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A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD
FOR FINDING A SECOND-ORDER STATIONARY POINT OF
NONCONVEX EQUALITY CONSTRAINED OPTIMIZATION WITH
COMPLEXITY GUARANTEES*

CHUAN HE', ZHAOSONG LUT, AND TING KEI PONG#

Abstract. In this paper we consider finding a second-order stationary point (SOSP) of nonconvex
equality constrained optimization when a nearly feasible point is known. In particular, we first propose
a new Newton-CG method for finding an approximate SOSP of unconstrained optimization and show
that it enjoys a substantially better complexity than the Newton-CG method in [C. W. Royer, M.
O’Neill, and S. J. Wright, Math. Program., 180 (2020), pp. 451-488]. We then propose a Newton-
CG based augmented Lagrangian (AL) method for finding an approximate SOSP of nonconvex
equality constrained optimization, in which the proposed Newton-CG method is used as a subproblem
solver. We show that under a generalized linear independence constraint qualification (GLICQ), our
AL method enjoys a total inner iteration complexity of 6(6_7/2) and an operation complexity of
O(e=7/2 min{n, e=3/4}) for finding an (¢, \/€)-SOSP of nonconvex equality constrained optimization
with high probability, which are significantly better than the ones achieved by the proximal AL method
in [Y. Xie and S. J. Wright, J. Sci. Comput., 86 (2021), pp. 1-30]. Besides, we show that it has a total
inner iteration complexity of 6(6711/2) and an operation complexity of 6(5’11/2 min{n,e’5/4})
when the GLICQ does not hold. To the best of our knowledge, all the complexity results obtained in
this paper are new for finding an approximate SOSP of nonconvex equality constrained optimization
with high probability. Preliminary numerical results also demonstrate the superiority of our proposed
methods over the other competing algorithms.

Key words. Nonconvex equality constrained optimization, second-order stationary point,
augmented Lagrangian method, Newton-conjugate gradient method, iteration complexity, operation
complexity

MSC codes. 49M15, 68Q25, 90C06, 90C26, 90C30, 90C60

1. Introduction. In this paper we consider nonconvex equality constrained
optimization problem
(1.1) Inin f(z) s.t. c(z)=0,
where f : R” — R and ¢ : R" — R™ are twice continuously differentiable, and we
assume that problem (1.1) has at least one optimal solution. Since (1.1) is a nonconvex
optimization problem, it may have many local but non-global minimizers and finding
its global minimizer is generally NP-hard. A first-order stationary point (FOSP) of it
is usually found in practice instead. Nevertheless, a mere FOSP may sometimes not
suit our needs and a second-order stationary point (SOSP) needs to be sought. For
example, in the context of linear semidefinite programming (SDP), a powerful approach
to solving it is by solving an equivalent nonconvex equality constrained optimization
problem [17, 18]. It was shown in [18, 15] that under some mild conditions an SOSP
of the latter problem can yield an optimal solution of the linear SDP, while a mere
FOSP generally cannot. It is therefore important to find an SOSP of problem (1.1).
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2 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

In recent years, numerous methods with complexity guarantees have been developed
for finding an approximate SOSP of several types of nonconvex optimization. For
example, cubic regularized Newton methods [52, 25, 1, 22|, accelerated gradient
methods [23, 24], trust-region methods [34, 35, 50], quadratic regularization method
[12], second-order line-search method [57], and Newton-conjugate gradient (Newton-
CG) method [56] were developed for nonconvex unconstrained optimization. In
addition, interior-point method [8] and log-barrier method [54] were proposed for
nonconvex optimization with sign constraints. The interior-point method [8] was also
generalized in [38] to solve nonconvex optimization with sign constraints and additional
linear equality constraints. Furthermore, a projected gradient descent method with
random perturbations was proposed in [47] for nonconvex optimization with linear
inequality constraints. Iteration complexity was established for these methods for
finding an approximate SOSP. Besides, operation complexity measured by the amount
of fundamental operations such as gradient evaluations and matrix-vector products
was also studied in [1, 23, 34, 41, 24, 57, 22, 56].

Several methods including trust-region methods [21, 33|, sequential quadratic
programming method [14], two-phase method [9, 30, 32] and augmented Lagrangian
(AL) type methods [4, 10, 58, 60] were proposed for finding an SOSP of problem (1.1).
However, only a few of them have complexity guarantees for finding an approximate
SOSP of (1.1). In particular, the inexact AL method [58] has a worst-case complexity
in terms of the number of calls to a second-order oracle. Yet its operation complexity,
measured by the amount of fundamental operations such as gradient evaluations and
Hessian-vector products, is unknown. To the best of our knowledge, the proximal
AL method in [60] appears to be the only existing method that enjoys a worst-
case complexity for finding an approximate SOSP of (1.1) in terms of fundamental
operations. In this method, given an iterate z* and a multiplier estimate \* at the
kth iteration, the next iterate 2**! is obtained by finding an approximate stochastic
SOSP of the proximal AL subproblem:

min £z, X p) + Bz — 2¥[/2
z€R™

for some suitable positive p and /5 using a Newton-CG method proposed in [56], where
L is the AL function of (1.1) defined as

Lz, A;p) = fa) + ATe(z) + plle(z)|? /2.
Then the multiplier estimate is updated using the classical scheme, i.e., \Ft1 =
e+ pe(z*+1) (e.g., see [39, 55]). The authors of [60] studied the worst-case complexity
of their proximal AL method including: (i) total inner iteration complexity, which
measures the total number of iterations of the Newton-CG method [56] performed in
their method; (ii) operation complezity, which measures the total number of gradient
evaluations and matrix-vector products involving the Hessian of the AL function that
are evaluated in their method. Under some suitable assumptions, including that a
generalized linear independence constraint qualification (GLICQ) holds at all iterates,
it was established in [60] that their proximal AL method enjoys a total inner iteration
complexity of O(e~1/2) and an operation complexity of O(e~11/2 min{n, e~3/4}) for
finding an (e, /€)-SOSP of problem (1.1) with high probability.! Yet, there is a big

n fact, a total inner iteration complexity of 6(677) and an operation complexity of
O(e~"min{n, e~1}) were established in [60] for finding an (e, €)-SOSP of problem (1.1) with high
probability; see [60, Theorem 4(ii), Corollary 3(ii), Theorem 5|. Nonetheless, they can be modified to
obtain the aforementioned complexity for finding an (e, 1/€)-SOSP of (1.1) with high probability.
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A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 3

gap between these complexities and the iteration complexity of @(e~3/2) and the
operation complexity of O(e~3/2min{n, e~1/4}) that are achieved by the methods in
[1, 24, 57, 56] for finding an (e, 1/€)-SOSP of nonconvex unconstrained optimization
with high probability, which is a special case of (1.1) with ¢ = 0. Also, there is a lack
of complexity guarantees for this proximal AL method when the GLICQ does not
hold. It shall be mentioned that Newton-CG based AL methods were also developed
for efficiently solving various convex optimization problems (e.g., see [61, 62]), though
their complexities remain unknown.

In this paper we propose a Newton-CG based AL method for finding an approxi-
mate SOSP of problem (1.1) with high probability, and study its worst-case complexity
with and without the assumption of a GLICQ. In particular, we show that this method
enjoys a total inner iteration complexity of O(e~7/2) and an operation complexity
of O(e~"/2min{n, e 3/4}) for finding a stochastic (e, /€)-SOSP of (1.1) under the
GLICQ, which are significantly better than the aforementioned ones achieved by the
proximal AL method in [60]. Besides, when the GLICQ does not hold, we show that
it has a total inner iteration complexity of @(6’11/ 2) and an operation complexity of
O(e11/2 min{n, e-5/4}) for finding a stochastic (e, 1/€)-SOSP of (1.1), which fills the
research gap in this topic. Specifically, our AL method (Algorithm 4.1) proceeds in
the following manner. Instead of directly solving problem (1.1), it solves a perturbed
problem of (1.1) with ¢ replaced by its perturbed counterpart ¢ constructed by using
a nearly feasible point of (1.1) (see (4.4) for details). At the kth iteration, an approxi-
mate stochastic SOSP z*+1 of the AL subproblem of this perturbed problem is found
by our newly proposed Newton-CG method (Algorithm 3.1) for a penalty parameter
pr and a truncated Lagrangian multiplier A\, which results from projecting onto a
Euclidean ball the standard multiplier estimate A\F obtained by the classical scheme
AP = \=1 1 g é(2%).2 The penalty parameter py; is then updated by the following
practical scheme (e.g., see [7, Section 4.2]):

ooy = 4 TPr ST > alle@)ll,
kol pr  otherwise

for some > 1 and a € (0,1). It shall be mentioned that in contrast with the classical
AL method, our method has two distinct features: (i) the values of the AL function
along the iterates are bounded from above; (ii) the multiplier estimates associated
with the AL subproblems are bounded. In addition, to solve the AL subproblems with
better complexity guarantees, we propose a variant of the Newton-CG method in [56]
for finding an approximate stochastic SOSP of unconstrained optimization, whose
complexity has significantly less dependence on the Lipschitz constant of the Hessian of
the objective than that of the Newton-CG method in [56], while improving or retaining
the same order of dependence on tolerance parameter. Given that such a Lipschitz
constant is typically large for the AL subproblems, our Newton-CG method (Algorithm
3.1) is a much more favorable subproblem solver than the Newton-CG method in [56]
that is used in the proximal AL method in [60] from theoretical complexity perspective.
The main contributions of this paper are summarized below.

e We propose a new Newton-CG method for finding an approximate SOSP of
unconstrained optimization and show that it enjoys an iteration and operation

2The A* obtained by projecting ¥ onto a compact set is also called a safeguarded Lagrangian
multiplier in the relevant literature [11, 42, 13], which has been shown to enjoy many practical and
theoretical advantages (see [11] for discussions).
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4 CHUAN HE, ZHAOSONG LU AND TING KEI PONG

complexity with a quadratic dependence on the Lipschitz constant of the
Hessian of the objective that improves the cubic dependence achieved by the
Newton-CG method in [56], while improving or retaining the same order of
dependence on tolerance parameter. In addition, our complexity results are
established under the assumption that the Hessian of the objective is Lipschitz
continuous in a convex neighborhood of a level set of the objective. This
assumption is weaker than the one commonly imposed for the Newton-CG
method in [56] and some other methods (e.g., [12, 35]) that the Hessian of the
objective is Lipschitz continuous in a convex set containing this neighborhood
and also all the trial points arising in the line search or trust region steps of
the methods (see Section 3 for more detailed discussion).

e We propose a Newton-CG based AL method for finding an approximate SOSP
of nonconvex equality constrained optimization (1.1) with high probability, and
study its worst-case complexity with and without the assumption of a GLICQ.
Prior to our work, there was no complexity study on finding an approximate
SOSP of problem (1.1) without imposing a GLICQ. Besides, under the GLICQ
and some other suitable assumptions, we show that our method enjoys a
total inner iteration complexity of 0(6’7/ 2) and an operation complexity
of O(e~"/2min{n,e3/4}) for finding an (e, \/€)-SOSP of (1.1) with high
probability, which are significantly better than the respective complexity of
O(e711/2) and O(e~'*/2min{n,e=3/1}) achieved by the proximal AL method
in [60]. To the best of our knowledge, all the complexity results obtained in
this paper are new for finding an approximate SOSP of nonconvex equality
constrained optimization with high probability.

For ease of comparison, we summarize in Table 1 the total inner iteration and
operation complexity of our AL method and the proximal AL method in [60] for
finding a stochastic (e, 1/€)-SOSP of problem (1.1) with or without assuming GLICQ.

TABLE 1
Total inner iteration and operation complezity of finding a stochastic (e, +/€)-SOSP of (1.1).

Method GLICQ Total inner iteration complexity Operation complexity
Proximal AL method [60] v O(e~11/2) O(e /2 min{n, e 3/4})
Proximal AL method [60] X unknown _ unknown

Our AL method v 9(577/2) 9(577/2 min{n, e~ 3/%})
Our AL method X O(e~11/2) O(e~ /2 min{n, e~5/4})

It shall be mentioned that there are many works other than [60] studying complexity
of AL methods for nonconvex constrained optimization. However, they aim to find an
approximate FOSP rather than SOSP of the problem (e.g., see [40, 37, 13, 51, 45]).
Since our main focus is on the complexity of finding an approximate SOSP by AL
methods, we do not include them in the above table for comparison.

The rest of this paper is organized as follows. In Section 2, we introduce some
notation and optimality conditions. In Section 3, we propose a Newton-CG method
for unconstrained optimization and study its worst-case complexity. In Section 4, we
propose a Newton-CG based AL method for (1.1) and study its worst-case complexity.
We present numerical results and the proof of the main results in Sections 5 and 6,
respectively. In Section 7, we discuss some future research directions.

2. Notation and preliminaries. Throughout this paper, we let R” denote the
n-dimensional Euclidean space. We use || - || to denote the Euclidean norm of a vector
or the spectral norm of a matrix. For a real symmetric matrix H, we use Apin(H)

This manuscript is for review purposes only.



179

180
181
182
183
184
185
186
187
188
189
190

192
193
194

195

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 5

to denote its minimum eigenvalue. The Euclidean ball centered at the origin with
radius R > 0 is denoted by Bg := {z : ||z|| < R}, and we use IIg, (v) to denote the
Euclidean projection of a vector v onto Bg. For a given finite set A, we let | A | denote
its cardinality. For any s € R, we let sgn(s) be 1 if s > 0 and let it be —1 otherwise.
In addition, 67)() represents O(-) with logarithmic terms omitted.

Suppose that z* is a local minimizer of problem (1.1) and the linear independence
constraint qualification holds at z*, i.e., Ve(a*) := [Vey(a*) Vea(z*) -+ Ve (x*)]
has full column rank. Then there exists a Lagrangian multiplier A* € R™ such that
(2.1) Vf(z*) 4+ Ve(z™)A\* =0,

(2.2) dV (V2 f(z*) + 20 A V3 (z*))d >0, Vd € C(z*),
where C(+) is defined as

(2.3) C(z):={d € R" : Vc(z)'d = 0}.

The relations (2.1) and (2.2) are respectively known as the first- and second-order
optimality conditions for (1.1) in the literature (e.g., see [53]). Note that it is in
general impossible to find a point that exactly satisfies (2.1) and (2.2). Thus, we
are instead interested in finding a point that satisfies their approximate counterparts.
In particular, we introduce the following definitions of an approximate first-order
stationary point (FOSP) and second-order stationary point (SOSP), which are similar
to those considered in [4, 10, 60]. The rationality of them can be justified by the study
of the sequential optimality conditions for constrained optimization [3, 4].

DEFINITION 2.1 (e;-first-order stationary point). Let ¢; > 0. We say that
x € R™ is an € -first-order stationary point (e;-FOSP) of problem (1.1) if it, together
with some A € R™, satisfies

(2.4) IVf(z) + V@A < e, le(x)]] < e

DEFINITION 2.2 ((e1, €2)-second-order stationary point). Let ej,ea > 0. We
say that x € R™ is an (€1, €2)-second-order stationary point ((e1, €2)-SOSP) of problem
(1.1) if it, together with some A € R™, satisfies (2.4) and additionally

(2.5) dV (V2 f(z) + X0 MiViei(z) d > —e||d||?,  Vd € C(z),
where C(-) is defined as in (2.3).

3. A Newton-CG method for unconstrained optimization. In this section
we propose a variant of Newton-CG method [56, Algorithm 3] for finding an approxi-
mate SOSP of a class of unconstrained optimization problems, which will be used as a
subproblem solver for the AL method proposed in the next section. In particular, we
consider an unconstrained optimization problem

(3.1) min F(z),

where the function F' satisfies the following assumptions.

Assumption 3.1. (a) The level set Zr(u®) := {x : F(z) < F(u®)} is compact for
some u’ € R".

(b) The function F is twice Lipschitz continuously differentiable in a convex open
neighborhood, denoted by €2, of Zr(u?), that is, there exists L > 0 such that

(3-2) IV2F(z) = V2F(y)|| < Lllz —yll, Va,y € Q.

This manuscript is for review purposes only.
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209 By Assumption 3.1, there exist Fioy € R, UF > 0 and Uf; > 0 such that
210 (3.3) F(z) > Fow, [VF(@)|<UF, |V?*F(2)| <Uf, Vo€ Zp(u).
211 Recently, a Newton-CG method [56, Algorithm 3] was developed to find an

212 approximate stochastic SOSP of problem (3.1), which is not only easy to implement
213 but also enjoys a nice feature that the main computation consists only of gradient
214 evaluations and Hessian-vector products associated with the function F. Under the
215 assumption that V2F is Lipschitz continuous in a convex open set containing .Zp(u®)
216 and also all the trial points arising in the line search steps of this method (see [56,
217 Assumption 2]), it was established in [56, Theorem 4, Corollary 2] that the iteration
218 and operation complexity of this method for finding a stochastic (eg, €z)-SOSP of (3.1)
219 (namely, a point z satisfying | VF (z)|| < €, deterministically and Apin (VZF(2)) > —ep
220 with high probability) are

N
o]

(3.4) (’)((Lﬂ)?’max{eg_?’e%, 6;{3}) and @((L§)3max{e;?’e§{, 6;13} min{n, (UE/GH)1/2})7

222 respectively, where €4, €em € (0,1) are prescribed tolerances. Yet, this assumption can
223 be hard to check because these trial points are unknown before the method terminates
224 and moreover the distance between the origin and them depends on the tolerance ep
225 in O(eg") (see [56, Lemma 3]). In addition, as seen from (3.4), iteration and operation
226 complexity of the Newton-CG method in [56] depend cubically on L%;. Notice that L
227 can sometimes be very large. For example, the AL subproblems arising in Algorithm 4.1
228 have LE = O(e7?) or O(e; '), where €; € (0,1) is a prescribed tolerance for problem
229 (1.1) (see Section 4). The cubic dependence on LE makes such a Newton-CG method
230 mnot appealing as an AL subproblem solver from theoretical complexity perspective.
231 In the rest of this section, we propose a variant of the Newton-CG method [56,
232 Algorithm 3] and show that under Assumption 3.1, it enjoys an iteration and operation
233 complexity of

234 (3.5) O((L§)2max{e;26H, €7 }) and @((L§)2max{eg_26H, e ymin{n, (U} Jexr)V/?}),

235 for finding a stochastic (eg, €7)-SOSP of problem (3.1), respectively. These complexities
236 are substantially superior to those in (3.4) achieved by the Newton-CG method in
237 [56]. Indeed, the complexities in (3.5) depend quadratically on L%, while those in
238 (3.4) depend cubically on Lf. In addition, it can be verified that they improve or
239 retain the order of dependence on ¢, and ey given in (3.4).

240 3.1. Main components of a Newton-CG method. In this subsection we
241  briefly discuss two main components of the Newton-CG method in [56], which will be
242 used to propose a variant of this method for finding an approximate stochastic SOSP
243 of problem (3.1) in the next subsection.

244 The first main component of the Newton-CG method in [56] is a capped CG method
245  [56, Algorithm 1], which is a modified CG method, for solving a possibly indefinite
246 linear system

247 (3.6) (H +2el)d = —y,

248 where 0 # g € R", ¢ > 0, and H € R™™" is a symmetric matrix. This capped
249 CG method terminates within a finite number of iterations. It outputs either an
250 approximate solution d to (3.6) such that ||(H + 2¢I)d + g|| < (||g|| and d"Hd >
251 —é||d||? for some € (0,1) or a sufficiently negative curvature direction d of H with
252 dTHd < —¢||d||?. The second main component of the Newton-CG method in [56] is

This manuscript is for review purposes only.
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a minimum eigenvalue oracle that either produces a sufficiently negative curvature
direction v of H with |lv|| = 1 and v Hv < —¢/2 or certifies that Ayin(H) > —¢
holds with high probability. For ease of reference, we present these two components in
Algorithms A.1 and B.1 in Appendices A and B, respectively.

Algorithm 3.1 A Newton-CG method for problem (3.1)

Input: Tolerances €4, ey € (0,1), backtracking ratio 6 € (0,1), starting point u®, CG-accuracy
parameter ¢ € (0,1), line-search parameter n € (0, 1), probability parameter § € (0, 1).
Set 20 = u0;
fort=0,1,2,... do
if |[VF(z!)|| > ¢g then
Call Algorithm A.1 with H = V2F(at), e = eg, g = VF(x?), accuracy parameter ¢, and
U = 0 to obtain outputs d, d_type;
if d_type=NC then

|dTV2F (at)d|

(3.7) dt + —sgn(dTVF(z!)) Tk ;

else {d_type=SOL}
(3.8) dt « d;

end if
Go to Line Search;
else

Call Algorithm B.1 with H = V2F(a!), ¢ = ey, and probability parameter §;

if Algorithm B.1 certifies that Apmin(VZF(2?)) > —eg then
Output z! and terminate;

else {Sufficiently negative curvature direction v returned by Algorithm B.1}
Set d_type=NC and

(3.9) dt — —sgn(wTVF (@) |wT V2 F (zt)vlv;
Go to Line Search,;
end if
end if
Line Search:

if d_type=SOL then
Find a+ = 07t where j; is the smallest nonnegative integer j such that

(3.10) F(at +07d") < F(a') — nep 0% dt %
else {d_type=NC}
Find ot = 67t, where j; is the smallest nonnegative integer j such that
(3.11) F(zt +67d) < F(z*) —no%7||d|)3/2;
end if
2t = ot + apdt
end for

3.2. A Newton-CG method for problem (3.1). In this subsection we propose
a Newton-CG method in Algorithm 3.1, which is a variant of the Newton-CG method
[56, Algorithm 3], for finding an approximate stochastic SOSP of problem (3.1).

Our Newton-CG method (Algorithm 3.1) follows the same framework as [56,
Algorithm 3]. In particular, at each iteration, if the gradient of F' at the current
iterate is not desirably small, then the capped CG method (Algorithm A.1) is called
to solve a damped Newton system for obtaining a descent direction and a subsequent
line search along this direction results in a sufficient reduction on F. Otherwise, the
current iterate is already an approximate first-order stationary point of (3.1), and the
minimum eigenvalue oracle (Algorithm B.1) is then called, which either produces a
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sufficiently negative curvature direction for F' and a subsequent line search along this
direction results in a sufficient reduction on F', or certifies that the current iterate is
an approximate SOSP of (3.1) with high probability and terminates the algorithm.
More details about this framework can be found in [56].

Despite sharing the same framework, our Newton-CG method and [56, Algorithm 3]
use different line search criteria. Indeed, our Newton-CG method uses a hybrid line
search criterion adopted from [59], which is a combination of the quadratic descent
criterion (3.10) and the cubic descent criterion (3.11). Specifically, it uses the quadratic
descent criterion (3.10) when the search direction is of type ‘SOL’. On the other hand,
it uses the cubic descent criterion (3.11) when the search direction is of type ‘NC’.3
In contrast, the Newton-CG method in [56] always uses a cubic descent criterion
regardless of the type of search directions. As observed from Theorem 3.2 below, our
Newton-CG method achieves an iteration and operation complexity given in (3.5),
which are superior to those in (3.4) achieved by [56, Algorithm 3] in terms of the order
dependence on Lfl, while improving or retaining the order of dependence on ¢, and
ex as given in (3.4). Consequently, our Newton-CG method is more appealing than
[56, Algorithm 3] as an AL subproblem solver for the AL method proposed in Section
4 from theoretical complexity perspective.

The following theorem states the iteration and operation complexity of Algo-
rithm 3.1, whose proof is deferred to Section 6.1.

THEOREM 3.2. Suppose that Assumption 3.1 holds. Let

(3.12) Ty := [MmaX{G;QEH, 6;13}—‘4—’7%6;13—‘ +1, Ty := [Me;ﬁ—‘ +1,

min{csol,Cne } Cnec

where Fi; = F(u"), Flow is given in (3.3), and

2 2
— : 4 min{6(1—n),2}0
(313) Csol -= nmll’l{ |:4+C+\/(4+C)2+8L€1} 5 |: Lfl :| } )
. 2
(314) Cnc = 1—7]6 min {1’ {%&W} } .

Then the following statements hold.
(i) The total number of calls of Algorithm B.1 in Algorithm 3.1 is at most Ts.
(ii) The total number of calls of Algorithm A.1 in Algorithm 3.1 is at most Tj.
(iii) (iteration complexity) Algorithm 3.1 terminates in at most Ty + Ty iterations
with
(3.15) Ty + Ty = O((Fui — Fow)(LE)? maX{€;2€H,6;13}).

Also, its output z* satisfies ||VF (z?)|| <€, deterministically and Amin(V>F (21))
> —epg with probability at least 1 — & for some 0 <t < Ty 4+ T5.
(iv) (operation complexity) Algorithm 3.1 requires at most

O((Fhi = Fiow)(Lfy)* max{e, *exr, e’} min{n, (U /en)"/*})
matriz-vector products, where UL is given in (3.3).

4. A Newton-CG based AL method for problem (1.1). In this section we
propose a Newton-CG based AL method for finding a stochastic (€1, €2)-SOSP of
problem (1.1) for any prescribed tolerances €1, e € (0,1). Before proceeding, we make
some additional assumptions on problem (1.1).

3SOL and NC stand for “approximate solution” and “negative curvature”, respectively.
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Assumption 4.1. (a) An € /2-approximately feasible point z., of problem (1.1),
namely satisfying ||¢(z, )| < €1/2, is known.
There exist constants fyi, flow and v > 0, independent of €; and €5, such that

(4.1) f(ze1) < fui,
(4.2) f@) +lle@)?/2 > fiow, Yz €R",

where z, is given in (a).
There exist some ¢y, d. > 0 such that the set

(4.3) S(05,0c) == A : f(x) < fui + 05, [le(z)| <1+ 6c}

is compact with fi,; given above. Also, V2f and V%;, i = 1,2,...,m, are Lipschitz
continuous in a convex open neighborhood, denoted by Q(é¢,d.), of S(dy,d.).

We now make some remarks on Assumption 4.1.

Remark 4.2. (i) A very similar assumption as Assumption 4.1(a) was con-

sidered in [31, 37, 49, 60]. By imposing Assumption 4.1(a), we restrict our
study on problem (1.1) for which an € /2-approximately feasible point z,
can be found by an inexpensive procedure. One example of such problem
instances arises when there exists v° such that {x : |[c(2)|| < ||c(®®)||} is
compact, V2¢;, 1 <14 < m, is Lipschitz continuous on a convex neighborhood
of this set, and the LICQ holds on this set. Indeed, for this instance, a point
Z¢, satisfying ||c(z, )| < €1/2 can be computed by applying our Newton-CG
method (Algorithm 3.1) to the problem min,egn |[c()]|?. As seen from Theo-
rem 3.2, the resulting iteration and operation complexity of Algorithm 3.1 for
finding such z., are respectively 0(6;3/2) and 6(6;3/2 min{n, 6;1/4}), which
are negligible compared with those of our AL method (see Theorems 4.10 and
4.14 below). As another example, when the standard error bound condition
lle(@)||? = O(|[V(lle(z)||?)]|*) holds on a level set of ||c(x)|| for some v > 0,
one can find the above z., by applying a gradient method to the problem
mingegrn [[¢(z)]|? (e.g., see [46, 58]). In addition, the Newton-CG based AL
method (Algorithm 4.1) proposed below is a second-order method with the
aim to find a second-order stationary point. It is more expensive than a
first-order method in general. To make best use of such an AL method in
practice, it is natural to run a first-order method in advance to obtain an
€1/2-first-order stationary point z., and then run the AL method using z., as
an €1 /2-approximately feasible point. Therefore, Assumption 4.1(a) is met
in practice, provided that an e /2-first-order stationary point of (1.1) can be
found by a first-order method.

Assumption 4.1(b) is mild. In particular, the assumption in (4.1) holds
if f(z) < fui holds for all z with |e(z)|] < 1, which is imposed in [60,
Assumption 3]. It also holds if problem (1.1) has a known feasible point,
which is often imposed for designing AL methods for nonconvex constrained
optimization (e.g., see [49, 31, 48, 37]). Besides, the assumption in (4.2) implies
that the quadratic penalty function is bounded below when the associated
penalty parameter is sufficiently large, which is typically used in the study
of quadratic penalty and AL methods for solving problem (1.1) (e.g., see
[40, 37, 60, 43]). Clearly, when inf,cg~ f(x) > —o0, one can see that (4.2)
holds for any v > 0. In general, one possible approach to identifying ~ is to
apply the techniques on infeasibility detection developed in the literature (e.g.,
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[20, 19, 6]) to check the infeasibility of the level set {z : f(z) + ~|lc(z)]|?/2 <
flow} for some sufficiently small flow. Note that this level set being infeasible
for some flow implies that (4.2) holds for the given v and fiow = ,flow«

(ili) Assumption 4.1(c) is not too restrictive. Indeed, the set S(d¢,d.) is compact
if f or f(-) + vlle(-)||?/2 is level-bounded. The latter level-boundedness
assumption is commonly imposed for studying AL methods (e.g., see [37, 60]),
which is stronger than our assumption.

We next propose a Newton-CG based AL method in Algorithm 4.1 for finding a
stochastic (€1, €2)-SOSP of problem (1.1) under Assumption 4.1. Instead of solving
(1.1) directly, this method solves the perturbed problem:

(4.4) ;161%3 () s.t. é(z) :=c(x) — c(ze) =0,

where z, is given in Assumption 4.1(a). Specifically, at the kth iteration, this method
applies the Newton-CG method (Algorithm 3.1) to find an approximate stochastic
SOSP z**! of the AL subproblem associated with (4.4):

(4.5) min {£(, NF,pr) = f(@) + (W) Te(x) + pille()||? /2}

such that £(zF+t1, AF; p,) is below a threshold (see (4.6) and (4.7)), where A* is a
truncated Lagrangian multiplier, i.e., the one that results from projecting the standard
multiplier estimate A* onto an Euclidean ball (see step 6 of Algorithm 4.1). The
standard multiplier estimate A**! is then updated by the classical scheme described
in step 4 of Algorithm 4.1. Finally, the penalty parameter pyy1 is adaptively updated
based on the improvement on constraint violation (see step 7 of Algorithm 4.1). Such
a practical update scheme is often adopted in the literature (e.g., see [7, 2, 31]).

We would like to point out that the truncated Lagrangian multiplier sequence {\*}
is used in the AL subproblems of Algorithm 4.1 and is bounded, while the standard
Lagrangian multiplier sequence {\*} is used in those of the classical AL methods
and can be unbounded. Therefore, Algorithm 4.1 can be viewed as a safeguarded
AL method. Truncated Lagrangian multipliers have been used in the literature for
designing some AL methods [2, 11, 42, 13], and will play a crucial role in the subsequent
complexity analysis of Algorithm 4.1.

Remark 4.3. (i) Notice that the starting point 20, of Algorithm 4.1 can
be different from z., and it may be rather infeasible, though z., is a nearly
feasible point of (1.1). Besides, z., is used to ensure convergence of Algorithm
4.1. Specifically, if the algorithm runs into a “poorly infeasible point” z",
namely satisfying £(x*, \¥; pr) > f(z,), it will be superseded by z, (see
(4.8)), which prevents the iterates {x*} from converging to an infeasible point.
Yet, ¥ may be rather infeasible when k is not large. Thus, Algorithm 4.1
substantially differs from a funneling or two-phase type algorithm, in which a
nearly feasible point is found in Phase 1, and then approximate stationarity
is sought while near feasibility is maintained throughout Phase 2 (e.g., see
[9, 16, 26, 27, 28, 29, 30, 36]).

(ii) The choice of pg in Algorithm 4.1 is mainly for the simplicity of complexity
analysis. Yet, it may be overly large and lead to highly ill-conditioned AL
subproblems in practice. To make Algorithm 4.1 practically more efficient, one
can possibly modify it by choosing a relatively small initial penalty parameter,
then solving the subsequent AL subproblems by a first-order method until an
€1-first-order stationary point & of (1.1) along with a Lagrangian multiplier A

This manuscript is for review purposes only.
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Algorithm 4.1 A Newton-CG based AL method for problem (1.1)
Let v be given in Assumption 4.1.
Input: e1,e2 € (0,1), A >0, 2° € R, \° € Ba, po > 27, a € (0,1), r > 1,5 € (0,1), and 2,
given in Assumption 4.1.
1: Set k= 0.
2: Set 77 = max{er, 7198 1/1°82} and 7 = max{e,, r*'o8 2/ 1082}
3: Call Algorithm 3.1 with e = 77, ey = 7 and u® = zF;, to find an approximate solution

2%t to mingepn Z(m, \¥; pr) such that
(46)  E@L N o) < f(za), VLGN ol < 77,
(4.7 Amin (V2o L(FT1 N pr)) > =7 with probability at least 1 — 6,
where
(4.8) .CL‘k _ Zey if Z(l’ka)\k;ﬂ)k) > f(Z€1)7 for k > 0.
it z*  otherwise, =

: Set AFFL = 2\ 4 pra(ah ).

If ¢ < e, 7 < e and |le(z")|| < e, then output (2", A¥*1) and terminate.
Set AFFL =115, (AF+1).

c Ifk=0or ||&@")|| > alléz®)]], set prr1 = rpx. Otherwise, set pri1 = pr.

: Set k< k+ 1, and go to step 2.

® N> g

is found, and finally performing the steps described in Algorithm 4.1 but with
20 =3 and \° =1Ip, (N).

Before analyzing the complexity of Algorithm 4.1, we first argue that it is well-
defined if pg is suitably chosen. Specifically, we will show that when pq is sufficiently
large, one can apply the Newton-CG method (Algorithm 3.1) to the AL subproblem
mingern L(x, AF; py,) with xf .. as the initial point to find an z¥*! satisfying (4.6) and
(4.7). To this end, we start by noting from (4.1), (4.4), (4.5) and (4.8) that

(49) Z:(‘Tiknitv Ak;pk) < max{Z(zel,)\k;pk), f(zm)} = f(zél) < fhi~

Based on the above observation, we show in the next lemma that when py is sufficiently
large, L£(-, \¥; px) is bounded below and its certain level set is bounded, whose proof is
deferred to Section 6.2.

LEMMA 4.4. Suppose that Assumption 4.1 holds. Let (\*, py,) be generated at the
kth iteration of Algorithm 4.1 for some k > 0, and S(8¢,6.) and z£, be defined in

(4.3) and (4.8), respectively, and let fui, fiow, 05 and d. be given in Assumption 4.1.
Suppose that po is sufficiently large such that 051 < 05 and 6.1 < 6., where

2 i— ow 2
(4.10) Op.1 = A2/(2p0) and 0c. = \/ (fhpofl27+7) . (po£2w)2 . poﬁm'

Then the following statements hold.
(i) {1 L, N5 ) < L(ale, N5 o)} € S(7.00)-
(ii) infrern £(z, A¥; pi) = fiow — 7 — Ade.
Using Lemma 4.4, we can verify that the Newton-CG method (Algorithm 3.1),
starting with u® = ¥ . . is capable of finding an approximate solution z**! of the

init> °
AL subproblem mingcgn L(z, \*; pi.) satisfying (4.6) and (4.7). Indeed, let F(:) =
L(-,\¥: pr) and u® = 2F ... By these and Lemma 4.4, one can see that {z : F(z) <

F(u®)} € 8(0y,d.). It then follows from this and Assumption 4.1(c) that the level set

This manuscript is for review purposes only.
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{z : F(z) < F(u®)} is compact and V2F is Lipschitz continuous on a convex open
neighborhood of {z : F(z) < F(u°)}. Thus, such F and u° satisfy Assumption 3.1.
Based on this and the discussion in Section 3, one can conclude that Algorithm 3.1,
starting with u°® = xiknit, is applicable to the AL subproblem mingegr» £(z, \¥; pg).
Moreover, it follows from Theorem 3.2 that this algorithm with (eg, ex) = (17, 7f7)
can produce a point z¥*1 satisfying (4.7) and also the second relation in (4.6). In
addition, since this algorithm is descent and its starting point is aF ., its output x**1
must satisfy £(zFt1,\F; pp) < Z(ac{“nit,)\k;pk)7 which along with (4.9) implies that
L(z*1 \F; p) < f(ze,) and thus z*+! also satisfies the first relation in (4.6).

The above discussion leads to the following conclusion concerning the well-

definedness of Algorithm 4.1.

THEOREM 4.5. Under the same settings as in Lemma 4.4, the Newton-CG method
(Algorithm 38.1) applied to the AL subproblem mingern L£(z,\¥; pr) with u® = zF
finds a point x*+1 satisfying (4.6) and (4.7).

The following theorem characterizes the output of Algorithm 4.1. Its proof is
deferred to Section 6.2.

THEOREM 4.6. Suppose that Assumption 4.1 holds and that py is sufficiently large
such that §¢1 < 6¢ and 0.1 < O, where 051 and 0.1 are defined in (4.10). If Algorithm
4.1 terminates at some iteration k, then x*t1 is a deterministic e,-FOSP of problem
(1.1), and moreover, it is an (€1, €2)-SOSP of (1.1) with probability at least 1 — 6.

Remark 4.7. As seen from this theorem, the output of Algorithm 4.1 is a stochastic
(€1, €2)-SOSP of problem (1.1). Nevertheless, one can easily modify Algorithm 4.1
to seek some other approximate solutions. For example, if one is only interested in
finding an €;-FOSP of (1.1), one can remove the condition (4.7) from Algorithm 4.1.
In addition, if one aims to find a deterministic (€1, €2)-SOSP of (1.1), one can replace
the condition (4.7) and Algorithm 3.1 by Amin(V2,L(zFt1, AF: pp)) > —7F and a
deterministic counterpart, respectively. The purpose of imposing high probability in
the condition (4.7) is to enable us to derive operation complexity of Algorithm 4.1
measured by the number of matrix-vector products.

In the rest of this section, we study the worst-case complexity of Algorithm 4.1.
Since our method has two nested loops, particularly, outer loops executed by the
AL method and inner loops executed by the Newton-CG method for solving the AL
subproblems, we consider the following measures of complexity for Algorithm 4.1.

o Quter iteration complexity, which measures the number of outer iterations of
Algorithm 4.1;

e Total inner iteration complezity, which measures the total number of iterations
of the Newton-CG method that are performed in Algorithm 4.1;

e Operation complexity, which measures the total number of matrix-vector
products involving the Hessian of the augmented Lagrangian function that
are evaluated in Algorithm 4.1.

4.1. Outer iteration complexity of Algorithm 4.1. In this subsection we

establish outer iteration complexity of Algorithm 4.1. For notational convenience, we

rewrite (77, TkH) arising in Algorithm 4.1 as

(4.11) (T,f,T,fl):(max{el,wf},max{eg,wg}) with (wl,wg):z(rlogel/logZ,T10g52/1°g2),

where €1, € and r are the input parameters of Algorithm 4.1. Since r > 1 and
€1,€2 € (0,1), it is not hard to verify that wy,ws € (0,1). Also, we introduce the
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following quantity that will be used frequently later:
(4.12) K., = [min{k > 0:w} < e1}] = [loger/logwi].
In view of (4.11), (4.12) and the fact that

(4.13) loger/logwy =logea/logws = log2/logr,

we see that (17,77) = (e1,€2) for all k > K,,. This along with the termination

criterion of Algorithm 4.1 implies that it runs for at least K, iterations and terminates
once ||c(z**1)|| < € for some k > K.,. As a result, to establish outer iteration
complexity of Algorithm 4.1, it suffices to bound such k. The resulting outer iteration
complexity of Algorithm 4.1 is presented below, whose proof is deferred to Section 6.2.

THEOREM 4.8. Suppose that Assumption 4.1 holds and that pg is sufficiently large
such that §;1 < 0y and §.1 < d., where §71 and d.1 are defined in (4.10). Let

(4.14) Pey 1= max {8(fui — flow + V)€1 >+ 4Aer "+ 27,20},
(4.15) K, :=inf{k> K., : |c(z")| <el,

where K, is defined in (4.12), and 7, fni and fiow are given in Assumption 4.1. Then
K., is finite, and Algorithm 4.1 terminates at iteration K., with

(4.16) K., < (M + 1) ( M’ +2) +1.

logr log

Moreover, pr, < 1pe, holds for 0 < k < Fel

Remark 4.9 (Upper bounds for K., and {p;}). As observed from Theorem
4.8, the number of outer iterations of Algorithm 4.1 for finding a stochastic (e, €2)-
SOSP of problem (1.1) is K., + 1, which is at most of O(|loge;|?). In addition, the
penalty parameters {p;} generated in this algorithm are at most of O(e; ?).

4.2. Total inner iteration and operation complexity of Algorithm 4.1.
We present the total inner iteration and operation complexity of Algorithm 4.1 for
finding a stochastic (1, €2)-SOSP of (1.1), whose proof is deferred to Section 6.2.

THEOREM 4.10. Suppose that Assumption 4.1 holds and that po is sufficiently
large such that 6§71 < 05 and 6.1 < d., where 6¢1 and .1 are defined in (4.10). Then
the following statements hold.

(i) The total number of iterations of Algorithm 3.1 performed in Algorithm 4.1 is at
most O(e7 max{ey%es,¢5°}). If ¢ is further assumed to be affine, then it is at
most @(max{el_zq, e °)).

(ii) The total number of matriz-vector products performed by Algorithm 3.1 in Al-
gorithm 4.1 is at most O(e; * max{e} %€z, ¢; >} min{n, eflegl/Q}). If ¢ is further
assumed to be affine, then it is at most O(max{e] 2e2,e; °} min{n, ef16;1/2}).

Remark 4.11. (i) Note that the above complexity results of Algorithm 4.1 are

established without assuming any constraint qualification (CQ). In contrast,
similar complexity results are obtained in [60] for a proximal AL method under
a generalized LICQ condition. To the best of our knowledge, our work provides
the first study on complexity for finding a stochastic SOSP of (1.1) without CQ.

(ii) Letting (€1, €2) = (€,1/€) for some € € (0,1), we see that Algorithm 4.1 achieves
a total inner iteration complexity of O(e~11/2) and an operation complexity of
O(e /2 min{n, e~5/4}) for finding a stochastic (e, /¢)-SOSP of problem (1.1)
without constraint qualification.

This manuscript is for review purposes only.
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4.3. Enhanced complexity of Algorithm 4.1 under constraint qualifica-
tion. In this subsection we study complexity of Algorithm 4.1 under one additional
assumption that a generalized linear independence constraint qualification (GLICQ)
holds for problem (1.1), which is introduced below. In particular, under GLICQ we
will obtain an enhanced total inner iteration and operation complexity for Algorithm
4.1, which are significantly better than the ones in Theorem 4.10 when problem (1.1)
has nonlinear constraints. Moreover, when (€1, €2) = (€, /€) for some € € (0, 1), our
enhanced complexity bounds are also better than those obtained in [60] for a proximal
AL method. We now introduce the GLICQ assumption for problem (1.1).

Assumption 4.12 (GLICQ). Vc(z) has full column rank for all z € S(é¢,d.),
where S(0y,0.) is as in (4.3).

Remark 4.13. A related yet different GLICQ is imposed in [60, Assumption 2(ii)]
for problem (1.1), which assumes that V¢(z) has full column rank for all z in a level
set of f(-) + v|lc(-)||?/2. It is not hard to verify that this assumption is generally
stronger than the above GLICQ assumption.

The following theorem shows that under Assumption 4.12, the total inner iteration
and operation complexity results presented in Theorem 4.10 can be significantly
improved, whose proof is deferred to Section 6.2.

THEOREM 4.14. Suppose that Assumptions 4.1 and 4.12 hold and that pqo is suffi-
ciently large such that 651 < 6y and 6.1 < ., where 671 and .1 are defined in (4.10).
Then the following statements hold.

(i) The total number of iterations of Algorithm 3.1 performed in Algorithm 4.1 is at
most 6(6;2 max{e; %€z, €5 °}). If ¢ is further assumed to be affine, then it is at
most O(max{e; %z, e5°}).

(ii) The total number of matriz-vector products performed by Algorithm 3.1 in Algo-

1/262_1/2}). If ¢ is further
1/26271/2})'

rithm 4.1 is at most (5(61_2 max{e; 2eq, €, %} min{n, €;
assumed to be affine, then it is at most O(max{e %€z, 5 >} min{n, e

Remark 4.15. (i) As seen from Theorem 4.14, when problem (1.1) has nonlinear
constraints, under GLICQ and some other suitable assumptions, Algorithm 4.1
achieves significantly better complexity bounds than the ones in Theorem 4.10
without constraint qualification.

(i) Letting (e1,€2) = (€, /€) for some € € (0,1), we see that when problem (1.1)
has nonlinear constraints, under GLICQ and some other suitable assumptions,
Algorithm 4.1 achieves a total inner iteration complexity of O(e~7/?) and an
operation complexity of 6(6_7/2 min{n, 6_3/4}). They are vastly better than the
total inner iteration complexity of (5(6_11/ 2) and the operation complexity of
O(e~11/2 min{n, e~3/4}) that are achieved by a proximal AL method in [60] for
finding a stochastic (e, 1/€)-SOSP of (1.1) yet under a generally stronger GLICQ.

5. Numerical results. We conduct some preliminary experiments to test the
performance of our proposed methods (Algorithms 3.1 and 4.1), and compare them
with the Newton-CG method in [56] and the proximal AL method in [60], respectively.
All the algorithms are coded in Matlab and all the computations are performed on a
desktop with a 3.79 GHz AMD 3900XT 12-Core processor and 32 GB of RAM.

5.1. Regularized robust regression. In this subsection we consider the regu-
larized robust regression problem

(5.1) mingegn Y imq (ai @ — bi) + plll3,
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Objective value Iterations CPU time (seconds)
n m I Algorithm 1 Newton-CG Algorithm 1 Newton-CG Algorithm 1 Newton-CG
100 10 1 5.9 5.9 85.7 116.3 1.4 1.6
100 50 1 45.9 45.9 82.6 158.2 1.0 2.7
100 90 1 84.8 84.8 102.2 224.7 2.0 4.2
500 50 5 42.2 42.5 173.1 344.7 44.2 72.2
500 250 5 243.0 242.9 145.5 362.4 41.9 95.0
500 450 5 442.2 442.2 163.7 425.2 47.6 138.3
1000 100 10 90.1 90.4 162.5 361.0 110.8 259.0
1000 500 10 491.1 491.2 158.3 475.4 129.1 558.4
1000 900 10 891.1 891.1 193.5 300.7 187.0 298.5
TABLE 2

Numerical results for problem (5.1)

where ¢(t) = t2/(1+t2), ||z|, = (1, |zi[P)'/? for any p > 1, and p > 0.

For each triple (n,m, 1), we randomly generate 10 instances of problem (5.1). In
particular, we first randomly generate a;, 1 < ¢ < m, with all the entries independently
chosen from the standard normal distribution. We then randomly generate b; according
to the standard normal distribution and set b; = 2mb; for i =1,...,m.

Our aim is to find a (107°,107°/2)-SOSP of (5.1) for the above instances by
Algorithm 3.1 and the Newton-CG method in [56] and compare their performance. For a
fair comparison, we use a minimum eigenvalue oracle that returns a deterministic output
for them so that they both certainly output an approximate second-order stationary
point. Specifically, we use the Matlab subroutine [v,A\] = eigs(H,1,’smallestreal’) as the
minimum eigenvalue oracle to find the minimum eigenvalue A\ and its associated unit
eigenvector v of a real symmetric matrix H. Also, for both methods, we choose the
all-ones vector as the initial point, and set # = 0.8, ( = 0.5, and n = 0.2.

The computational results of Algorithm 3.1 and the Newton-CG method in [56]
for the instances randomly generated above are presented in Table 2. In detail, the
value of n, m, and p is listed in the first three columns, respectively. For each triple
(n,m, p), the average CPU time (in seconds), the average number of iterations, and
the average final objective value over 10 random instances are given in the rest of
the columns. One can observe that both methods output an approximate solution
with a similar objective value, while our Algorithm 3.1 substantially outperforms
the Newton-CG method in [56] in terms of CPU time. This is consistent with our
theoretical finding that Algorithm 3.1 achieves a better iteration complexity than the
Newton-CG method in [56] in terms of dependence on the Lipschitz constant of the
Hessian for finding an approximate SOSP.

5.2. Spherically constrained regularized robust regression. In subsection
we consider the spherically constrained regularized robust regression problem

(5:2) mingepn 350 d(af w —bi) +pllalli st [l2llf =1,

where ¢(t) = t2/(1 + ), |z|p, = (X1, |:|P)Y/P for any p > 1, and p > 0 is a
tuning parameter. For each triple (n,m, u), we randomly generate 10 instances of
problem (5.2) in the same manner as described in Subsection 5.1.

Our aim is to find a (107%,1072)-SOSP of (5.2) for the above instances by
Algorithm 4.1 and the proximal AL method [60, Algorithm 3] and compare their
performance. For a fair comparison, we use a minimum eigenvalue oracle that returns
a deterministic output for them so that they both certainly output an approximate
second-order stationary point. Specifically, we use the Matlab subroutine [v,\] =
eigs(H,1, smallestreal’) as the minimum eigenvalue oracle to find the minimum eigenvalue
A and its associated unit eigenvector v of a real symmetric matrix H. In addition,
for both methods, we choose the initial point as 20 = (1/y/n, ..., 1/y/n)T, the initial
Lagrangian multiplier as A° = 0, and the other parameters as
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Objective value Feasibility violation (x 10 %) Total inner iterations CPU time (seconds)
n m “w Algorithm 2 Prox-AL Algorithm 2 Prox-AL Algorithm 2 Prox-AL Algorithm 2 Prox-AL
100 10 1 7.1 7.1 0.18 0.27 40.9 97.3 0.73 2.2
100 50 1 46.6 46.6 0.21 0.30 37.0 86.3 0.78 1.7
100 90 1 87.0 87.0 0.12 0.40 39.5 68.6 1.1 1.9
500 50 5 44.4 44.4 0.40 0.68 59.0 343.4 11.4 134.9
500 250 5 244.3 244.3 0.37 0.47 59.0 543.3 11.7 178.2
500 450 5 444.0 444.0 0.27 0.53 66.7 634.1 17.1 158.2
1000 100 10 92.8 92.8 0.28 0.42 95.0 2054.6 46.3 1516.8
1000 500 10 491.9 491.9 0.22 0.72 68.3 756.2 39.5 558.6
1000 900 10 893.4 893.4 0.19 0.37 81.8 1281.4 57.7 1099.6
TABLE 3

Numerical results for problem (5.2)

e A =100, pg =10, @ = 0.25, and r = 10 for Algorithm 4.1;
e n=1,¢=10 and Ty = 2 for the proximal AL method ([60]).
The computational results of Algorithm 4.1 and the proximal AL method in

[60] (abbreviated as Prox-AL) for solving problem (5.2) for the instances randomly
generated above are presented in Table 3. In detail, the value of n, m, and u is listed
in the first three columns, respectively. For each triple (n, m, 1), the average CPU time
(in seconds), the average total number of inner iterations, the average final objective
value, and the average final feasibility violation over 10 random instances are given
in the rest columns. One can observe that both methods output an approximate
solution of similar quality in terms of objective value and feasibility violation, while
our Algorithm 4.1 vastly outperforms the proximal AL method in [60] in terms of
CPU time. This corroborates our theoretical finding that Algorithm 4.1 achieves a
significantly better operation complexity than the proximal AL method in [60] for
finding an approximate SOSP.

6. Proof of the main results. We provide proofs of our main results in Sections
3 and 4, including Theorem 3.2, Lemma 4.4, and Theorems 4.6, 4.8, 4.10 and 4.14.

6.1. Proof of the main results in Section 3. In this subsection we first
establish several technical lemmas and then use them to prove Theorem 3.2.
One can observe from Assumption 3.1(b) that for all  and y € Q,

(6.1)[[VF(y) = VF(x) = V2F(2)(y — )|l < Lizlly — =[*/2,
(6.2) F(y) < F(x) + VF(@)"(y —a) + (y — )" V2F(2)(y — ) /2 + Lilly — =[*/6.

The next lemma provides useful properties of the output of Algorithm A.1, whose

proof is similar to the ones in [56, Lemma 3] and [54, Lemma 7] and thus omitted here.

LEMMA 6.1. Suppose that Assumption 3.1 holds and the direction d* results from
the output d of Algorithm A.1 with a type specified in d_type at some iteration t of
Algorithm 3.1. Then the following statements hold.

(i) If d_type=SOL, then d' satisfies
en[|d')? < (d) (V2F(2") + 2ep1) d*
]| < L.1eg [VE()],
(d)TVF(z') = —(d")T (V2F (') + 2ex1) d',
t

3)
)
)
) I(V2F(a") + 2epD)d" + VF(a")|| < enC|ld"]/2.

(6.
(6.
(6.
(6.

(i) If d_type=NC, then d' satisfies (d")TVF(x!) <0 and
(6.7) (d)"V2F(h)d /|| d')]* = =l d*|| < —emr.
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629
630
631
632
633
634
635

636

637

638

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

655

656

657
658
659

660

661

662

663

664

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 17

The next lemma shows that when the search direction d* in Algorithm 3.1 is of
type ‘SOL’, the line search step results in a sufficient reduction on F'.

LEMMA 6.2. Suppose that Assumption 3.1 holds and the direction db results from
the output d of Algorithm A.1 with d_type=SOL at some iteration t of Algorithm 3.1.
Let U; and cso1 be given in (3.3) and (3.13), respectively. Then the following statements
hold.
(i) The step length oy is well-defined, and moreover,

(6.8) o Zmin{l,,/%ﬂﬁ@e;[}.

ii e next iterate x't1 = a2t + q,d? satisfies
ii) Th t iterate o't = dt sati
(6.9) F(z') — F(xtH) > Cool min{||VF(xt+1)H26;11, e?jq}

Proof. One can observe that F' is descent along the iterates (whenever well-defined)
generated by Algorithm 3.1, which together with 2% = u" implies that F(a?) < F(u)
and hence |[VF(z")|| < U due to (3.3). In addition, since d" results from the output
d of Algorithm A.1 with d_type=SOL, one can see that |VF(z')| > ¢, and (6.3)-(6.6)
hold for d*. Moreover, by |[VF(z')| > ¢, and (6.6), one can conclude that d* # 0.

We first prove statement (i). If (3.10) holds for j = 0, then o = 1, which clearly
implies that (6.8) holds. We now suppose that (3.10) fails for j = 0. Claim that for
all j > 0 that violate (3.10), it holds that

(6.10) 6% > min{6(1 — 1), 2}en (Lf) " d|| 7.

Indeed, suppose that (3.10) is violated by some j > 0. We now show that (6.10) holds
for such j by considering two separate cases below.

Case 1) F(a! + 67d") > F(a'). Let ¢(a) = F(z! + ad'). Then ¢(67) > ¢(0). Also,
since d' # 0, by (6.3) and (6.5), one has ¢/(0) = VF(z*)Td* = —(d")T(V2F(z*) +
2el)dt < —epl|d||> < 0. Using these, we can observe that there exists a local
minimizer o € (0,67) of ¢ such that ¢ (a*) = VF(z'+a*d)Td" = 0 and ¢(a*) < ¢(0),
which implies that F (2! + a*d') < F(a?) < F(u®). Hence, (6.1) holds for x = ' and
y =2’ + a*d'. Using this, 0 < a* < 9 < 1 and VF(z' + a*d')Td" = 0, we obtain

. (6.1)
CgE S [V E (2! + o*d) — V(') —a*V2F ()|
> (dHT(VF (2t + a*d') — VF(2!) — a*V2F(2')d?)
= —(d)TVF(a!) — a*(d")TV2F (2t)d!
" (1= a*) (@) T (V2F () + 2epD)d" + 20| d" |2

6.3
> (1+a%)enlld'|® = eplld'||?,

o
S

(

which along with d’ # 0 implies that (a*)? > 2ey(LE)Y|d"||~t. Using this and
67 > o*, we conclude that (6.10) holds in this case.
Case 2) F(z! + 67d') < F(z!). This together with F(z!) < F(u°) implies that

(6.2) holds for z = 2! and y = x' + 6d’. Then, because j violates (3.10), we obtain

—negt?||dt||?* < F(zt + 67d") — F(at)

(6'2)j T gt 4 0% ( gt\Tvr2 t\at o LI 35 7t(|3

< OIVE@)Td + B (@I F(at)dt + Lg% ||

O i (dt)T (V2P (at) + 2e1)d! + L (d)TV2F(at)d! + L6 | |?

Y (1 - %) (d)T(V2F(at) + 2epT)dt — 0% ey||dt|? + LiL6% |dt||?
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€3 07 t2 _ p2i t12 4 L g3 7t)3
< 00 (1= %) enlld|? — 0¥ el | + 6% ||

. F 3
(6.11) < —ep|d!|* + 50% "]

Recall that d' # 0. Dividing both sides of (6.11) by L£67||d"||*/6 and using 7,6 € (0, 1),
we obtain that 627 > 6(1 — 67n)ey (LE) 7 ||d?|| 7t > 6(1 — n)en (LE)7|d!|| L. Hence,
(6.10) also holds in this case.

Combining the above two cases, we conclude that (6.10) holds for any j > 0 that
violates (3.10). By this and 6 € (0,1), one can see that all j > 0 that violate (3.10)
must be bounded above. It then follows that the step length «; associated with (3.10)
is well-defined. We next prove (6.8). Observe from the definition of j; in Algorithm 3.1
that j = j: — 1 violates (3.10) and hence (6.10) holds for j = j; — 1. Then, by (6.10)
with j = j; — 1 and o = 69¢, one has
(6.12) ap =07 > \/min{6(1 —n), 2}en (LE)~1 0||dt|| /2,
which, along with (6.4) and ||[VF(z")|| < UF, implies (6.8). This proves statement (i).

We next prove statement (ii) by considering two separate cases below.

Case 1) oy = 1. By this, one knows that (3.10) holds for j = 0. It then follows that
F(zt +d') < F(2') < F(u), which implies that (6.1) holds for z = 2! and y = 2! +d’.
By this and (6.6), one has

IVE@E[| = [VF@' +d)| < |VF(' +d") = VF(z') = V2F(2")d'|
+(V2F () + 2eg I)dt + VF(zb)|| + 2ep||d||

LF
S )? + St enlld]

IN

where the last inequality follows from (6.1) and (6.6). Solving the above inequality for
|dt|| and using the fact that ||d*|| > 0, we obtain that

— (4 Qen+1/(4+Q) 23, +8L [V F (21|

lld*l

v

2L
— 2.2 F 2
> S T in{ | VF () /. 1)
- 4+<+\/(4i<)2+8LF min{||VF (@ )||/en, en},
H

where the second inequality follows from the inequality —a + va? +bs > (—a +
Va2 + b)min{s, 1} for all a,b, s > 0, which can be verified by performing a rational-
ization to the terms —a + va? + b and —a + v a? + bs, respectively. By this, a; = 1,
(3.10) and (3.13), one can see that (6.9) holds.

Case 2) oy < 1. It then follows that j = 0 violates (3.10) and hence (6.10) holds
for j = 0. Now, letting j = 0 in (6.10), we obtain that ||d*|| > min{6(1 —n),2}ex /L%,
which together with (3.10) and (6.12) implies that

1 min — €2 min — 2
F(at) = Fat) 2 et a2 = 220002t > y [22lgitle [,
By this and (3.13), one can see that (6.9) also holds in this case. d

The following lemma shows that when the search direction d* in Algorithm 3.1 is
of type ‘NC’, the line search step results in a sufficient reduction on F' as well.

LEMMA 6.3. Suppose that Assumption 3.1 holds and the direction d' results from
either the output d of Algorithm A.1 with d_type=NC or the output v of Algorithm B.1
at some iteration t of Algorithm 3.1. Let ¢y be defined in (3.14). Then the following
statements hold.
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(i) The step length oy is well-defined, and oy > min{1,60/L%; 3(1 — n)@/LfI}
(ii) The next iterate '™ = x! + ad’ satisfies F(x') — F(ax'™1) > cpeed;.

Proof. Observe that F' is descent along the iterates (whenever well-defined) gen-
erated by Algorithm 3.1. Using this and 2° = u°, we have F(z') < F(u°). By the
assumption on df, one can see from Algorithm 3.1 that d' is a negative curvature direc-
tion given in (3.7) or (3.9). Also, notice that the vector v returned from Algorithm B.1
satisfies ||v|| = 1. By these, Lemma 6.1(ii), (3.7) and (3.9), one can observe that

(6.13) VFEHTd <0, (@)TV?F(z')d' = —|d'|® <o.

We first prove statement (i). If (3.11) holds for j = 0, then a; = 1, which clearly
implies that oy > min{1,0/L%;,3(1 — n)8/L%}. We now suppose that (3.11) fails for
j = 0. Claim that for all j > 0 that violate (3.11), it holds that

(6.14) 09 > min{1/L%,3(1 —n)/L5}.

Indeed, suppose that (3.11) is violated by some j > 0. We now show that (6.14) holds
for such j by considering two separate cases below.

Case 1) F(a! 4+ 07d') > F(z). Let ¢(a) = F(2' + ad'). Then ¢(67) > ¢(0).
Also, by (6.13), one has ¢/(0) = VF(2!)Td! < 0 and ¢”(0) = (d")TV2F(2!)d! < 0.
Using these, we can observe that there exists a local minimizer o* € (0,67) of
¢ such that ¢(a*) < ¢(0), namely, F(z! + a*d') < F(z!). By the second-order
optimality condition of ¢ at a*, one has ¢ (a*) = (d")TV2F(z* + a*d')d* > 0. Since
F(zt+a*d) < F(z') < F(u?), it follows that (3.2) holds for z = 2! and y = z® +a*d".
Using this, the second relation in (6.13) and (d')TV2F(z! + a*d*)d! > 0, we obtain
that

(3.2)
Lia®||ld'[]P > |d"|[V*F(a’ +a*d") — V2F(a")|
(6.15) > (d")T(V*F(a' + a*d") — V2F(z'))d" > —(d") ' V2F(z")d' = ||d*||®.

Recall from (6.13) that d* # 0. It then follows from (6.15) that o* > 1/L%;, which
along with 69 > o* implies that 7 > 1/LL. Hence, (6.14) holds in this case.

Case 2) F(xt + 07d') < F(z!). It follows from this and F(z') < F(u°) that (6.2)
holds for z = z! and y = a2 + 67d’. By this and the fact that j violates (3.11), one has

6.2 .
40P Fat + 09— F(at) © 91V F ()T d' 422 (d) TV F () S |
(6.13) 2j I . P
< =)+ Rl
which together with d' # 0 implies that 67 > 3(1 —n)/L%. Hence, (6.14) also holds in
this case.

Combining the above two cases, we conclude that (6.14) holds for any j > 0 that
violates (3.11). By this and 6 € (0,1), one can see that all j > 0 that violate (3.11)
must be bounded above. It then follows that the step length «; associated with (3.11)
is well-defined. We next derive a lower bound for a;. Notice from the definition of j; in
Algorithm 3.1 that j = j; —1 violates (3.11) and hence (6.14) holds for j = j; —1. Then,
by (6.14) with j = j, — 1 and oy = 6%, one has «; = 67¢ > min{6/L%;,3(1 —n)0/LE},
which immediately yields oy > min{1,60/L%, 3(1 —n)0/LE} as desired.

We next prove statement (ii) by considering two separate cases below.

Case 1) d? results from the output d of Algorithm A.1 with d_type=NC. It then
follows from (6.7) that ||d*|| > em. This together with (3.11) and statement (i) implies
that statement (ii) holds.
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Case 2) d! results from the output v of Algorithm B.1. Notice from Algorithm B.1
that ||v]| = 1 and vT'V2F(2')v < —ep /2, which along with (3.9) yields ||d*|| > e /2.
By this, (3.11) and statement (i), one can see that statement (ii) again holds. |

Proof of Theorem 3.2. For notational convenience, we let {x'};c1 denote all the
iterates generated by Algorithm 3.1, where T is a set of consecutive nonnegative
integers starting from 0. Notice that F' is descent along the iterates generated by
Algorithm 3.1, which together with 2° = u° implies that z' € {x : F(z) < F(u°)}. It
then follows from (3.3) that ||V2F(z?)|| < U% holds for all t € T.

(i) Suppose for contradiction that the total number of calls of Algorithm B.1
in Algorithm 3.1 is more than T5. Notice from Algorithm 3.1 and Lemma 6.3(ii)
that each of these calls, except the last one, returns a sufficiently negative curvature
direction, and each of them results in a reduction on F' of at least cnce?jq. Hence,
Tacnc€ly < > yenlF(2h) — F(2't)] < F(2°) — Flow = Fhi — Flow, which contradicts
the definition of T given in (3.12). Hence, statement (i) of Theorem 3.2 holds.

(ii) Suppose for contradiction that the total number of calls of Algorithm A.1
in Algorithm 3.1 is more than 77. Observe that if Algorithm A.1 is called at some
iteration ¢ and generates the next iterate x'™! satisfying |[VF(z!*1)|| < ¢,, then
Algorithm B.1 must be called at the next iteration ¢t 4+ 1. In view of this and statement
(i) of Theorem 3.2, we see that the total number of such iterations ¢ is at most T5.
Hence, the total number of iterations ¢ of Algorithm 3.1 at which Algorithm A.1
is called and generates the next iterate z'*! satisfying |[VF(z'™1)|| > ¢, is at least
Ty — T + 1. Moreover, for each of such iterations ¢, we observe from Lemmas 6.2(ii)
and 6.3(ii) that F(z') — F(z'*!) > min{csol, tnc} min{€2ey', €} }. It then follows that
(Ty —To + 1) min{csol,cnc}min{ege;{l,e%} < ZteT[F(ajt) — F(z"™)] < Fui — Fow,
which contradicts the definition of T} and T3 given in (3.12). Hence, statement (ii) of
Theorem 3.2 holds.

(iii) Notice that either Algorithm A.1 or B.1 is called at each iteration of Algo-
rithm 3.1. Tt follows from this and statements (i) and (ii) of Theorem 3.2 that the total
number of iterations of Algorithm 3.1 is at most 77 + 7. In addition, the relation
(3.15) follows from (3.13), (3.14) and (3.12). One can also observe that the output z*
of Algorithm 3.1 satisfies ||VF(2?)|| < ¢, deterministically and Apin(V2F(2?)) > —€pg
with probability at least 1 — § for some 0 <t < T3 4 Ty, where the latter part is due
to Algorithm B.1. This completes the proof of statement (ii) of Theorem 3.2.

(iv) By Theorem A.1 with (H, &) = (V2F(z!),ex) and the fact that ||[V2F(z!)| <
Ug, one can observe that the number of Hessian-vector products required by each call
of Algorithm A.1 with input U = 0 is at most O(min{n, (UL /ez)*/?}). In addition,
by Theorem B.1 with (H,e) = (V2F(2!),en), |[V2F(z!)| < UL, and the fact that
each iteration of the Lanczos method requires only one matrix-vector product, one
can observe that the number of Hessian-vector products required by each call of
Algorithm B.1 is also at most O(min{n, (U} /ex)'/?}). Based on these observations
and statement (iii) of Theorem 3.2, we see that statement (iv) of this theorem holds.O

6.2. Proof of the main results in Section 4. Recall from Assumption 4.1(a)
that ||c(ze, )| < €1/2 < 1. By virtue of this, (4.2) and the definition of ¢ in (4.4), we
obtain that

(6.16)  f(z) +7lle@)l® = f(z) +7lle@)I*/2 = vle(ze)I* = fiow =7, Yz €R™.
We now prove the following auxiliary lemma that will be used frequently later.

LEMMA 6.4. Suppose that Assumption 4.1 holds. Let v, fui and fiow be given in
Assumption 4.1. Assume that p > 2v, A € R™, and x € R" satisfy
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(6.17) L(z,X;p) < fui,

where L is defined in (4.5). Then the following statements hold.
(i) f( ) < fui HAP/(20).
(i) fle@)l < V20 i — fiow +7)/(p = 27) + N2/ (p = 27)2 + A/ (p — 27)-
(iii) pr > ||AI12/(20¢) for some &7 > 0, then f(z) < fui + 0y
) If

(iv

(6.18) P2 2(fui = fiow + 102 + 2 NI07 +2y
for some 8. > 0, then ||&(x)|| < d..
Proof. (i) It follows from (6.17) and the definition of £ in (4.5) that

i 2 f(@) + ATe(z) + BIE@I? = @) + § [[et@) + 3 - BE > o) - 3L

Hence, statement (i) holds.
(i ) In view of (6.16) and (6.17), one has

(6.17)

~ - - _ - 2 2
fui = @) +XTe(@)+ o) = £ ()+v||0(w)llz+%HC(x)er,*% -
(6.16) 2
PN i 2w _ Ml
Z fiow H = 2“/” 2(p—27)"

which implies that

p—2v p—27)%"

It then follows that H&(:z:) = 27

statement (ii) holds.
(iii) Statement (iii) immediately follows from statement (i) and p > ||A[|2/(20).
(iv) Suppose that (6.18) holds. Multiplying both sides of (6.18) by 62 and
rearranging the terms, we have (p — 27)62 — 2| A6 — 2(fui — fiow +7) > 0. Recall
that p > 2y and &, > 0. Solving this inequality for 4, yields

0c 2 V/2(fui = fiow +7)/(p = 27) + X2/ (p = 27)2 + |All/(p — 27),
which along with statement (ii) implies that ||é(z)| < d.. Hence, statement (iv) holds.0

Proof of Lemma 4.4. (i) Let « be any point such that E(:E ME: o) <£( zk AR k).

It then follows from (4.9) that £(z, \*; pp) < fui. By this, ||| < A, pr > po > 27,

§¢1 < 6f, 8eq < d., and Lemma 6.4 with (X, p) = (A¥, px), one has f(z) < fu +
INN2/(2pr) < fui + A2/ (2p0) = fui + 051 < fui + 05 and
~ 2(fhi = fiow+7) [AF2 A5l
le()ll < \/ : ]prl%/ =+ (p‘r2‘“f)2 + p‘k 2‘7

2(fni—frow+7) A2 _
< \/ Po—27y + (po—2v)? + pPo— 2’Y 50 1< 0.

H < (fhi*flowﬁ“/) + c [IA]2

(6.19)

Also, recall from the definition of ¢ in (4.4) and ||c(z¢,)|| < 1 that [[c(z)]| < 14 ||é(2)]].
This together with the above inequalities and (4.3) implies € S(d¢,0.). Hence,
statement (i) of Lemma 4.4 holds.

(ii) Note that xign]gnZ(w,)\k;pk):xieann{Z(m,/\k;pk) Lz, XF; pr) < L(xF 3, N5 pr) )

Consequently, to prove statement (ii) of Lemma 4.4, it suffices to show that
(620) infn{Z(x, )‘kapk) ‘C(I >‘ 7pk) < ‘C’( Linit s ’pk)} > flOW I Ade.

To this end, let z be any point satisfying £(x, \¥; pp) < L(zF;,, \F; pi). We then know
from (6.19) that ||é(z)|| < d.. By this, [|A¥|| < A, pr > 2v, and (6.16), one has
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L, N5 1) = f(@) +]e@)]? + () Te(@) + 252 |1&(x) |12
> f(x) +7lle@)]* = Alle(@) ]| > fiow — v — Ade,
and hence (6.20) holds as desired. |

Proof of Theorem 4.6. Suppose that Algorithm 4.1 terminates at some iteration
k, that is, 77 < €1, 7 < €g, and [c(zFt1)|| < €1 hold. Then, by 7¥ < e, A1 =
AE 4 pré(zF*1), Vé = Ve and the second relation in (4.6), one has ||V f(z**!) +
V(@A = ||V f (@5 1) 4 VEE ) AR+ pré(@h )| = [V L(aE T N8 pr )| <
77 < €1. Hence, (21, \FT1) satisfies the first relation in (2.4). In addition, by (4.7)
and 7 < €, one can show that Amin (V2, L(2*H1 XF; pr)) > —ey with probability
at least 1 — 8, which leads to dTV2, L(z*"1, A pp)d > —ey|d||? for all d € R™
with probability at least 1 — . Using this, A¥*1 = \F 4 ppé(z*t1), Vé = Ve, and
V2¢ = V3¢ for 1 <i < m, we see that with probability at least 1 — 4, it holds that
AT (V2 f(abH1) 4 307 M 2¢ (241 4 p Ve(a* ) Ve(ah 1) T)d > —ey|d|)? for all
d € R", which implies d”(V2f(z*+1) + 7 MNHI92¢,(2F41))d > —eq|d||? for all
d € C(z*t1), where C(-) is defined in (2.3). Hence, (zFt1, \¥+1) satisfies (2.5) with
probability at least 1 — §. Combining these with [c(z**1)|| < €;, we conclude that
2F*+1 is a deterministic ¢;-FOSP of (1.1) and an (ey, €2)-SOSP of (1.1) with probability
at least 1 — 0. Hence, Theorem 4.6 holds. 0

Proof of Theorem 4.8. Tt follows from (4.14) that p., > 2po. By this, one has

4.12 411
(6.21) K (12 [log €1/ logwi ] 4L Mog?2/logr] < log(pe,py’)/logr + 1.
Notice that {px} is either unchanged or increased by a ratio r as k increases. By this
fact and (6.21), we see that
(6.21)  log(pe; pp )

. < K. < Togr — T1,. — .
(6.22) I S U PO = TPey
In addition, notice that pj, > 27y and ||A\¥|| < A. Using these, (4.1), the first relation in
(4.6), and Lemma 6.4(ii) with (z, A, p) = (z¥T1, A\¥, p), we obtain that

k+1 2(fni— f10w+~/) lIA®]2 II/\ Il (fni—flow+7) A2 A
(6. 23)” c(x |<\/ pr—27 +(Pk 27)2 Pk 2y S\/ pr—27 (plr2'v)2+pzr2'v'

Also, we observe from ||c(z, )|l < €1/2 and the definition of ¢ in (4.4) that
(6.24) le(* DI < e I + lle(ze )l < Nl )| + e1/2.

We now prove that K, is finite. Suppose for contradiction that K., is infinite.
It then follows from this and (4.15) that ||c(z*T1)|| > ¢ for all K > K., which
along with (6.24) implies that [|&(x*1)|| > €;/2 for all k > K,,. It then follows that
()| > al|é(z*)|| must hold for infinitely many k’s. Using this and the update
scheme on {px}, we deduce that prr; = rpr holds for infinitely many k’s, which
together with the monotonicity of {px} implies that pr — oo as k — co. By this and
(6.23), one can see that ||&(x**1)|| — 0 as k — oo, which contradicts the fact that
|é(x*+1)|| > €1/2 holds for all k > K.,. Hence, K, is finite. In addition, notice from
(4.11), (4.12) and (4.13) that (77, 7{7) = (€1, €2) for all k > K.,. This along with the
termination criterion of Algorithm 4.1 and the definition of K, implies that Algorithm
4.1 must terminate at iteration K, .
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We next show that (4.16) and py < rp, hold for 0 < k < K., by considering two
separate cases below.

Case 1) ||c(z®e11)|| < e;. By this and (4.15), one can see that K., = K,,, which
together with (6.21) and (6.22) implies that (4.16) and pj, < 7p., hold for 0 < k < K.

Case 2) |lc(z®<*1)|| > €;. By this and (4.15), one can observe that K., > K,
and also [le(z**1)|| > € for all K., < k < K., — 1, which together with (6.24) implies

(6.25) e(z* )| > e1/2, VK., <k<K, -1

It then follows from [[A*|| < A, (4.1), the first relation in (4.6), and Lemma 6.4(iv)
with (z, A, p, 6c) = (£FT1 NF pr,e1/2) that

pre < 8(fui = frow +7)er” + 4N [ler ! + 2y
(6.26)

(4.14) _
<8(fui — fow +Y)er 2 +4Ae; P +2y < p.,, VK, <k<K. —1.

Combining this relation, (6.22), and the fact pi < rpr _;, we conclude that
€1 €1

pr < 7pe, holds for 0 < k < K.,. It remains to show that (4.16) holds. To this
end, let K = {k : pp1 = 7pp, Koy < k < K, —2}. Tt follows from (6.26) and the
update scheme of p; that T‘K‘qu = maXK51<k<f51—1{pk} < pe,, which together
with pr_ > po implies that

(6.27) K| < log(pqp;{i1 )/ logr < log(pelpal)/ log 7.

Let {k1,k2,...,k x|} denote all the elements of K arranged in ascending order, and
let ko = K¢, and kjx |41 = K., — 1. We next derive an upper bound for k;1 — k;
for j = 0,1,...,|K|. By the definition of K, one can observe that p, = pg for
k;j < k,k" < kjy1. Using this and the update scheme of p, we deduce that

(6.28) e 1) < allet)l, Vg <k < k.

On the other hand, by (4.10), (6.23) and pr > po, one has ||é(z*1)[| < 6.1 for
0 <k < K,,. By this and (6.25), one can see that

(6.29) €1/2 < ||é(@" || € 661, VK, <k<K, — 1.

Now, note that either k;4; —k; =1 or k; 41 — k; > 1. In the latter case, we can apply
(6.28) with k = kj41 — 1,...,k; + 1 together with (6.29) to deduce that

e1/2 < [le@h )| < afle@® T < - < ok e | < ottt
for all j =0,1,...,|K|. Combining these two cases, we have
(630) k‘j+1 —kj < |10g(61(25c71)_1))/10ga|—I—l, Vj:O,l,...,|K|.

Summing up these inequalities, and using (6.21), (6.27), ko = K, and kjg |41 = K¢, —1,
we have

Ke=1+kx =14k + X5 (k1 — ky)

log

(6.30)
< 1K+ (K1) (

log(e1(28.,1)" 1) ‘ + 1)

1 -1 -1
(631) < 2+ log(lpoﬁglfo ) + (log(ﬁ:éfo ) + 1) ( 10%(511(3;;1) ) + 1)
-1 _
:1+(%+1)(% +2),

where the second inequality is due to (6.21) and (6.27). Hence, (4.16) also holds in
this case. |
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We next prove Theorem 4.10. Before proceeding, we introduce some notation that
will be used shortly. Let Ly g denote the Lipschitz constant of V2, L(x, \*; pi) on the
convex open neighborhood Q(dy,9d.) of S(d¢,d.), where S(6¢,0.) is defined in (4.3),
and let Uy, m = SUp,es(s,,.) V2, L(z, \*¥; pr)||. Notice from (4.4) and (4.5) that

(632) V2,2 (2 W p) = V2 (@S MV ()i (Vc<x>Vc<w>T+Z Ei@vzci(‘”)) ‘
i=1 i=1

By this, |A\¥|| < A, the definition of ¢, and the Lipschitz continuity of V2f and V2¢;’s

(see Assumption 4.1(c)), one can observe that there exist some constants Ly, Lo, U;

and Us, depending only on f, ¢, A, §; and d., such that

(6.33) Liyg < Ly +ppLa, Ugp < Ui+ piUs.

Proof of Theorem 4.10. Let T}, and Ny, denote the number of iterations and matrix-
vector products performed by Algorithm 3.1 at the outer iteration k of Algorithm 4.1,
respectively. It then follows from Theorem 4.8 that the total number of iterations and

matrix-vector products performed by Algorithm 3.1 in Algorithm 4.1 are ZkKl

and Zk 0 Nk, respectively. In addition, notice from (4.14) and Theorem 4.8 that

= O(e;?) and py, < rp.,, which yield pp = O(e?).

We first claim that (77)2/77 > min{e?/e2, €3} holds for any k > 0. Indeed, let
t =loge/logw; and ¥(t) = max{er,w}}?/ max{es,wh} for all ¢ € R. It then follows
from (4.13) that w! = ¢; and w) = ez. By this and wy,ws € (0,1), one can observe
that ¥(t) = (w?/wy)! if t <t and (t) = 61/62 otherwise. This along with e; € (0, 1)
implies that min,co o) () = mm{w P(t)} = min{l,e2/ez} > min{e?/ez, €3},
which together with (4.11) yields (77)? /Tk = (k) > min{e? /e, €3} for all k > 0.

(i) From Lemma 4.4(i) and the definitions of Q(df,d.) and Ly g, we see that
Limisa Lipschitz constant of VZ_L(z, \¥; pr) on a convex open neighborhood of {z :
Lz, N pp) < L(zF,, NF; pr)}. Also, recall from Lemma 4.4(ii) that inf,cpnl(z, A¥; pr.)
> flow — 7 — Ad,. By these, L(x mlt,)\k,pk) < fi (see (4.9)) and Theorem 3.2(iii) with
(Fui, Fiow, LY, €4, €m) = (ﬁ(xfmt, k:pk), flow — Y — Ade, Ly, H,T,f,T,fI), one has

Ty = O((fui — fiow +7+Ad )Li H max{<Tk) Tk »(Tk )~ 3})
(6.34) (6:33) .\, o ) 5
=" 0(p; maX{(Tk) Tk a(Tk )7 = (51 maX{€1 €2, €y })

where the last equality is from (77)2/71 > min{e?/es, €3}, 77 > €2, and pp = O(e7 ?).
Next, if ¢(z) = Az — b for some A € R™*" and b € R™, then Ve(z) = AT and
V2¢;i(z) = 0 for 1 < i < m. By these and (6.32), one has Ly g = O(1). Using this
and similar arguments as for (6.34), we obtain that Ty, = O(max{e; %€z, €,°}). By
this, (6.34) and K., = O(|loge;1]?) (see Remark 4.9), we conclude that statement (i)
of Theorem 4.10 holds.
(ii) In view of Lemma 4. 4() and the deﬁnition of Uk, i, one can see that Uy g >

SupacER"{”vix (‘T /\ka Pk) H (1‘ >‘k7 pk) <‘C( 1n1t7 ) pk)} Using this, ‘C( Linit> Ak; pk)
< fni and Theorem 3.2(iv) with (Fii, Flow, L, U, €4, €1) = (E(zfmt, ¥ ok)s fiow —
v —Abe, L g, U, 7, 7f1), we obtain that

Nie=O((fni— fiow + 7 + A6 LE ymax{(r{)~2rf, (r/1)=ymin{n, Uy u /7/1)/?})
(6.35) (623)(5(/)% max{(7{) "2, (rf) =3} min{n, (px/7)1/?})

=O(e7  max{ey 262, 65 >} min{n, €7 '€, 1/2}),
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where the last equality is from (77)2/7# > min{e?/e2, €3}, 77 > €2, and py = O(e7?).

On the other hand, if ¢ is assumed to be affine, it follows from the above discussion
that Ly g = O(1). Using this, Uy, g < Uy + prUsz, and similar arguments as for
(6.35), we obtain that Ny = (~9(max{61_262,62_3}min{n,61_162_1/2}). By this, (6.35)
and K., = O(|loge;1]?) (see Remark 4.9), we conclude that statement (ii) of Theorem
4.10 holds. ]

Next, we provide a proof of Theorem 4.14. To proceed, we first observe from
Assumptions 4.1(c) and 4.12 that there exist Ug >0, Ug >0 and o > 0 such that

(6.36) [|Vf(@)ll U, [Ve(@)]| < Uy, Amin(Ve(z)" Ve(x)) > o2, Va € S(67,6.).-
We next establish several technical lemmas that will be used shortly.

LEMMA 6.5. Suppose that Assumptions 4.1 and 4.12 hold and that pg is sufficiently
large such that 6y < 6 and d..1 < dc, where §51 and 0.1 are defined in (4.10). Let
{(z®, Xk p1)} be generated by Algorithm 4.1. Suppose that

(6.37) pr >max{A®(207) ", 2(fui— flow+7)0, 2 +2A5, ' +27, 2(U +USA+1) (0€r) '}

for some k > 0, where v, fui, fiow, 0 and d. are given in Assumption 4.1, and Ug,
U and o are given in (6.36). Then it holds that ||c(z* )| < e;.

Proof. By (6.37) and || \¥|| < A (see step 6 of Algorithm 4.1), one can see that p;, >
max{[|A¥[|2(20 )71, 2( fui — frow +7)0. 2 +2||A*||6- 1 +27}. Using this, (4.1), the first re-
lation in (4.6), and Lemma 6.4(iii) and (iv) with (z, X, p, 07, 0.) = (2*F1 N pg, 07, 8,),
we obtain that f(zF*1) < fi; + d; and |&(zF*1)|| < 6. In addition, recall from
llc(z¢,)|| <1 and the definition of ¢ in (4.4) that ||c(z*+1)|| < 1 + ||é(x*+1)||. These
together with (4.3) show that z**1 € S(0s,8.). It then follows from (6.36) that
IS < UL, Vel )] < U, and Apgn(Ve(@ ™) Ve(@h+)) > o2 By
[V f(F D) <UL, (Ve )| < Ug, 77 <1, | A¥]| < A, (4.4) and (4.6), one has

el Ve(@ e )| < IV F @) + Ve(@ N + [V L@ A o)

(4.6)
(6.38) < V@I + (IVe@ N+ 7 <UL+ UA + 1.

In addition, note that Apin(Ve(xF 1T Ve(xk 1) > 02 implies that Ve(zh 1) T Ve(aF 1)
is invertible. Using this fact and (6.38), we obtain

e 1) < (TelaH)TTe(atH )1 Ve( )T [ Te(@hta(at )|

(6.38) 15 qre

(6.39) = Amnin (Ve(@* 1) TV e(a+1)) 72| Ve(a e )| < Delattl

We also observe from (6.37) that p, > 2(Ug + USA +1)(oer) ™!, which along with

(6.39) proves [|&(z*+1)| < €;/2. Combining this with the definition of & in (4.4) and

lle(ze )|l < €1/2, we conclude that ||c(z¥*1)|| < €1 holds as desired. |
The next lemma provides a stronger upper bound for {pi } than the one in Theorem

4.8.

LEMMA 6.6. Suppose that Assumptions 4.1 and 4.12 hold and that pg is sufficiently
large such that 651 < 6 and dc.1 < dc, where §¢1 and 0.1 are defined in (4.10). Let
{pr} be generated by Algorithm 4.1 and

(6.40) e, :=max{A(26;) "} 2( fui— frow+7)0, H2A; 427, 2(US +USA+1) (0€1) " 20},
where v, fui, fiow, 0¢ and d. are given in Assumption 4.1, and Ugf, Ug and o are given
in (6.36). Then py < 7pe, holds for 0 < k < K,,, where K., is defined in (4.15).
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Proof. Tt follows from (6.40) that p., > 2pp. By this and similar arguments as
for (6.21), one has K., < log(pe,py')/logr + 1, where K., is defined in (4.12). Using
this, the update scheme for {p;}, and similar arguments as for (6.22), we obtain

. < TPe, -
(6.41) i S
If ||c(xat1)|| < ¢, it follows from (4.15) that K., = K., which together with (6.41)
implies that py < rp, holds for 0 < k < K,. On the other hand, if [|c(zXT1)|| > €,
it follows from (4.15) that [[c(z*+1)|| > €, for K, <k < K., — 1. This together with
Lemma 6.5 and (6.40) implies that for all K., <k < K., —1,

(6.40)
pr <max{A*(20) " 2( fni— fiow+7)0: 24208, +27, 2(U) +USA+1) (0e1) ™} < e, -

By this, (6.41), and K., < PR, —1 We also see that p, < 7p,, holdsfor 0 < k < K., .0

Proof of Theorem 4.14. Notice from (6.40) and Lemma 6.6 that p., = O(e; ') and
pr < 7pe,, which yield pp = O(e;!). The conclusion of Theorem 4.14 then follows
from this and the same arguments as for the proof of Theorem 4.10 with pp = O(e;?)
replaced by pr = O(e;t). d

7. Future work. There are several possible future studies on this work. First,
it would be interesting to extend our AL method to seek an approximate SOSP
of nonconvex optimization with inequality or more general constraints. Indeed, for
nonconvex optimization with inequality constraints, one can reformulate it as an
equality constrained problem using squared slack variables (e.g., see [7]). It can be
shown that an SOSP of the latter problem induces a weak SOSP of the original problem
and also linear independence constraint qualification holds for the latter problem if
it holds for the original problem. As a result, it is promising to find an approximate
weak SOSP of an inequality constrained problem by applying our AL method to the
equivalent equality constrained problem. Second, it is worth studying whether the
enhanced complexity results in Section 4.3 can be derived under weaker constraint
qualification (e.g., see [5]). Third, the development of our AL method is based on a
strong assumption that a nearly feasible solution of the problem is known. It would
make the method applicable to a broader class of problems if such an assumption
could be removed by modifying the method possibly through the use of infeasibility
detection techniques (e.g., see [19]). Lastly, more numerical studies would be helpful
to further improve our AL method from a practical perspective.

REFERENCES

[1] N. AGARWAL, Z. ALLEN-ZHU, B. BuLLINs, E. HAzAN, AND T. MA, Finding approximate local
minima faster than gradient descent, in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, 2017, pp. 1195-1199.

[2] R. ANDREANT, E. G. BIRGIN, J. M. MARTINEZ, AND M. L. SCHUVERDT, On augmented Lagrangian
methods with general lower-level constraints, SIAM J. Optim., 18 (2008), pp. 1286-1309.

[3] R. ANDREANI, G. HAESER, AND J. M. MARTINEZ, On sequential optimality conditions for smooth
constrained optimization, Optim., 60 (2011), pp. 627-641.

[4] R. ANDREANI, G. HAESER, A. RAMOS, AND P. J. SILVA, A second-order sequential optimality
condition associated to the convergence of optimization algorithms, IMA J. Numer. Anal.,
37 (2017), pp. 1902-1929.

[5] R. ANDREANI, G. HAESER, M. L. SCHUVERDT, AND P. J. SitvA, Two new weak constraint
qualifications and applications, SIAM J. Optim., 22 (2012), pp. 1109-1135.

[6] P. ARMAND AND N. N. TRAN, An augmented Lagrangian method for equality constrained
optimization with rapid infeasibility detection capabilities, J. Optim. Theory Appl., 181
(2019), pp. 197-215.

This manuscript is for review purposes only.



1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
107

1

_
S5 S
> W N =

10

—
~
T

10
107
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

a

J

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 27

[7] D. P. BERTSEKAS, Nonlinear Programming, Athena Scientific, 1999.
[8] W. BIaAN, X. CHEN, AND Y. YE, Complezity analysis of interior point algorithms for non-

(9]

[10]

(30]

(31]
32]

(33]

E

< < 7

Lipschitz and nonconver minimization, Math. Program., 149 (2015), pp. 301-327.

. G. BIRGIN, J. GARDENGHI, J. M. MARTINEZ, S. A. SANTOS, AND P. L. TOINT, Evaluation
complexity for nonlinear constrained optimization using unscaled KKT conditions and
high-order models, STAM J. Optim., 26 (2016), pp. 951-967.

. G. BIRCGIN, G. HAESER, AND A. RaMOS, Augmented Lagrangians with constrained subproblems
and convergence to second-order stationary points, Comput. Optim. Appl., 69 (2018), pp. 51—
75.

. G. BIRGIN AND J. M. MARTINEZ, Practical Augmented Lagrangian Methods for Constrained
Optimization, SIAM, 2014.

. G. BIRGIN AND J. M. MARTINEZ, The use of quadratic regularization with a cubic descent
condition for unconstrained optimization, SIAM J. Optim., 27 (2017), pp. 1049-1074.

. G. BIRGIN AND J. M. MARTINEzZ, Complezity and performance of an augmented Lagrangian
algorithm, Optim. Methods and Softw., 35 (2020), pp. 885-920.

. F. BONNANS AND G. LAUNAY, Sequential quadratic programming with penalization of the

displacement, SIAM J. Optim., 5 (1995), pp. 792-812.

. BouMAL, V. VORONINSKI, AND A. S. BANDEIRA, The non-convex Burer-Monteiro approach
works on smooth semidefinite programs, in Advances in Neural information Processing
Systems, vol. 29, 2016, pp. 2757-2765.

. F. BUENO AND J. M. MARTINEZ, On the complexity of an inezact restoration method for
constrained optimization, STAM J. Optim., 30 (2020), pp. 80-101.

. BURER AND R. D. C. MONTEIRO, A nonlinear programming algorithm for solving semidefinite

programs via low-rank factorization, Math. Program., 95 (2003), pp. 329-357.

. BURER AND R. D. C. MONTEIRO, Local minima and convergence in low-rank semidefinite

programmang, Math. Program., 103 (2005), pp. 427-444.

. V. BURKE, F. E. Curtis, AND H. WANG, A sequential quadratic optimization algorithm with

rapid infeasibility detection, STAM J. Optim., 24 (2014), pp. 839-872.

H. ByrD, F. E. Curtis, AND J. NOCEDAL, Infeasibility detection and SQP methods for
nonlinear optimization, SIAM J. Optim., 20 (2010), pp. 2281-2299.

H. BYrD, R. B. SCHNABEL, AND G. A. SHULTZ, A trust region algorithm for nonlinearly
constrained optimization, STAM J. Numer. Anal., 24 (1987), pp. 1152-1170.

CARMON AND J. C. DucHI, Gradient descent finds the cubic-reqularized nonconver Newton
step, SIAM J. Optim., 29 (2019), pp. 2146-2178.

CARMON, J. C. DucHi, O. HINDER, AND A. SIDFORD, “Conver until proven guilty”:
Dimension-free acceleration of gradient descent on non-convex functions, in International
Conference on Machine Learning, PMLR, 2017, pp. 654-663.

CARMON, J. C. DucHi, O. HINDER, AND A. SIDFORD, Accelerated methods for nonconvex
optimization, SIAM J. Optim., 28 (2018), pp. 1751-1772.

. Cartis, N. I. GouLD, AND P. L. TOINT, Adaptive cubic regularisation methods for uncon-
strained optimization. Part II: worst-case function-and derivative-evaluation complexity,
Math. Program., 130 (2011), pp. 295-319.

. Carrtis, N. I. GouLD, AND P. L. TOINT, On the evaluation complexity of cubic reqularization
methods for potentially rank-deficient nonlinear least-squares problems and its relevance to
constrained nonlinear optimization, SIAM J. Optim., 23 (2013), pp. 1553-1574.

. CarTIs, N. I. GouLD, AND P. L. TOINT, On the complexity of finding first-order critical

points in constrained nonlinear optimization, Math. Program., 144 (2014), pp. 93-106.

CARTIS, N. I. GouLD, AND P. L. TOINT, On the evaluation complexity of constrained

nonlinear least-squares and general constrained nonlinear optimization using second-order

methods, SIAM J. Numer. Anal., 53 (2015), pp. 836-851.

. CARTIS, N. I. GouLD, AND P. L. TOINT, Evaluation complexity bounds for smooth constrained
nonlinear optimization using scaled KKT conditions, high-order models and the criticality
measure X, in Approximation and Optimization, Springer, 2019, pp. 5-26.

. Cartis, N. I. GouLp, AND P. L. TOINT, Optimality of orders one to three and beyond: char-
acterization and evaluation complexity in constrained nonconvex optimization, J. Complex.,
53 (2019), pp. 68-94.

. CHEN, L. Guo, Z. Lu, aAnND J. J. YE, An augmented Lagrangian method for non-Lipschitz
nonconvex programming, STAM J. Numer. Anal., 55 (2017), pp. 168-193.

. CIFUENTES AND A. MOITRA, Polynomzial time guarantees for the Burer-Monteiro method,
arXiv preprint arXiv:1912.01745, (2019).

. F. CoLEMAN, J. Liu, AND W. YUAN, A new trust-region algorithm for equality constrained
optimization, Comput. Optim. Appl., 21 (2002), pp. 177-199.

This manuscript is for review purposes only.



1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

[41]
[42]

[43]

[44]

CHUAN HE, ZHAOSONG LU AND TING KEI PONG

F. E. Currtis, D. P. RoBINSON, C. W. ROYER, AND S. J. WRIGHT, Trust-region Newton-CG
with strong second-order complexity guarantees for nonconvexr optimization, SIAM J Optim.,
31 (2021), pp. 518-544.

F. E. Curtis, D. P. ROBINSON, AND M. SAMADI, A trust region algorithm with a worst-case
iteration complezity of (9(6_3/2) for monconvex optimization, Math. Program., 162 (2017),
pp. 1-32.

F. E. Curtis, D. P. ROBINSON, AND M. SAMADI, Complezity analysis of a trust funnel algorithm
for equality constrained optimization, SIAM J. Optim., 28 (2018), pp. 1533-1563.

G. N. GRAPIGLIA AND Y. YUAN, On the complexity of an augmented Lagrangian method for
nonconvex optimization, IMA J. Numer. Anal., 41 (2021), pp. 1508-1530.

G. HAESER, H. Liu, AND Y. YE, Optimality condition and complexity analysis for linearly-
constrained optimization without differentiability on the boundary, Math. Program., (2019),
pp. 1-37.

M. R. HESTENES, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303—
320.

M. HONG, D. HAJINEZHAD, AND M.-M. ZHAO, Prox-PDA: The proxzimal primal-dual algorithm
for fast distributed nonconvex optimization and learning over networks, in International
Conference on Machine Learning, PMLR, 2017, pp. 1529-1538.

C. Jin, R. GE, P. NETRAPALLI, S. M. KAKADE, AND M. I. JORDAN, How to escape saddle points
efficiently, in International Conference on Machine Learning, PMLR, 2017, pp. 1724-1732.

C. KANzZOW AND D. STECK, An example comparing the standard and safeguarded augmented
Lagrangian methods, Oper. Res. Lett., 45 (2017), pp. 598-603.

W. Kong, J. G. MELO, AND R. D. C. MONTEIRO, Complexity of a quadratic penalty acceler-
ated inexact proximal point method for solving linearly constrained nonconver composite
programs, SIAM J. Optim., 29 (2019), pp. 2566—2593.

J. KuczyNskl AND H. WOZNIAKOWSKI, Estimating the largest eigenvalue by the power and
Lanczos algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1094—
1122.

Z. L1, P.-Y. CHEN, S. Liu, S. Lu, AND Y. XU, Rate-improved inexact augmented lagrangian
method for constrained nonconvex optimization, in International Conference on Artificial
Intelligence and Statistics, PMLR, 2021, pp. 2170-2178.

S. Lu, A single-loop gradient descent and perturbed ascent algorithm for nonconvex functional
constrained optimization, in International Conference on Machine Learning, PMLR, 2022,
pp. 14315-14357.

S. Lu, M. RazavivayN, B. Yang, K. HUANG, AND M. HONG, Finding second-order stationary
points efficiently in smooth nonconvex linearly constrained optimization problems, Advances
in Neural Information Processing Systems, 33 (2020), pp. 2811-2822.

Z. Lu AND X. L1, Sparse recovery via partial reqularization: models, theory, and algorithms,
Math. Oper. Res., 43 (2018), pp. 1290-1316.

Z. Lu AND Y. ZHANG, An augmented Lagrangian approach for sparse principal component
analysis, Math. Program., 135 (2012), pp. 149-193.

J. M. MARTINEZ AND M. RAYDAN, Cubic-regularization counterpart of a variable-norm trust-
region method for unconstrained minimization, J. Glob. Optim., 68 (2017), pp. 367—-385.

J. G. MELO, R. D. MONTEIRO, AND W. KONG, [teration-complezity of an inner accelerated
inexact proximal augmented Lagrangian method based on the classical Lagrangian function
and a full Lagrange multiplier update, arXiv preprint arXiv:2008.00562, (2020).

Y. NESTEROV AND B. T. PoLyAK, Cubic regularization of Newton method and its global
performance, Math. Program., 108 (2006), pp. 177-205.

J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, 2nd ed., 2006.

M. O’NEILL AND S. J. WRIGHT, A log-barrier Newton-CG method for bound constrained
optimization with complexity guarantees, IMA J. Numer. Anal., 41 (2021), pp. 84-121.

R. T. ROCKAFELLAR, Lagrange multipliers and optimality, SIAM review, 35 (1993), pp. 183-238.

C. W. ROYER, M. O’NEILL, AND S. J. WRIGHT, A Newton-CG algorithm with complexity
guarantees for smooth unconstrained optimization, Math. Program., 180 (2020), pp. 451—
488.

C. W. ROYER AND S. J. WRIGHT, Complezity analysis of second-order line-search algorithms
for smooth nonconvex optimization, SIAM J. Optim., 28 (2018), pp. 1448-1477.

M. F. SaHIN, A. EFTEKHARI, A. ALACAOGLU, F. LATORRE, AND V. CEVHER, An inezact
augmented Lagrangian framework for nonconvex optimization with nonlinear constraints,
Advances in Neural Information Processing Systems, 32 (2019).

Y. XI1E AND S. J. WRIGHT, Complezity of projected Newton methods for bound-constrained
optimization, arXiv preprint arXiv:2103.15989, (2021).

This manuscript is for review purposes only.



1152
1153
1154
1155
1156
1157
1158
1159
1160

1161
1162

A NEWTON-CG BASED AUGMENTED LAGRANGIAN METHOD 29

[60] Y. XiE AND S. J. WRIGHT, Complezity of prozimal augmented Lagrangian for monconvex
optimization with nonlinear equality constraints, J. Sci. Comput., 86 (2021), pp. 1-30.

[61] L. YaNg, D. Sun, anD K. C. Ton, SDPNAL+: A majorized semismooth Newton-CG augmented
Lagrangian method for semidefinite programming with nonnegative constraints, Math.
Program. Comput., 7 (2015), pp. 331-366.

[62] X.ZHAO, D. SuN, AND K. C. ToH, A Newton-CG augmented Lagrangian method for semidefinite
programmang, SIAM J. Optim., 20 (2010), pp. 1737-1765.

Appendix A. A capped conjugate gradient method. In this part we
present the capped CG method proposed in [56, Algorithm 1] for finding either an
approximate solution to the linear system (3.6) or a sufficiently negative curvature
direction of the associated matrix H, which has been briefly discussed in Section 3.1.
Its details can be found in [56, Section 3.1].

Algorithm A.1 A capped conjugate gradient method

Inputs: symmetric matrix H € R™"*™, vector g # 0, damping parameter € € (0, 1), desired relative
accuracy ¢ € (0,1).

Optional input: scalar U > 0 (set to 0 if not provided).

Outputs: d_type, d. N

Secondary outputs: final values of U, k,(, 7, and T'.

Set

Vi

7. _ U+2 = 4wt
H:=H+2l, r:=>L£, (:= NGEEE = (17%)2,

P
y0 — 0,79 < g,p0 « —g,j < 0.
if (p°)" Hp® < [|p°||* then
Set d < p® and terminate with d_type = NC;
else if ||Hp®|| > U||p°|| then
Set U «+ ||Hp°||/||p°|| and update &, ¢, 7, T accordingly;
end if
while TRUE do
aj < (r))Tri/(p?)T Hp?; {Begin Standard CG Operations}
Ty + aypd;
rItl o pd +ajﬁpj;
Bit1 eI L2 /177125
pI Tl it 4 Bj+1p7; {End Standard CG Operations}
J—i+ 1
if |[Hp’|| > Ullp’|| then
Set U «+ ||Hp?||/||p?|| and update &, ¢, 7, T accordingly;
end if
if [|Hy'||>Ully’|| then
Set U «+ ||Hy?||/|ly’|| and update &, ¢, 7, T accordingly;
end if
if ||[Hr7| > U|r’|| then
Set U « ||Hr||/||r|| and update &, C, 7, T accordingly;
end if
if (y/)"Hy? < elly?||* then
Set d < 37 and terminate with d_type = NC;
else if ||77]| < ¢||r°|| then
Set d < 37 and terminate with d_type = SOL;
else if (p/)THp? < ¢||p||? then
Set d « p? and terminate with d_type = NC;
else if ||| > VvT7/2||79)| then
Compute aj, y?*1 as in the main loop above;
Find ¢ € {0,...,7 — 1} such that

(T —y)TH@ T — ) <elly? T — o)1

Set d < y/t1 — % and terminate with d_type = NC;
end if
end while
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The following theorem presents the iteration complexity of Algorithm A.1.

THEOREM A.l (iteration complexity of Algorithm A.1). Consider applying
Algorithm A.1 with input U = 0 to the linear system (3.6) with g # 0, € > 0, and H
being an n x n_symmetric matriz. Then the number of iterations of Algorithm A.1 is
O(min{n, /|| H| /}).

Proof. From [56, Lemma 1], we know that the number of iterations of Algorithm
A.1is bounded by min{n, J(U, ¢, ()}, where J(U, ¢, ¢) is the smallest integer .J such that
VTT7/?2 < E, with U, Z ,T and T being the values returned by Algorithm A.1. In addi-
tion, it was shown in [56, Section 3.1] that J(U,e,() < [(\/EJr 1 n (144(‘/?7;1)2”6”,
where £ = O(U/e) is an output by Algorithm A.1. Then one can see that J(U,¢,() =

O(/U/e). Notice from Algorithm A.1 that the output U < ||H||. Combining these,
we obtain the conclusion as desired. O

Appendix B. A randomized Lanczos based minimum eigenvalue oracle.

In this part we present the randomized Lanczos method proposed in [56, Section 3.2],

which can be used as a minimum eigenvalue oracle for Algorithm 3.1. As briefly

discussed in Section 3.1, this oracle outputs either a sufficiently negative curvature

direction of H or a certificate that H is nearly positive semidefinite with high probability.
More detailed motivation and explanation of it can be found in [56, Section 3.2].

Algorithm B.1 A randomized Lanczos based minimum eigenvalue oracle

Input: symmetric matrix H € R"*™, tolerance € > 0, and probability parameter § € (0,1).
Output: a sufficiently negative curvature direction v satisfying v7 Hv < —¢/2 and |lv|| = 1; or
a certificate that Amin(H) > —e with probability at least 1 — 4.

Apply the Lanczos method [44] to estimate Amin(H) starting with a random vector uniformly
generated on the unit sphere, and run it for at most

. In(2.75n/52 H
(B.1) N(e, ) := min {n, 1+ ’V% H-‘ }

iterations. If a unit vector v with v" Hv < —¢/2 is found at some iteration, terminate
immediately and return v.

The following theorem justifies that Algorithm B.1 is a suitable minimum eigenvalue
oracle for Algorithm 3.1. Its proof is identical to that of [56, Lemma 2] and thus
omitted.

THEOREM B.1 (iteration complexity of Algorithm B.1). Consider Algo-
rithm B.1 with tolerance € > 0, probability parameter 6 € (0,1), and symmetric matriz
H € R™" as its input. Then it either finds a sufficiently negative curvature direction
v satisfying vI Hv < —¢/2 and ||v|]| = 1 or certifies that Amin(H) > —¢ holds with
probability at least 1 — § in at most N(g,0) iterations, where N(e,d) is defined in
(B.1).

Notice that ||H]|| is required in Algorithm B.1. In general, computing || H|| may
not be cheap when n is large. Nevertheless, ||H|| can be efficiently estimated via a
randomization scheme with high confidence (e.g., see the discussion in [56, Appen-
dix B3]).
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