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People make fast and reasonable predictions about the physical behavior of everyday objects. To do so, peo-
ple may use principled mental shortcuts, such as object simplification, similar to models developed by engi-
neers for real-time physical simulations. We hypothesize that people use simplified object approximations
for tracking and action (the body representation), as opposed to fine-grained forms for visual recognition (the
shape representation). We used three classic psychophysical tasks (causality perception, time-to-collision,
and change detection) in novel settings that dissociate body and shape. People’s behavior across tasks indi-
cates that they rely on coarse bodies for physical reasoning, which lies between convex hulls and fine-grained
shapes. Our empirical and computational findings shed light on basic representations people use to under-

stand everyday dynamics, and how these representations differ from those used for recognition.

Public Significance Statement

People interact with objects in the world in real-time, which requires mental shortcuts in physical rea-
soning. We propose that a key physical mental shortcut is the simplification of fine-grained shapes into
coarser bodies. Such simplified bodies explain novel results across several psychophysical tasks, includ-
ing judgments of causality, time-to-collision, and change detection.

Keywords: intuitive physics, object representation, visual tracking, resource rationality

Supplemental materials: https://doi.org/10.1037/xge0001439.supp

Color, shape, and texture help us tell apples from oranges. But
when trying to reason about an apple hurled toward your face, you
may not care that it is green, or shiny, or even that it is an apple.
All that matters is how fast, heavy, and where the apple is. For all
reasonable purposes, it might as well be an orange.

We suggest that people use at least two representations of
objects: shape and body. The shape encodes features relevant to
visual recognition, including fine-grain form and subtle textures.
The body encodes properties relevant for tracking, collisions,
and physical prediction. These properties include weight, position,
and coarse form. The existence of something like a shape represen-
tation is not under dispute, though its exact nature has been greatly
debated (Biederman, 1987; Marr, 1982; S. Ullman, 1989). The

existence of a body representation is a less explored hypothesis
by comparison, although across fields there are theories that peo-
ple represent objects with limited fidelity.

In a parallel line of research in vision and attention, frameworks
and empirical findings in multi-object tracking (MOT) show that
when observing multiple moving objects, people have a hard
time tracking perceptual features such as color, compared to
indexing the location of objects (e.g., Saiki, 2002; Saiki &
Holcombe, 2012; Suchow & Alvarez, 2011). For example, in
Saiki (2002), participants had a hard time detecting the color-
switch of partially occluded objects in the middle of a regular rota-
tion of a pattern, suggesting a failure in color—shape conjunction
during dynamic motion. Our current hypothesis builds on MOT
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work and emphasizes a dissociation between the representation for
recognition versus for physical tracking. Our framework suggests
why and how form representations should be limited in reasoning
about the physical behavior of objects, and speaks to the ongoing
debate in MOT about which features are useful in tracking (Li
et al., 2019).

The distinction between shape and body is motivated by engineer-
ing principles, and by converging evidence from cognition, develop-
mental studies, and neuroscience. We next detail the relevance and
convergence of these lines of research.

Engineers who design real-time physical simulators and game
engines (Gregory, 2018) often use principled approximations for
greater speed and efficiency. Pressures of speed and efficiency
may have led cognitive architectures to develop and adopt approx-
imations similar to those used in such real-time simulators
(T. D. Ullman et al., 2017). A central approximation used by real-
time simulators is to approximate bodies for physical interactions
such as collision detection, separate from the fine-grain forms used
for rendering objects (Figure 1). Body approximations can be
refined meshes, but those are more computationally expensive,
and approximations such as bounding boxes or convex hulls
often produce reasonable results while reducing computational
costs.

Previous work has proposed that noisy mental game engines
underlie much of human intuitive physical reasoning (Battaglia
et al., 2013; Hamrick et al., 2016; Sanborn et al., 2013; Smith &
Vul, 2013; T. D. Ullman et al., 2018). This proposal has been chal-
lenged, with some researchers taking the mental game engine pro-
posal to mean that intuitive physical reasoning should be a
veridical simulation of reality. And, since physical reasoning devi-
ates from reality, mental game engines cannot explain human
behavior (Ludwin-Peery et al., 2020; Marcus & Davis, 2013).
However, it is likely that mental physical simulations (if they
exist) use approximations in a resource-rational way, in line
with resource-rational cognition (Lieder & Griffiths, 2020;
Smith et al., 2018).

Studies in cognitive development show that in many cases
infants below 12 months do not use fine-grained form information
to track objects (Xu, 2005; Xu & Carey, 1996), with follow-up
work showing that such effects also exist in 18 months old under
memory load (Zosh & Feigenson, 2012). These findings are
often taken to suggest that young infants do not use “kind” infor-
mation to track objects, though infants are certainly able to

Figure 1

individuate objects based on shape, pattern, and color (Wilcox et
al., 2010). We interpret the previous work as showing that young
infants may often be relying on rough approximations for tracking.
Such rough approximations are also central to recent artificial intel-
ligence models that pass benchmarks designed to test models of
core infant physics (Smith et al., 2019). Other developmental
work on object individuation has also led to proposed modules
for dealing with bodies (Leslie , 1994), and more recently to a dis-
tinction between features and objects in infant visual memory
(Kibbe, 2015; Kibbe & Leslie, 2019), which may map onto our
body-shape distinction. If such a distinction exists early in develop-
ment, it likely persists into adulthood.

In neuroscience, a traditional split divides cortical visual pro-
cessing in primates into ventral (“what”) and dorsal (“where” or
“how”) streams (Goodale & Milner, 1992; Schneider, 1969).
While the dorsal stream is often taken to encode spatial information
about objects, more recent studies have refined this account
(Kravitz et al., 2011), suggesting that the dorsal stream also
encodes information that guides action. Research with nonhuman
primates further suggests that the dorsal stream encodes action-
relevant details of the form, orientation, and size of objects
(Murata et al., 2000; Sereno & Maunsell, 1998). Moreover, recent
functional magnetic resonance imaging evidence shows that a net-
work of dorsal regions engage in intuitive physical inference tasks
(Fischer et al., 2016) and represent physical variables of objects
(Schwettmann et al., 2019). Such an action-relevant form found
in the dorsal stream may map onto a body approximation, encoding
variables relevant to intuitive physics.

Taken together, findings from cognitive science, cognitive devel-
opment, and neuroscience align with engineering principles to sug-
gest that body approximations may be cognitively useful in physical
reasoning and may be separate from fine-grain forms for visual rec-
ognition. In order to examine the existence of this body-shape dis-
tinction in people, we created three distinct psychophysical tasks
based on classic experiments (Figure 3A): perception of causality
in launching (Experiment 1), time-to-collision (TTC) prediction
(Experiment 2), and change detection (Experiment 3). While differ-
ent in their design, these experiments used similar stimuli, and
shared an underlying logic—body and shape are dissociated by hav-
ing concave and convex conditions (see an illustration of concave
versus convex in Figure 2).

In Experiment 1, participants rated perceptions of causality
when seeing an agent (the first-moving object) colliding with a

Game Engines Use Different Representations for Rendering Versus Physical Interactions

JEE
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Note. (A) “Shape” is used for rendering an object onto the screen. (B)*“Body” is an approximation used to deter-
mine collisions, apply forces, and track objects. Example approximations are shown in increasing coarseness from
left to right: mesh collider, convex hull, cylinder collider, and bounding box. See the online article for the color

version of this figure.
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Figure 2
Hllustration of Concave Collision (Left) and Convex Collision
(Right)

W

Note. Concavity is an inward curvature, while convexity curves outwards.
The collision point on the left is in the concavity, and the collision point on
the right is in the convexity. We created concave and convex collision con-
ditions in our experiments to dissociate the body from shape. See the online
article for the color version of this figure.

Convex

patient (the second object to move, and see Figure 3A, left). We
expected that coarse bodies will result in a smaller perceived colli-
sion distance than the ground truth, but only for concave collisions
(Figure 3B, left). In Experiment 2, participants were asked to press
a spacebar to indicate when an agent and a (disappearing) patient
collided (Figure 3A, middle). We expected that coarse bodies
will result in smaller TTC in concave collisions than in convex col-
lisions (Figure 3B, middle). In Experiment 3, an object either
changed or remained the same when passing behind an occluder,
with the changes happening within or outside a coarse body
approximation (Figure 3A, right). We expected that concave
changes within the body are more difficult to detect than changes
outside the filled concavity, and changes outside the convex hull
(Figure 3B, right).

To summarize our overall hypothesis: we propose that people use
rough body approximations for physical tasks, and derive from this
proposal distinct differences between concave and convex stimuli.
Our more specific hypotheses are: (a) in Experiment 1, people will
perceive concave-sided collisions as more causal than convex-sided
collisions, (b) in Experiment 2, people will expect concave collisions
to happen earlier than convex collisions, and (c) in Experiment 3,
people will be less likely to detect a change within the body approx-
imation than an equally sized change outside of the approximation.
If people use fine-grain shapes for physical tracking, there should be
no observable difference between concave and convex conditions
across these experiments.

In addition to our broad empirical predictions, we considered a
list of approximation models that allowed us to quantitatively
examine a space of possible body approximations. Among all mod-
els we tested (o-shape, Gaussian noise, buffer, Ramer—Douglas—
Peucker, bounding box, convex hull, and center-of-mass), we
focused on the o-shape model (Edelsbrunner et al., 1983) that
has one parameter o controlling the coarseness of the approxima-
tion. By changing o, we examined different body approximations,
ranging from fine forms to convex hulls (Figure 4A). We treat
the a-shape model as an exploratory model that coarsely differen-
tiates between approximations closer to fine-grain forms,
convex hulls, and intermediate representations. We emphasize
that the specific o-shape model used here is not a process-level
account of the approximation people use, as mathematicians and
engineers have come up with many ways of simplifying and com-
pressing shape information (Gregory, 2018; Luebke et al., 2003).
Instead, we use o-shape as a stand-in for a class of models that

instantiate our theory that people’s shape approximations are sim-
pler than the fine-grain form, and a trend toward coarse convex rep-
resentations. We discuss other possible approximations later, in the
context of our findings.

Transparency and Openness

All hypotheses, analyses, and procedures for the experiments
were preregistered. Data, stimuli, analysis code, and registrations
for all experiments are publicly available on the project’s Open
Science Framework page: https://osf.io/z9dpu/.

Experiment 1: Causality

Our first test of body approximations used physical causality judg-
ments, based on the classic Michottean launching task (Kominsky et
al., 2017; Michotte, 1963) with varying collision distances, but with
concave and convex shapes.

Participants observed videos of one shape (the agent) moving
toward a stationary target (the patient). At the moment when the
agent was adjacent to the patient, the agent stopped, and the patient
started to move away from the agent. Michotte’s original studies
found that people’s causality judgments decreased as the spatial dis-
tance at collision time increased. We adopted the launching task par-
adigm and modified the shapes to create a dissociation between body
and shape. We expected that people’s causality judgments will track
the spatial distance between approximate bodies, rather than shapes
(see Figure 3A and B, left).

We aimed to test (a) an overall predicted effect of concavity versus
convexity, such that concave collisions would be seen as more causal
than convex collisions for the same horizontal collision gap, and (b)
a specific o-shape model, exploring the o parameter that best
explained people’s body approximation, if it exists.

Experiment 1—including design, hypotheses, analyses, and exclu-
sion criteria—was preregistered at https://osf.io/t3kwd. Screenshots
of the stimuli and other details can be found in the online supplemen-
tal materials.

Participants

In this experiment as well as all other experiments, sample sizes
were determined by power analysis (99% power, significance level
=0.05) based on pilot data, with the exception that Experiment 3b
used the same number of participants to match Experiment 3a.
Across all experiments, a total of 670 participants were recruited
online, through Amazon Mechanical Turk (Experiment 1; Crump
et al., 2013) and Prolific (Experiments 2 and 3; Peer et al.,
2017). All participants were US-based, and all experiments were
approved by the Harvard University Area Institutional Review
Board (protocol no. 19-1861).

In Experiment 1, 330 participants were recruited, with a link direct-
ing to a survey page on Qualtrics. Participants were compensated 4.5
USD for their time, at a rate of about 10 USD per hour. In the optional
demographic questionnaire, we provided a free-text response box to
collect participants’ gender (female =127, male =199, other =4).
The median participant age was 37. The median completion time of
the study was 26.2min. We excluded from analysis participants
who did not pass one or more catch/comprehension questions
(“What is the color of the sky?”, “What was your task in this
study?”, “Which entity was the agent in this study?”’, and “What


https://osf.io/z9dpu/
https://osf.io/z9dpu/
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Figure 3
Experimental Design and Results From Experiments 1-3
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error of measurements [SEMs] and confidence intervals of curve fit). See the online article for the color version of this figure.

was the number corresponding to the highest level of agreement in this exclusion rate was typical of Amazon Mechanical Turk experiments
study? (1-7)”), as well as participants who gave constant ratings at the time of running these studies. For a discussion of the reliability
across the experiment. This left 147 participants for analysis. The of this subject pool and others, see Peer et al. (2017).
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Figure 4

a-Shape Model Overview, and Modeling Results for Experiments 1-3
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between the original shape and the approximated body. The y-axis shows root mean squared error (RMSE)
and 95% confidence intervals for predicting participant responses, with the best a-shape models indicated
by a red dot. (C) Prediction from the single best-performing o-shape model in each experiment, compared
with participant data. See the online article for the color version of this figure.

Design and Procedure

In all experiments, the stimuli were based on a set of eight irreg-
ular shapes, taken from a classic study on mental rotation (Cooper,
1975) for having a low verbal association.

As in the standard Michottean launching task, participants saw an
object (the agent) moving toward a stationary object (the patient) at a
constant speed. At a predetermined point, the agent stopped moving,
and the patient began moving away from the agent, at the same speed
and direction as the agent did. Participants saw 180 such videos,
each 5 s long (see below for a breakdown of the different videos).
At the end of each video, participants used a 7-point Likert scale
to report their agreement with the statement “The agent caused the
patient to move” (cf. Kominsky et al., 2017). The level of agreement
was the dependent variable.

As illustrated in Figure 3B (left), the agent could collide with
the concave or convex side of the patient. Each patient always

had both a concave and convex side. On the concave side was a
divot that would contain the point of contact should the two shapes
collide. On the convex side, the collision point would be on the
convex hull of the shape. We used mirror images of the eight irreg-
ular shapes, to create a concave—convex pair for each irregular
patient shape (including a slight rotation to align with the agent’s
point of contact). Concave trials had the agent moving toward the
concave side of the patient, and the point of contact was within the
concave divot of the patient. Convex trials had the agent moving
toward the convex side of the patient, and the point of contact
was on the convexity of the patient.

We defined the distance at collision as the horizontal distance
between the two objects at collision time, that is, the distance
along the width of the screen between the hypothetical contact
points on the two objects if there was no spatial gap. The distance
at collision (i.e., the horizontal distance at the time of collision)
between the agent and the patient was one of the following
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values: 0, 4, 8, 12, 16, 20, 25, 32, 45, and 64 pixels. The longest
distance, 64 pixels, corresponded to about half the length of the
agent.

For trials with irregular shapes, the agent was always the same
irregular shape, while the patient shape varied across trials. In addi-
tion, we created 10 warm-up trials (one trial for each distance at col-
lision) and 10 control trials (one trial for each distance at collision),
in which both the agent and the patient were regular boxes of the
same size. The purpose of the control trials was to replicate the
base launching effect, as well as validate participants’ interpretation
of the stimuli. We randomized the direction of motion (left-to-right
or right-to-left) and the agent/patient colors in every video. This
allowed us to compare participants’ causality judgments between
concave and convex side-of-hit, fixing a spatial distance and the
overall visual complexity. In total, there were 180 videos (10 regular
box warm-up trials + 10 distances x 8 irregular patient shapes x 2
side-of-hit conditions + 10 regular box control trials). Participants
first saw a block of 10 warm-up collisions in randomized order to
establish baselines and exclusion criteria, followed by a block of ran-
domized presentations of the other 170 videos (including control
trials).

Results

We predicted that under the same distance at collision, causality
judgments in the concave condition would be higher than in the con-
vex condition. The reasoning is as follows: body approximation is
coarse and fills in parts or all of a concavity. If people used an
approximate body to track the agent and the patient, their perceived
distance at a collision in the concave condition should be smaller
than the actual distance at collision. In the convex condition, the sub-
jective distance at collision should be close to the ground-truth dis-
tance at collision, as the body approximation does not change the
convex side of the patient compared to the original shape.

To quantitatively test this, we fit two separate exponential decay
curves to participant causality judgment ratings, one for concave trials
and one for convex trials. Denoting participant causality ratings as (C)
and the horizontal distance at collision (D), the formulation was:

C:a~e_D/b+c,

where a, b, and ¢ were parameters that control the displacement, cur-
vature, and intercept of the curves. We were interested specifically in
the curvature for concave and convex collisions, meaning the differ-
ence between b.gpcave aNd Deopyex-

We used 1,000 bootstraps of participant responses. In every boot-
strap, we sampled the full sample size with replacement, averaged
responses across sampled participants for every ground-truth dis-
tance, and fit curves over the averaged data. In total, we obtained
1,000 bootstrapped parameter estimates for a curve fit. A paired ¢
test was used to compare 1,000 bootstrapped b oncave €Stimates and
1,000 bootstrapped b.onvex estimates. Then, we repeated this com-
parison between bopcave €Stimates and begnvex €Stimates 10,000
times. In every repeat, we sampled 1,000 b opcave €Stimates and
beonvex €stimates with replacement and tested their distribution by
a paired ¢ test (oo = 0.05). We calculated the percentage of repeats
with significant ¢ test results.

As shown in Figure 3C (left), causality ratings for all collision
types decreased exponentially with the collision distance, replicating

Michotte’s finding that perceived causality was a decreasing func-
tion of distance at collision. Importantly, for the same ground-truth
distance at collision, concave collisions were perceived as more
causal than convex collisions (the concave decay curve is above
the convex curve except at the endpoints). Causality ratings in the
control trials (regular box colliding with regular box) mostly over-
lapped with ratings in convex trials.

The best parameters fit to the exponential decay curves were (with
95% confidence interval [CI] in parentheses): dconcave = 5.8 [5.3,6.0],
Aeonvex = .04 [4.7, 5.3]; beoncave =41.6 [35.6, 47.1], beonvex =
20.6 [18.3, 22.9]; cconcave = 1.1[1.0, 1.5], and cconvex =1.9[1.7,
2.1]. For the curvature parameter of interest, beoncave = Deonvexs DY @
paired 7 test on the bootstrapped beoncave aNd beonvexs 1(999) =
3.1 x 102, p <.001; 100% of 10,000 bootstrapped comparisons
showed that bootstrapped bconcave = Deonvex-

Taken together, the results indicate that (a) participants perceived
the distance at collision, and accordingly reported decreased causal-
ity ratings when distance at collision increased; (b) participants’
interpretation of the distance at collision was similar to Michotte’s
study; (c) participants perceived the distance at collision for irregular
convex patients in a similar way to that for regular boxes, and (iv)
under the same ground-truth distance at collision, the effective dis-
tance at collision that participants perceived for the concave collision
was shorter than the perceived distance at collision for the convex
collision. In addition, we ruled out several other measures of dis-
tance at collision, such as Euclidean distance and center-of-mass dis-
tance. Details on these other measures can be found in the online
supplemental materials.

a-Shape Model Analysis

The previous results showing that participants gave higher causal-
ity ratings for concave collisions than convex collisions were pre-
dicted by the hypothesis of approximate bodies, but were not
based on a specific body approximation model. In all of our exper-
iments, we considered an o-shape approximation algorithm
(Edelsbrunner et al., 1983) to examine in more detail the approxi-
mate body representation people may be using. We also considered
several alternative models, including Gaussian noise, buffer,
Ramer-Douglas—Peucker, bounding box, convex hull, and
center-of-mass (see the online supplemental materials for an analysis
and description of these models). We decided to use the o-shape
model for the rest of the analyses, both for principled reasons (this
model is solving the same challenge we take the cognitive system
to be solving, simplifying shapes given limited resources), and
because it was the best model among the ones we considered in
terms of fitting the human data. We stress that we do not take this
model to be a process-level account of the simplification algorithms
people use, and that further work is needed to establish the simplifi-
cation algorithms (assuming they exist), especially for real-world
three-dimensional objects. However, this model is useful for quanti-
tatively assessing questions like “Are people using a simplification?”
and “Is this simplification somewhere between a convex hull and a
fine-grain shape?”

The o-shape algorithm produces an approximate polygon of a
given shape, with one parameter o controlling the coarseness of
the resulting approximation, ranging from convex hulls to fine-grain
forms (Figure 4A). By varying the o value, we obtained a range of
possible approximate representations for both the agent and the
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patient. So, each setting of the o value produced different predictions
of the effective distance at collision between the agent and the
patient. Using the effective distance at collision as input, we fit a sin-
gle exponential decay curve (same formulation as above, but replac-
ing D with the effective distance at collision) with least squares to
predict participant causality ratings for both concave and convex tri-
als. That is, the a, b, and ¢ parameters were constrained to be the
same between concave and convex conditions.

The expectation was that a reasonable o-shape model should pro-
duce body approximations that can account for causality ratings in
both concave and convex trials, using only effective distance at col-
lision. The performance of the a-shape model fit was measured by
root mean squared error (RMSE) between the participant’s response
and the model prediction.

In Figure 4B, the x-axis shows the o parameter using the average
area-difference percentage between the original shape and the
approximate body, with the left-most point (0) corresponding to
body = shape, and the right-most point corresponding to body = con-
vex hull. The y-axis shows RMSE and 95% Cls when using different
o values to predict participant responses (lower values suggest a
closer fit). It is important to note that in general, the raw o value is
not linear, and is less informative because the absolute magnitude
of the o value range may vary across tasks, depending on the scale
of raw images. For example, a slight increase in oo may cause an
entire section of an object to be much more coarsely approximated,
but any additional increase in o hardly changes this approximation.
We only cared about the cognitively relevant and interpretable out-
come of changing o, which is the relative difference in area between
the original shape and the approximate body with respect to the orig-
inal shape, and this is what is shown in Figure 4.

We found that the best-performing o value (indicated by the larger
red dot, Figure 4B, left) corresponds to an average area-difference
percentage between the approximate body and the original shape
of 21.9%. This best a-shape model accurately explained participant
causality ratings for both concave and convex conditions (Figure 4C,
left), and this parameter setting aligned with a body approximation
that is between a convex hull and a fine-grained shape. These results
further support the hypothesis that people’s coarse body approxima-
tion is different from the fine-form shape.

Experiment 2: TTC

Experiment 2 tested predicted collision times between two objects,
varying concave and convex collision types, and the ground-truth col-
lision times. The experiment was based on classic TTC tasks (Gray &
Thornton, 2001; Rosenbaum, 1975; Tresilian, 1995), but with varying
bodies. Similar to the logic behind Experiment 1, we expected that in
Experiment 2, participants’ response time profile between concave and
convex conditions will reflect the use of body approximations to track
objects. Specifically, because approximate bodies fill in concavities,
we expected people to predict concave collisions will occur sooner
than convex collisions, for the same ground-truth collision time.

Experiment 2—including design, hypotheses, analyses, and
exclusion criteria—was preregistered at https://osf.io/unfzd.

Participants

Experiment 2 recruited 226 participants through Prolific (female
=118, male =105, prefer not to say =1, unknown/expired =2).

The median completion time of the study was 17.8 min. We
excluded 48 participants for failing to answer at least three of
four catch/comprehension questions (“What is your task in this
experiment?” “Which Entity was the agent in this study?”
“Which entity might vanish in this study?” “What is the color of
the sky?”), or for having half of their responses on the control trials
being outliers. We excluded participants’ TTC data in a control or
test trial if it scored as an outlier (i.e., 3 standard deviations away
from the mean). After applying the exclusion criteria, 178 partici-
pants were left for analysis.

Design and Procedure

Participants saw 4-5s videos of two objects, an agent and a
patient. At first, the agent and the patient were stationary. After
1.6 s, the patient faded away (i.e., gradually became invisible), and
the agent began moving at a constant speed towards the now-
invisible patient (Figure 3A, middle). Participants were asked to
press the spacebar at the moment when they predicted the agent
and the patient collided.

As in Experiment 1, we created concave and convex conditions,
by varying the collision side of the patient. Based on Experiment 1,
we slightly simplified the irregular shapes (e.g., making the concave
divots larger), and slowed the object moving speed, to obtain more
accurate motor responses. The same irregular agent object was
paired with varying irregular patient objects.

Our dependent variable was the TTC, meaning the time difference
between the agent initiating motion and the participant pressing the
spacebar. We used six different initial horizontal distances between
the agent and the patient, ranging from 1.6 to 2.5 times the length of
the agent. These corresponded to six ground-truth TTCs: 3,500 ms,
3,700 ms, 3,900 ms, 4,100 ms, 4,300 ms, and 4,500 ms.

In addition to the test videos showing collisions between an irreg-
ular agent and a vanishing irregular patient, we used several control
trials. These control trials showed videos with either regular boxes
colliding, or collisions in which the patient did not vanish, but rather
remained visible throughout the video. These box-collision and non-
fading control trials were used to establish baselines, ceiling perfor-
mance, and exclusion criteria.

In total, we had 120 videos (96 test videos: 6 ground-truth TTC
conditions x 8 irregular patient shapes x 2 side-of-collision condi-
tions; 24 control videos: 20 with irregular shapes but no vanishing
+ 2 with boxes and vanishing + 2 with boxes and no vanishing). We
randomized the moving direction of the agent (left-to-right or
right-to-left) and the colors of objects in each video to control for
visual complexity.

Results

We predicted that people’s TTC should be based on the approxi-
mate bodies of the agent and the patient, in which case people’s TTC
for concave collisions should be smaller than convex collisions for
the same ground-truth TTC. This is because a coarse body represen-
tation partially fills in shape concavities, making the perceived dis-
tance that the agent must travel to contact the patient shorter in
concave collisions.

We first preprocessed all TTC data by correcting them using non-
vanishing control data. We used these control trials to estimate base-
line motor reaction error. The corrected TTC was calculated by
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subtracting a participant’s raw TTC from their mean error in the con-
trol trials. All following analyses used the adjusted TTC data.

We compared the distributions of participant TTC data in concave
and convex collisions across all ground-truth TTC conditions using
kernel density estimation, with a Gaussian kernel to estimate the
ATTC distribution for concave and convex trials separately. The
ATTC was defined as the difference between participant TTC and
the ground-truth TTC. We then compared the mean and 95% CI
between the estimated ATTC,g,cave distribution and the ATTC,qpyex
distribution to see if they were significantly different.

The average difference (and the 95% CI) between participant con-
cave TTC and ground-truth TTC (i.e., ATTC oncave) Was 2.4 ms
[—1.4, 6.2]; the average difference between participant convex
TTC and ground-truth TTC (i.e., ATTC onvex) Was 34.3 ms [31.8,
36.7]. As expected then, people overall behaved as if concave colli-
sions happened earlier than convex collisions, given the same
ground-truth TTCs.

We next considered each ground-truth TTC separately and tested if
the difference between concave and convex TTC still held. We used
paired ¢ tests (oo =0.05) and found that participant concave TTC
and convex TTC were significantly different in every ground-truth
TTC condition (Figure 3C, middle): 7(1161)= —4.4, p=1.3 x
107> in 3,500 ms ground-truth TTC condition; 7(1,181) = —4.4,
p=12x10" in 3,700ms ground-truth TTC condition;
T(1,182)=-57, p=12 x 1078 in 3,900 ms ground-truth TTC
condition; 7(1,179) = —5.9, p=3.9 x 107° in 4,100 ms ground-
truth TTC condition; 7(1,133) = —7.2, p =8.6 x 10~"* in 4,300
ms ground-truth TTC condition; and 7(1,145)=—10.3, p=
2.2 %107 in 4,500 ms ground-truth TTC condition. This indi-
cates that participants always predicted that concave collisions hap-
pened earlier than convex collisions regardless of the ground-truth
TTC. The results again align with our hypothesis.

An exploratory analysis further found that as the ground-truth
TTC increased, the difference between convex TTC and concave
TTC also increased. This is in line with a memory effect on the
coarseness of the object approximation, such that the body approx-
imation grows coarser in working memory over time.

Taken together, the results indicate that (a) there is a difference in
TTC between concave collisions and convex collisions, (b) this dif-
ference is predicted by a coarse body representation that partially fills
in object concavity, and (c) the difference increases over time, which
is in line with increasing coarseness in the body approximation over
time. However, it is possible to explain this last result in different
ways, which we consider in the discussion.

a-Shape Model Analysis

As in Experiment 1, we considered an a-shape model to more
finely test our approximation hypothesis. We again examined a
range of approximation parameter values, ranging from convex
hulls to fine forms. Every o value produced approximated represen-
tations for the agent and the patient, which dictated the effective
TTC. We used a hierarchical linear model to predict participant
TTC responses, using the effective TTC as input and taking into
account individual participant differences in TTC. The o-shape
model performance was measured in RMSE.

We supposed that body approximations can change across differ-
ent scenarios (e.g., task context, memory load, incentive, etc.),
meaning that we do not assume that the o parameter should stay

the same across all contexts. We intended to test whether the object
representation people used in this task is different from a shape rep-
resentation. In this experiment, we considered both a static o (i.e. o
being consistent across all ground-truth TTC conditions) and a time-
varying o (i.e., o varying across ground-truth TTC conditions). The
static o corresponds to the notion that people’s body approximations
are fixed. The time-varying o corresponds to the notion that people’s
body approximations may grow coarser over time, for example, due
to a memory effect. Both the static and the time-varying versions
indicated that people use coarse approximations that are different
from convex hulls and fine forms. See the online supplemental mate-
rials for more details on this analysis.

As shown in Figure 4B (middle), the best time-varying o-shape in
each ground-truth TTC condition (3,500—4,500 ms) filled in the con-
cave divot for an average of 7.9%, 7.9%, 8.6%, 8.6%, 9.9%, and
11.9% in size with respect to the original shape. The best time-
varying o-shape parameters reproduced the memory effect in par-
ticipant data (Figure 4C, middle), such that the difference between
convex and concave TTC increased over time. These results again
support the claim that participants were using a body approximation
that is different from a fine-grain shape representation.

Experiment 3: Change

Experiment 3 was based on classic change detection tasks (Brady
et al., 2009; Simons & Rensink, 2005). We adopted the infant
change detection paradigm from Xu and Carey (1996), in which
an object (e.g., a duck) moves behind an occluder, and another
object (e.g., a truck) emerges. This type of paradigm is used to
explore object individuation and identity tracking in infants
(Kibbe & Leslie, 2019; Rivera & Zawaydeh, 2007; Spelke et al.,
1995).

In this experiment, we predicted that if people use approximate
bodies for physical tracking, then participants would notice changes
at a higher rate when the added area caused larger changes to the
underlying body representation of the object. In addition, we
hypothesized that in an experiment in which no direct physical track-
ing of motion was involved, changes that happened within the body
representation would become easier to detect, because the absence
of physical movement would result in less dependence on a body
representation.

Experiment 3—including design, hypotheses, analyses, and exclu-
sion criteria—was preregistered at https://osf.io/krzq2 (Experiment 3a)
and https://osf.io/nre7s (Experiment 3b).

Participants

We recruited 60 participants each for Experiments 3a and 3b
through Prolific. The mean completion time was 20 min. In
Experiment 3a, we excluded participants who did not submit full
data, failed attention checks, or answered catch questions incor-
rectly. The catch/comprehension questions were “Which key to
press if objects are the same, P or Q?” and to describe the task.
(There was one additional catch question of “what is 1 + 1,” but par-
ticipants were unable to submit data before correctly answering that).
Additionally, we excluded participants who had < 50% accuracy on
the task in total or below 75% accuracy in our “catch shape” trials.
These accuracy criteria were quite lenient, so it is possible partici-
pants who fell below those thresholds were not paying attention to


https://doi.org/10.1037/xge0001439.supp
https://doi.org/10.1037/xge0001439.supp
https://osf.io/krzq2
https://osf.io/krzq2
https://osf.io/nre7s
https://osf.io/nre7s

allied publishers.
go through the American Psychological Association.

This document is copyrighted by the Ame
Content may be shared at no cost, but any requests to reuse this content in part or whole must

OBJECTS UNDERLIES PHYSICAL REASONING 9

the task. After applying the exclusion criteria, we were left with 56
participants. In Experiment 3b, 50 participants remained after apply-
ing the same exclusion criteria. For both Experiments 3a and 3b, the
demographic questionnaire was optional. We asked for participants’
age and gender (choosing from male, female, other, or prefer not to
answer). The majority of participants chose not to provide demo-
graphic information.

Design and Procedure

Experiment 3a tested change detection for a shape moving behind
an occluder, where a change could happen within or outside a poten-
tial body approximation. Experiment 3b controlled for the physical
motion in Experiment 3a.

In Experiment 3a (Figure 3 A, right), participants saw 4 s videos in
which an object moved horizontally behind a centrally placed
occluder. The object was briefly out of sight when it moved behind
the occluder, and then either the same object or a modified object
emerged out of the occluder and continued moving horizontally
until out of the screen. After each video, participants were asked
to report whether or not they detected a change to the object, and
this binary measure was our dependent variable. We also recorded
participants’ confidence ratings for each of their binary responses,
on a discrete scale from 1 to 9.

The base objects were the same eight irregular shapes used in
Experiment 1. Modified objects had areas added to them, in three
locations (concave, nofill, and convex) and two sizes (small and
large). As illustrated in Figure 3B (right), the concave condition
filled an innermost concavity of an object, the nofill condition had
the added area still within a big concavity, but not necessarily filling
in the innermost position, and the convex condition had the added
area at a convex edge of the object. The pixel-area change and
form of the added area were the same across locations, within a
size and shape setting.

If the body representation is the same as the shape, then changes in
the concave, nofill, and convex conditions should be noticed at the
same rate, because they all violate the same amount of shape. If
the body approximation is a convex hull, then nofill and concave
changes should be equally harder to detect than convex changes,
because concave and nofill changes both happened within a convex
hull body. If the body approximation is somewhere between a con-
vex hull and a fine-grained shape (as suggested by Experiments 1
and 2), then concave changes should be harder to detect than the
nofill and convex conditions, because only concave changes
would fall within the body.

We randomly inserted 12 catch trials as attention checks, in which
a simple square stayed as a square (6 trials), or changed into a trian-
gle (6 trials). We balanced the number of videos showing change and
no change and randomized the horizontal motion of the object
(either from left to right, or from right to left) as well as its color.
In total, there were 96 test trials (8 shapes x 3 change types x 2
change sizes x 2 change/no-change conditions).

In Experiment 3b, we replicated the design and measures of
Experiment 3a, except that we used static images instead of videos
of a moving object as stimuli. Participants watched a stationary
object at the center of the screen for 1 s, after which the object dis-
appeared for 2s (this period matched the approximated time that
the object was hidden behind the occluder in Experiment 3a). The
same object or a modified object then appeared for another 1s. As

in Experiment 3a, we used three location conditions (concave, nofill,
and convex), and two sizes for the change.

In addition to these studies, we implemented a simple alternative
(Experiment 3c) that encouraged people to use fine-grain shape repre-
sentations in the change detection task. That is, while we are arguing
that people use body representations in tasks that do not involve rec-
ognition, it is useful to show tasks in which the shape is used, for
example, for comparison.' In Experiment 3c, participants saw images
containing two objects side by side. The task was simple: participants
had to determine whether the two objects in an image are the same or
different, without time constraints. We used four irregular shapes and
the catch shape from Experiment 3b, balanced the number of change
and no-change trials, and randomized the object color.

Results

In both Experiment 3a and 3b, we calculated the average percent-
age of noticing a change (and the standard error of measurement
[SEM]) in all change types (i.e., concave, nofill, and convex),
using only the data from change trials, and aggregating across two
change sizes. We compared the percentage of noticing change
among change types by paired # tests (oo = 0.05).

As shown in Figure 3C (right), we found that indeed the odds that par-
ticipants noticed a change were the lowest for the concave trials, signifi-
cantly lower than either nofill trials (sample mean difference = 22.2%,
1(55)=949, p<.001; d=127; 95% CIs = [17.5%, 26.9%]) or
than convex trials (sample mean difference = 18.7%, #(55)=
729, p<.001; d=0.97; 95% CIs = "[13.5%,23.9%])).
However, the difference between the nofill and convex trials was
not significant (sample mean difference = 3.4%, #(55)=1.76,
p=.084;d=0.24;95% Cls = [ — 0.4%, 7.3%]). This main effect
of accuracy pattern across change types still held after taking into
account shape complexity (see analysis details in the online supple-
mental materials). This suggests that participants’ body approxi-
mations are different from the fine-form, and further that the
boundaries of the approximation are in between the fine-form
and convex hull, in line with findings from Experiments 1 and 2.

Next, to compare results from Experiments 3a and 3b, we per-
formed a generalized linear regression with a logistic link function
(i.e., the binomial family) on participant data from Experiment 3a
and 3b. The parameters included the main effect of change type
(concave, nofill, and convex), the main effect of experiment version
(Experiments 3a and 3b), and their interaction. We report the devi-
ance and significance level of the analysis of variance (ANOVA)
X tests on the regression model.

The findings from Experiment 3b replicated the overall pattern of
Experiment 3a, with change detection being easier across the board
(Figure 3C, right). The two-way logistic ANOVA showed that the
interaction between the change type and experiment version was
not significant, and both main effects of change type and experiment
version were significant, interaction: x*(2) = 1.08, p = .58; change
type main effect: x>(2) = 211.60, p < .001; experiment version
main effect: x>(1) = 112.45, p < .001. This suggests that the visual
task in Experiment 3b was easier than the physics-tracking task in
Experiment 3a, but without a differential effect on detecting concave
changes. It is possible that having the before- and after-image

! We thank a reviewer for this point.
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presented sequentially but with a temporal gap, caused people to
maintain a coarse body-like representation in memory in order to
perform a visual comparison.

As for the simple comparison, in Experiment 3c, in which people
had the opportunity to compare two shapes without time constraints:
participants were now at near-ceiling performance for all conditions
(see Figure S26 in the online supplemental materials). There was no
significant difference between participant accuracy on the concave
and convex trials (p = .16), and between convex and nofill accuracy
(p = .32), though participants did notice changes at a lower rate in con-
cave change trials compared to nofill change trials (p =.031).
Importantly, even this difference became nonsignificant when taking
into account the number of vertices that changed. That is, a further gen-
eralized linear model analysis indicates that the concave—convex and
concave—nofill gap becomes nonsignificant (chi-squared likelihood
ratio test result between the full model and the restricted model without
the change type variable: x> = 4.84, df = 2, p = .089). This sup-
ports the intuition that people can use fine-grained shape representation
to detect small differences between two shapes, and that the minor
accuracy difference between concave and nofill, in this case, can be
explained by the number of vertices changed (nofill changes usually
create more vertices than other change types, and could be easier to
notice). The online supplemental materials contains the full details
and analysis for this experiment. Future work is still needed to compare
our results with a version of Experiment 3 that heavily involves shape
representation while maintaining the same level of task difficulty.

a-Shape Model Analysis

As in Experiments 1 and 2, we tested different o values for an
approximation model, ranging from convex hulls to the fine forms
of the original shapes. Each o setting produced an approximation
for the objects before and after a change. To calculate the relative
amount of effective body violation, we aligned the approximations
before and after the change, extracted the area that was different
between the two approximations, and calculated its size ratio with
respect to the size of the before-change approximation.

Independent of the approximation, we took the complexity of the
original shape into account, as we found that the odds of noticing a
change varied across shapes, which themselves varied in complex-
ity. We parameterized visual complexity as the number of vertices
a given shape had before entering the occluder. We used the effec-
tive area change ratio x calculated above and complexity to predict
the percentage of noticing a change P(change), with the logarithm
functional form (other functional forms are discussed in the online
supplemental materials):

P(change) = [(P(falseAlarm) 4 a)] x log(e +b x x) —a + k

X complexity.

Free parameters a, b, and k were estimated using least squares opti-
mization. The constant P(falseAlarm) was the false alarm rate of par-
ticipants reporting a change in the no-change trials containing
irregular shapes. Performance was measured using the mean
RMSE across averaged concave predictions, averaged nofill predic-
tions, and averaged convex predictions. The best-performing
o-shape model matched people’s performance in Experiment 3a
and replicated the qualitative finding that changes in the concave
condition were less likely to be detected than in the nofill or convex

conditions (Figure 4B and C, right). The best-performing model on
average filled in 4.6% of the concavities in size of the original shape.
We stress that this should not be taken to suggest that the true under-
lying body approximation fills in concavities to this specific amount,
but simply that the approximation fills in the concavities to some
degree in between a convex hull and a fine-grain form, and further
work should elucidate the specific approximation people used.

Discussion

Interacting with the physical world in real-time presents a compu-
tational challenge. We proposed that a central and useful approxima-
tion for dealing with this challenge is the simplification of physical
bodies. We examined whether people actually use such an approxi-
mation by constructing concave and convex conditions in several
variations of classic psychophysical tasks.

Our results suggest that people do indeed use a coarse body
approximation for reasoning about the behavior of objects and that
this body representation can accommodate representations in
between convex hulls and fine-grained forms. There are many
ways to model people’s uncertainty over the behavior of objects,
but a general “fuzziness” does not reproduce the distinction between
convex and concave shapes. We explored several possible simplifi-
cation models, and the one that best accounted for people’s data was
the a-shape model. This model uses one simple parameter, a knob
that dials the approximation between a fine-grain shape and a coarse
convex hull, which allowed us to compare predictions along this
continuum of hypotheses.

The use of body approximations is in line with the general proposal
that people’s intuitive physics is not a perfect simulation, but rather
relies on principled shortcuts and workarounds (Bass et al., 2021;
Battaglia et al., 2013; Smith & Vul, 2013; T. D. Ullman et al.,
2017). It also supports the proposal that cognitive scientists can use
the principled approximations of real-time simulations as working
hypotheses for cognitive models of intuitive physics. Other approxi-
mations to explore in human cognition (T. D. Ullman et al., 2017)
include the static/dynamic distinction (physics engines often treat
objects that actively participate in simulations as dynamic, and others
such as walls/floors as static), and the wake/sleep distinction (dynamic
objects that are not moving or expected to move are marked as “sleep-
ing,” with no need to rerender or recalculate dynamics from frame to
frame). While our experiments provide a first step in showing that peo-
ple use body approximations for reasoning about physical events, fur-
ther work is required to determine when people use approximate body
representations, how they are formed, and how they might change
across time and tasks.

It is likely that people’s approximations are task- and context-
specific in a dynamic way, which takes into account available mental
resources, the importance of the task, and scene-specific variables.
For example, the simple a-shape model we considered treated all
parts of a given object as equally important, but people might use
fewer resources to approximate areas of an object that are less rele-
vant for a given task. For example, suppose an object is about to
be hit from the left, then it is less important to spend resources on
approximating the object’s right-hand side. Or, consider that to
catch a cup falling off of the table, it may not be necessary to repre-
sent the handle in full detail. Just a cylinder or bounding box approx-
imation would be sufficient to initiate a catching action quickly.
However, holding a cup’s handle or hanging it requires representing
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the handle more precisely. Still, the resulting representation does not
equal a fully detailed shape representation. Parts other than the han-
dle of the cup may still be approximated in a coarse form, such as the
concavity of the cup where it contains liquid or the fine-grained color
or texture of the cup.

The importance and difficulty of a task may also affect the approx-
imation used Vul et al. (2009). For example, if it is vitally important
to precisely assess the trajectory of an object, more cognitive
resources may be spent on finer-grained approximations to increase
accuracy. The results of Experiment 2 also suggest the approxima-
tion model is time-variant, with people’s approximation growing
rougher with time up to a point (the body approximation may
grow closer and closer to a convex hull the longer it spends behind
an occluder or in memory).

All of these examples and complications are not alternatives to the
current proposal, but suggestions for refinement that build on a basic
suggestion. In all of our experiments, the a-shape model suggests that
the approximations people used are different from the precise shape rep-
resentations. Our central claim emphasizes a distinction between the
representations used for physical reasoning and those used for visual
recognition under a resource rationality assumption for human cogni-
tion. The possibility that body approximation may vary can easily
lend itself to further experiments and additions to the model, to answer
the exact form and dynamics of the body representation.

The o-shape model we considered is useful in teasing apart sev-
eral possibilities for whether and which approximation people use,
but it is only one suggestion for the approximations people might
use when simplifying two-dimensional shapes. It is quite likely
that people do not use exactly this model. Various shape-
simplification models have been put forward by mathematicians,
and possibly different algorithms are used for two-dimensional ver-
sus three-dimensional approximations (Edelsbrunner & Miicke,
1994). Follow-up work can further constrain the different approxi-
mation model(s) used by people.

Body approximations may also be influenced by kind informa-
tion. For example, a cylinder may be used to approximate a mug,
but it is important for a prototypical mug that it has a handle.
Such information is useful for recognition, but also for making phys-
ical predictions. A useful body approximation algorithm may
include a library of standard shapes (cf. Smith et al., 2019) that is
expanded over time, with language helping to scaffold the impor-
tance of different shapes. The failure of infants to detect a change
in shape when objects move behind an occluder (Xu & Carey,
1996) may then reflect either a very rough body approximation or
the lack of relevant bodies in a standard body library.

Kind information may help constrain body approximations, but
this can only happen up to a point, and some insensitivity to kind
information may carry through from infancy to adulthood. For
example, it was recently shown Kominsky et al. (2021) that people
“fill in” the perceived trajectory of objects, even when those objects
change identity (from a basketball to a soccer ball). But, this effect
did not exist when objects changed spatiotemporal continuity (a bas-
ketball is seen coming in from above, then from below). Our pro-
posal predicts such behavior, since body approximations used for
physical tracking do not necessarily encode information relevant
to identity. Our proposal further predicts that changing the object
outside of a rough body approximation will disrupt filling-in effects
(e.g., changing a basketball to a much larger basketball or a basket-
ball to a towel).

While body approximations may be useful in many tasks, they are
not the only relevant representation for tracking the number of enti-
ties in a given scene. Absent other information, 10-month-old
infants may fail to distinguish two objects moving behind a screen
due to their similar body approximations (T. D. Ullman et al.,
2017; Xu & Carey, 1996), but even young infants can use early
developing markers such as function-use (Futé et al., 2010), onto-
logical distinctions such as agency/nonagency (Kibbe & Leslie,
2019; Wilcox et al., 2010), and so on.

Returning to the dorsal—ventral distinction in visual processing in pri-
mates (Goodale & Milner, 1992; Kravitz et al., 2011; Schneider, 1969),
a body approximation would be in line with information-for-action,
rather than recognition. Above and beyond “where” something is, act-
ing on something requires knowing its rough physical form. A small
doughnut centered in a particular position is not the same as a large
box centered in the same location. In game engines, the body represen-
tation is a carrier not just of rough form, but also of orientation, location,
and physical properties, such as elasticity and weight. It is an interesting
avenue for future research, to examine to what degree this analogy car-
ries into primate visual processing, although it is unlikely to be a neat
split (Zimmer, 2008).

In sum, our findings suggest that human perception and reasoning
respect the body-shape distinction. We used a contrast between con-
cave and convex trials in three psychophysical tasks to create a dis-
sociation between body and shape. We observed in all three
experiments that human behavior in concave trials was significantly
different from convex trials, as predicted by a distinction between
body and shape representations. We used the a-shape algorithm to
produce a specific realization of body representations and found
that reasonable o values quantitatively and qualitatively predict
human behavior. While our model is unlikely to be a perfect
match for people’s representations, our finding suggests that they
are a decent approximation and provides indirect evidence to a
coarse body approximation.

Constraints on Generality

Across our experiments, we recruited participants from online
platforms (Amazon Mechanical Turk and Prolific), restricting the
participant pool to US-based adults. Although both platforms con-
tain representative samples in the US, such a population can still
limit the generality of our findings. For example, it is not guaranteed
that the results we report here can be generalized to people from
other countries. As we are using variations on basic psychophysical
tasks which have been examined cross-culturally, we conjecture that
our results will generalize more broadly, but this remains to be
shown empirically.
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