
A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD1

FOR FINDING A SECOND-ORDER STATIONARY POINT OF2

NONCONVEX EQUALITY CONSTRAINED OPTIMIZATION WITH3

COMPLEXITY GUARANTEES∗4

CHUAN HE† , ZHAOSONG LU† , AND TING KEI PONG‡5

Abstract. In this paper we consider finding a second-order stationary point (SOSP) of nonconvex6
equality constrained optimization when a nearly feasible point is known. In particular, we first propose7
a new Newton-CG method for finding an approximate SOSP of unconstrained optimization and show8
that it enjoys a substantially better complexity than the Newton-CG method in [C. W. Royer, M.9
O’Neill, and S. J. Wright, Math. Program., 180 (2020), pp. 451–488]. We then propose a Newton-10
CG based augmented Lagrangian (AL) method for finding an approximate SOSP of nonconvex11
equality constrained optimization, in which the proposed Newton-CG method is used as a subproblem12
solver. We show that under a generalized linear independence constraint qualification (GLICQ), our13

AL method enjoys a total inner iteration complexity of Õ(ε−7/2) and an operation complexity of14

Õ(ε−7/2 min{n, ε−3/4}) for finding an (ε,
√
ε)-SOSP of nonconvex equality constrained optimization15

with high probability, which are significantly better than the ones achieved by the proximal AL method16
in [Y. Xie and S. J. Wright, J. Sci. Comput., 86 (2021), pp. 1–30]. Besides, we show that it has a total17

inner iteration complexity of Õ(ε−11/2) and an operation complexity of Õ(ε−11/2 min{n, ε−5/4})18
when the GLICQ does not hold. To the best of our knowledge, all the complexity results obtained in19
this paper are new for finding an approximate SOSP of nonconvex equality constrained optimization20
with high probability. Preliminary numerical results also demonstrate the superiority of our proposed21
methods over the other competing algorithms.22

Key words. Nonconvex equality constrained optimization, second-order stationary point,23
augmented Lagrangian method, Newton-conjugate gradient method, iteration complexity, operation24
complexity25

MSC codes. 49M15, 68Q25, 90C06, 90C26, 90C30, 90C6026

1. Introduction. In this paper we consider nonconvex equality constrained27

optimization problem28

(1.1) min
x∈Rn

f(x) s. t. c(x) = 0,29

where f : Rn → R and c : Rn → Rm are twice continuously differentiable, and we30

assume that problem (1.1) has at least one optimal solution. Since (1.1) is a nonconvex31

optimization problem, it may have many local but non-global minimizers and finding32

its global minimizer is generally NP-hard. A first-order stationary point (FOSP) of it33

is usually found in practice instead. Nevertheless, a mere FOSP may sometimes not34

suit our needs and a second-order stationary point (SOSP) needs to be sought. For35

example, in the context of linear semidefinite programming (SDP), a powerful approach36

to solving it is by solving an equivalent nonconvex equality constrained optimization37

problem [17, 18]. It was shown in [18, 15] that under some mild conditions an SOSP38

of the latter problem can yield an optimal solution of the linear SDP, while a mere39

FOSP generally cannot. It is therefore important to find an SOSP of problem (1.1).40

∗Submitted to the editors January 11, 2023.
Funding: The work of the second author was partially supported by NSF Award IIS-2211491.

The work of the third author was partially supported by a Research Scheme of the Research Grants
Council of Hong Kong SAR, China (Project No. T22-504/21R).
†Department of Industrial and Systems Engineering, University of Minnesota, USA

(he000233@umn.edu, zhaosong@umn.edu).
‡Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong, People’s

Republic of China (tk.pong@polyu.edu.hk)

1

This manuscript is for review purposes only.

mailto:he000233@umn.edu
mailto:zhaosong@umn.edu
mailto:tk.pong@polyu.edu.hk

2 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

In recent years, numerous methods with complexity guarantees have been developed41

for finding an approximate SOSP of several types of nonconvex optimization. For42

example, cubic regularized Newton methods [52, 25, 1, 22], accelerated gradient43

methods [23, 24], trust-region methods [34, 35, 50], quadratic regularization method44

[12], second-order line-search method [57], and Newton-conjugate gradient (Newton-45

CG) method [56] were developed for nonconvex unconstrained optimization. In46

addition, interior-point method [8] and log-barrier method [54] were proposed for47

nonconvex optimization with sign constraints. The interior-point method [8] was also48

generalized in [38] to solve nonconvex optimization with sign constraints and additional49

linear equality constraints. Furthermore, a projected gradient descent method with50

random perturbations was proposed in [47] for nonconvex optimization with linear51

inequality constraints. Iteration complexity was established for these methods for52

finding an approximate SOSP. Besides, operation complexity measured by the amount53

of fundamental operations such as gradient evaluations and matrix-vector products54

was also studied in [1, 23, 34, 41, 24, 57, 22, 56].55

Several methods including trust-region methods [21, 33], sequential quadratic56

programming method [14], two-phase method [9, 30, 32] and augmented Lagrangian57

(AL) type methods [4, 10, 58, 60] were proposed for finding an SOSP of problem (1.1).58

However, only a few of them have complexity guarantees for finding an approximate59

SOSP of (1.1). In particular, the inexact AL method [58] has a worst-case complexity60

in terms of the number of calls to a second-order oracle. Yet its operation complexity,61

measured by the amount of fundamental operations such as gradient evaluations and62

Hessian-vector products, is unknown. To the best of our knowledge, the proximal63

AL method in [60] appears to be the only existing method that enjoys a worst-64

case complexity for finding an approximate SOSP of (1.1) in terms of fundamental65

operations. In this method, given an iterate xk and a multiplier estimate λk at the66

kth iteration, the next iterate xk+1 is obtained by finding an approximate stochastic67

SOSP of the proximal AL subproblem:68

min
x∈Rn

L(x, λk; ρ) + β‖x− xk‖2/269

for some suitable positive ρ and β using a Newton-CG method proposed in [56], where70

L is the AL function of (1.1) defined as71

L(x, λ; ρ) := f(x) + λT c(x) + ρ‖c(x)‖2/2.72

Then the multiplier estimate is updated using the classical scheme, i.e., λk+1 =73

λk+ρc(xk+1) (e.g., see [39, 55]). The authors of [60] studied the worst-case complexity74

of their proximal AL method including: (i) total inner iteration complexity, which75

measures the total number of iterations of the Newton-CG method [56] performed in76

their method; (ii) operation complexity, which measures the total number of gradient77

evaluations and matrix-vector products involving the Hessian of the AL function that78

are evaluated in their method. Under some suitable assumptions, including that a79

generalized linear independence constraint qualification (GLICQ) holds at all iterates,80

it was established in [60] that their proximal AL method enjoys a total inner iteration81

complexity of Õ(ε−11/2) and an operation complexity of Õ(ε−11/2 min{n, ε−3/4}) for82

finding an (ε,
√
ε)-SOSP of problem (1.1) with high probability.1 Yet, there is a big83

1In fact, a total inner iteration complexity of Õ(ε−7) and an operation complexity of

Õ(ε−7 min{n, ε−1}) were established in [60] for finding an (ε, ε)-SOSP of problem (1.1) with high
probability; see [60, Theorem 4(ii), Corollary 3(ii), Theorem 5]. Nonetheless, they can be modified to
obtain the aforementioned complexity for finding an (ε,

√
ε)-SOSP of (1.1) with high probability.

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 3

gap between these complexities and the iteration complexity of Õ(ε−3/2) and the84

operation complexity of Õ(ε−3/2 min{n, ε−1/4}) that are achieved by the methods in85

[1, 24, 57, 56] for finding an (ε,
√
ε)-SOSP of nonconvex unconstrained optimization86

with high probability, which is a special case of (1.1) with c ≡ 0. Also, there is a lack87

of complexity guarantees for this proximal AL method when the GLICQ does not88

hold. It shall be mentioned that Newton-CG based AL methods were also developed89

for efficiently solving various convex optimization problems (e.g., see [61, 62]), though90

their complexities remain unknown.91

In this paper we propose a Newton-CG based AL method for finding an approxi-92

mate SOSP of problem (1.1) with high probability, and study its worst-case complexity93

with and without the assumption of a GLICQ. In particular, we show that this method94

enjoys a total inner iteration complexity of Õ(ε−7/2) and an operation complexity95

of Õ(ε−7/2 min{n, ε−3/4}) for finding a stochastic (ε,
√
ε)-SOSP of (1.1) under the96

GLICQ, which are significantly better than the aforementioned ones achieved by the97

proximal AL method in [60]. Besides, when the GLICQ does not hold, we show that98

it has a total inner iteration complexity of Õ(ε−11/2) and an operation complexity of99

Õ(ε−11/2 min{n, ε−5/4}) for finding a stochastic (ε,
√
ε)-SOSP of (1.1), which fills the100

research gap in this topic. Specifically, our AL method (Algorithm 4.1) proceeds in101

the following manner. Instead of directly solving problem (1.1), it solves a perturbed102

problem of (1.1) with c replaced by its perturbed counterpart c̃ constructed by using103

a nearly feasible point of (1.1) (see (4.4) for details). At the kth iteration, an approxi-104

mate stochastic SOSP xk+1 of the AL subproblem of this perturbed problem is found105

by our newly proposed Newton-CG method (Algorithm 3.1) for a penalty parameter106

ρk and a truncated Lagrangian multiplier λk, which results from projecting onto a107

Euclidean ball the standard multiplier estimate λ̃k obtained by the classical scheme108

λ̃k = λk−1 + ρk c̃(x
k).2 The penalty parameter ρk+1 is then updated by the following109

practical scheme (e.g., see [7, Section 4.2]):110

ρk+1 =

{
rρk if ‖c̃(xk+1)‖ > α‖c̃(xk)‖,
ρk otherwise

111

for some r > 1 and α ∈ (0, 1). It shall be mentioned that in contrast with the classical112

AL method, our method has two distinct features: (i) the values of the AL function113

along the iterates are bounded from above; (ii) the multiplier estimates associated114

with the AL subproblems are bounded. In addition, to solve the AL subproblems with115

better complexity guarantees, we propose a variant of the Newton-CG method in [56]116

for finding an approximate stochastic SOSP of unconstrained optimization, whose117

complexity has significantly less dependence on the Lipschitz constant of the Hessian of118

the objective than that of the Newton-CG method in [56], while improving or retaining119

the same order of dependence on tolerance parameter. Given that such a Lipschitz120

constant is typically large for the AL subproblems, our Newton-CG method (Algorithm121

3.1) is a much more favorable subproblem solver than the Newton-CG method in [56]122

that is used in the proximal AL method in [60] from theoretical complexity perspective.123

The main contributions of this paper are summarized below.124

• We propose a new Newton-CG method for finding an approximate SOSP of125

unconstrained optimization and show that it enjoys an iteration and operation126

2The λk obtained by projecting λ̃k onto a compact set is also called a safeguarded Lagrangian
multiplier in the relevant literature [11, 42, 13], which has been shown to enjoy many practical and
theoretical advantages (see [11] for discussions).

This manuscript is for review purposes only.

4 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

complexity with a quadratic dependence on the Lipschitz constant of the127

Hessian of the objective that improves the cubic dependence achieved by the128

Newton-CG method in [56], while improving or retaining the same order of129

dependence on tolerance parameter. In addition, our complexity results are130

established under the assumption that the Hessian of the objective is Lipschitz131

continuous in a convex neighborhood of a level set of the objective. This132

assumption is weaker than the one commonly imposed for the Newton-CG133

method in [56] and some other methods (e.g., [12, 35]) that the Hessian of the134

objective is Lipschitz continuous in a convex set containing this neighborhood135

and also all the trial points arising in the line search or trust region steps of136

the methods (see Section 3 for more detailed discussion).137

• We propose a Newton-CG based AL method for finding an approximate SOSP138

of nonconvex equality constrained optimization (1.1) with high probability, and139

study its worst-case complexity with and without the assumption of a GLICQ.140

Prior to our work, there was no complexity study on finding an approximate141

SOSP of problem (1.1) without imposing a GLICQ. Besides, under the GLICQ142

and some other suitable assumptions, we show that our method enjoys a143

total inner iteration complexity of Õ(ε−7/2) and an operation complexity144

of Õ(ε−7/2 min{n, ε−3/4}) for finding an (ε,
√
ε)-SOSP of (1.1) with high145

probability, which are significantly better than the respective complexity of146

Õ(ε−11/2) and Õ(ε−11/2 min{n, ε−3/4}) achieved by the proximal AL method147

in [60]. To the best of our knowledge, all the complexity results obtained in148

this paper are new for finding an approximate SOSP of nonconvex equality149

constrained optimization with high probability.150

For ease of comparison, we summarize in Table 1 the total inner iteration and151

operation complexity of our AL method and the proximal AL method in [60] for152

finding a stochastic (ε,
√
ε)-SOSP of problem (1.1) with or without assuming GLICQ.153

Table 1
Total inner iteration and operation complexity of finding a stochastic (ε,

√
ε)-SOSP of (1.1).

Method GLICQ Total inner iteration complexity Operation complexity

Proximal AL method [60] 3 Õ(ε−11/2) Õ(ε−11/2 min{n, ε−3/4})
Proximal AL method [60] 7 unknown unknown

Our AL method 3 Õ(ε−7/2) Õ(ε−7/2 min{n, ε−3/4})
Our AL method 7 Õ(ε−11/2) Õ(ε−11/2 min{n, ε−5/4})

It shall be mentioned that there are many works other than [60] studying complexity154

of AL methods for nonconvex constrained optimization. However, they aim to find an155

approximate FOSP rather than SOSP of the problem (e.g., see [40, 37, 13, 51, 45]).156

Since our main focus is on the complexity of finding an approximate SOSP by AL157

methods, we do not include them in the above table for comparison.158

The rest of this paper is organized as follows. In Section 2, we introduce some159

notation and optimality conditions. In Section 3, we propose a Newton-CG method160

for unconstrained optimization and study its worst-case complexity. In Section 4, we161

propose a Newton-CG based AL method for (1.1) and study its worst-case complexity.162

We present numerical results and the proof of the main results in Sections 5 and 6,163

respectively. In Section 7, we discuss some future research directions.164

2. Notation and preliminaries. Throughout this paper, we let Rn denote the165

n-dimensional Euclidean space. We use ‖ · ‖ to denote the Euclidean norm of a vector166

or the spectral norm of a matrix. For a real symmetric matrix H, we use λmin(H)167

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 5

to denote its minimum eigenvalue. The Euclidean ball centered at the origin with168

radius R ≥ 0 is denoted by BR := {x : ‖x‖ ≤ R}, and we use ΠBR(v) to denote the169

Euclidean projection of a vector v onto BR. For a given finite set A, we let | A | denote170

its cardinality. For any s ∈ R, we let sgn(s) be 1 if s ≥ 0 and let it be −1 otherwise.171

In addition, Õ(·) represents O(·) with logarithmic terms omitted.172

Suppose that x∗ is a local minimizer of problem (1.1) and the linear independence173

constraint qualification holds at x∗, i.e., ∇c(x∗) := [∇c1(x∗) ∇c2(x∗) · · · ∇cm(x∗)]174

has full column rank. Then there exists a Lagrangian multiplier λ∗ ∈ Rm such that175

∇f(x∗) +∇c(x∗)λ∗ = 0,(2.1)176

dT
(
∇2f(x∗) +

∑m
i=1 λ

∗
i∇2ci(x

∗)
)
d ≥ 0, ∀d ∈ C(x∗),(2.2)177

where C(·) is defined as178

(2.3) C(x) := {d ∈ Rn : ∇c(x)T d = 0}.179

The relations (2.1) and (2.2) are respectively known as the first- and second-order180

optimality conditions for (1.1) in the literature (e.g., see [53]). Note that it is in181

general impossible to find a point that exactly satisfies (2.1) and (2.2). Thus, we182

are instead interested in finding a point that satisfies their approximate counterparts.183

In particular, we introduce the following definitions of an approximate first-order184

stationary point (FOSP) and second-order stationary point (SOSP), which are similar185

to those considered in [4, 10, 60]. The rationality of them can be justified by the study186

of the sequential optimality conditions for constrained optimization [3, 4].187

Definition 2.1 (ε1-first-order stationary point). Let ε1 > 0. We say that188

x ∈ Rn is an ε1-first-order stationary point (ε1-FOSP) of problem (1.1) if it, together189

with some λ ∈ Rm, satisfies190

(2.4) ‖∇f(x) +∇c(x)λ‖ ≤ ε1, ‖c(x)‖ ≤ ε1.191

Definition 2.2 ((ε1, ε2)-second-order stationary point). Let ε1, ε2 > 0. We192

say that x ∈ Rn is an (ε1, ε2)-second-order stationary point ((ε1, ε2)-SOSP) of problem193

(1.1) if it, together with some λ ∈ Rm, satisfies (2.4) and additionally194

(2.5) dT
(
∇2f(x) +

∑m
i=1 λi∇2ci(x)

)
d ≥ −ε2‖d‖2, ∀d ∈ C(x),195

where C(·) is defined as in (2.3).196

3. A Newton-CG method for unconstrained optimization. In this section197

we propose a variant of Newton-CG method [56, Algorithm 3] for finding an approxi-198

mate SOSP of a class of unconstrained optimization problems, which will be used as a199

subproblem solver for the AL method proposed in the next section. In particular, we200

consider an unconstrained optimization problem201

(3.1) min
x∈Rn

F (x),202

where the function F satisfies the following assumptions.203

Assumption 3.1. (a) The level set LF (u0) := {x : F (x) ≤ F (u0)} is compact for204

some u0 ∈ Rn.205

(b) The function F is twice Lipschitz continuously differentiable in a convex open206

neighborhood, denoted by Ω, of LF (u0), that is, there exists LFH > 0 such that207

(3.2) ‖∇2F (x)−∇2F (y)‖ ≤ LFH‖x− y‖, ∀x, y ∈ Ω.208

This manuscript is for review purposes only.

6 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

By Assumption 3.1, there exist Flow ∈ R, UFg > 0 and UFH > 0 such that209

(3.3) F (x) ≥ Flow, ‖∇F (x)‖ ≤ UFg , ‖∇2F (x)‖ ≤ UFH , ∀x ∈ LF (u0).210

Recently, a Newton-CG method [56, Algorithm 3] was developed to find an211

approximate stochastic SOSP of problem (3.1), which is not only easy to implement212

but also enjoys a nice feature that the main computation consists only of gradient213

evaluations and Hessian-vector products associated with the function F . Under the214

assumption that ∇2F is Lipschitz continuous in a convex open set containing LF (u0)215

and also all the trial points arising in the line search steps of this method (see [56,216

Assumption 2]), it was established in [56, Theorem 4, Corollary 2] that the iteration217

and operation complexity of this method for finding a stochastic (εg, εH)-SOSP of (3.1)218

(namely, a point x satisfying ‖∇F (x)‖ ≤ εg deterministically and λmin(∇2F (x)) ≥ −εH219

with high probability) are220

(3.4) O((LFH)3max{ε−3
g ε3H , ε

−3
H }) and Õ((LFH)3max{ε−3

g ε3H , ε
−3
H }min{n, (UFH/εH)1/2}),221

respectively, where εg, εH ∈ (0, 1) are prescribed tolerances. Yet, this assumption can222

be hard to check because these trial points are unknown before the method terminates223

and moreover the distance between the origin and them depends on the tolerance εH224

in O(ε−1
H) (see [56, Lemma 3]). In addition, as seen from (3.4), iteration and operation225

complexity of the Newton-CG method in [56] depend cubically on LFH . Notice that LFH226

can sometimes be very large. For example, the AL subproblems arising in Algorithm 4.1227

have LFH = O(ε−2
1) or O(ε−1

1), where ε1 ∈ (0, 1) is a prescribed tolerance for problem228

(1.1) (see Section 4). The cubic dependence on LFH makes such a Newton-CG method229

not appealing as an AL subproblem solver from theoretical complexity perspective.230

In the rest of this section, we propose a variant of the Newton-CG method [56,231

Algorithm 3] and show that under Assumption 3.1, it enjoys an iteration and operation232

complexity of233

(3.5) O((LFH)2max{ε−2
g εH , ε

−3
H }) and Õ((LFH)2max{ε−2

g εH , ε
−3
H }min{n, (UFH/εH)1/2}),234

for finding a stochastic (εg, εH)-SOSP of problem (3.1), respectively. These complexities235

are substantially superior to those in (3.4) achieved by the Newton-CG method in236

[56]. Indeed, the complexities in (3.5) depend quadratically on LFH , while those in237

(3.4) depend cubically on LFH . In addition, it can be verified that they improve or238

retain the order of dependence on εg and εH given in (3.4).239

3.1. Main components of a Newton-CG method. In this subsection we240

briefly discuss two main components of the Newton-CG method in [56], which will be241

used to propose a variant of this method for finding an approximate stochastic SOSP242

of problem (3.1) in the next subsection.243

The first main component of the Newton-CG method in [56] is a capped CG method244

[56, Algorithm 1], which is a modified CG method, for solving a possibly indefinite245

linear system246

(3.6) (H + 2εI)d = −g,247

where 0 6= g ∈ Rn, ε > 0, and H ∈ Rn×n is a symmetric matrix. This capped248

CG method terminates within a finite number of iterations. It outputs either an249

approximate solution d to (3.6) such that ‖(H + 2εI)d + g‖ ≤ ζ̂‖g‖ and dTHd ≥250

−ε‖d‖2 for some ζ̂ ∈ (0, 1) or a sufficiently negative curvature direction d of H with251

dTHd < −ε‖d‖2. The second main component of the Newton-CG method in [56] is252

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 7

a minimum eigenvalue oracle that either produces a sufficiently negative curvature253

direction v of H with ‖v‖ = 1 and vTHv ≤ −ε/2 or certifies that λmin(H) ≥ −ε254

holds with high probability. For ease of reference, we present these two components in255

Algorithms A.1 and B.1 in Appendices A and B, respectively.256

Algorithm 3.1 A Newton-CG method for problem (3.1)

Input : Tolerances εg , εH ∈ (0, 1), backtracking ratio θ ∈ (0, 1), starting point u0, CG-accuracy
parameter ζ ∈ (0, 1), line-search parameter η ∈ (0, 1), probability parameter δ ∈ (0, 1).
Set x0 = u0;
for t = 0, 1, 2, . . . do

if ‖∇F (xt)‖ > εg then
Call Algorithm A.1 with H = ∇2F (xt), ε = εH , g = ∇F (xt), accuracy parameter ζ, and
U = 0 to obtain outputs d, d type;
if d type=NC then

(3.7) dt ← − sgn(dT∇F (xt))
|dT∇2F (xt)d|

‖d‖3
d;

else {d type=SOL}

(3.8) dt ← d;

end if
Go to Line Search;

else
Call Algorithm B.1 with H = ∇2F (xt), ε = εH , and probability parameter δ;
if Algorithm B.1 certifies that λmin(∇2F (xt)) ≥ −εH then

Output xt and terminate;
else {Sufficiently negative curvature direction v returned by Algorithm B.1}

Set d type=NC and

(3.9) dt ← − sgn(vT∇F (xt))|vT∇2F (xt)v|v;

Go to Line Search;
end if

end if
Line Search:
if d type=SOL then

Find αt = θjt , where jt is the smallest nonnegative integer j such that

(3.10) F (xt + θjdt) < F (xt)− ηεHθ2j‖dt‖2;

else {d type=NC}
Find αt = θjt , where jt is the smallest nonnegative integer j such that

(3.11) F (xt + θjdt) < F (xt)− ηθ2j‖dt‖3/2;

end if
xt+1 = xt + αtdt;

end for

3.2. A Newton-CG method for problem (3.1). In this subsection we propose257

a Newton-CG method in Algorithm 3.1, which is a variant of the Newton-CG method258

[56, Algorithm 3], for finding an approximate stochastic SOSP of problem (3.1).259

Our Newton-CG method (Algorithm 3.1) follows the same framework as [56,260

Algorithm 3]. In particular, at each iteration, if the gradient of F at the current261

iterate is not desirably small, then the capped CG method (Algorithm A.1) is called262

to solve a damped Newton system for obtaining a descent direction and a subsequent263

line search along this direction results in a sufficient reduction on F . Otherwise, the264

current iterate is already an approximate first-order stationary point of (3.1), and the265

minimum eigenvalue oracle (Algorithm B.1) is then called, which either produces a266

This manuscript is for review purposes only.

8 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

sufficiently negative curvature direction for F and a subsequent line search along this267

direction results in a sufficient reduction on F , or certifies that the current iterate is268

an approximate SOSP of (3.1) with high probability and terminates the algorithm.269

More details about this framework can be found in [56].270

Despite sharing the same framework, our Newton-CG method and [56, Algorithm 3]271

use different line search criteria. Indeed, our Newton-CG method uses a hybrid line272

search criterion adopted from [59], which is a combination of the quadratic descent273

criterion (3.10) and the cubic descent criterion (3.11). Specifically, it uses the quadratic274

descent criterion (3.10) when the search direction is of type ‘SOL’. On the other hand,275

it uses the cubic descent criterion (3.11) when the search direction is of type ‘NC’.3276

In contrast, the Newton-CG method in [56] always uses a cubic descent criterion277

regardless of the type of search directions. As observed from Theorem 3.2 below, our278

Newton-CG method achieves an iteration and operation complexity given in (3.5),279

which are superior to those in (3.4) achieved by [56, Algorithm 3] in terms of the order280

dependence on LFH , while improving or retaining the order of dependence on εg and281

εH as given in (3.4). Consequently, our Newton-CG method is more appealing than282

[56, Algorithm 3] as an AL subproblem solver for the AL method proposed in Section283

4 from theoretical complexity perspective.284

The following theorem states the iteration and operation complexity of Algo-285

rithm 3.1, whose proof is deferred to Section 6.1.286

Theorem 3.2. Suppose that Assumption 3.1 holds. Let287

(3.12) T1 :=
⌈

Fhi−Flow

min{csol,cnc}max{ε−2
g εH , ε

−3
H }
⌉
+
⌈
Fhi−Flow

cnc
ε−3
H

⌉
+1, T2 :=

⌈
Fhi−Flow

cnc
ε−3
H

⌉
+1,288

where Fhi = F (u0), Flow is given in (3.3), and289

csol := ηmin

{[
4

4+ζ+
√

(4+ζ)2+8LFH

]2

,
[

min{6(1−η),2}θ
LFH

]2}
,(3.13)290

cnc := η
16 min

{
1,
[

min{3(1−η),1}θ
LFH

]2}
.(3.14)291

Then the following statements hold.292

(i) The total number of calls of Algorithm B.1 in Algorithm 3.1 is at most T2.293

(ii) The total number of calls of Algorithm A.1 in Algorithm 3.1 is at most T1.294

(iii) (iteration complexity) Algorithm 3.1 terminates in at most T1 + T2 iterations295

with296

(3.15) T1 + T2 = O((Fhi − Flow)(LFH)2 max{ε−2
g εH , ε

−3
H }).297

Also, its output xt satisfies ‖∇F (xt)‖≤ εg deterministically and λmin(∇2F (xt))298

≥ −εH with probability at least 1− δ for some 0 ≤ t ≤ T1 + T2.299

(iv) (operation complexity) Algorithm 3.1 requires at most300

Õ((Fhi − Flow)(LFH)2 max{ε−2
g εH , ε

−3
H }min{n, (UFH/εH)1/2})301

matrix-vector products, where UFH is given in (3.3).302

4. A Newton-CG based AL method for problem (1.1). In this section we303

propose a Newton-CG based AL method for finding a stochastic (ε1, ε2)-SOSP of304

problem (1.1) for any prescribed tolerances ε1, ε2 ∈ (0, 1). Before proceeding, we make305

some additional assumptions on problem (1.1).306

3SOL and NC stand for “approximate solution” and “negative curvature”, respectively.

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 9

Assumption 4.1. (a) An ε1/2-approximately feasible point zε1 of problem (1.1),307

namely satisfying ‖c(zε1)‖ ≤ ε1/2, is known.308

(b) There exist constants fhi, flow and γ > 0, independent of ε1 and ε2, such that309

f(zε1) ≤ fhi,(4.1)310

f(x) + γ‖c(x)‖2/2 ≥ flow, ∀x ∈ Rn,(4.2)311

where zε1 is given in (a).312

(c) There exist some δf , δc > 0 such that the set313

(4.3) S(δf , δc) := {x : f(x) ≤ fhi + δf , ‖c(x)‖ ≤ 1 + δc}314

is compact with fhi given above. Also, ∇2f and ∇2ci, i = 1, 2, . . . ,m, are Lipschitz315

continuous in a convex open neighborhood, denoted by Ω(δf , δc), of S(δf , δc).316

We now make some remarks on Assumption 4.1.317

Remark 4.2. (i) A very similar assumption as Assumption 4.1(a) was con-318

sidered in [31, 37, 49, 60]. By imposing Assumption 4.1(a), we restrict our319

study on problem (1.1) for which an ε1/2-approximately feasible point zε1320

can be found by an inexpensive procedure. One example of such problem321

instances arises when there exists v0 such that {x : ‖c(x)‖ ≤ ‖c(v0)‖} is322

compact, ∇2ci, 1 ≤ i ≤ m, is Lipschitz continuous on a convex neighborhood323

of this set, and the LICQ holds on this set. Indeed, for this instance, a point324

zε1 satisfying ‖c(zε1)‖ ≤ ε1/2 can be computed by applying our Newton-CG325

method (Algorithm 3.1) to the problem minx∈Rn ‖c(x)‖2. As seen from Theo-326

rem 3.2, the resulting iteration and operation complexity of Algorithm 3.1 for327

finding such zε1 are respectively O(ε
−3/2
1) and Õ(ε

−3/2
1 min{n, ε−1/4

1 }), which328

are negligible compared with those of our AL method (see Theorems 4.10 and329

4.14 below). As another example, when the standard error bound condition330

‖c(x)‖2 = O(‖∇(‖c(x)‖2)‖ν) holds on a level set of ‖c(x)‖ for some ν > 0,331

one can find the above zε1 by applying a gradient method to the problem332

minx∈Rn ‖c(x)‖2 (e.g., see [46, 58]). In addition, the Newton-CG based AL333

method (Algorithm 4.1) proposed below is a second-order method with the334

aim to find a second-order stationary point. It is more expensive than a335

first-order method in general. To make best use of such an AL method in336

practice, it is natural to run a first-order method in advance to obtain an337

ε1/2-first-order stationary point zε1 and then run the AL method using zε1 as338

an ε1/2-approximately feasible point. Therefore, Assumption 4.1(a) is met339

in practice, provided that an ε1/2-first-order stationary point of (1.1) can be340

found by a first-order method.341

(ii) Assumption 4.1(b) is mild. In particular, the assumption in (4.1) holds342

if f(x) ≤ fhi holds for all x with ‖c(x)‖ ≤ 1, which is imposed in [60,343

Assumption 3]. It also holds if problem (1.1) has a known feasible point,344

which is often imposed for designing AL methods for nonconvex constrained345

optimization (e.g., see [49, 31, 48, 37]). Besides, the assumption in (4.2) implies346

that the quadratic penalty function is bounded below when the associated347

penalty parameter is sufficiently large, which is typically used in the study348

of quadratic penalty and AL methods for solving problem (1.1) (e.g., see349

[40, 37, 60, 43]). Clearly, when infx∈Rn f(x) > −∞, one can see that (4.2)350

holds for any γ > 0. In general, one possible approach to identifying γ is to351

apply the techniques on infeasibility detection developed in the literature (e.g.,352

This manuscript is for review purposes only.

10 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

[20, 19, 6]) to check the infeasibility of the level set {x : f(x) + γ‖c(x)‖2/2 ≤353

f̃low} for some sufficiently small f̃low. Note that this level set being infeasible354

for some f̃low implies that (4.2) holds for the given γ and flow = f̃low.355

(iii) Assumption 4.1(c) is not too restrictive. Indeed, the set S(δf , δc) is compact356

if f or f(·) + γ‖c(·)‖2/2 is level-bounded. The latter level-boundedness357

assumption is commonly imposed for studying AL methods (e.g., see [37, 60]),358

which is stronger than our assumption.359

We next propose a Newton-CG based AL method in Algorithm 4.1 for finding a360

stochastic (ε1, ε2)-SOSP of problem (1.1) under Assumption 4.1. Instead of solving361

(1.1) directly, this method solves the perturbed problem:362

(4.4) min
x∈Rn

f(x) s. t. c̃(x) := c(x)− c(zε1) = 0,363

where zε1 is given in Assumption 4.1(a). Specifically, at the kth iteration, this method364

applies the Newton-CG method (Algorithm 3.1) to find an approximate stochastic365

SOSP xk+1 of the AL subproblem associated with (4.4):366

(4.5) min
x∈Rn

{
L̃(x, λk, ρk) := f(x) + (λk)T c̃(x) + ρk‖c̃(x)‖2/2

}
367

such that L̃(xk+1, λk; ρk) is below a threshold (see (4.6) and (4.7)), where λk is a368

truncated Lagrangian multiplier, i.e., the one that results from projecting the standard369

multiplier estimate λ̃k onto an Euclidean ball (see step 6 of Algorithm 4.1). The370

standard multiplier estimate λ̃k+1 is then updated by the classical scheme described371

in step 4 of Algorithm 4.1. Finally, the penalty parameter ρk+1 is adaptively updated372

based on the improvement on constraint violation (see step 7 of Algorithm 4.1). Such373

a practical update scheme is often adopted in the literature (e.g., see [7, 2, 31]).374

We would like to point out that the truncated Lagrangian multiplier sequence {λk}375

is used in the AL subproblems of Algorithm 4.1 and is bounded, while the standard376

Lagrangian multiplier sequence {λ̃k} is used in those of the classical AL methods377

and can be unbounded. Therefore, Algorithm 4.1 can be viewed as a safeguarded378

AL method. Truncated Lagrangian multipliers have been used in the literature for379

designing some AL methods [2, 11, 42, 13], and will play a crucial role in the subsequent380

complexity analysis of Algorithm 4.1.381

Remark 4.3. (i) Notice that the starting point x0
init of Algorithm 4.1 can382

be different from zε1 and it may be rather infeasible, though zε1 is a nearly383

feasible point of (1.1). Besides, zε1 is used to ensure convergence of Algorithm384

4.1. Specifically, if the algorithm runs into a “poorly infeasible point” xk,385

namely satisfying L̃(xk, λk; ρk) > f(zε1), it will be superseded by zε1 (see386

(4.8)), which prevents the iterates {xk} from converging to an infeasible point.387

Yet, xk may be rather infeasible when k is not large. Thus, Algorithm 4.1388

substantially differs from a funneling or two-phase type algorithm, in which a389

nearly feasible point is found in Phase 1, and then approximate stationarity390

is sought while near feasibility is maintained throughout Phase 2 (e.g., see391

[9, 16, 26, 27, 28, 29, 30, 36]).392

(ii) The choice of ρ0 in Algorithm 4.1 is mainly for the simplicity of complexity393

analysis. Yet, it may be overly large and lead to highly ill-conditioned AL394

subproblems in practice. To make Algorithm 4.1 practically more efficient, one395

can possibly modify it by choosing a relatively small initial penalty parameter,396

then solving the subsequent AL subproblems by a first-order method until an397

ε1-first-order stationary point x̂ of (1.1) along with a Lagrangian multiplier λ̂398

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 11

Algorithm 4.1 A Newton-CG based AL method for problem (1.1)

Let γ be given in Assumption 4.1.
Input: ε1, ε2 ∈ (0, 1), Λ > 0, x0 ∈ Rn, λ0 ∈ BΛ, ρ0 > 2γ, α ∈ (0, 1), r > 1, δ ∈ (0, 1), and zε1
given in Assumption 4.1.

1: Set k = 0.
2: Set τgk = max{ε1, rk log ε1/ log 2} and τHk = max{ε2, rk log ε2/ log 2}.
3: Call Algorithm 3.1 with εg = τgk , εH = τHk and u0 = xkinit to find an approximate solution

xk+1 to minx∈Rn L̃(x, λk; ρk) such that

L̃(xk+1, λk; ρk) ≤ f(zε1), ‖∇xL̃(xk+1, λk; ρk)‖ ≤ τgk ,(4.6)

λmin(∇2
xxL̃(xk+1, λk; ρk)) ≥ −τHk with probability at least 1− δ,(4.7)

where

(4.8) xkinit =

{
zε1 if L̃(xk, λk; ρk) > f(zε1),

xk otherwise,
for k ≥ 0.

4: Set λ̃k+1 = λk + ρk c̃(x
k+1).

5: If τgk ≤ ε1, τHk ≤ ε2 and ‖c(xk+1)‖ ≤ ε1, then output (xk+1, λ̃k+1) and terminate.
6: Set λk+1 = ΠBΛ(λ̃k+1).
7: If k = 0 or ‖c̃(xk+1)‖ > α‖c̃(xk)‖, set ρk+1 = rρk. Otherwise, set ρk+1 = ρk.
8: Set k ← k + 1, and go to step 2.

is found, and finally performing the steps described in Algorithm 4.1 but with399

x0 = x̂ and λ0 = ΠBΛ
(λ̂).400

Before analyzing the complexity of Algorithm 4.1, we first argue that it is well-401

defined if ρ0 is suitably chosen. Specifically, we will show that when ρ0 is sufficiently402

large, one can apply the Newton-CG method (Algorithm 3.1) to the AL subproblem403

minx∈Rn L̃(x, λk; ρk) with xkinit as the initial point to find an xk+1 satisfying (4.6) and404

(4.7). To this end, we start by noting from (4.1), (4.4), (4.5) and (4.8) that405

(4.9) L̃(xkinit, λ
k; ρk) ≤ max{L̃(zε1 , λ

k; ρk), f(zε1)} = f(zε1) ≤ fhi.406

Based on the above observation, we show in the next lemma that when ρ0 is sufficiently407

large, L̃(·, λk; ρk) is bounded below and its certain level set is bounded, whose proof is408

deferred to Section 6.2.409

Lemma 4.4. Suppose that Assumption 4.1 holds. Let (λk, ρk) be generated at the410

kth iteration of Algorithm 4.1 for some k ≥ 0, and S(δf , δc) and xkinit be defined in411

(4.3) and (4.8), respectively, and let fhi, flow, δf and δc be given in Assumption 4.1.412

Suppose that ρ0 is sufficiently large such that δf,1 ≤ δf and δc,1 ≤ δc, where413

(4.10) δf,1 := Λ2/(2ρ0) and δc,1 :=
√

2(fhi−flow+γ)
ρ0−2γ + Λ2

(ρ0−2γ)2 + Λ
ρ0−2γ .414

Then the following statements hold.415

(i) {x : L̃(x, λk; ρk) ≤ L̃(xkinit, λ
k; ρk)} ⊆ S(δf , δc).416

(ii) infx∈Rn L̃(x, λk; ρk) ≥ flow − γ − Λδc.417

Using Lemma 4.4, we can verify that the Newton-CG method (Algorithm 3.1),418

starting with u0 = xkinit, is capable of finding an approximate solution xk+1 of the419

AL subproblem minx∈Rn L̃(x, λk; ρk) satisfying (4.6) and (4.7). Indeed, let F (·) =420

L̃(·, λk; ρk) and u0 = xkinit. By these and Lemma 4.4, one can see that {x : F (x) ≤421

F (u0)} ⊆ S(δf , δc). It then follows from this and Assumption 4.1(c) that the level set422

This manuscript is for review purposes only.

12 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

{x : F (x) ≤ F (u0)} is compact and ∇2F is Lipschitz continuous on a convex open423

neighborhood of {x : F (x) ≤ F (u0)}. Thus, such F and u0 satisfy Assumption 3.1.424

Based on this and the discussion in Section 3, one can conclude that Algorithm 3.1,425

starting with u0 = xkinit, is applicable to the AL subproblem minx∈Rn L̃(x, λk; ρk).426

Moreover, it follows from Theorem 3.2 that this algorithm with (εg, εH) = (τgk , τ
H
k)427

can produce a point xk+1 satisfying (4.7) and also the second relation in (4.6). In428

addition, since this algorithm is descent and its starting point is xkinit, its output xk+1429

must satisfy L̃(xk+1, λk; ρk) ≤ L̃(xkinit, λ
k; ρk), which along with (4.9) implies that430

L̃(xk+1, λk; ρk) ≤ f(zε1) and thus xk+1 also satisfies the first relation in (4.6).431

The above discussion leads to the following conclusion concerning the well-432

definedness of Algorithm 4.1.433

Theorem 4.5. Under the same settings as in Lemma 4.4, the Newton-CG method434

(Algorithm 3.1) applied to the AL subproblem minx∈Rn L̃(x, λk; ρk) with u0 = xkinit435

finds a point xk+1 satisfying (4.6) and (4.7).436

The following theorem characterizes the output of Algorithm 4.1. Its proof is437

deferred to Section 6.2.438

Theorem 4.6. Suppose that Assumption 4.1 holds and that ρ0 is sufficiently large439

such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (4.10). If Algorithm440

4.1 terminates at some iteration k, then xk+1 is a deterministic ε1-FOSP of problem441

(1.1), and moreover, it is an (ε1, ε2)-SOSP of (1.1) with probability at least 1− δ.442

Remark 4.7. As seen from this theorem, the output of Algorithm 4.1 is a stochastic443

(ε1, ε2)-SOSP of problem (1.1). Nevertheless, one can easily modify Algorithm 4.1444

to seek some other approximate solutions. For example, if one is only interested in445

finding an ε1-FOSP of (1.1), one can remove the condition (4.7) from Algorithm 4.1.446

In addition, if one aims to find a deterministic (ε1, ε2)-SOSP of (1.1), one can replace447

the condition (4.7) and Algorithm 3.1 by λmin(∇2
xxL̃(xk+1, λk; ρk)) ≥ −τHk and a448

deterministic counterpart, respectively. The purpose of imposing high probability in449

the condition (4.7) is to enable us to derive operation complexity of Algorithm 4.1450

measured by the number of matrix-vector products.451

In the rest of this section, we study the worst-case complexity of Algorithm 4.1.452

Since our method has two nested loops, particularly, outer loops executed by the453

AL method and inner loops executed by the Newton-CG method for solving the AL454

subproblems, we consider the following measures of complexity for Algorithm 4.1.455

• Outer iteration complexity, which measures the number of outer iterations of456

Algorithm 4.1;457

• Total inner iteration complexity, which measures the total number of iterations458

of the Newton-CG method that are performed in Algorithm 4.1;459

• Operation complexity, which measures the total number of matrix-vector460

products involving the Hessian of the augmented Lagrangian function that461

are evaluated in Algorithm 4.1.462

4.1. Outer iteration complexity of Algorithm 4.1. In this subsection we463

establish outer iteration complexity of Algorithm 4.1. For notational convenience, we464

rewrite (τgk , τ
H
k) arising in Algorithm 4.1 as465

(4.11) (τgk , τ
H
k)=(max{ε1, ωk1},max{ε2, ωk2}) with (ω1, ω2) :=(rlog ε1/log 2, rlog ε2/log 2),466

where ε1, ε2 and r are the input parameters of Algorithm 4.1. Since r > 1 and467

ε1, ε2 ∈ (0, 1), it is not hard to verify that ω1, ω2 ∈ (0, 1). Also, we introduce the468

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 13

following quantity that will be used frequently later:469

(4.12) Kε1 :=
⌈
min{k ≥ 0 : ωk1 ≤ ε1}

⌉
= dlog ε1/ logω1e .470

In view of (4.11), (4.12) and the fact that471

(4.13) log ε1/ logω1 = log ε2/ logω2 = log 2/ log r,472

we see that (τgk , τ
H
k) = (ε1, ε2) for all k ≥ Kε1 . This along with the termination473

criterion of Algorithm 4.1 implies that it runs for at least Kε1 iterations and terminates474

once ‖c(xk+1)‖ ≤ ε1 for some k ≥ Kε1 . As a result, to establish outer iteration475

complexity of Algorithm 4.1, it suffices to bound such k. The resulting outer iteration476

complexity of Algorithm 4.1 is presented below, whose proof is deferred to Section 6.2.477

Theorem 4.8. Suppose that Assumption 4.1 holds and that ρ0 is sufficiently large478

such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (4.10). Let479

ρε1 := max
{

8(fhi − flow + γ)ε−2
1 + 4Λε−1

1 + 2γ, 2ρ0

}
,(4.14)480

Kε1 := inf{k ≥ Kε1 : ‖c(xk+1)‖ ≤ ε1},(4.15)481

where Kε1 is defined in (4.12), and γ, fhi and flow are given in Assumption 4.1. Then482

Kε1 is finite, and Algorithm 4.1 terminates at iteration Kε1 with483

(4.16) Kε1 ≤
(

log(ρε1ρ
−1
0)

log r + 1
)(∣∣∣ log(ε1(2δc,1)−1)

logα

∣∣∣+ 2
)

+ 1.484

Moreover, ρk ≤ rρε1 holds for 0 ≤ k ≤ Kε1485

Remark 4.9 (Upper bounds for Kε1 and {ρk}). As observed from Theorem486

4.8, the number of outer iterations of Algorithm 4.1 for finding a stochastic (ε1, ε2)-487

SOSP of problem (1.1) is Kε1 + 1, which is at most of O(| log ε1|2). In addition, the488

penalty parameters {ρk} generated in this algorithm are at most of O(ε−2
1).489

4.2. Total inner iteration and operation complexity of Algorithm 4.1.490

We present the total inner iteration and operation complexity of Algorithm 4.1 for491

finding a stochastic (ε1, ε2)-SOSP of (1.1), whose proof is deferred to Section 6.2.492

Theorem 4.10. Suppose that Assumption 4.1 holds and that ρ0 is sufficiently493

large such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (4.10). Then494

the following statements hold.495

(i) The total number of iterations of Algorithm 3.1 performed in Algorithm 4.1 is at496

most Õ(ε−4
1 max{ε−2

1 ε2, ε
−3
2 }). If c is further assumed to be affine, then it is at497

most Õ(max{ε−2
1 ε2, ε

−3
2 }).498

(ii) The total number of matrix-vector products performed by Algorithm 3.1 in Al-499

gorithm 4.1 is at most Õ(ε−4
1 max{ε−2

1 ε2, ε
−3
2 }min{n, ε−1

1 ε
−1/2
2 }). If c is further500

assumed to be affine, then it is at most Õ(max{ε−2
1 ε2, ε

−3
2 }min{n, ε−1

1 ε
−1/2
2 }).501

Remark 4.11. (i) Note that the above complexity results of Algorithm 4.1 are502

established without assuming any constraint qualification (CQ). In contrast,503

similar complexity results are obtained in [60] for a proximal AL method under504

a generalized LICQ condition. To the best of our knowledge, our work provides505

the first study on complexity for finding a stochastic SOSP of (1.1) without CQ.506

(ii) Letting (ε1, ε2) = (ε,
√
ε) for some ε ∈ (0, 1), we see that Algorithm 4.1 achieves507

a total inner iteration complexity of Õ(ε−11/2) and an operation complexity of508

Õ(ε−11/2 min{n, ε−5/4}) for finding a stochastic (ε,
√
ε)-SOSP of problem (1.1)509

without constraint qualification.510

This manuscript is for review purposes only.

14 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

4.3. Enhanced complexity of Algorithm 4.1 under constraint qualifica-511

tion. In this subsection we study complexity of Algorithm 4.1 under one additional512

assumption that a generalized linear independence constraint qualification (GLICQ)513

holds for problem (1.1), which is introduced below. In particular, under GLICQ we514

will obtain an enhanced total inner iteration and operation complexity for Algorithm515

4.1, which are significantly better than the ones in Theorem 4.10 when problem (1.1)516

has nonlinear constraints. Moreover, when (ε1, ε2) = (ε,
√
ε) for some ε ∈ (0, 1), our517

enhanced complexity bounds are also better than those obtained in [60] for a proximal518

AL method. We now introduce the GLICQ assumption for problem (1.1).519

Assumption 4.12 (GLICQ). ∇c(x) has full column rank for all x ∈ S(δf , δc),520

where S(δf , δc) is as in (4.3).521

Remark 4.13. A related yet different GLICQ is imposed in [60, Assumption 2(ii)]522

for problem (1.1), which assumes that ∇c(x) has full column rank for all x in a level523

set of f(·) + γ‖c(·)‖2/2. It is not hard to verify that this assumption is generally524

stronger than the above GLICQ assumption.525

The following theorem shows that under Assumption 4.12, the total inner iteration526

and operation complexity results presented in Theorem 4.10 can be significantly527

improved, whose proof is deferred to Section 6.2.528

Theorem 4.14. Suppose that Assumptions 4.1 and 4.12 hold and that ρ0 is suffi-529

ciently large such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (4.10).530

Then the following statements hold.531

(i) The total number of iterations of Algorithm 3.1 performed in Algorithm 4.1 is at532

most Õ(ε−2
1 max{ε−2

1 ε2, ε
−3
2 }). If c is further assumed to be affine, then it is at533

most Õ(max{ε−2
1 ε2, ε

−3
2 }).534

(ii) The total number of matrix-vector products performed by Algorithm 3.1 in Algo-535

rithm 4.1 is at most Õ(ε−2
1 max{ε−2

1 ε2, ε
−3
2 }min{n, ε−1/2

1 ε
−1/2
2 }). If c is further536

assumed to be affine, then it is at most Õ(max{ε−2
1 ε2, ε

−3
2 }min{n, ε−1/2

1 ε
−1/2
2 }).537

Remark 4.15. (i) As seen from Theorem 4.14, when problem (1.1) has nonlinear538

constraints, under GLICQ and some other suitable assumptions, Algorithm 4.1539

achieves significantly better complexity bounds than the ones in Theorem 4.10540

without constraint qualification.541

(ii) Letting (ε1, ε2) = (ε,
√
ε) for some ε ∈ (0, 1), we see that when problem (1.1)542

has nonlinear constraints, under GLICQ and some other suitable assumptions,543

Algorithm 4.1 achieves a total inner iteration complexity of Õ(ε−7/2) and an544

operation complexity of Õ(ε−7/2 min{n, ε−3/4}). They are vastly better than the545

total inner iteration complexity of Õ(ε−11/2) and the operation complexity of546

Õ(ε−11/2 min{n, ε−3/4}) that are achieved by a proximal AL method in [60] for547

finding a stochastic (ε,
√
ε)-SOSP of (1.1) yet under a generally stronger GLICQ.548

5. Numerical results. We conduct some preliminary experiments to test the549

performance of our proposed methods (Algorithms 3.1 and 4.1), and compare them550

with the Newton-CG method in [56] and the proximal AL method in [60], respectively.551

All the algorithms are coded in Matlab and all the computations are performed on a552

desktop with a 3.79 GHz AMD 3900XT 12-Core processor and 32 GB of RAM.553

5.1. Regularized robust regression. In this subsection we consider the regu-554

larized robust regression problem555

(5.1) minx∈Rn
∑m
i=1 φ(aTi x− bi) + µ‖x‖44,556

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 15

Objective value Iterations CPU time (seconds)
n m µ Algorithm 1 Newton-CG Algorithm 1 Newton-CG Algorithm 1 Newton-CG

100 10 1 5.9 5.9 85.7 116.3 1.4 1.6
100 50 1 45.9 45.9 82.6 158.2 1.0 2.7
100 90 1 84.8 84.8 102.2 224.7 2.0 4.2
500 50 5 42.2 42.5 173.1 344.7 44.2 72.2
500 250 5 243.0 242.9 145.5 362.4 41.9 95.0
500 450 5 442.2 442.2 163.7 425.2 47.6 138.3
1000 100 10 90.1 90.4 162.5 361.0 110.8 259.0
1000 500 10 491.1 491.2 158.3 475.4 129.1 558.4
1000 900 10 891.1 891.1 193.5 300.7 187.0 298.5

Table 2
Numerical results for problem (5.1)

where φ(t) = t2/(1 + t2), ‖x‖p = (
∑n
i=1 |xi|p)1/p for any p ≥ 1, and µ > 0.557

For each triple (n,m, µ), we randomly generate 10 instances of problem (5.1). In558

particular, we first randomly generate ai, 1 ≤ i ≤ m, with all the entries independently559

chosen from the standard normal distribution. We then randomly generate b̄i according560

to the standard normal distribution and set bi = 2mb̄i for i = 1, . . . ,m.561

Our aim is to find a (10−5, 10−5/2)-SOSP of (5.1) for the above instances by562

Algorithm 3.1 and the Newton-CG method in [56] and compare their performance. For a563

fair comparison, we use a minimum eigenvalue oracle that returns a deterministic output564

for them so that they both certainly output an approximate second-order stationary565

point. Specifically, we use the Matlab subroutine [v,λ] = eigs(H,1,’smallestreal’) as the566

minimum eigenvalue oracle to find the minimum eigenvalue λ and its associated unit567

eigenvector v of a real symmetric matrix H. Also, for both methods, we choose the568

all-ones vector as the initial point, and set θ = 0.8, ζ = 0.5, and η = 0.2.569

The computational results of Algorithm 3.1 and the Newton-CG method in [56]570

for the instances randomly generated above are presented in Table 2. In detail, the571

value of n, m, and µ is listed in the first three columns, respectively. For each triple572

(n,m, µ), the average CPU time (in seconds), the average number of iterations, and573

the average final objective value over 10 random instances are given in the rest of574

the columns. One can observe that both methods output an approximate solution575

with a similar objective value, while our Algorithm 3.1 substantially outperforms576

the Newton-CG method in [56] in terms of CPU time. This is consistent with our577

theoretical finding that Algorithm 3.1 achieves a better iteration complexity than the578

Newton-CG method in [56] in terms of dependence on the Lipschitz constant of the579

Hessian for finding an approximate SOSP.580

5.2. Spherically constrained regularized robust regression. In subsection581

we consider the spherically constrained regularized robust regression problem582

(5.2) minx∈Rn
∑m
i=1 φ(aTi x− bi) + µ‖x‖44 s. t. ‖x‖22 = 1,583

where φ(t) = t2/(1 + t2), ‖x‖p = (
∑n
i=1 |xi|p)1/p for any p ≥ 1, and µ > 0 is a584

tuning parameter. For each triple (n,m, µ), we randomly generate 10 instances of585

problem (5.2) in the same manner as described in Subsection 5.1.586

Our aim is to find a (10−4, 10−2)-SOSP of (5.2) for the above instances by587

Algorithm 4.1 and the proximal AL method [60, Algorithm 3] and compare their588

performance. For a fair comparison, we use a minimum eigenvalue oracle that returns589

a deterministic output for them so that they both certainly output an approximate590

second-order stationary point. Specifically, we use the Matlab subroutine [v,λ] =591

eigs(H,1,’smallestreal’) as the minimum eigenvalue oracle to find the minimum eigenvalue592

λ and its associated unit eigenvector v of a real symmetric matrix H. In addition,593

for both methods, we choose the initial point as z0 = (1/
√
n, . . . , 1/

√
n)T , the initial594

Lagrangian multiplier as λ0 = 0, and the other parameters as595

This manuscript is for review purposes only.

16 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

Objective value Feasibility violation (×10−4) Total inner iterations CPU time (seconds)
n m µ Algorithm 2 Prox-AL Algorithm 2 Prox-AL Algorithm 2 Prox-AL Algorithm 2 Prox-AL

100 10 1 7.1 7.1 0.18 0.27 40.9 97.3 0.73 2.2
100 50 1 46.6 46.6 0.21 0.30 37.0 86.3 0.78 1.7
100 90 1 87.0 87.0 0.12 0.40 39.5 68.6 1.1 1.9
500 50 5 44.4 44.4 0.40 0.68 59.0 343.4 11.4 134.9
500 250 5 244.3 244.3 0.37 0.47 59.0 543.3 11.7 178.2
500 450 5 444.0 444.0 0.27 0.53 66.7 634.1 17.1 158.2
1000 100 10 92.8 92.8 0.28 0.42 95.0 2054.6 46.3 1516.8
1000 500 10 491.9 491.9 0.22 0.72 68.3 756.2 39.5 558.6
1000 900 10 893.4 893.4 0.19 0.37 81.8 1281.4 57.7 1099.6

Table 3
Numerical results for problem (5.2)

• Λ = 100, ρ0 = 10, α = 0.25, and r = 10 for Algorithm 4.1;596

• η = 1, q = 10 and T0 = 2 for the proximal AL method ([60]).597

The computational results of Algorithm 4.1 and the proximal AL method in598

[60] (abbreviated as Prox-AL) for solving problem (5.2) for the instances randomly599

generated above are presented in Table 3. In detail, the value of n, m, and µ is listed600

in the first three columns, respectively. For each triple (n,m, µ), the average CPU time601

(in seconds), the average total number of inner iterations, the average final objective602

value, and the average final feasibility violation over 10 random instances are given603

in the rest columns. One can observe that both methods output an approximate604

solution of similar quality in terms of objective value and feasibility violation, while605

our Algorithm 4.1 vastly outperforms the proximal AL method in [60] in terms of606

CPU time. This corroborates our theoretical finding that Algorithm 4.1 achieves a607

significantly better operation complexity than the proximal AL method in [60] for608

finding an approximate SOSP.609

6. Proof of the main results. We provide proofs of our main results in Sections610

3 and 4, including Theorem 3.2, Lemma 4.4, and Theorems 4.6, 4.8, 4.10 and 4.14.611

6.1. Proof of the main results in Section 3. In this subsection we first612

establish several technical lemmas and then use them to prove Theorem 3.2.613

One can observe from Assumption 3.1(b) that for all x and y ∈ Ω,614

‖∇F (y)−∇F (x)−∇2F (x)(y − x)‖ ≤ LFH‖y − x‖2/2,(6.1)615

F (y) ≤ F (x) +∇F (x)T (y − x) + (y − x)T∇2F (x)(y − x)/2 + LFH‖y − x‖3/6.(6.2)616

The next lemma provides useful properties of the output of Algorithm A.1, whose617

proof is similar to the ones in [56, Lemma 3] and [54, Lemma 7] and thus omitted here.618

Lemma 6.1. Suppose that Assumption 3.1 holds and the direction dt results from619

the output d of Algorithm A.1 with a type specified in d type at some iteration t of620

Algorithm 3.1. Then the following statements hold.621

(i) If d type=SOL, then dt satisfies622

εH‖dt‖2 ≤ (dt)T
(
∇2F (xt) + 2εHI

)
dt,(6.3)623

‖dt‖ ≤ 1.1ε−1
H ‖∇F (xt)‖,(6.4)624

(dt)T∇F (xt) = −(dt)T
(
∇2F (xt) + 2εHI

)
dt,(6.5)625

‖(∇2F (xt) + 2εHI)dt +∇F (xt)‖ ≤ εHζ‖dt‖/2.(6.6)626

(ii) If d type=NC, then dt satisfies (dt)T∇F (xt) ≤ 0 and627

(6.7) (dt)T∇2F (xt)dt/‖dt‖2 = −‖dt‖ ≤ −εH .628

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 17

The next lemma shows that when the search direction dt in Algorithm 3.1 is of629

type ‘SOL’, the line search step results in a sufficient reduction on F .630

Lemma 6.2. Suppose that Assumption 3.1 holds and the direction dt results from631

the output d of Algorithm A.1 with d type=SOL at some iteration t of Algorithm 3.1.632

Let UFg and csol be given in (3.3) and (3.13), respectively. Then the following statements633

hold.634

(i) The step length αt is well-defined, and moreover,635

(6.8) αt ≥ min
{

1,
√

min{6(1−η),2}
1.1LFHU

F
g

θεH

}
.636

(ii) The next iterate xt+1 = xt + αtd
t satisfies637

(6.9) F (xt)− F (xt+1) ≥ csol min{‖∇F (xt+1)‖2ε−1
H , ε3H}.638

Proof. One can observe that F is descent along the iterates (whenever well-defined)639

generated by Algorithm 3.1, which together with x0 = u0 implies that F (xt) ≤ F (u0)640

and hence ‖∇F (xt)‖ ≤ UFg due to (3.3). In addition, since dt results from the output641

d of Algorithm A.1 with d type=SOL, one can see that ‖∇F (xt)‖ > εg and (6.3)-(6.6)642

hold for dt. Moreover, by ‖∇F (xt)‖ > εg and (6.6), one can conclude that dt 6= 0.643

We first prove statement (i). If (3.10) holds for j = 0, then αt = 1, which clearly644

implies that (6.8) holds. We now suppose that (3.10) fails for j = 0. Claim that for645

all j ≥ 0 that violate (3.10), it holds that646

(6.10) θ2j ≥ min{6(1− η), 2}εH(LFH)−1‖dt‖−1.647

Indeed, suppose that (3.10) is violated by some j ≥ 0. We now show that (6.10) holds648

for such j by considering two separate cases below.649

Case 1) F (xt + θjdt) > F (xt). Let φ(α) = F (xt + αdt). Then φ(θj) > φ(0). Also,650

since dt 6= 0, by (6.3) and (6.5), one has φ′(0) = ∇F (xt)T dt = −(dt)T (∇2F (xt) +651

2εHI)dt ≤ −εH‖dt‖2 < 0. Using these, we can observe that there exists a local652

minimizer α∗ ∈ (0, θj) of φ such that φ′(α∗) = ∇F (xt+α∗dt)T dt = 0 and φ(α∗) < φ(0),653

which implies that F (xt + α∗dt) < F (xt) ≤ F (u0). Hence, (6.1) holds for x = xt and654

y = xt + α∗dt. Using this, 0 < α∗ < θj ≤ 1 and ∇F (xt + α∗dt)T dt = 0, we obtain655

(α∗)2LFH
2 ‖dt‖3

(6.1)

≥ ‖dt‖‖∇F (xt + α∗dt)−∇F (xt)− α∗∇2F (xt)dt‖
≥ (dt)T (∇F (xt + α∗dt)−∇F (xt)− α∗∇2F (xt)dt)

= −(dt)T∇F (xt)− α∗(dt)T∇2F (xt)dt

(6.5)
= (1− α∗)(dt)T (∇2F (xt) + 2εHI)dt + 2α∗εH‖dt‖2

(6.3)

≥ (1 + α∗)εH‖dt‖2 ≥ εH‖dt‖2,

656

which along with dt 6= 0 implies that (α∗)2 ≥ 2εH(LFH)−1‖dt‖−1. Using this and657

θj > α∗, we conclude that (6.10) holds in this case.658

Case 2) F (xt + θjdt) ≤ F (xt). This together with F (xt) ≤ F (u0) implies that659

(6.2) holds for x = xt and y = xt + θjdt. Then, because j violates (3.10), we obtain660

−ηεHθ2j‖dt‖2 ≤ F (xt + θjdt)− F (xt)661

(6.2)

≤ θj∇F (xt)T dt + θ2j

2 (dt)T∇2F (xt)dt +
LFH
6 θ3j‖dt‖3662

(6.5)
= −θj(dt)T (∇2F (xt) + 2εHI)dt + θ2j

2 (dt)T∇2F (xt)dt +
LFH
6 θ3j‖dt‖3663

= −θj
(

1− θj

2

)
(dt)T (∇2F (xt) + 2εHI)dt − θ2jεH‖dt‖2 +

LFH
6 θ3j‖dt‖3664

This manuscript is for review purposes only.

18 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

(6.3)

≤ −θj
(

1− θj

2

)
εH‖dt‖2 − θ2jεH‖dt‖2 +

LFH
6 θ3j‖dt‖3665

≤ −θjεH‖dt‖2 +
LFH
6 θ3j‖dt‖3.(6.11)666

Recall that dt 6= 0. Dividing both sides of (6.11) by LFHθ
j‖dt‖3/6 and using η, θ ∈ (0, 1),667

we obtain that θ2j ≥ 6(1− θjη)εH(LFH)−1‖dt‖−1 ≥ 6(1− η)εH(LFH)−1‖dt‖−1. Hence,668

(6.10) also holds in this case.669

Combining the above two cases, we conclude that (6.10) holds for any j ≥ 0 that670

violates (3.10). By this and θ ∈ (0, 1), one can see that all j ≥ 0 that violate (3.10)671

must be bounded above. It then follows that the step length αt associated with (3.10)672

is well-defined. We next prove (6.8). Observe from the definition of jt in Algorithm 3.1673

that j = jt − 1 violates (3.10) and hence (6.10) holds for j = jt − 1. Then, by (6.10)674

with j = jt − 1 and αt = θjt , one has675

(6.12) αt = θjt ≥
√

min{6(1− η), 2}εH(LFH)−1 θ‖dt‖−1/2,676

which, along with (6.4) and ‖∇F (xt)‖ ≤ UFg , implies (6.8). This proves statement (i).677

We next prove statement (ii) by considering two separate cases below.678

Case 1) αt = 1. By this, one knows that (3.10) holds for j = 0. It then follows that679

F (xt + dt) ≤ F (xt) ≤ F (u0), which implies that (6.1) holds for x = xt and y = xt + dt.680

By this and (6.6), one has681

‖∇F (xt+1)‖ = ‖∇F (xt + dt)‖ ≤ ‖∇F (xt + dt)−∇F (xt)−∇2F (xt)dt‖
+‖(∇2F (xt) + 2εHI)dt +∇F (xt)‖+ 2εH‖dt‖

≤ LFH
2 ‖d

t‖2 + 4+ζ
2 εH‖dt‖,

682

where the last inequality follows from (6.1) and (6.6). Solving the above inequality for683

‖dt‖ and using the fact that ‖dt‖ > 0, we obtain that684

‖dt‖ ≥ −(4+ζ)εH+
√

(4+ζ)2ε2H+8LFH‖∇F (xt+1)‖
2LFH

≥ −(4+ζ)εH+
√

(4+ζ)2ε2H+8LFHε
2
H

2LFH
min{‖∇F (xt+1)‖/ε2H , 1}

= 4

4+ζ+
√

(4+ζ)2+8LFH
min{‖∇F (xt+1)‖/εH , εH},

685

where the second inequality follows from the inequality −a +
√
a2 + bs ≥ (−a +686 √

a2 + b) min{s, 1} for all a, b, s ≥ 0, which can be verified by performing a rational-687

ization to the terms −a+
√
a2 + b and −a+

√
a2 + bs, respectively. By this, αt = 1,688

(3.10) and (3.13), one can see that (6.9) holds.689

Case 2) αt < 1. It then follows that j = 0 violates (3.10) and hence (6.10) holds690

for j = 0. Now, letting j = 0 in (6.10), we obtain that ‖dt‖ ≥ min{6(1− η), 2}εH/LFH ,691

which together with (3.10) and (6.12) implies that692

F (xt)− F (xt+1) ≥ ηεHθ2jt‖dt‖2 ≥ ηmin{6(1−η),2}ε2H
LFH

θ2‖dt‖ ≥ η
[

min{6(1−η),2}θ
LFH

]2
ε3H .693

By this and (3.13), one can see that (6.9) also holds in this case.694

The following lemma shows that when the search direction dt in Algorithm 3.1 is695

of type ‘NC’, the line search step results in a sufficient reduction on F as well.696

Lemma 6.3. Suppose that Assumption 3.1 holds and the direction dt results from697

either the output d of Algorithm A.1 with d type=NC or the output v of Algorithm B.1698

at some iteration t of Algorithm 3.1. Let cnc be defined in (3.14). Then the following699

statements hold.700

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 19

(i) The step length αt is well-defined, and αt ≥ min{1, θ/LFH , 3(1− η)θ/LFH}.701

(ii) The next iterate xt+1 = xt + αtd
t satisfies F (xt)− F (xt+1) ≥ cncε

3
H .702

Proof. Observe that F is descent along the iterates (whenever well-defined) gen-703

erated by Algorithm 3.1. Using this and x0 = u0, we have F (xt) ≤ F (u0). By the704

assumption on dt, one can see from Algorithm 3.1 that dt is a negative curvature direc-705

tion given in (3.7) or (3.9). Also, notice that the vector v returned from Algorithm B.1706

satisfies ‖v‖ = 1. By these, Lemma 6.1(ii), (3.7) and (3.9), one can observe that707

(6.13) ∇F (xt)T dt ≤ 0, (dt)T∇2F (xt)dt = −‖dt‖3 < 0.708

We first prove statement (i). If (3.11) holds for j = 0, then αt = 1, which clearly709

implies that αt ≥ min{1, θ/LFH , 3(1− η)θ/LFH}. We now suppose that (3.11) fails for710

j = 0. Claim that for all j ≥ 0 that violate (3.11), it holds that711

(6.14) θj ≥ min{1/LFH , 3(1− η)/LFH}.712

Indeed, suppose that (3.11) is violated by some j ≥ 0. We now show that (6.14) holds713

for such j by considering two separate cases below.714

Case 1) F (xt + θjdt) > F (xt). Let φ(α) = F (xt + αdt). Then φ(θj) > φ(0).715

Also, by (6.13), one has φ′(0) = ∇F (xt)T dt ≤ 0 and φ′′(0) = (dt)T∇2F (xt)dt < 0.716

Using these, we can observe that there exists a local minimizer α∗ ∈ (0, θj) of717

φ such that φ(α∗) < φ(0), namely, F (xt + α∗dt) < F (xt). By the second-order718

optimality condition of φ at α∗, one has φ′′(α∗) = (dt)T∇2F (xt + α∗dt)dt ≥ 0. Since719

F (xt+α∗dt) < F (xt) ≤ F (u0), it follows that (3.2) holds for x = xt and y = xt+α∗dt.720

Using this, the second relation in (6.13) and (dt)T∇2F (xt + α∗dt)dt ≥ 0, we obtain721

that722

LFHα
∗‖dt‖3

(3.2)

≥ ‖dt‖2‖∇2F (xt + α∗dt)−∇2F (xt)‖723

≥ (dt)T (∇2F (xt + α∗dt)−∇2F (xt))dt ≥ −(dt)T∇2F (xt)dt = ‖dt‖3.(6.15)724

Recall from (6.13) that dt 6= 0. It then follows from (6.15) that α∗ ≥ 1/LFH , which725

along with θj > α∗ implies that θj > 1/LFH . Hence, (6.14) holds in this case.726

Case 2) F (xt + θjdt) ≤ F (xt). It follows from this and F (xt) ≤ F (u0) that (6.2)727

holds for x = xt and y = xt + θjdt. By this and the fact that j violates (3.11), one has728

−η2θ
2j‖dt‖3≤F (xt + θjdt)−F (xt)

(6.2)

≤ θj∇F (xt)T dt+ θ2j

2 (dt)T∇2F (xt)dt+
LFH
6 θ3j‖dt‖3

(6.13)

≤ − θ
2j

2 ‖d
t‖3 +

LFH
6 θ3j‖dt‖3,

729

which together with dt 6= 0 implies that θj ≥ 3(1− η)/LFH . Hence, (6.14) also holds in730

this case.731

Combining the above two cases, we conclude that (6.14) holds for any j ≥ 0 that732

violates (3.11). By this and θ ∈ (0, 1), one can see that all j ≥ 0 that violate (3.11)733

must be bounded above. It then follows that the step length αt associated with (3.11)734

is well-defined. We next derive a lower bound for αt. Notice from the definition of jt in735

Algorithm 3.1 that j = jt−1 violates (3.11) and hence (6.14) holds for j = jt−1. Then,736

by (6.14) with j = jt − 1 and αt = θjt , one has αt = θjt ≥ min{θ/LFH , 3(1− η)θ/LFH},737

which immediately yields αt ≥ min{1, θ/LFH , 3(1− η)θ/LFH} as desired.738

We next prove statement (ii) by considering two separate cases below.739

Case 1) dt results from the output d of Algorithm A.1 with d type=NC. It then740

follows from (6.7) that ‖dt‖ ≥ εH . This together with (3.11) and statement (i) implies741

that statement (ii) holds.742

This manuscript is for review purposes only.

20 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

Case 2) dt results from the output v of Algorithm B.1. Notice from Algorithm B.1743

that ‖v‖ = 1 and vT∇2F (xt)v ≤ −εH/2, which along with (3.9) yields ‖dt‖ ≥ εH/2.744

By this, (3.11) and statement (i), one can see that statement (ii) again holds.745

Proof of Theorem 3.2. For notational convenience, we let {xt}t∈T denote all the746

iterates generated by Algorithm 3.1, where T is a set of consecutive nonnegative747

integers starting from 0. Notice that F is descent along the iterates generated by748

Algorithm 3.1, which together with x0 = u0 implies that xt ∈ {x : F (x) ≤ F (u0)}. It749

then follows from (3.3) that ‖∇2F (xt)‖ ≤ UFH holds for all t ∈ T.750

(i) Suppose for contradiction that the total number of calls of Algorithm B.1751

in Algorithm 3.1 is more than T2. Notice from Algorithm 3.1 and Lemma 6.3(ii)752

that each of these calls, except the last one, returns a sufficiently negative curvature753

direction, and each of them results in a reduction on F of at least cncε
3
H . Hence,754

T2cncε
3
H ≤

∑
t∈T[F (xt) − F (xt+1)] ≤ F (x0) − Flow = Fhi − Flow, which contradicts755

the definition of T2 given in (3.12). Hence, statement (i) of Theorem 3.2 holds.756

(ii) Suppose for contradiction that the total number of calls of Algorithm A.1757

in Algorithm 3.1 is more than T1. Observe that if Algorithm A.1 is called at some758

iteration t and generates the next iterate xt+1 satisfying ‖∇F (xt+1)‖ ≤ εg, then759

Algorithm B.1 must be called at the next iteration t+ 1. In view of this and statement760

(i) of Theorem 3.2, we see that the total number of such iterations t is at most T2.761

Hence, the total number of iterations t of Algorithm 3.1 at which Algorithm A.1762

is called and generates the next iterate xt+1 satisfying ‖∇F (xt+1)‖ > εg is at least763

T1 − T2 + 1. Moreover, for each of such iterations t, we observe from Lemmas 6.2(ii)764

and 6.3(ii) that F (xt)− F (xt+1) ≥ min{csol, cnc}min{ε2gε−1
H , ε3H}. It then follows that765

(T1 − T2 + 1) min{csol, cnc}min{ε2gε−1
H , ε3H} ≤

∑
t∈T[F (xt) − F (xt+1)] ≤ Fhi − Flow,766

which contradicts the definition of T1 and T2 given in (3.12). Hence, statement (ii) of767

Theorem 3.2 holds.768

(iii) Notice that either Algorithm A.1 or B.1 is called at each iteration of Algo-769

rithm 3.1. It follows from this and statements (i) and (ii) of Theorem 3.2 that the total770

number of iterations of Algorithm 3.1 is at most T1 + T2. In addition, the relation771

(3.15) follows from (3.13), (3.14) and (3.12). One can also observe that the output xt772

of Algorithm 3.1 satisfies ‖∇F (xt)‖ ≤ εg deterministically and λmin(∇2F (xt)) ≥ −εH773

with probability at least 1 − δ for some 0 ≤ t ≤ T1 + T2, where the latter part is due774

to Algorithm B.1. This completes the proof of statement (ii) of Theorem 3.2.775

(iv) By Theorem A.1 with (H, ε) = (∇2F (xt), εH) and the fact that ‖∇2F (xt)‖ ≤776

UFH , one can observe that the number of Hessian-vector products required by each call777

of Algorithm A.1 with input U = 0 is at most Õ(min{n, (UFH/εH)1/2}). In addition,778

by Theorem B.1 with (H, ε) = (∇2F (xt), εH), ‖∇2F (xt)‖ ≤ UFH , and the fact that779

each iteration of the Lanczos method requires only one matrix-vector product, one780

can observe that the number of Hessian-vector products required by each call of781

Algorithm B.1 is also at most Õ(min{n, (UFH/εH)1/2}). Based on these observations782

and statement (iii) of Theorem 3.2, we see that statement (iv) of this theorem holds.783

6.2. Proof of the main results in Section 4. Recall from Assumption 4.1(a)784

that ‖c(zε1)‖ ≤ ε1/2 < 1. By virtue of this, (4.2) and the definition of c̃ in (4.4), we785

obtain that786

(6.16) f(x) + γ‖c̃(x)‖2 ≥ f(x) + γ‖c(x)‖2/2− γ‖c(zε1)‖2 ≥ flow − γ, ∀x ∈ Rn .787

We now prove the following auxiliary lemma that will be used frequently later.788

Lemma 6.4. Suppose that Assumption 4.1 holds. Let γ, fhi and flow be given in789

Assumption 4.1. Assume that ρ > 2γ, λ ∈ Rm, and x ∈ Rn satisfy790

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 21

(6.17) L̃(x, λ; ρ) ≤ fhi,791

where L̃ is defined in (4.5). Then the following statements hold.792

(i) f(x) ≤ fhi + ‖λ‖2/(2ρ).793

(ii) ‖c̃(x)‖ ≤
√

2(fhi − flow + γ)/(ρ− 2γ) + ‖λ‖2/(ρ− 2γ)2 + ‖λ‖/(ρ− 2γ).794

(iii) If ρ ≥ ‖λ‖2/(2δ̃f) for some δ̃f > 0, then f(x) ≤ fhi + δ̃f .795

(iv) If796

(6.18) ρ ≥ 2(fhi − flow + γ)δ̃−2
c + 2‖λ‖δ̃−1

c + 2γ797

for some δ̃c > 0, then ‖c̃(x)‖ ≤ δ̃c.798

Proof. (i) It follows from (6.17) and the definition of L̃ in (4.5) that799

fhi ≥ f(x) + λT c̃(x) + ρ
2‖c̃(x)‖2 = f(x) + ρ

2

∥∥∥c̃(x) + λ
ρ

∥∥∥2

− ‖λ‖
2

2ρ ≥ f(x)− ‖λ‖
2

2ρ .800

Hence, statement (i) holds.801

(ii) In view of (6.16) and (6.17), one has802

fhi

(6.17)

≥ f(x)+λT c̃(x)+ ρ
2‖c̃(x)‖2 =f(x)+γ‖c̃(x)‖2+ ρ−2γ

2

∥∥∥c̃(x) + λ
ρ−2γ

∥∥∥2

− ‖λ‖2
2(ρ−2γ)

(6.16)

≥ flow − γ + ρ−2γ
2

∥∥∥c̃(x) + λ
ρ−2γ

∥∥∥2

− ‖λ‖2
2(ρ−2γ) .

803

It then follows that
∥∥∥c̃(x) + λ

ρ−2γ

∥∥∥ ≤ √ 2(fhi−flow+γ)
ρ−2γ + ‖λ‖2

(ρ−2γ)2 , which implies that804

statement (ii) holds.805

(iii) Statement (iii) immediately follows from statement (i) and ρ ≥ ‖λ‖2/(2δ̃f).806

(iv) Suppose that (6.18) holds. Multiplying both sides of (6.18) by δ̃2
c and807

rearranging the terms, we have (ρ − 2γ)δ̃2
c − 2‖λ‖δ̃c − 2(fhi − flow + γ) ≥ 0. Recall808

that ρ > 2γ and δ̃c > 0. Solving this inequality for δ̃c yields809

δ̃c ≥
√

2(fhi − flow + γ)/(ρ− 2γ) + ‖λ‖2/(ρ− 2γ)2 + ‖λ‖/(ρ− 2γ),810

which along with statement (ii) implies that ‖c̃(x)‖ ≤ δ̃c. Hence, statement (iv) holds.811

Proof of Lemma 4.4. (i) Let x be any point such that L̃(x, λk; ρk)≤L̃(xkinit, λ
k; ρk).812

It then follows from (4.9) that L̃(x, λk; ρk) ≤ fhi. By this, ‖λk‖ ≤ Λ, ρk ≥ ρ0 > 2γ,813

δf,1 ≤ δf , δc,1 ≤ δc, and Lemma 6.4 with (λ, ρ) = (λk, ρk), one has f(x) ≤ fhi +814

‖λk‖2/(2ρk) ≤ fhi + Λ2/(2ρ0) = fhi + δf,1 ≤ fhi + δf and815

(6.19)
‖c̃(x)‖ ≤

√
2(fhi−flow+γ)

ρk−2γ + ‖λk‖2
(ρk−2γ)2 + ‖λk‖

ρk−2γ

≤
√

2(fhi−flow+γ)
ρ0−2γ + Λ2

(ρ0−2γ)2 + Λ
ρ0−2γ = δc,1 ≤ δc.

816

Also, recall from the definition of c̃ in (4.4) and ‖c(zε1)‖ ≤ 1 that ‖c(x)‖ ≤ 1 + ‖c̃(x)‖.817

This together with the above inequalities and (4.3) implies x ∈ S(δf , δc). Hence,818

statement (i) of Lemma 4.4 holds.819

(ii) Note that inf
x∈Rn

L̃(x, λk; ρk)= inf
x∈Rn
{L̃(x, λk; ρk) : L̃(x, λk; ρk) ≤ L̃(xkinit, λ

k; ρk)}.820

Consequently, to prove statement (ii) of Lemma 4.4, it suffices to show that821

(6.20) inf
x∈Rn
{L̃(x, λk; ρk) : L̃(x, λk; ρk) ≤ L̃(xkinit, λ

k; ρk)} ≥ flow − γ − Λδc.822

To this end, let x be any point satisfying L̃(x, λk; ρk) ≤ L̃(xkinit, λ
k; ρk). We then know823

from (6.19) that ‖c̃(x)‖ ≤ δc. By this, ‖λk‖ ≤ Λ, ρk > 2γ, and (6.16), one has824

This manuscript is for review purposes only.

22 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

L̃(x, λk; ρk) = f(x) + γ‖c̃(x)‖2 + (λk)T c̃(x) + ρk−2γ
2 ‖c̃(x)‖2

≥ f(x) + γ‖c̃(x)‖2 − Λ‖c̃(x)‖ ≥ flow − γ − Λδc,
825

and hence (6.20) holds as desired.826

Proof of Theorem 4.6. Suppose that Algorithm 4.1 terminates at some iteration827

k, that is, τgk ≤ ε1, τHk ≤ ε2, and ‖c(xk+1)‖ ≤ ε1 hold. Then, by τgk ≤ ε1, λ̃k+1 =828

λk + ρk c̃(x
k+1), ∇c̃ = ∇c and the second relation in (4.6), one has ‖∇f(xk+1) +829

∇c(xk+1)λ̃k+1‖ = ‖∇f(xk+1) +∇c̃(xk+1)(λk + ρk c̃(x
k+1))‖ = ‖∇xL̃(xk+1, λk; ρk)‖ ≤830

τgk ≤ ε1. Hence, (xk+1, λ̃k+1) satisfies the first relation in (2.4). In addition, by (4.7)831

and τHk ≤ ε2, one can show that λmin(∇2
xxL̃(xk+1, λk; ρk)) ≥ −ε2 with probability832

at least 1 − δ, which leads to dT∇2
xxL̃(xk+1, λk; ρk)d ≥ −ε2‖d‖2 for all d ∈ Rn833

with probability at least 1 − δ. Using this, λ̃k+1 = λk + ρk c̃(x
k+1), ∇c̃ = ∇c, and834

∇2c̃i = ∇2ci for 1 ≤ i ≤ m, we see that with probability at least 1 − δ, it holds that835

dT (∇2f(xk+1) +
∑m
i=1 λ̃

k+1
i ∇2ci(x

k+1) + ρk∇c(xk+1)∇c(xk+1)T)d ≥ −ε2‖d‖2 for all836

d ∈ Rn, which implies dT (∇2f(xk+1) +
∑m
i=1 λ̃

k+1
i ∇2ci(x

k+1))d ≥ −ε2‖d‖2 for all837

d ∈ C(xk+1), where C(·) is defined in (2.3). Hence, (xk+1, λ̃k+1) satisfies (2.5) with838

probability at least 1 − δ. Combining these with ‖c(xk+1)‖ ≤ ε1, we conclude that839

xk+1 is a deterministic ε1-FOSP of (1.1) and an (ε1, ε2)-SOSP of (1.1) with probability840

at least 1− δ. Hence, Theorem 4.6 holds.841

Proof of Theorem 4.8. It follows from (4.14) that ρε1 ≥ 2ρ0. By this, one has842

(6.21) Kε1

(4.12)
= dlog ε1/ logω1e

(4.11)
= dlog 2/ log re ≤ log(ρε1ρ

−1
0)/ log r + 1.843

Notice that {ρk} is either unchanged or increased by a ratio r as k increases. By this844

fact and (6.21), we see that845

(6.22) max
0≤k≤Kε1

ρk ≤ rKε1ρ0

(6.21)

≤ r
log(ρε1

ρ
−1
0)

log r +1ρ0 = rρε1 .846

In addition, notice that ρk > 2γ and ‖λk‖ ≤ Λ. Using these, (4.1), the first relation in847

(4.6), and Lemma 6.4(ii) with (x, λ, ρ) = (xk+1, λk, ρk), we obtain that848

(6.23)‖c̃(xk+1)‖≤
√

2(fhi−flow+γ)
ρk−2γ + ‖λk‖2

(ρk−2γ)2 + ‖λk‖
ρk−2γ ≤

√
2(fhi−flow+γ)

ρk−2γ + Λ2

(ρk−2γ)2 + Λ
ρk−2γ .849

Also, we observe from ‖c(zε1)‖ ≤ ε1/2 and the definition of c̃ in (4.4) that850

(6.24) ‖c(xk+1)‖ ≤ ‖c̃(xk+1)‖+ ‖c(zε1)‖ ≤ ‖c̃(xk+1)‖+ ε1/2.851

We now prove that Kε1 is finite. Suppose for contradiction that Kε1 is infinite.852

It then follows from this and (4.15) that ‖c(xk+1)‖ > ε1 for all k ≥ Kε1 , which853

along with (6.24) implies that ‖c̃(xk+1)‖ > ε1/2 for all k ≥ Kε1 . It then follows that854

‖c̃(xk+1)‖ > α‖c̃(xk)‖ must hold for infinitely many k’s. Using this and the update855

scheme on {ρk}, we deduce that ρk+1 = rρk holds for infinitely many k’s, which856

together with the monotonicity of {ρk} implies that ρk →∞ as k →∞. By this and857

(6.23), one can see that ‖c̃(xk+1)‖ → 0 as k → ∞, which contradicts the fact that858

‖c̃(xk+1)‖ > ε1/2 holds for all k ≥ Kε1 . Hence, Kε1 is finite. In addition, notice from859

(4.11), (4.12) and (4.13) that (τgk , τ
H
k) = (ε1, ε2) for all k ≥ Kε1 . This along with the860

termination criterion of Algorithm 4.1 and the definition of Kε1 implies that Algorithm861

4.1 must terminate at iteration Kε1 .862

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 23

We next show that (4.16) and ρk ≤ rρε1 hold for 0 ≤ k ≤ Kε1 by considering two863

separate cases below.864

Case 1) ‖c(xKε1+1)‖ ≤ ε1. By this and (4.15), one can see that Kε1 = Kε1 , which865

together with (6.21) and (6.22) implies that (4.16) and ρk ≤ rρε1 hold for 0 ≤ k ≤ Kε1 .866

Case 2) ‖c(xKε1+1)‖ > ε1. By this and (4.15), one can observe that Kε1 > Kε1867

and also ‖c(xk+1)‖ > ε1 for all Kε1 ≤ k ≤ Kε1 − 1, which together with (6.24) implies868

(6.25) ‖c̃(xk+1)‖ > ε1/2, ∀Kε1 ≤ k ≤ Kε1 − 1.869

It then follows from ‖λk‖ ≤ Λ, (4.1), the first relation in (4.6), and Lemma 6.4(iv)870

with (x, λ, ρ, δ̃c) = (xk+1, λk, ρk, ε1/2) that871

(6.26)
ρk < 8(fhi − flow + γ)ε−2

1 + 4‖λk‖ε−1
1 + 2γ

≤ 8(fhi − flow + γ)ε−2
1 + 4Λε−1

1 + 2γ
(4.14)

≤ ρε1 , ∀Kε1 ≤ k ≤ Kε1 − 1.
872

Combining this relation, (6.22), and the fact ρKε1
≤ rρKε1

−1, we conclude that873

ρk ≤ rρε1 holds for 0 ≤ k ≤ Kε1 . It remains to show that (4.16) holds. To this874

end, let K = {k : ρk+1 = rρk,Kε1 ≤ k ≤ Kε1 − 2}. It follows from (6.26) and the875

update scheme of ρk that r|K |ρKε1 = maxKε1≤k≤Kε1
−1{ρk} ≤ ρε1 , which together876

with ρKε1 ≥ ρ0 implies that877

(6.27) |K | ≤ log(ρε1ρ
−1
Kε1

)/ log r ≤ log(ρε1ρ
−1
0)/ log r.878

Let {k1, k2, . . . , k|K |} denote all the elements of K arranged in ascending order, and879

let k0 = Kε1 and k|K |+1 = Kε1 − 1. We next derive an upper bound for kj+1 − kj880

for j = 0, 1, . . . , |K |. By the definition of K, one can observe that ρk = ρk′ for881

kj < k, k′ ≤ kj+1. Using this and the update scheme of ρk, we deduce that882

(6.28) ‖c̃(xk+1)‖ ≤ α‖c̃(xk)‖, ∀kj < k < kj+1.883

On the other hand, by (4.10), (6.23) and ρk ≥ ρ0, one has ‖c̃(xk+1)‖ ≤ δc,1 for884

0 ≤ k ≤ Kε1 . By this and (6.25), one can see that885

(6.29) ε1/2 < ‖c̃(xk+1)‖ ≤ δc,1, ∀Kε1 ≤ k ≤ Kε1 − 1.886

Now, note that either kj+1 − kj = 1 or kj+1 − kj > 1. In the latter case, we can apply887

(6.28) with k = kj+1 − 1, . . . , kj + 1 together with (6.29) to deduce that888

ε1/2 < ‖c̃(xkj+1)‖ ≤ α‖c̃(xkj+1−1)‖ ≤ · · · ≤ αkj+1−kj−1‖c̃(xkj+1)‖ ≤ αkj+1−kj−1δc,1889

for all j = 0, 1, . . . , |K |. Combining these two cases, we have890

(6.30) kj+1 − kj ≤ | log(ε1(2δc,1)−1))/ logα|+ 1, ∀j = 0, 1, . . . , |K |.891

Summing up these inequalities, and using (6.21), (6.27), k0 = Kε1 and k|K |+1 = Kε1−1,892

we have893

Kε1= 1 + k|K |+1 = 1 + k0 +
∑|K |
j=0(kj+1 − kj)894

(6.30)

≤ 1 +Kε1 + (|K |+ 1)
(∣∣∣ log(ε1(2δc,1)−1)

logα

∣∣∣+ 1
)

895

≤ 2 +
log(ρε1ρ

−1
0)

log r +
(

log(ρε1ρ
−1
0)

log r + 1
)(∣∣∣ log(ε1(2δc,1)−1)

logα

∣∣∣+ 1
)

(6.31)896

= 1 +
(

log(ρε1ρ
−1
0)

log r + 1
)(∣∣∣ log(ε1(2δc,1)−1)

logα

∣∣∣+ 2
)
,897

where the second inequality is due to (6.21) and (6.27). Hence, (4.16) also holds in898

this case.899

This manuscript is for review purposes only.

24 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

We next prove Theorem 4.10. Before proceeding, we introduce some notation that900

will be used shortly. Let Lk,H denote the Lipschitz constant of ∇2
xxL̃(x, λk; ρk) on the901

convex open neighborhood Ω(δf , δc) of S(δf , δc), where S(δf , δc) is defined in (4.3),902

and let Uk,H = supx∈S(δf ,δc)
‖∇2

xxL̃(x, λk; ρk)‖. Notice from (4.4) and (4.5) that903

(6.32) ∇2
xxL̃(x, λk; ρk)=∇2f(x)+

m∑
i=1

λki∇2ci(x)+ρk

(
∇c(x)∇c(x)T+

m∑
i=1

c̃i(x)∇2ci(x)

)
.904

By this, ‖λk‖ ≤ Λ, the definition of c̃, and the Lipschitz continuity of ∇2f and ∇2ci’s905

(see Assumption 4.1(c)), one can observe that there exist some constants L1, L2, U1906

and U2, depending only on f , c, Λ, δf and δc, such that907

(6.33) Lk,H ≤ L1 + ρkL2, Uk,H ≤ U1 + ρkU2.908

Proof of Theorem 4.10. Let Tk and Nk denote the number of iterations and matrix-909

vector products performed by Algorithm 3.1 at the outer iteration k of Algorithm 4.1,910

respectively. It then follows from Theorem 4.8 that the total number of iterations and911

matrix-vector products performed by Algorithm 3.1 in Algorithm 4.1 are
∑Kε1

k=0 Tk912

and
∑Kε1

k=0 Nk, respectively. In addition, notice from (4.14) and Theorem 4.8 that913

ρε1 = O(ε−2
1) and ρk ≤ rρε1 , which yield ρk = O(ε−2

1).914

We first claim that (τgk)2/τHk ≥ min{ε21/ε2, ε32} holds for any k ≥ 0. Indeed, let915

t̄ = log ε1/ logω1 and ψ(t) = max{ε1, ωt1}2/max{ε2, ωt2} for all t ∈ R. It then follows916

from (4.13) that ωt̄1 = ε1 and ωt̄2 = ε2. By this and ω1, ω2 ∈ (0, 1), one can observe917

that ψ(t) = (ω2
1/ω2)t if t ≤ t̄ and ψ(t) = ε21/ε2 otherwise. This along with ε2 ∈ (0, 1)918

implies that mint∈[0,∞) ψ(t) = min{ψ(0), ψ(t̄)} = min{1, ε21/ε2} ≥ min{ε21/ε2, ε32},919

which together with (4.11) yields (τgk)2/τHk = ψ(k) ≥ min{ε21/ε2, ε32} for all k ≥ 0.920

(i) From Lemma 4.4(i) and the definitions of Ω(δf , δc) and Lk,H , we see that921

Lk,H is a Lipschitz constant of ∇2
xxL̃(x, λk; ρk) on a convex open neighborhood of {x :922

L̃(x, λk; ρk) ≤ L̃(xkinit, λ
k; ρk)}. Also, recall from Lemma 4.4(ii) that infx∈RnL̃(x, λk; ρk)923

≥ flow − γ −Λδc. By these, L̃(xkinit, λ
k; ρk) ≤ fhi (see (4.9)) and Theorem 3.2(iii) with924

(Fhi, Flow, L
F
H , εg, εH) = (L̃(xkinit, λ

k; ρk), flow − γ − Λδc, Lk,H , τ
g
k , τ

H
k), one has925

(6.34)
Tk = O((fhi − flow + γ + Λδc)L

2
k,H max{(τgk)−2τHk , (τ

H
k)−3})

(6.33)
= O(ρ2

k max{(τgk)−2τHk , (τ
H
k)−3}) = O(ε−4

1 max{ε−2
1 ε2, ε

−3
2 }),

926

where the last equality is from (τgk)2/τHk ≥ min{ε21/ε2, ε32}, τHk ≥ ε2, and ρk = O(ε−2
1).927

Next, if c(x) = Ax − b for some A ∈ Rm×n and b ∈ Rm, then ∇c(x) = AT and928

∇2ci(x) = 0 for 1 ≤ i ≤ m. By these and (6.32), one has Lk,H = O(1). Using this929

and similar arguments as for (6.34), we obtain that Tk = O(max{ε−2
1 ε2, ε

−3
2 }). By930

this, (6.34) and Kε1 = O(| log ε1|2) (see Remark 4.9), we conclude that statement (i)931

of Theorem 4.10 holds.932

(ii) In view of Lemma 4.4(i) and the definition of Uk,H , one can see that Uk,H ≥933

supx∈Rn{‖∇2
xxL̃(x, λk; ρk)‖ : L̃(x, λk; ρk)≤L̃(xkinit, λ

k; ρk)}. Using this, L̃(xkinit, λ
k; ρk)934

≤ fhi and Theorem 3.2(iv) with (Fhi, Flow, L
F
H , U

F
H , εg, εH) = (L̃(xkinit, λ

k; ρk), flow −935

γ − Λδc, Lk,H , Uk,H , τ
g
k , τ

H
k), we obtain that936

(6.35)

Nk=Õ((fhi−flow + γ + Λδc)L
2
k,Hmax{(τgk)−2τHk ,(τ

H
k)−3}min{n,(Uk,H/τHk)1/2})

(6.33)
= Õ(ρ2

k max{(τgk)−2τHk , (τ
H
k)−3}min{n, (ρk/τHk)1/2})

=Õ(ε−4
1 max{ε−2

1 ε2, ε
−3
2 }min{n, ε−1

1 ε
−1/2
2 }),

937

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 25

where the last equality is from (τgk)2/τHk ≥ min{ε21/ε2, ε32}, τHk ≥ ε2, and ρk = O(ε−2
1).938

On the other hand, if c is assumed to be affine, it follows from the above discussion939

that Lk,H = O(1). Using this, Uk,H ≤ U1 + ρkU2, and similar arguments as for940

(6.35), we obtain that Nk = Õ(max{ε−2
1 ε2, ε

−3
2 }min{n, ε−1

1 ε
−1/2
2 }). By this, (6.35)941

and Kε1 = O(| log ε1|2) (see Remark 4.9), we conclude that statement (ii) of Theorem942

4.10 holds.943

Next, we provide a proof of Theorem 4.14. To proceed, we first observe from944

Assumptions 4.1(c) and 4.12 that there exist Ufg > 0, U cg > 0 and σ > 0 such that945

(6.36) ‖∇f(x)‖ ≤ Ufg , ‖∇c(x)‖ ≤ U cg , λmin(∇c(x)T∇c(x)) ≥ σ2, ∀x ∈ S(δf , δc).946

We next establish several technical lemmas that will be used shortly.947

Lemma 6.5. Suppose that Assumptions 4.1 and 4.12 hold and that ρ0 is sufficiently948

large such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (4.10). Let949

{(xk, λk, ρk)} be generated by Algorithm 4.1. Suppose that950

(6.37) ρk≥max{Λ2(2δf)−1, 2(fhi−flow+γ)δ−2
c +2Λδ−1

c +2γ, 2(Ufg +U cgΛ+1)(σε1)−1}951

for some k ≥ 0, where γ, fhi, flow, δf and δc are given in Assumption 4.1, and Ufg ,952

U cg and σ are given in (6.36). Then it holds that ‖c(xk+1)‖ ≤ ε1.953

Proof. By (6.37) and ‖λk‖ ≤ Λ (see step 6 of Algorithm 4.1), one can see that ρk ≥954

max{‖λk‖2(2δf)−1, 2(fhi−flow +γ)δ−2
c +2‖λk‖δ−1

c +2γ}. Using this, (4.1), the first re-955

lation in (4.6), and Lemma 6.4(iii) and (iv) with (x, λ, ρ, δ̃f , δ̃c) = (xk+1, λk, ρk, δf , δc),956

we obtain that f(xk+1) ≤ fhi + δf and ‖c̃(xk+1)‖ ≤ δc. In addition, recall from957

‖c(zε1)‖ ≤ 1 and the definition of c̃ in (4.4) that ‖c(xk+1)‖ ≤ 1 + ‖c̃(xk+1)‖. These958

together with (4.3) show that xk+1 ∈ S(δf , δc). It then follows from (6.36) that959

‖∇f(xk+1)‖ ≤ Ufg , ‖∇c(xk+1)‖ ≤ U cg , and λmin(∇c(xk+1)T∇c(xk+1)) ≥ σ2. By960

‖∇f(xk+1)‖ ≤ Ufg , ‖∇c(xk+1)‖ ≤ U cg , τgk ≤ 1, ‖λk‖ ≤ Λ, (4.4) and (4.6), one has961

ρk‖∇c(xk+1)c̃(xk+1)‖ ≤ ‖∇f(xk+1) +∇c(xk+1)λk‖+ ‖∇xL̃(xk+1, λk; ρk)‖962

(4.6)

≤ ‖∇f(xk+1)‖+ ‖∇c(xk+1)‖‖λk‖+ τgk ≤ U
f
g + U cgΛ + 1.(6.38)963964

In addition, note that λmin(∇c(xk+1)T∇c(xk+1))≥σ2 implies that ∇c(xk+1)T∇c(xk+1)965

is invertible. Using this fact and (6.38), we obtain966

‖c̃(xk+1)‖ ≤ ‖(∇c(xk+1)T∇c(xk+1))−1∇c(xk+1)T ‖‖∇c(xk+1)c̃(xk+1)‖967

= λmin(∇c(xk+1)T∇c(xk+1))−
1
2 ‖∇c(xk+1)c̃(xk+1)‖

(6.38)

≤ Ufg +UcgΛ+1

σρk
.(6.39)968

969

We also observe from (6.37) that ρk ≥ 2(Ufg + U cgΛ + 1)(σε1)−1, which along with970

(6.39) proves ‖c̃(xk+1)‖ ≤ ε1/2. Combining this with the definition of c̃ in (4.4) and971

‖c(zε1)‖ ≤ ε1/2, we conclude that ‖c(xk+1)‖ ≤ ε1 holds as desired.972

The next lemma provides a stronger upper bound for {ρk} than the one in Theorem973

4.8.974

Lemma 6.6. Suppose that Assumptions 4.1 and 4.12 hold and that ρ0 is sufficiently975

large such that δf,1 ≤ δf and δc,1 ≤ δc, where δf,1 and δc,1 are defined in (4.10). Let976

{ρk} be generated by Algorithm 4.1 and977

(6.40) ρ̃ε1 :=max{Λ2(2δf)−1, 2(fhi−flow+γ)δ−2
c +2Λδ−1

c +2γ, 2(Ufg +U cgΛ+1)(σε1)−1, 2ρ0},978

where γ, fhi, flow, δf and δc are given in Assumption 4.1, and Ufg , U cg and σ are given979

in (6.36). Then ρk ≤ rρ̃ε1 holds for 0 ≤ k ≤ Kε1 , where Kε1 is defined in (4.15).980

This manuscript is for review purposes only.

26 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

Proof. It follows from (6.40) that ρ̃ε1 ≥ 2ρ0. By this and similar arguments as981

for (6.21), one has Kε1 ≤ log(ρ̃ε1ρ
−1
0)/ log r + 1, where Kε1 is defined in (4.12). Using982

this, the update scheme for {ρk}, and similar arguments as for (6.22), we obtain983

(6.41) max
0≤k≤Kε1

ρk ≤ rρ̃ε1 .984

If ‖c(xKε1+1)‖ ≤ ε1, it follows from (4.15) that Kε1 = Kε1 , which together with (6.41)985

implies that ρk ≤ rρ̃ε1 holds for 0 ≤ k ≤ Kε1 . On the other hand, if ‖c(xKε1+1)‖ > ε1,986

it follows from (4.15) that ‖c(xk+1)‖ > ε1 for Kε1 ≤ k ≤ Kε1 − 1. This together with987

Lemma 6.5 and (6.40) implies that for all Kε1 ≤ k ≤ Kε1 − 1,988

ρk<max{Λ2(2δf)−1,2(fhi−flow+γ)δ−2
c +2Λδ−1

c +2γ, 2(Ufg +U cgΛ+1)(σε1)−1}
(6.40)

≤ ρ̃ε1 .989

By this, (6.41), and ρKε1
≤ rρKε1−1, we also see that ρk ≤ rρ̃ε1 holds for 0 ≤ k ≤ Kε1 .990

Proof of Theorem 4.14. Notice from (6.40) and Lemma 6.6 that ρ̃ε1 = O(ε−1
1) and991

ρk ≤ rρ̃ε1 , which yield ρk = O(ε−1
1). The conclusion of Theorem 4.14 then follows992

from this and the same arguments as for the proof of Theorem 4.10 with ρk = O(ε−2
1)993

replaced by ρk = O(ε−1
1).994

7. Future work. There are several possible future studies on this work. First,995

it would be interesting to extend our AL method to seek an approximate SOSP996

of nonconvex optimization with inequality or more general constraints. Indeed, for997

nonconvex optimization with inequality constraints, one can reformulate it as an998

equality constrained problem using squared slack variables (e.g., see [7]). It can be999

shown that an SOSP of the latter problem induces a weak SOSP of the original problem1000

and also linear independence constraint qualification holds for the latter problem if1001

it holds for the original problem. As a result, it is promising to find an approximate1002

weak SOSP of an inequality constrained problem by applying our AL method to the1003

equivalent equality constrained problem. Second, it is worth studying whether the1004

enhanced complexity results in Section 4.3 can be derived under weaker constraint1005

qualification (e.g., see [5]). Third, the development of our AL method is based on a1006

strong assumption that a nearly feasible solution of the problem is known. It would1007

make the method applicable to a broader class of problems if such an assumption1008

could be removed by modifying the method possibly through the use of infeasibility1009

detection techniques (e.g., see [19]). Lastly, more numerical studies would be helpful1010

to further improve our AL method from a practical perspective.1011

REFERENCES1012

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, Finding approximate local1013
minima faster than gradient descent, in Proceedings of the 49th Annual ACM SIGACT1014
Symposium on Theory of Computing, 2017, pp. 1195–1199.1015

[2] R. Andreani, E. G. Birgin, J. M. Mart́ınez, and M. L. Schuverdt, On augmented Lagrangian1016
methods with general lower-level constraints, SIAM J. Optim., 18 (2008), pp. 1286–1309.1017

[3] R. Andreani, G. Haeser, and J. M. Mart́ınez, On sequential optimality conditions for smooth1018
constrained optimization, Optim., 60 (2011), pp. 627–641.1019

[4] R. Andreani, G. Haeser, A. Ramos, and P. J. Silva, A second-order sequential optimality1020
condition associated to the convergence of optimization algorithms, IMA J. Numer. Anal.,1021
37 (2017), pp. 1902–1929.1022

[5] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. Silva, Two new weak constraint1023
qualifications and applications, SIAM J. Optim., 22 (2012), pp. 1109–1135.1024

[6] P. Armand and N. N. Tran, An augmented Lagrangian method for equality constrained1025
optimization with rapid infeasibility detection capabilities, J. Optim. Theory Appl., 1811026
(2019), pp. 197–215.1027

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 27

[7] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.1028
[8] W. Bian, X. Chen, and Y. Ye, Complexity analysis of interior point algorithms for non-1029

Lipschitz and nonconvex minimization, Math. Program., 149 (2015), pp. 301–327.1030
[9] E. G. Birgin, J. Gardenghi, J. M. Mart́ınez, S. A. Santos, and P. L. Toint, Evaluation1031

complexity for nonlinear constrained optimization using unscaled KKT conditions and1032
high-order models, SIAM J. Optim., 26 (2016), pp. 951–967.1033

[10] E. G. Birgin, G. Haeser, and A. Ramos, Augmented Lagrangians with constrained subproblems1034
and convergence to second-order stationary points, Comput. Optim. Appl., 69 (2018), pp. 51–1035
75.1036

[11] E. G. Birgin and J. M. Mart́ınez, Practical Augmented Lagrangian Methods for Constrained1037
Optimization, SIAM, 2014.1038

[12] E. G. Birgin and J. M. Mart́ınez, The use of quadratic regularization with a cubic descent1039
condition for unconstrained optimization, SIAM J. Optim., 27 (2017), pp. 1049–1074.1040

[13] E. G. Birgin and J. M. Mart́ınez, Complexity and performance of an augmented Lagrangian1041
algorithm, Optim. Methods and Softw., 35 (2020), pp. 885–920.1042

[14] J. F. Bonnans and G. Launay, Sequential quadratic programming with penalization of the1043
displacement, SIAM J. Optim., 5 (1995), pp. 792–812.1044

[15] N. Boumal, V. Voroninski, and A. S. Bandeira, The non-convex Burer-Monteiro approach1045
works on smooth semidefinite programs, in Advances in Neural information Processing1046
Systems, vol. 29, 2016, pp. 2757–2765.1047

[16] L. F. Bueno and J. M. Mart́ınez, On the complexity of an inexact restoration method for1048
constrained optimization, SIAM J. Optim., 30 (2020), pp. 80–101.1049

[17] S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite1050
programs via low-rank factorization, Math. Program., 95 (2003), pp. 329–357.1051

[18] S. Burer and R. D. C. Monteiro, Local minima and convergence in low-rank semidefinite1052
programming, Math. Program., 103 (2005), pp. 427–444.1053

[19] J. V. Burke, F. E. Curtis, and H. Wang, A sequential quadratic optimization algorithm with1054
rapid infeasibility detection, SIAM J. Optim., 24 (2014), pp. 839–872.1055

[20] R. H. Byrd, F. E. Curtis, and J. Nocedal, Infeasibility detection and SQP methods for1056
nonlinear optimization, SIAM J. Optim., 20 (2010), pp. 2281–2299.1057

[21] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, A trust region algorithm for nonlinearly1058
constrained optimization, SIAM J. Numer. Anal., 24 (1987), pp. 1152–1170.1059

[22] Y. Carmon and J. C. Duchi, Gradient descent finds the cubic-regularized nonconvex Newton1060
step, SIAM J. Optim., 29 (2019), pp. 2146–2178.1061

[23] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Convex until proven guilty”:1062
Dimension-free acceleration of gradient descent on non-convex functions, in International1063
Conference on Machine Learning, PMLR, 2017, pp. 654–663.1064

[24] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, Accelerated methods for nonconvex1065
optimization, SIAM J. Optim., 28 (2018), pp. 1751–1772.1066

[25] C. Cartis, N. I. Gould, and P. L. Toint, Adaptive cubic regularisation methods for uncon-1067
strained optimization. Part II: worst-case function-and derivative-evaluation complexity,1068
Math. Program., 130 (2011), pp. 295–319.1069

[26] C. Cartis, N. I. Gould, and P. L. Toint, On the evaluation complexity of cubic regularization1070
methods for potentially rank-deficient nonlinear least-squares problems and its relevance to1071
constrained nonlinear optimization, SIAM J. Optim., 23 (2013), pp. 1553–1574.1072

[27] C. Cartis, N. I. Gould, and P. L. Toint, On the complexity of finding first-order critical1073
points in constrained nonlinear optimization, Math. Program., 144 (2014), pp. 93–106.1074

[28] C. Cartis, N. I. Gould, and P. L. Toint, On the evaluation complexity of constrained1075
nonlinear least-squares and general constrained nonlinear optimization using second-order1076
methods, SIAM J. Numer. Anal., 53 (2015), pp. 836–851.1077

[29] C. Cartis, N. I. Gould, and P. L. Toint, Evaluation complexity bounds for smooth constrained1078
nonlinear optimization using scaled KKT conditions, high-order models and the criticality1079
measure χ, in Approximation and Optimization, Springer, 2019, pp. 5–26.1080

[30] C. Cartis, N. I. Gould, and P. L. Toint, Optimality of orders one to three and beyond: char-1081
acterization and evaluation complexity in constrained nonconvex optimization, J. Complex.,1082
53 (2019), pp. 68–94.1083

[31] X. Chen, L. Guo, Z. Lu, and J. J. Ye, An augmented Lagrangian method for non-Lipschitz1084
nonconvex programming, SIAM J. Numer. Anal., 55 (2017), pp. 168–193.1085

[32] D. Cifuentes and A. Moitra, Polynomial time guarantees for the Burer-Monteiro method,1086
arXiv preprint arXiv:1912.01745, (2019).1087

[33] T. F. Coleman, J. Liu, and W. Yuan, A new trust-region algorithm for equality constrained1088
optimization, Comput. Optim. Appl., 21 (2002), pp. 177–199.1089

This manuscript is for review purposes only.

28 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

[34] F. E. Curtis, D. P. Robinson, C. W. Royer, and S. J. Wright, Trust-region Newton-CG1090
with strong second-order complexity guarantees for nonconvex optimization, SIAM J Optim.,1091
31 (2021), pp. 518–544.1092

[35] F. E. Curtis, D. P. Robinson, and M. Samadi, A trust region algorithm with a worst-case1093
iteration complexity of O(ε−3/2) for nonconvex optimization, Math. Program., 162 (2017),1094
pp. 1–32.1095

[36] F. E. Curtis, D. P. Robinson, and M. Samadi, Complexity analysis of a trust funnel algorithm1096
for equality constrained optimization, SIAM J. Optim., 28 (2018), pp. 1533–1563.1097

[37] G. N. Grapiglia and Y. Yuan, On the complexity of an augmented Lagrangian method for1098
nonconvex optimization, IMA J. Numer. Anal., 41 (2021), pp. 1508–1530.1099

[38] G. Haeser, H. Liu, and Y. Ye, Optimality condition and complexity analysis for linearly-1100
constrained optimization without differentiability on the boundary, Math. Program., (2019),1101
pp. 1–37.1102

[39] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–1103
320.1104

[40] M. Hong, D. Hajinezhad, and M.-M. Zhao, Prox-PDA: The proximal primal-dual algorithm1105
for fast distributed nonconvex optimization and learning over networks, in International1106
Conference on Machine Learning, PMLR, 2017, pp. 1529–1538.1107

[41] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, How to escape saddle points1108
efficiently, in International Conference on Machine Learning, PMLR, 2017, pp. 1724–1732.1109

[42] C. Kanzow and D. Steck, An example comparing the standard and safeguarded augmented1110
Lagrangian methods, Oper. Res. Lett., 45 (2017), pp. 598–603.1111

[43] W. Kong, J. G. Melo, and R. D. C. Monteiro, Complexity of a quadratic penalty acceler-1112
ated inexact proximal point method for solving linearly constrained nonconvex composite1113
programs, SIAM J. Optim., 29 (2019), pp. 2566–2593.1114

[44] J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power and1115
Lanczos algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1094–1116
1122.1117

[45] Z. Li, P.-Y. Chen, S. Liu, S. Lu, and Y. Xu, Rate-improved inexact augmented lagrangian1118
method for constrained nonconvex optimization, in International Conference on Artificial1119
Intelligence and Statistics, PMLR, 2021, pp. 2170–2178.1120

[46] S. Lu, A single-loop gradient descent and perturbed ascent algorithm for nonconvex functional1121
constrained optimization, in International Conference on Machine Learning, PMLR, 2022,1122
pp. 14315–14357.1123

[47] S. Lu, M. Razaviyayn, B. Yang, K. Huang, and M. Hong, Finding second-order stationary1124
points efficiently in smooth nonconvex linearly constrained optimization problems, Advances1125
in Neural Information Processing Systems, 33 (2020), pp. 2811–2822.1126

[48] Z. Lu and X. Li, Sparse recovery via partial regularization: models, theory, and algorithms,1127
Math. Oper. Res., 43 (2018), pp. 1290–1316.1128

[49] Z. Lu and Y. Zhang, An augmented Lagrangian approach for sparse principal component1129
analysis, Math. Program., 135 (2012), pp. 149–193.1130

[50] J. M. Mart́ınez and M. Raydan, Cubic-regularization counterpart of a variable-norm trust-1131
region method for unconstrained minimization, J. Glob. Optim., 68 (2017), pp. 367–385.1132

[51] J. G. Melo, R. D. Monteiro, and W. Kong, Iteration-complexity of an inner accelerated1133
inexact proximal augmented Lagrangian method based on the classical Lagrangian function1134
and a full Lagrange multiplier update, arXiv preprint arXiv:2008.00562, (2020).1135

[52] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global1136
performance, Math. Program., 108 (2006), pp. 177–205.1137

[53] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 2nd ed., 2006.1138
[54] M. O’Neill and S. J. Wright, A log-barrier Newton-CG method for bound constrained1139

optimization with complexity guarantees, IMA J. Numer. Anal., 41 (2021), pp. 84–121.1140
[55] R. T. Rockafellar, Lagrange multipliers and optimality, SIAM review, 35 (1993), pp. 183–238.1141
[56] C. W. Royer, M. O’Neill, and S. J. Wright, A Newton-CG algorithm with complexity1142

guarantees for smooth unconstrained optimization, Math. Program., 180 (2020), pp. 451–1143
488.1144

[57] C. W. Royer and S. J. Wright, Complexity analysis of second-order line-search algorithms1145
for smooth nonconvex optimization, SIAM J. Optim., 28 (2018), pp. 1448–1477.1146

[58] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher, An inexact1147
augmented Lagrangian framework for nonconvex optimization with nonlinear constraints,1148
Advances in Neural Information Processing Systems, 32 (2019).1149

[59] Y. Xie and S. J. Wright, Complexity of projected Newton methods for bound-constrained1150
optimization, arXiv preprint arXiv:2103.15989, (2021).1151

This manuscript is for review purposes only.

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 29

[60] Y. Xie and S. J. Wright, Complexity of proximal augmented Lagrangian for nonconvex1152
optimization with nonlinear equality constraints, J. Sci. Comput., 86 (2021), pp. 1–30.1153

[61] L. Yang, D. Sun, and K. C. Toh, SDPNAL+: A majorized semismooth Newton-CG augmented1154
Lagrangian method for semidefinite programming with nonnegative constraints, Math.1155
Program. Comput., 7 (2015), pp. 331–366.1156

[62] X. Zhao, D. Sun, and K. C. Toh, A Newton-CG augmented Lagrangian method for semidefinite1157
programming, SIAM J. Optim., 20 (2010), pp. 1737–1765.1158

Appendix A. A capped conjugate gradient method. In this part we1159

present the capped CG method proposed in [56, Algorithm 1] for finding either an1160

approximate solution to the linear system (3.6) or a sufficiently negative curvature1161

direction of the associated matrix H, which has been briefly discussed in Section 3.1.1162

Its details can be found in [56, Section 3.1].

Algorithm A.1 A capped conjugate gradient method

Inputs: symmetric matrix H ∈ Rn×n, vector g 6= 0, damping parameter ε ∈ (0, 1), desired relative
accuracy ζ ∈ (0, 1).
Optional input: scalar U ≥ 0 (set to 0 if not provided).
Outputs: d type, d.
Secondary outputs: final values of U, κ, ζ̂, τ, and T .
Set

H̄ := H + 2εI, κ := U+2ε
ε

, ζ̂ := ζ
3κ
, τ :=

√
κ√
κ+1

, T := 4κ4

(1−
√
τ)2

,

y0 ← 0, r0 ← g, p0 ← −g, j ← 0.
if (p0)T H̄p0 < ε‖p0‖2 then

Set d← p0 and terminate with d type = NC;
else if ‖Hp0‖ > U‖p0‖ then

Set U ← ‖Hp0‖/‖p0‖ and update κ, ζ̂, τ, T accordingly;
end if
while TRUE do

αj ← (rj)T rj/(pj)T H̄pj ; {Begin Standard CG Operations}
yj+1 ← yj + αjp

j ;
rj+1 ← rj + αjH̄p

j ;
βj+1 ← ‖rj+1‖2/‖rj‖2;
pj+1 ← −rj+1 + βj+1p

j ; {End Standard CG Operations}
j ← j + 1;
if ‖Hpj‖ > U‖pj‖ then

Set U ← ‖Hpj‖/‖pj‖ and update κ, ζ̂, τ, T accordingly;
end if
if ‖Hyj‖ > U‖yj‖ then

Set U ← ‖Hyj‖/‖yj‖ and update κ, ζ̂, τ, T accordingly;
end if
if ‖Hrj‖ > U‖rj‖ then

Set U ← ‖Hrj‖/‖rj‖ and update κ, ζ̂, τ, T accordingly;
end if
if (yj)T H̄yj < ε‖yj‖2 then

Set d← yj and terminate with d type = NC;
else if ‖rj‖ ≤ ζ̂‖r0‖ then

Set d← yj and terminate with d type = SOL;
else if (pj)T H̄pj < ε‖pj‖2 then

Set d← pj and terminate with d type = NC;
else if ‖rj‖ >

√
Tτ j/2‖r0‖ then

Compute αj , y
j+1 as in the main loop above;

Find i ∈ {0, . . . , j − 1} such that

(yj+1 − yi)T H̄(yj+1 − yi) < ε‖yj+1 − yi‖2;

Set d← yj+1 − yi and terminate with d type = NC;
end if

end while

This manuscript is for review purposes only.

30 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

The following theorem presents the iteration complexity of Algorithm A.1.1163

Theorem A.1 (iteration complexity of Algorithm A.1). Consider applying1164

Algorithm A.1 with input U = 0 to the linear system (3.6) with g 6= 0, ε > 0, and H1165

being an n× n symmetric matrix. Then the number of iterations of Algorithm A.1 is1166

Õ(min{n,
√
‖H‖/ε}).1167

Proof. From [56, Lemma 1], we know that the number of iterations of Algorithm1168

A.1 is bounded by min{n, J(U, ε, ζ)}, where J(U, ε, ζ) is the smallest integer J such that1169 √
TτJ/2 ≤ ζ̂, with U, ζ̂, T and τ being the values returned by Algorithm A.1. In addi-1170

tion, it was shown in [56, Section 3.1] that J(U, ε, ζ) ≤
⌈(√

κ+ 1
2

)
ln
(

144(
√
κ+1)2κ6

ζ2

)⌉
,1171

where κ = O(U/ε) is an output by Algorithm A.1. Then one can see that J(U, ε, ζ) =1172

Õ(
√
U/ε). Notice from Algorithm A.1 that the output U ≤ ‖H‖. Combining these,1173

we obtain the conclusion as desired.1174

Appendix B. A randomized Lanczos based minimum eigenvalue oracle.1175

In this part we present the randomized Lanczos method proposed in [56, Section 3.2],1176

which can be used as a minimum eigenvalue oracle for Algorithm 3.1. As briefly1177

discussed in Section 3.1, this oracle outputs either a sufficiently negative curvature1178

direction of H or a certificate that H is nearly positive semidefinite with high probability.1179

More detailed motivation and explanation of it can be found in [56, Section 3.2].1180

Algorithm B.1 A randomized Lanczos based minimum eigenvalue oracle

Input : symmetric matrix H ∈ Rn×n, tolerance ε > 0, and probability parameter δ ∈ (0, 1).
Output: a sufficiently negative curvature direction v satisfying vTHv ≤ −ε/2 and ‖v‖ = 1; or
a certificate that λmin(H) ≥ −ε with probability at least 1− δ.
Apply the Lanczos method [44] to estimate λmin(H) starting with a random vector uniformly
generated on the unit sphere, and run it for at most

(B.1) N(ε, δ) := min

{
n, 1 +

⌈
ln(2.75n/δ2)

2

√
‖H‖
ε

⌉}
iterations. If a unit vector v with vTHv ≤ −ε/2 is found at some iteration, terminate

immediately and return v.

The following theorem justifies that Algorithm B.1 is a suitable minimum eigenvalue1181

oracle for Algorithm 3.1. Its proof is identical to that of [56, Lemma 2] and thus1182

omitted.1183

Theorem B.1 (iteration complexity of Algorithm B.1). Consider Algo-1184

rithm B.1 with tolerance ε > 0, probability parameter δ ∈ (0, 1), and symmetric matrix1185

H ∈ Rn×n as its input. Then it either finds a sufficiently negative curvature direction1186

v satisfying vTHv ≤ −ε/2 and ‖v‖ = 1 or certifies that λmin(H) ≥ −ε holds with1187

probability at least 1 − δ in at most N(ε, δ) iterations, where N(ε, δ) is defined in1188

(B.1).1189

Notice that ‖H‖ is required in Algorithm B.1. In general, computing ‖H‖ may1190

not be cheap when n is large. Nevertheless, ‖H‖ can be efficiently estimated via a1191

randomization scheme with high confidence (e.g., see the discussion in [56, Appen-1192

dix B3]).1193

This manuscript is for review purposes only.

	Introduction
	Notation and preliminaries
	A Newton-CG method for unconstrained optimization
	Main components of a Newton-CG method
	A Newton-CG method for problem (3.1)

	A Newton-CG based AL method for problem (1.1)
	Outer iteration complexity of Algorithm 4.1
	Total inner iteration and operation complexity of Algorithm 4.1
	Enhanced complexity of Algorithm 4.1 under constraint qualification

	Numerical results
	Regularized robust regression
	Spherically constrained regularized robust regression

	Proof of the main results
	Proof of the main results in Section 3
	Proof of the main results in Section 4

	Future work
	References
	Appendix A. A capped conjugate gradient method
	Appendix B. A randomized Lanczos based minimum eigenvalue oracle

