution_ d of (32) satmfymg 1(H + 2e0)d + gll < Cllgll and d"Hd > 5||d\|2 for
some ( € (0,1) or a direction d such that d¥Hd < 5Hd||2 For the ease of latter reference, these two
types of outputs are classified by SOL and NC, respectively.* The capped CG method [34] is presented in
Algorithm 3 in Appendix A. Its detailed motivation and explanation can be found in [34]. This method
will be subsequently applied to the damped preconditioned Newton system (31) arising in NCGB method
for finding a sufficient descent direction for (24).
The following theorem states some properties of Algorithm 3.

Theorem 5. Consider applying Algorithm 3 to the linear system (32) with g #0, € > 0, and H being a
n X n symmetric matrixz. Then the following statements hold.

(i) The output c/l\of Algorithm 8 is a nonzero vector.
(ii) The number of iterations of Algorithm 8 is O(min{n,s=1/2}).

Proof. (i) One can observe that the output d of Algorithm 3 satisfies ||(H + 2¢1)d + g|| < Clg]l or
d"Hd < —¢||d]|2. By this, g # 0 and ¢ € (0,1), one can easily see that d # 0.

(ii) From [34, Lemma 1], we know that the number of iterations of Algorithm 3 is bounded by
min{n, J(U,¢,¢)}, where J(U,¢,(¢) is the smallest integer J such that vT'77/2 < E, where U, Z,T and 7
are the values returned by Algorithm 3. In addition, it was shown in [34, Section 3.1] that

e (s ) (85127

2
where k = O(¢71) is an output by Algorithm 3. Then one can see that J(U,,¢) = O(e~1/2). It thus
follows that the number of iterations of Algorithm 3 is O(min{n,e~1/2}). O

4.3 A minimum eigenvalue oracle

In this subsection we present a minimum eigenvalue oracle (Algorithm 1), which will subsequently be
used to check whether the second-order optimality condition of problem (1) nearly holds at a given point.
In particular, given a symmetric matrix H and € > 0, this oracle either certifies Apin(H) > —e with high
probability or finds a unit vector v such that v Hv < —¢/2. The Lanczos method is often used as a
solver in this oracle (e.g., see [9, 32, 34]).

The following theorem justifies that Algorithm 1 can produce a desirable output after running the
Lanczos method for a certain number of iterations. Its proof directly follows from [34, Lemma 2].

Theorem 6. Consider Algorithm 1 with tolerance € > 0, probability parameter 6 € (0,1), and symmetric
matric H € R™™" as its input. Let N(g,8) be defined in (33). Then Algorithm 1 runs at most N(g,0)
iterations. Moreover, it either finds a sufficiently negative curvature direction v satisfying vi Hv < —¢/2
and ||v|| = 1; or provides a certificate that Ayin(H) > —¢e holds with probability at least 1— V2758l I

Remark 2. Generally, computing || H| may not be cheap when n is large. Nevertheless, ||H|| can be
efficiently estimated by a randomization scheme with high confidence (e.g., see the discussion in [34,
Appendiz B3]).

4SOL and NC stand for ‘approximate solution’ and ‘negative curvature’, respectively.
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Algorithm 1 A minimum eigenvalue oracle

Input: symmetric matrix H € R"*", tolerance ¢ > 0, and probability parameter § € (0, 1).

Output: a sufficiently negative curvature direction v satisfying vZ Hv < —¢/2 and ||v|| = 1; or a certificate that
Amin(H) > —e with probability at least 1 — V2T5nel HITHE,

Apply the Lanczos method [24] to estimate Amin(H) starting with a random vector uniformly generated on the
unit sphere, and run it for at most

N(g,d) := min {n,l—i— [571/2 lnéfl-‘} (33)

iterations.

(i) If a unit vector v with v Hv < —¢/2 is found at some iteration, terminate and return v.

|—1/2

(ii) Otherwise, it certifies that Amin(H) > —¢ holds with probability at least 1 — v/2.75n6/#!

4.4 A Newton-CG based barrier method for problem (1)

In this subsection we propose a Newton-CG based barrier (NCGB) method for solving problem (1). In
each iteration, our NCGB method starts by checking whether the current iterate z* and the associated
Lagrangian multiplier estimates /\,(61) and /\,(62) satisfy certain approximate first-order optimality conditions
of (1). If not, then the capped CG method (Algorithm 3) is applied to the damped preconditioned
Newton system (31) to obtain either an inexact damped Newton direction or a sufficiently negative
curvature direction, and the next iterate z**! is generated by performing a line search along this direction.
Otherwise, the current iterate z* is already an approximate first-order stationary point of (1), and
a minimum eigenvalue oracle (Algorithm 1) is further invoked to either obtain a sufficiently negative
curvature direction and generate the next iterate z**! via a line search, or certify that 2* is an approximate
SOSP of (1) with high probability and terminate the method.

For the convenience of presentation, we let

Ry = —(AM M AT AM ML, (34)
where M}, satisfies (27). In view of (30) and (34), it is easy to verify that
Py = (I + Rf A)M,. (35)

We are now ready to present our NCGB method in Algorithm 2 for solving problem (1), in which Q,
Py, and Ry, are defined in (28), (30) and (34), respectively. The study of its complexity results is deferred
to Section 5. In what follows, we make some remarks about Algorithm 2.

Remark 3. (i) Though Algorithm 2 finds a stochastic (e,+/€)-SOSP of (1), such a point is in fact also
a deterministic e-FOSP of (1), that is, it satisfies (18)-(20) deterministically.

(ii) Algorithm 2 can be easily modified to suit some other needs. In particular, if one is only interested
in finding an e-FOSP of (1), it suffices to remove from Algorithm 2 the parts related to Algorithm
1. In addition, if one is interested in finding a deterministic (€,/€)-SOSP of (1), it is sufficient
to replace Algorithm 1 by a deterministic oracle for estimating the minimum eigenvalue of a real
symmetric matrix.

(iii) It is worth noting that Algorithm 2 uses a hybrid line search criterion inspired by [37, Algorithm 1],
which is a combination of the quadratic descent criterion (39) and the cubic descent criterion (40).
In contrast, the Newton-CG type of methods in [32, 34] always use a cubic descent criterion regardless
of the type of search directions. As a benefit of the hybrid line search criteria, the iteration and
operation complexity of Algorithm 2 has a quadratic dependence on the Lipschitz constant of V2 f
(see Theorems 8 and 9 below), which is superior to the cubic dependence achieved by the methods in
[82, 84] for solving problems (2) and (3), respectively.

5 Complexity results

In this section we establish iteration and operation complexity results for the Newton-CG based barrier
method, namely, Algorithm 2.

11



Algorithm 2 A Newton-CG based barrier method for (1)
Let Py, Qk and Ry be defined in (30), (28) and (34), respectively.
Input: e € (0,1), 2° € Q°, ¢ € (0,1), B € [/ 1),0 € (0,1), 7€ (0,1), 5§ € (0,1), and ¥ > 1 (the parameter of
B).
Set

-1 _ 0 -1 _ _ (1—/3)6 _ _ 2 _ qn.
T =x, d =0, pu= (- F)? 1 \/5), d_type=NC, a_1 =0, A =0;
for k=0,1,2,... do
Set )\,(cl) + RpVo,(z¥), where Ry, is given in (34);
if d_type=SOL and ax_1 = 1 then
M R 1 (V2 (@) Pead® ™! + Vo (ah 1))
else
N e N2
end if
if min{||Vf(z*) + ATAL + pVBP)|20, [V () + ATAD + pVB(FY)[[7:} > (1 — B)u then
Call Algorithm 3 with H = PTV2¢,.(z*) Py, € = /e, g = PEV¢u(x"), accuracy parameter ¢, and
bound U = 0 to obtain outputs &%7 d_type;
if d_type=NC then

TNT pT 72 k Tk
d" « —sgn(ch/lk)min { [(d7)” Py VA¢“(:C ) Ped ‘, ﬂ/\ }&k, (36)
l[d*1> [|Qrd*]|
else {d_type=SOL}
dk&min{l,ﬁ,\}c/l\k; (37)
1Qrd|
end if
Go to Line Search;
else
Call Algorithm 1 with H = PI'V?f(2*)Py, e = /€, and § > 0;
if Algorithm 1 certifies that Amin(PF V2 f(2")P;) > —/€ then
Output z* and terminate;
else {Sufficiently negative curvature direction v returned by Algorithm 1}
Set
d* «— —sgn(v” PIV e, (2*)) min {|UTP,€TV2¢# (z*) Py, HC;?‘#vH} v; (38)
k
Go to Line Search;
end if
end if
Line Search:
if d_type=SOL then
Find ai = 7%, where j is the smallest nonnegative integer j such that
Gu(a” + 07 Prd®) < ¢u(a") — nv/eo™ ||d"||*; (39)
else {d_type=NC}
Find ay = 6%, where jj, is the smallest nonnegative integer j such that
Gz + 0" Ped”) < gu(a") =m0 |1d"|° /2; (40)
end if
2P = 2k 4 akPkdk;
end for
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Recall that the cone K is assumed to be equipped with a ¥-logarithmically homogeneous self-concordant
barrier function B for some ¢ > 1. We now make some additional assumptions that will be used throughout
this section.

Assumption 1. (a) There exist i > pn and ¢ € R such that

pu(x) > ¢ Vi€ (0, ],z € Q° (41)
S= U {z € Q°: gu(x) < dz(2°)} is bounded, (42)
ne(0,q]

where Q° is defined in Section 1, ° € Q° is the initial point of Algorithm 2, u is given in Algorithm 2,
and ¢ is given in (24).

(b) There exists Ly > 0 such that
IV2f(y) = V2 (@)|; < Lullz —yll. VzeSye{y:|y—zl. <p} (43)
where S is given in (42), and B € (0,1) is an input of Algorithm 2.
(¢) The quantities Uy, Uy are finite, where

Uy = sup [[Vf(@)[l5,  Un :=sup V2 (2)]];. (44)
€S z€S

We now make some remarks about Assumption 1.

(i) Assumption 1(a) is reasonable. In particular, the assumption in (41) means that the barrier problem
(24) is uniformly bounded below whenever the barrier parameter is no larger than . It usually
holds for the problems for which the barrier method converges. On the other hand, in case that
(41) fails to hold, one can instead solve a perturbed counterpart of (1):

mwln{f(a:) +olz||? : Az = b,z € K} (45)

for some ¢ > 0. It can be shown that a desired approximate FOSP and SOSP of (1) can be found
by solving (45) with a sufficiently small o. Moreover, (41) with f(z) being replaced by f(z)+o||x|?
holds for (45). Indeed, let i > 0 be arbitrarily chosen and f* be the optimal value of (1). Then for
all 7 € (0, /1) and x € Q°, one has

f(@) +ollzl® + AB(z) = f* + min{o|z|* + ZB(2)} > f* + i min {(o/p)|12]* + B(2)}
> f* =l min{(o/m)||2]* + B(2)}] > —o0,

where the last inequality is due to the strong convexity of (o/f1)||z||? + B(z). Hence, the assumption
n (41) holds for (45) as desired.

Besides, the assumption in (42) clearly holds if Q° is bounded, which is assumed in [21] for K = R’}
Also, it can be shown that S C §; U S,, where

S1={r€Q: f(2) < f(2°) + i+ 2a[B(2°)]+, B(x) > —1 - [B(a")]+},

IU —
Sz = {w e s Aty < iRk +2m B@) < —1- (B,

and [t]+ = max{t, 0} for all ¢ € R. Thus the assumption in (42) holds if S; and Sz are bounded,
which, for example, holds for f(z) = ¢(z) + > 2%, B(z) = =Y. ;Inz; and K = R’} that are
studied in [4], where £ : R™ — R is a loss function and p > 0.

(ii) Assumption 1(b) means that V2f is locally Lipschitz continuous in S with respect to the local
norms. It holds if V2f is globally Lipschitz continuous in int C, which is implicitly assumed in [32]
for the case where A =0, b =0 and K = R,. Compared to the usual global Lipschitz continuity
assumption on V2f in int K, Assumption 1(b) is generally weaker and holds for a broader class of
problems. For example, Assumption 1(b) holds for the problem with f(z) =", 7 and K = R’} for
some p € (0,1), while V2f is not globally Lipschitz continuous in int .
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(iii) Since S is assumed to be bounded, Assumption 1(c) can easily hold under some additional yet
mild assumption on f. For example, by the boundedness of S and Theorem 1, one can see that
Assumption 1(c) holds if Vf and V2f are continuous in K. In addition, one can verify that
Assumption 1(c) also holds if f and V f are locally Lipschitz continuous in S with respect to the
local norms, that is,

|f(y) - f(x)| S Ug”x - yHJL’ Vr € Svy € {y : ||y - me S ﬁ}v
IVf(y) = VI@); <Unlz—yll. VeeSyely:|y—zl. <p}

These relations hold for a broad class of problems, such as the one with f(z) =3, 2 and £ = R}
for some p € (0,1). Note that Assumption 1(c) is generally weaker than the one imposed in [32] that
Vf and V2f are bounded in some level set of f, which, for example, does not hold for f(z) =, 2%
and K = R’} for some p € (0,1).

(iv) As will be shown in Lemma 4, each iterate 2 of Algorithm 2 lies in S. By this and Assumption 1(c),
one can see that
IVl < Uy, IV2F@M)50 < U (46)

In addition, as a consequence of Assumption 1(b), the following two inequalities hold, which will play
a crucial role in our subsequent analysis.

Lemma 3. Under Assumption 1(b), the following inequalities hold:
N 1
IVf() = V@) = V@) -2 < Lully—2lf VeeSyefy:ly—=l. <8} (47

F() < @)+ VI (y=2)+ 50 -2) VS @)y -2) + s Luly—al}  VreSyely: ly-zl. <5,

2
(48)
where S and Ly are given in (42) and (43), respectively.
Proof. Fix any x € Sand y € {y : |ly — z|l < B}. One has
IVf@) = V@) =V @)y —a)ll; = | [y [V2f(x+tly — ) = V2f(@)di(y — )];
(7
< o V(@ +ty — 2) = V2 f(@)]dt ] - lly — .
< o IV2fe + ty =) = V2 (@) 3de -y — 2l
(43)
< L fo ltty = @)lledt - |y = olle = 5 Lally — 22,
and hence (47) holds. We next prove (48). Indeed, one has
fy) = f(z) = Vf(z )y — ) s(—2) V2 f(2)(y — )
= (o V(@ +ty —2)) = V() = V2f(@)(y — x)]dt,y — )
< | [y [V (@ +tly — ) = V(@) = V2 @)ty — @)de]; - lly = .
< fo IVF@+tly —2)) = V@) = V2 @)ty — 2)|5dt - Iy —
(a7)
< 3La Jy Iy — @) 2dt - ly = 2lle = gLally - ]2,
where the last inequality follows from (47) with y replaced by = + t(y — z) for ¢ € [0, 1]. O

5.1 Iteration complexity

In this subsection we establish iteration complexity results for Algorithm 2 for solving problem (1). Before
proceeding, we establish several lemmas that will be used later.
The following lemma shows that all the iterates generated by Algorithm 2 belong to the set S.

Lemma 4. Let {x*}rcx be all the iterates generated by Algorithm 2, where K is a subset of consecutive
nonnegative integers starting from 0. Then 2% € S for every k € K, where S is given in (42).
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Proof. We prove this lemma by induction. By the choice of 2V, one knows that z° € Q°, and hence
2% € S due to (42). Suppose that x* € S is generated at iteration k of Algorithm 2, and moreover, z*+!
is generated at iteration k + 1. We now show that z**! € S. Indeed, notice from Algorithm 2 that
2Pl = 2k + ) Ppd® with a; € (0,1] and d* given in one of (36)-(38). It follows from (36)-(38) that
|Qrd*|| < B. By these, (27) and (30), one has that
30 27

a4+ = ¥l = ap P lox < 1Pud" x5 Qud" o E | Quat] < B. (49)
In view of ¥ € S and (42), one can see that ¥ € Q°. Hence, Az* = b and 2* € int K. Using (49),
% € int K, B < 1 and Lemma 1(iii), we obtain that z**! € int K. In addition, it follows from (30) that

APLd" = A[My, — M MEAT(AM M AT) =1 AMy)d" = 0,

which, together with Az* = b and 2**! = 2F + a;, Ppd”, implies that AzF+! = b. It follows that z*+1 € Q°.
Observe from Algorithm 2 that {¢, (2"*)} ek is descent, and hence ¢, (z¥1) < ¢, (2°). By this, z*+1 € Q°,
p < i and (42), one can conclude that 2**! € S, and hence the induction is completed. O

The lemma below states some properties of the direction d* arising in Algorithm 2 that results from
applying Algorithm 3 to (32) with H = PI'V2¢,,(2%) Py, € = /€, g = PIV,(z*). Its proof is similar to
the ones in [32, Lemma 7] and [34, Lemma 3] and thus omitted here.

Lemma 5. Suppose that the direction d* results from the output d* of Algorithm 3 with a type specified
in d_type at some iteration k of Algorithm 2. Let Qi and Py be given in (28) and (30), respectively. Then
the following statements hold.

(i) If d_type=SOL, then d* satisfies

Velld*||? < (dN)T (PEV2,(2") P + 2v/el) d, (50)
ld*[| < 116 V2PV, ()], (51)
(d*)E PV u(a®) = —yu(d)t (P V2 (a*) Py + 2v/el) dF, (52)

where v, = max{||Qrd¥||/B,1}. If |Qrd¥|| < B, then d* also satisfies
(P V20, (2%) Py + 2v/eD)d" + PV ()| < VeCl|d|/2. (53)
(ii) If d-type=NC, then d* satisfies (d*)T PTV ¢, (z*) <0 and

(d*)TPEV2 ¢, (2") Prd”
]2

< —[ldf|| < —ve

The next lemma considers the case where the direction d* in Algorithm 2 results from the output
of Algorithm 3 with d_type=SOL, and moreover, the unit step length is accepted by the line search
procedure. For this case, it will be shown that ||d¥|| cannot be too small or the next iterate x**! is an

approximate first-order stationary point.

Lemma 6. Suppose that the direction d* results from the output of Algorithm 3 with d_type=SOL at
some iteration k of Algorithm 2, and the unit step length is accepted by the line search procedure, that is,
Pt = 2% + Pd*. Then we have ||d*|| > cq\/€ or

IV (@) + ATAL) + uVB(*) |5 < (1 - B)i, (54)

where

(1-5)3
L +C+4[A -2 +Vi+1-5

ci = A = B(V2f(@h) Pod® + Vo (")), (55)

and Py and Ry, are given in (30) and (34), respectively.
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Proof. Since dF results from the output d* of Algorithm 3 with d_type=SOL, it follows from Algorithm 2
that (37) holds for d* and d*. In addition, one can observe from (49) that [|#*+! — 2%« < 8. Also, by
Lemma 4, one has that 2% € S. Hence, (47) holds for z = 2¥ and y = 2**!. Let @ be given in (28). We
now divide the rest of the proof into two separate cases below.

Case 1) ||Qké7“|| > . It then follows from (37) that d* = Bd /HQk ||. In addition, one can observe
from Algorithm 2 that 8 > y/e. By these and ||Qg|| = 1, we have

Ve < B=1Qud"|| < [Qulllld*|l = lld¥]- (56)

Notice from (55) that ¢y < 1, which together with (56) implies that ||d*|| > c41/€ and thus the conclusion
holds.

Case 2) ||Qk || < 8. Notice that if [|[d*|| > cav/€, the conclusion of this lemma holds. Hence, it suffices
to consider the case where ||Qrd¥| < 8 and ||d¥|| < cgy/e. We next show that (54) holds in this case. To
this end, suppose for the rest of the proof that |Qrd¥| < 8 and ||d*|| < cqy/e. Since d_type=SOL and
Hch/i%H < f3, one can see from Lemma 5(i) that (53) holds for d*. By (30), (53) and the definition of ¢,,
one has that

(53)
SV 2 [[(PEV0,() P+ 2veD) d* + PEV G, (0|
= |[(PI(V?f(2*) + uV2B(a*)) Py + 2v/el) d* + PIV ¢, (")
- (v2f( B Prdt + Ve, (a* )) + uPTV2B(z* )Pkd’“+2ﬁd’“H
> ||PE (92 rh) P + V() | - Wl PEV2 B Pt - 27l d¥|
(30)
> | PE(V2 @) Pt + Vo)) || - nlQuIZIME V2B My la*) - 2V dt)

= || (TR Pt + Vo)) | -l - 2vEla, (57)

where the first equality is due to the definition of ¢,,, the second inequality is due to the triangle inequality,
and the last equality follows from the fact that [|Qx| = 1 and M V2B(z*) M), = I (due to (27)). Using

(8), (27), (35), [|a**+1 — 2¥||,» < 3, and the definition of >‘k-i)-17 we obtain that

|PE (2@ P + Vo) |
||l (Vs Pt + Vo) + MEATR (V) P + T, )|
= a7 (25t B + o) + ATHE)|

*

2 Hv2f(mk)Pkdk + V(") + AT)‘(+1 +uVB(z*)

x

Y-8 V2 F@) Pt + V£ (@*) + ATAZ, + p B(a") + : (58)
where the second equality follows from the definition of )\k 41~ Combining (57) with (58) yields
HV2f(Cck)Pkdk LV + AT)\gl + uVB(z") ;H < (CVe +22(/~10-_|—‘;;/E)||dk. (59)
In addition, by ||Qk|| = 1 and (49), one has that
[Ped® || = [|Qua” | < [|d¥]|. (60)

Also, notice from (55) and Algorithm 2 that 0 < ¢y < 1 and u = (1 — B)e/[2((1 — B8)% + V)], respectively.
Using these, (8), (47), (59), (60), ||z**! — 2*||» < B, and ||d*|| < c4v/€, we have that

*

|V £t + ATAZ), + Y B(a)

zk+1
*

< ||V f(a"th) = V2 f(a*)Prd® — V f(2")

v [P P + V@R + ATAZ) + pVB(ab)

pk+1
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*

8) *
< (1= B) 7|V = V2 M) Pudb — V(R + HVQf(xk)Pkdk + V(") + ATAZ, + uVB(a*)
D0 Ll Ped e | (GVE+2p+4v@IdH| @) Lrlldh|? | (Gve+ 2 +4va)d|

rkt+1

- 2(1-p) 2(1-p) = 201-p) 2(1— f)
Lycge  (CH+4)cae  cap (Lu+C+4)[(1—B)? +VI] +1 B
“H-mtoai-p Ti-aT = pp p= (=B

where the first inequality follows from the triangle inequality, the last inequality uses ||d¥|| < cqv/e,
0 < cq < 1and e <1, the first equality uses = (1 — 8)e/[2((1 — 8)? + V)], and the last equality follows
from the definition of ¢q. Hence, (54) holds as desired. O

The following lemma shows that if the direction d* in Algorithm 2 results from the output of Algorithm
3 with d_type=SOL, then the associated step length «y is well-defined, and moreover, the next iterate
2F*1 is an approximate first-order stationary point or qbu(:lc"”‘) — ¢M(xk+1) cannot be too small.

Lemma 7. Suppose that the direction d* results from the output of Algorithm 3 with d_type=SOL at
some iteration k of Algorithm 2. Then the following statements hold.

(i) The step length oy, is well-defined, and moreover,

VB =BT —n)et o
VIALE( - 8)+ 1/2)(U, + pv/)

aj > min < 1,

where U, is defined in (44).

(ii) The relation (54) holds for (z*+1 )\,(f_&l) or ¢ (z%) — ¢, (2FF1) > cs01€%/? holds, where

cwlnmm{cz, [6(1‘5)“ ‘"“’] } (62)

Ly(1-p8)+1/2

and )\](C—‘,)-l and cq are given in (55).

Proof. For notational convenience, let H = PI'V?¢,(2*)P; and g = PI'V¢,(z*). Since d_type=SOL, it
follows from Lemma 5(i) that (50), (51) and (52) hold. Also, by ¥ > 1, e < 1 and 0 < 8 < 1, one has that

(1—p)e (1—pB)e €
2[(1 — B)2 + V7] = 2[(1— )2 +1] =1

In addition, by Lemma 4, one has that z* € S. Also, one can observe from (49) that |67 Pyd*||,» < B for
all 7 > 0. Hence, (48) holds for z = z* and y = 2* 4 67 P,.d* for all j > 0.

We are now ready to prove statement (i). If (39) holds for j = 0, then the line search procedure
chooses the unit step length, i.e., ax = 1, and hence statement (i) holds. We now suppose that (39) fails
for j = 0. Let us consider all j > 0 that violate (39). For any such j, by using (48), (50), (52), (60),
Lemma 1(v), and pu < 1/4, one has that

1
1

< (63)

IO A2 < 6, (2 + 09 Pud®) — 6, (") = f(a* + 9 Pid®) — f(a*) + p[B(ak + 07 Ppd®) — B(ah)]
< OIV f (k)T Ppdb + L (dF)T IV f(2%) Pod® + L6 | Pyd |3, + p69V B(2*)T Pyd®

2j
+U52 (@) T PTV2 B(a*) Pyd" + 5t50% || Ped® |2,

_ angdk + %(dk)THdk LHé%l ﬁ)+2u93]||p dk”S

B i ()T (H + 2/ED)d* + B ()T H + L0 D02 6% | Pt |3,
= =09 (= G ) ()T (H + 2/eD)d* — 0 Je| |2 + 2§22 % | P,
(50)(60)

< =09 (= G ) VElHIP — 0% Va2 4 B g | a3

6(1
L
< /el db||? + EEGTEEL2 03 | gk |13,
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where the first inequality is due to the violation of (39), the first equality follows from the definition of ¢,,,
the second inequality uses (48) and Lemma 1(v), the second equality follows from H = PI'V2¢,(z*) P
and g = PI'V¢,(z"¥), and the last inequality is due to p < 1/4. Using the last inequality above,
ve = max{||Qrd¥|/B,1} > 1, 6 € (0,1), n € (0,1) and the fact that d* # 0 (see Theorem 5), we obtain
that

Ll D205 > (=) el 2 (1)l (64

(1-5)

which, together with 6 € (0, 1), implies that all j > 0 that violate (39) must be bounded above. Hence,
there does exist the smallest positive integer ji such that (39) holds for j = ji, and thus ay is well-
defined. We next show that (61) holds for ay. Indeed, we know from Lemma 1(i), (30) and (46) that
[VB(z*)|* = VU, Py = MxQy, and ||V f(z*)||%, < U,, respectively. By these, [|Qx|| = 1, (27) and (51),
one has that

(
Ila*||

51
< 11 V2 PRIV, ()| < 11 VA(IPEV £ ()| + pl| PEVB(M))
_ @7 | . - . .
< L1 P(IMEV M)+ p| MEVBEF)) = 11 2|V @0) 1+ sl VB ()15
< 11 Y2(U, + /D). (65)

Notice from Algorithm 2 that j = jz — 1 violates (39) and hence (64) holds for j = jz — 1. By ay, = 69
and (64) with j = jx — 1, one has that

s [SU=B—)  ayps
et 2\/LH(1—B)+1/29€14”dk 7 (66)

which together with (65) implies that (61) holds.
We next prove statement (ii) by considering three separate cases.
Case 1) ap = 1 and ||d*|| < cqv/e. It follows from Lemma 6 that (54) holds for (zF+1, )\,(f_zl).
Case 2) ai = 1 and ||d*|| > cqv/e. By these, (39) and (62), one has

¢u(xk) - ¢u(xk+1) > W\ﬁ”dkHQ > 7]6563/2 > 630163/27

and hence statement (ii) holds.
Case 3) ay, < 1. It implies that (39) fails for j = 0. As seen from the proof of statement (i), (64) holds
for j = 0 and (66) also holds. By setting j = 0 in (64), one has

6(1—B)(1—mn)
S P ES YA G

Using this, (39), (62) and (66), we obtain that

ld*

6(1— B)(1 —n)o? 6(1—p8)(1—n)0]> .
() = 0 aH1) > mvRa |t P 2 I b 2 | TSR 0 >

and hence statement (ii) holds. O

The next lemma shows that if the direction d* in Algorithm 2 results from the output of Algorithm 3
with d_type=NC, then the associated step length «y is well-defined, and moreover, the reduction on the
function value of ¢, i.e., ¢, (z*) — ¢, (zFT1), cannot be too small.

Lemma 8. Suppose that the direction d* results from the output of Algorithm 3 with d_type=NC at some

iteration k of Algorithm 2. Let
2
cncgmin{l, [3(15)(177)9] } (67)

Ly(1-p8)+1/2
Then the following statements hold.

(i) The step length oy, is well-defined, and moreover,

3(1—-p)(1 - 77)9}
"Ly(1-B)+1/2f"

aj > min {1 (68)

18



(il) Pu(a®) — du(aF 1) > cpe€?/? holds.

Proof. For notational convenience, let H = PI'V2¢,(z*)P, and g = P V¢, (z*). Since d_type=NC, it
then follows from Lemma 5(ii) that (d*)Tg <0, (d*)THd* < —|d*||?, and ||d*|| > /e. In addition, by
Lemma 4, one has that #* € S. Also, one can observe from (49) that |67 Pyd*||,» < 8 for all j > 0.
Hence, (48) holds for z = z* and y = ¥ + 69 Pyd* for all j > 0. Also, recall from (63) that u < 1/4.

We are now ready to prove statement (i). If (40) holds for j = 0, then the line search procedure
chooses the unit step length, i.e., ax = 1, and hence statement (i) holds. We now suppose that (40) fails
for j = 0. Let us consider all j > 0 that violate (40). For any such j, by using (48), (60), Lemma 1(v),
(d*)Tg <0, (d")THd* < —||d*||?, and p < 1/4, one has that

—30%(|d* P < fp(a” + 09 Prd®) — 6, (2) = f(2* + 67 Ppd®) — f(2*) + p[B(a* + 07 Ppd®) — B(a")]

< 09V f(ak)T Pydt + L2 (d%)T PEV2 f(2%) Pydt + LE6% || Pyd® |2, + 167V B(a*)T Pd

25 .
+E0= (@) PEV2B(ab) Pud® + 5556 || Prd® 12,

. 25 _ .
= 07gTdk + O3 (d*)T H" + LB g5 | Pt |3,
25 _ .

< Il | + SR P,
where the first inequality is due to the violation of (40), the first equality follows from the definition of ¢,
the second inequality uses (48) and Lemma 1(v), the second equality follows from H = PI'V?2¢,(z*) Py
and g = PI'V¢,(z"), and the last inequality follows from (60), (d*)Tg < 0, (d*)THd* < —||d*||> and
u < 1/4. Using the last inequality above and the fact that d* # 0 (see Theorem 5), we obtain that

i< 3(1=p)1-n)
S P RS VoA o

which, together with 6 € (0, 1), implies that all j > 0 that violate (40) must be bounded above. Hence,
there does exist the smallest positive integer ji such that (40) holds for j = ji, and thus ay is well-defined.
We next prove (68). Indeed, notice from Algorithm 2 that j = j, — 1 violates (40) and hence (69) holds
for j = jx — 1. By ai = 6F and (69) with j = j, — 1, one has that

e < 31 =B3)(1—n)o
o =6 Z Ia(-B) 112

which proves (68) as desired.
Statement (ii) immediately follows from (40), (67), (68) and the fact that ||d*| > \/e. O

The following lemma shows that if the direction d* in Algorithm 2 results from calling Algorithm 1,
then the associated step length ay, is well-defined, and moreover, ¢, (z*) — ¢, (z**1) cannot be too small.

Lemma 9. Suppose that the direction d* results from calling Algorithm 1 at some iteration k of Algorithm
2. Let ¢y be defined in (67). Then the following statements hold.

(i) The step length oy is well-defined, and moreover, the relation (68) holds for ay.
(ii) ¢u(z®) — (2" TY) > ¢, e€?/2/64 holds.

Proof. Since d* results from calling Algorithm 1 at some iteration k of Algorithm 2, one has

d* = —sgn(v?’ PV, (2*)) min {|’UTPEV2¢M($I€)P]€’U|, } v (70)

B
Qr]|

for some vector v satisfying that ||v|| = 1 and vT PTV2 f(2*)Pyv < —\/€/2. By (63) and € € (0, 1), one
has that u < e/4 < \/¢/4. Using these relations, and (60) with d* replaced by v, we obtain that

v PIV2¢, (") Prv = T PEVEf(2")Prv + po? PEV2B(2") Prv < —Ve/2 + pl| Pool |2,
< —Ve/24 plv]P< —Ve/2 + Ve/d = —Ve/4 (71)
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Notice that [|Qrv|| < 1. By this, e < 1, ||v|| = 1, 8 > /e (see Algorithm 2), (70) and (71), one has that
}>mm{\[,ﬂ} ﬁ (72)

|d*|| = min {|UTP,?V¢IL(xk)ka| =

1Qrvll
In addition, one can observe from (70) that (d*)T PI'V2¢,(z*)P,d* and vT PI'V2¢,(2%) P,v have the
same sign, which together with (71) implies that (d*)T PI'V?2¢,(2*)Pyd* < 0. By this and (70), one has
that
(@) PV g (M) Pd®|  (d*)T PV, (a*) Prd
[ld* |2 [ld* ]2
Hence, we obtain that (d*)T PI'V?¢,,(2%)Pyd* < —|/d*||3. One can also observe from (70) that (d*)T PI'V¢,(z*) <
0. The rest of the proof follows from these two relations, (72), and the similar arguments as used in the
proof of Lemma 8. O

[d*|| < " PEV26, (%) Prv| =

The following theorem shows that each iteration of Algorithm 2 is well-defined, and moreover, each
iterate x* generated by it is a strictly feasible point of problem (1).

Theorem 7. Each iteration of Algorithm 2 is well-defined. Moreover, each iterate x* generated by
Algorithm 2 satisfies that ¥ € Q°, that is, Az* = b and 2* € int K.

Proof. From Lemma 4, we know that each iterate z* generated by Algorithm 2 satisfies that z* € S,
which together with (42) implies that ¥ € Q°, that is, Az* = b and 2* € int K. It remains to show that
each iteration of Algorithm 2 is well-defined. To this end, suppose that z* is generated at some iteration
k of Algorithm 2 and the algorithm is not terminated yet at z*. It suffices to show that the next iterate
2**1 is successfully generated. Indeed, since Algorithm 2 is not terminated yet at z*, then one of the
following two cases must occur. As seen below, the direction d* is successfully obtained regardless of
which case occurs.

Case 1) min{||Vf(a*) + ATAL + pVB(@R) |5, IV F(@*) + ATND + pVB@EE )2 > (1 - Bu,

where /\g) and )\,(f) are defined in Algorithm 2. It then follows that

IVF(a*) + ATAD + pV B |5 > (1= B)p. (73)
Claim that PT'V¢,(z*) # 0. Indeed, notice from Algorithm 2 that )\,(Cl) = R,V¢,(z¥). By this, (24),
(27), (35) and (73), one has that

(35) (27)

1PV (2| =" 1M (1 + AT Ry )V ()|
(73)

= [V f(a*) + ATAY + uVBEb) |5 > (1 - B)u,

Hv¢u($k) + ATRkv¢u($k)||;k

and hence PI'V¢, (z¥) # 0 as claimed. Since PV, (z*) # 0, it follows from Theorem 5 that d* can be
obtained from applying Algorithm 3 to (32) with H = PI'V2¢,(a*)Py, e = \/e, g = PI'V¢,(a*). The
direction d¥ is then obtained from d* according to (36) or (37).

Case 2) vT PIV2 f(2*)Pyv < —\/€/2 for some unit vector v returned from calling Algorithm 1 with
H = PIV2f(2*)P;, and € = \/e. In this case, the direction d* is obtained from v according to (38).

In addition, it follows from Lemmas 7-9 that the step length ay is well-defined. Hence, the next

iterate 211 is successfully generated by 2**1 = 2% 4+ oy Ppd® O

In the next theorem we establish iteration complexity results for Algorithm 2.

Theorem 8. Let

0 _ 0 _
= -
min{csol, Cne} Cne
0 _
Ky = ’764((;2@6—3/2“ +1, (75)

where ¢ = f(2°) + pmax{B(z°),0}, i and ¢ are given in Assumption 1, and cso and c,. are defined
n (62) and (67), respectively. Then the following statements hold.
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(i) The total number of calls of Algorithm 1 in Algorithm 2 is at most K.
(ii) The total number of calls of Algorithm 3 in Algorithm 2 is at most K.

(iii) Algorithm 2 terminates in at most K, + Ko iterations. Its output ¥ is a deterministic e-first-order
stationary point for some k < Ky + Ka. Moreover, it is an (e, /€)-second-order stationary point
with probability at least 1 — \/2.75n5”H"‘”_1/2, which is bounded below by 1 — \/2.75n5U§1/2, where
Hy = PIV2f(2*) Py and Uy is given in (44).

Proof. (i) Suppose for contradiction that the total number of calls of Algorithm 1 in Algorithm 2 is more
than Ks. Observe from Algorithm 2 that each of these calls except the last one returns a sufficient negative
curvature direction. Hence, these calls would totally return at least K5 sufficient negative curvature
directions. In addition, recall from Lemma 9(ii) that each of such directions results in a reduction on the
function value of ¢, at least by cne€3/2/64. Also, since p < i and 2* € S, one can observe that

6u(a”) = F(a°) + uB(a") < f(a°) + Amax{B(a"),0} = ¢",  $,(c*) > ¢ VkeK,

where K is given in Lemma 4. Besides, notice that {¢,(z*)}rex is descent. Based on these observations,
one would have

Kocnce®? /64 <Y " [du(a") — du (@) < 6,(a°) — ¢ < ¢° — ¢,

kekK

which contradicts with (75). Hence, statement (i) holds.

(ii) Suppose for contradiction that the total number of calls of Algorithm 3 in Algorithm 2 is
more than K;. By statement (i) and Algorithm 2, one can observe that the total number of calls
of Algorithm 3 that produce an iterate z* satisfying ||V f(z¥) + AT/\S) + uVB(®)||%, < (1= B)p or
|V £ (xF) + AT)\,(CZ) +puVB(zF )%, < (1—B)p is at most K,. Using these, and Lemmas 7 and 8, one can
further observe that the total number of iterations of Algorithm 2, at which Algorithm 3 is called and the
next iterate reduces the function value of ¢, at least by min{cgol, cnc}e3/ 2. would be at least K — Ko+ 1.
Combining these observations with the fact that {¢,(z*)}rek is descent, one then would have

(K1 — Kz + 1) min{csl, cnc}€3/2 < Z[Qﬁu(xk) - ¢u(xk+1)] < ¢u($0) - @ < ¢0 - @
kekK

where K is given in Lemma 4. This together with (75) leads to a contradiction with (74).

(iii) Since either Algorithm 3 or Algorithm 1 is called at each iteration of Algorithm 2, it follows
from statements (i) and (ii) that Algorithm 2 terminates in at most K; + K> iterations. Suppose that
Algorithm 2 terminates at iteration k for some k < K; + K5. One can observe from Algorithm 2 and
Theorem 6 that

IVF(2*) + ATN* + pVBE) 50 < (1= B)p (76)

for some (7, \F) € {(z*, AV), (*=1, A1)}, and additionally, Amin(PLV2f(2*)Py) > —y/€ holds with a
probability at least 1 —v/2.75n81#:17"" where H), = PIV?f(2*)Pg. In addition, it follows from (49) and
the definition of Z that ||z* —Z||z < 8. By these and Lemma 1(iv), one has ||V f(2*)+ ATA\F + uV B(Z)||% <
1, which yields

I(V£(*) + ATA) [+ VB(@)|5 < 1.

Using this and Lemma 1(vi), we have (V f(z*) + ATA¥)/u € K*. Hence, (19) holds for (z*, \¥). We next
show that (20) also holds for (z¥, A\¥). Indeed, by 7 € int K, ||z* — Z||z < 8, and Lemma 1(i) and (iv),
one has that

IVB@)|; < (1= IVB@)|3 = (1~ 8)"" V.

By this, (76), and u = (1 — 8)e/[2((1 — 8)? + V)], one has that
IV f(*) + ATN||2 < [V f(a%) + AT + uV B@)||%0 + pl VB(@)[%
S (L= B+ 00 = Q=B V0 — yy <o,
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and hence (20) holds for (z*, A\¥) as desired. In addition, we know from Theorem 7 that Az* = b and
2* € int K. Combining these results, we conclude that z* is a deterministic e-first-order stationary point.
Finally, recall that Hy = PTV2f(x*) Py, Py = MrQy, ||Qk|| = 1, and 2% € S. In view of these, (7), (27)
and (44), one has that

|Hil = ||PTV2f(a®)Pg|| < [|MIV2f(2*) M| = |\ur\]|ﬂax<1 1M V2 ()
k>
= ymax V2SNl = V2 £ @I < Un.
ul| k<
Hence’ we have 1 — m(s”HkH_l/z > 1— méU;U?. -

Remark 4. From Theorem 8, one can see that Algorithm 2 has an iteration complexity of 0(6’3/2) for
finding an (e, \/€)-second-order stationary point of problem (1), which matches the best known iteration
complexity achieved by the methods [1, 6, 9, 11, 16, 17, 18, 21, 26, 30, 32, 34, 85] for finding an
(e, 1/€)-second-order stationary point of problem (2), (3) or (5).

5.2 Operation complexity

In this subsection we discuss operation complexity of Algorithm 2 for solving problem (1), which is
measured by its total main operations that depend on the type of the cone K.

Notice that Algorithm 1 with H = PI'V?f(2*) Py, or Algorithm 3 with H = PI'V?2¢,(2") Py is called
at iteration k of Algorithm 2. Also, observe that the main operation of Algorithms 1 and 3 per iteration
is the product of H and a vector v. In addition, )\g), )\](f), |V f(z*) + AT)\,(;) + uVB(z")|, and
|V £ (xF) + AT)\Ef) +puVB(z*~1)|%, need to be computed at iteration k of Algorithm 2. However, one can
observe that their computational cost is no higher than that of the product of H and v. Also, it is clear
that the computational cost of the product of PI'V?2f(x*) Py and v is no higher than that of the product
of PI'V2¢,(x*)P; and v. Thus, we only focus on the product of H and v with H = PI'V2¢,(z*)P,. We
now discuss how to compute Hov by utilizing the structure of PI' V3¢, (2%)P;. In view of (27), (28) and
(30), one has

Hov = PEV2¢M(1‘k)PkU = QkMEVQf($k>MkaU + MQkMEVQB<xk)MkaU
= QpMI'V2 f(z*)MpQrv + pQrv = v° + o',

where
vl = Qpu, i =My, 03 =Vt ot = MEW, 0P = Qpo’.

Thus, the computation of Hv is broken into that of v? for 1 < ¢ < 5. In what follows, we discuss how to
compute them, and also analyze their associated operation cost.

1. Notice that v!' and v® are both a product of Q; and a vector. Let us consider computing Qyu for
some vector u. By (28), one has

Qru = (I — M AT(AMMFAT) P AM ) u = u — M AT (AMMEAT) Y AMyu = u — P,
where
ut = Myu, u?=Au', u® = (AMMFAT) 2wt = ATu3, o = MTut.

Observe that AMyMI AT can be computed by N = MIAT and AMM AT = NTN. The
computation of N = M AT involves m products of M} and a vector. Once N is available, the
operation cost of computing NTN is O(m?n). In addition, when AM; ML AT and u? are available,
the operation cost of computing u? is O(m?). Also, once u' and u? are available, the operation
cost of computing u? and u* is O(mn). By these observations and the fact that m < n, one can see
that the main operation of computing Qu consists of m + 2 products of My or Ml and a vector,
and also one product of an m X n matrix and its transpose.
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2. Based on the above discussion, one can observe that the computation of v', v2, v*, and v® involves
2m + 6 products of M or Ml and a vector in total. We now discuss how to compute the product
of My, or M and a vector. Observe from (27) that V2B(z*) = M, "M, *. Thus, M, " can be
obtained as the Cholesky factor of V2B(z*), which is computed only once in each iteration of
Algorithm 2. Once M, T is available, the product of Mj, or M ,? and a vector can be computed by
applying backward or forward substitution to a linear system with coeflicient matrix M, Lor M & T

3. Once v? is available, the computation of v only involves the product of V2 f(z*) and v2.

Consequently, once the Cholesky factor M, T of V2B (2*) is computed in each iteration of Algorithm 2,
the main computation of Hv consists of:

e 2m + 6 backward or forward substitutions to a linear system with coefficient matrix M, Lor M & T.
e one product of an m X n matrix and its transpose;
e one product of V2 f(x*) and a vector.

When K is the nonnegative orthant, its associated LHSC is B(z) = — Y., Inz; and V2B(z¥) is a
diagonal matrix. The operation cost of the Cholesky factorization of V2B(2*) is O(n). In addition, the
operation cost of 2m + 6 backward or forward substitutions to a linear system with coefficient matrix
Mk_1 or Mk_T is O(mn). Thus, the main operation of computing Hv consists of one product of an m x n
matrix and its transpose, and one product of V2 f(z*) and a vector.

When K is a general cone, such as a second-order or semidefinite cone, the operation cost of the
Cholesky factorization of V2B(2*) (including the evaluation of V2B(x*)) is typically at least O(n?).
In addition, the operation cost of 2m + 6 backward or forward substitutions to a linear system with
coefficient matrix M, ' or M, T is O(mn?).

The above discussion and Theorems 5(ii), 6 and 8 lead to the following operation complexity results
for Algorithm 2, which are represented by its total main operations that depend on the type of the cone

K.

Theorem 9. Let K1 and Ko be given in (74) and (75), respectively, and let
N=0 (min{n, e Y4 K| 4 min {n, 1+ ’7671/4 111571-‘ } K2) .
Then the following statements hold.

(i) When K is the nonnegative orthant, the total main operations of Algorithm 2 consist of N Hessian-
vector products of f and N products of an m x n matriz and its transpose.

(ii) When K is a general cone, the total main operations of Algorithm 2 consist of K1 + Ko Cholesky
factorizations of the Hessian of B, N Hessian-vector products of f, and (2m + 6)N backward or
forward substitutions to a linear system with a lower or upper triangular coefficient matriz.

Remark 5. Recall from Theorem 8 that K1 = O(e=%/?) and Ky = O(e73/2). In view of these and
Theorem 9, we observe that

(i) when K is the nonnegative orthant, Algorithm 2 achieves an operation complexity of (5(6’3/2 min{n, e~1/4}),
measured by the amount of main operations consisting of Hessian-vector products of f and also
products of an m x n matriz and its transpose, for finding an (e,+/€)-second-order stationary point
of (1) with high probability;

(ii) when K is a general cone, Algorithm 2 requires at most O(e /%) Cholesky factorizations of the
Hessian of B and 6(6_3/2 min{n, 6_1/4}) other fundamental operations, consisting of Hessian-vector
products of f and backward or forward substitutions to a lower or upper triangular linear system,
for finding an (e, +/€)-second-order stationary point of (1) with high probability.

In addition, when A =0, b =0 and K is the nonnegative orthant, the aforementioned operation complexity
for Algorithm 2 matches the best known ones of second-order methods for finding an (e, +/€)-second-order
stationary point of problem (2) or (3) with high probability (e.g., see [16, 32, 34]).
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Appendix

A A capped conjugate gradient method

In this part we present a capped CG method proposed in [34] for finding either an approximate solution
of (32) or a negative curvature direction of the matrix H, which has been discussed in Subsection 4.2.
The detailed motivation and explanation of this method can be found in [34].

Algorithm 3 A capped conjugate gradient method

Input: Symmetric matrix H € R"*", vector g # 0, damping parameter ¢ € (0, 1), desired relative accuracy
¢€(0,1).

Optional input: scalar U > 0 such that ||H|| < U (set to 0 if not provided).

Output: d_type, d.

Secondary output: final values of U, k, E, T, and 7T.

Set

_ 2 —~
H :=H + 2¢l, n::U+ 67 (==, 71:=
€ 3K

Y0 < 0,70« g,p° « —g,j < 0.
if (p°)"Hp" < £/|p°||* then
Set d = p° and terminate with d_type = NC;
else if ||Hp°|| > U|[p°|| then
Set U « ||Hp°||/|Ip°| and update k,C, 7, T accordingly;
end if
while TRUE do
aj « (r)Tri /(p?)T Hp’; {Begin Standard CG Operations}
v ey s
pIt —l—ozjﬁpj;
Bir = 72 /1712
p't  —rit 4 B;11p7; {End Standard CG Operations}
Jegt+ L
if || Hp'|| > U[lp’| then
Set U < ||Hp’||/||p”|| and update &, C, 7, T accordingly;
end if
if |Hy'|>Uly’|l then
Set U « ||Hy’||/||y’|| and update &, C, 7, T accordingly;
end if
if |[Hr?|| > Ul||7?|| then
Set U <« ||Hr?||/||r|| and update %, C, 7, T accordingly;
end if
if (v/)"Hy’ <e|y’||” then
Set d + v’ and terminate with d_type = NC;
else if |r’|| < ||r°|| then
Set d + 4’ and terminate with d_type = SOL;
else if (p?)THp’ < ¢||p’||* then
Set d + p’ and terminate with d_type = NC;
else if ||77|| > vT77/?||7°|| then
Compute a;, 47+ as in the main loop above;
Find i € {0,...,j — 1} such that

T =Y TH@Y T -y <elly - y|%

Set d + 3T — 4% and terminate with d_type = NC;
end if
end while
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