
ACCELERATED FIRST-ORDER METHODS FOR CONVEX
OPTIMIZATION WITH LOCALLY LIPSCHITZ CONTINUOUS

GRADIENT ∗

ZHAOSONG LU† AND SANYOU MEI†

Abstract. In this paper we develop accelerated first-order methods for convex optimization
with locally Lipschitz continuous gradient (LLCG), which is beyond the well-studied class of convex
optimization with Lipschitz continuous gradient. In particular, we first consider unconstrained convex
optimization with LLCG and propose accelerated proximal gradient (APG) methods for solving it. The
proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation
complexity of O(ε−1/2 log ε−1) and O(log ε−1) for finding an ε-residual solution of an unconstrained
convex and strongly convex optimization problem, respectively. We then consider constrained convex
optimization with LLCG and propose an first-order proximal augmented Lagrangian method for
solving it by applying one of our proposed APG methods to approximately solve a sequence of
proximal augmented Lagrangian subproblems. The resulting method is equipped with a verifiable
termination criterion and enjoys an operation complexity of O(ε−1 log ε−1) and O(ε−1/2 log ε−1)
for finding an ε-KKT solution of a constrained convex and strongly convex optimization problem,
respectively. All the proposed methods in this paper are parameter-free or almost parameter-free
except that the knowledge on convexity parameter is required. In addition, preliminary numerical
results are presented to demonstrate the performance of our proposed methods. To the best of
our knowledge, no prior studies were conducted to investigate accelerated first-order methods with
complexity guarantees for convex optimization with LLCG. All the complexity results obtained in
this paper are new.

Key words. Convex optimization, locally Lipschitz continuous gradient, proximal gradient
method, proximal augmented Lagrangian method, accelerated first-order methods, iteration complexity,
operation complexity

MSC codes. 90C25, 90C30, 90C46, 49M37

1. Introduction. In this paper we first consider unconstrained convex optimiza-
tion1

(1.1) F ∗ = min
x
{F (x) := f(x) + P (x)},

where F ∗ ∈ R, f, P : Rn → (−∞,∞] are proper closed convex functions, f is
differentiable on cl(dom(P)), and ∇f is locally Lipschitz continuous2 on cl(dom(P)),
where dom(P) denotes the domain of P and cl(dom(P)) denotes its closure. It shall
be mentioned that dom(P) is possibly unbounded. Problem (1.1) is beyond the well-
studied class of problems in the form of (1.1) yet with ∇f being (globally) Lipschitz
continuous on cl(dom(P)) or Rn. For example, the problem of minimizing a convex
high-degree polynomial function over a closed unbounded convex set is a special
case of (1.1), but it does not belong to the latter class in general. In addition, it is
sometimes easier to verify local Lipschitz continuity than Lipschitz continuity of ∇f
on cl(dom(P)). For example, when f is twice differentiable in an open set containing
cl(dom(P)), it is straightforward to see that ∇f is locally Lipschitz continuous on

∗Submitted to the editors April 8, 2023.
Funding: This work was partially supported by NSF Award IIS-2211491.
†Department of Industrial and Systems Engineering, University of Minnesota, USA

(zhaosong@umn.edu, mei00035@umn.edu).
1We refer to problem (1.1) as an unconstrained optimization problem just for convenience. Strictly

speaking, it can be a constrained optimization problem. For example, when P is the indicator function
of a closed convex set, it reduces to the problem of minimizing f over this set.

2See Subsection 1.1 for the definition of locally Lipschitz continuity.

1

mailto:zhaosong@umn.edu
mailto:mei00035@umn.edu

2 ZHAOSONG LU AND SANYOU MEI

cl(dom(P)); however, verifying Lipschitz continuity of ∇f may require exploring the
expression of ∇f and can be a nontrivial task.

The well-known special case of problem (1.1) with ∇f being Lipschitz continuous
on cl(dom(P)) or Rn has been extensively studied in the literature. In particular,
accelerated proximal gradient (APG) methods [3, 16] and their variants [4, 9, 20]
were proposed for solving it. From theoretical perspective, these methods enjoy an
optimal iteration complexity of O(ε−1/2) for finding an ε-gap solution of (1.1), namely,
a point x satisfying F (x) − F ∗ ≤ ε. However, since F ∗ is typically unknown, there
is a lack of a verifiable termination criterion for them to find an ε-gap solution of
(1.1) in general. To overcome this issue, a nearly optimal proximal gradient method
was recently proposed in [6] for solving such a special case of (1.1). This method
is equipped with a verifiable termination criterion based on the norm of a gradient
mapping of (1.1) and enjoys an iteration complexity of O(ε−1/2 log ε−1) for finding an
ε-norm solution of (1.1), namely, a point at which the norm of a gradient mapping of
(1.1) is no more than ε. It shall be mentioned that these methods [3, 4, 6, 9, 16, 20]
and their analysis rely on the Lipschitz continuity of ∇f on cl(dom(P)) or Rn. Indeed,
they require either an explicitly known global Lipschitz constant of ∇f [4, 9, 20] or an
estimated one obtained by a backtracking line search scheme [3, 6, 16]. When ∇f is
merely locally Lipschitz continuous, a global Lipschitz constant of ∇f clearly does not
exist and also the sequence of estimated Lipschitz constants in [3, 6, 16] can blow up
because the solution sequence is possibly unbounded. If the latter case occurs, the
methods may not converge and the complexity analysis of the methods in [3, 6, 16]
will no longer hold. As a result, these methods are not applicable to (1.1) or lack
complexity guarantees in general when ∇f is merely locally Lipschitz continuous on
cl(dom(P)).

To handle the challenge of the local Lipschitz continuity of ∇f , we modify [9,
Algorithm 1 with a single block] by incorporating a backtracking line search scheme and
an adaptive update strategy on the algorithm parameters to propose an APG method
(see Algorithm 2.1) for solving problem (1.1). Interestingly, the solution sequence and
the sequence of estimated (local) Lipschitz constants obtained by the proposed APG
method can be proved to be bounded, which overcome the aforementioned issues of
the methods in [3, 6, 16]. Moreover, this method is shown to enjoy a nice iteration
complexity of O(ε−1/2) and O(log ε−1) for finding an ε-gap solution of (1.1) when
f is convex and strongly convex, respectively. Yet, since F ∗ is typically unknown,
it is difficult to come up with a verifiable termination criterion for this method to
find an ε-gap solution of (1.1). To circumvent this issue, we further propose an APG
method with a verifiable termination criterion (see Algorithm 2.2) for (1.1) with a
strongly convex f , and show that it enjoys an iteration and operation complexity3

of O(log ε−1) for finding an ε-residual solution of (1.1), namely, a point x satisfying
dist(0, ∂F (x)) ≤ ε.4 We also propose an APG method with a verifiable termination
criterion (see Algorithm 2.4) for (1.1) with a convex but non-strongly convex f by
applying Algorithm 2.2 to a sequence of strongly convex optimization problems arising
from a perturbation of (1.1), and show that it enjoys an operation complexity of
O(ε−1/2 log ε−1) for finding an ε-residual solution of (1.1). All the proposed APG

3The operation complexity of a proximal gradient method for problem (1.1) is measured by the
amount of its fundamental operations consisting of evaluations of ∇f and proximal operator of P .

4dist(z,Ω) = miny{‖z − y‖ : y ∈ Ω} for any z ∈ Rn and closed set Ω ⊆ Rn. In addition, an
ε-residual solution x of (1.1) satisfying ‖x‖ ≤ ∆ for some ∆ > 0 independent on ε is an O(ε)-gap
solution, because F (x)− F ∗ ≤ ‖x− x∗‖dist(0, ∂F (x)) ≤ (∆ + ‖x∗‖)ε for any optimal solution x∗ of
(1.1). However, the converse may not be true.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 3

methods are parameter-free or almost parameter-free except that the knowledge on
convexity parameter of f is required.

Secondly, we consider constrained convex optimization in the form of

(1.2)
F̄ ∗ = min {F (x) := f(x) + P (x)}

s.t. −g(x) ∈ K,

where K ⊆ Rm is a closed convex cone, f, P : Rn → (−∞,∞] are proper closed convex
functions, f and g are differentiable on cl(dom(P)), ∇f and ∇g are locally Lipschitz
continuous on cl(dom(P)), and g is K-convex, that is,

αg(x) + (1− α)g(y)− g(αx+ (1− α)y) ∈ K, ∀x, y ∈ Rn, α ∈ [0, 1].

It shall be mentioned that dom(P) is possibly unbounded.
Problem (1.2) includes a rich class of problems as a special case. For example, when

K = Rm1
+ ×{0}m2 for some m1 and m2, g(x) = (g1(x), . . . , gm1

(x), h1(x), . . . , hm2
(x))T

with convex gi’s and affine hj ’s, and P (x) is the indicator function of a simple convex
set X ⊆ Rn, problem (1.2) reduces to an ordinary convex optimization problem

min
x∈X
{f(x) : gi(x) ≤ 0, i = 1, . . . ,m1;hj(x) = 0, j = 1, . . . ,m2}.

Numerous first-order methods were developed for solving some special cases of
(1.2) in the literature. For example, a variant of Tseng’s modified forward-backward
splitting method was proposed in [14] for (1.2) with g being an affine map, K = {0}m,
and ∇f being Lipschitz continuous on cl(dom(P)). Also, first-order penalty methods
were proposed in [7] for (1.2) with g being an affine map, P being the indicator
function of a simple compact convex set, and ∇f being Lipschitz continuous on this
set. In addition, first-order augmented Lagrangian (AL) methods were developed in
[1, 15] for (1.2) with g being an affine map, P having a bounded domain or being the
indicator function of a simple compact convex set, and ∇f being Lipschitz continuous
on Rn. Also, first-order AL methods were proposed in [8, 10, 17] with K = {0}m, g
being an affine map, P having bounded domain or being the indicator function of a
simple compact convex set, and ∇f being Lipschitz continuous on this set or Rn. For
these special cases, first-order iteration complexity was established for the methods
[1, 15, 17] for finding an ε-gap solution5 of (1.2) and for the methods [7, 8, 14] for
finding an ε-KKT type solution, which is similar to the one introduced in Definition 3.2
in Section 3. Since F ∗ is typically unknown, there is a lack of a verifiable termination
criterion for the methods [1, 15, 17] to find an ε-gap solution of (1.2) in general. In
contrast, ε-KKT type of solutions can generally be verified and the methods [7, 8, 14]
are equipped with a usually verifiable termination criterion for finding an ε-KKT type
solution of the aforementioned special cases of (1.2).

In addition to the above methods, a first-order proximal AL method was recently
proposed in [12, Algorithm 2] for solving a special case of problem (1.2) with P having
a compact domain and ∇f and ∇g being Lipschitz continuous on dom(P). At each
iteration, this method applies a variant of Nesterov’s optimal first-order method [12,
Algorithm 3] to approximately solve a proximal AL subproblem and then updates the
Lagrangian multiplier by a classical scheme. This method enjoys two nice features:
(i) it is equipped with a verifiable termination criterion; (ii) it achieves a best-known

5An ε-gap solution of problem (1.2) is a point x satisfying |F (x)− F̄ ∗| ≤ ε and dist(g(x),−K) ≤ ε.

4 ZHAOSONG LU AND SANYOU MEI

operation complexity of O(ε−1 log ε−1) for finding an ε-KKT solution6 of such a special
case of (1.2).

It shall be mentioned that the aforementioned methods in [1, 7, 8, 10, 12, 14, 15, 17]
and their analysis rely on boundedness of dom(P) and/or Lipschitz continuity of ∇f
and ∇g on cl(dom(P)) or Rn. Indeed, these methods use the APG method [16] or its
variant as a subproblem solver. Based on the above discussion, such a subproblem solver
is not applicable or lacks complexity guarantees in general when dom(P) is unbounded
or ∇f and ∇g are merely locally Lipschitz continuous on cl(dom(P)), because the
gradient of the smooth component in the objective function of the subproblems is
merely locally Lipschitz continuous. As a result, these methods are not applicable or
lack complexity guarantees in general when dom(P) is unbounded or ∇f and ∇g are
merely locally Lipschitz continuous on cl(dom(P)).

In this paper we propose a first-order proximal AL method for solving problem
(1.2) by following the same framework as [12, Algorithm 2] except that the proximal
AL subproblems are approximately solved by our APG method, namely, Algorithm 2.2.
Though the gradient of the smooth component in the objective function of these
subproblems is merely locally Lipschitz continuous, their approximate solutions can
be found by our APG method with complexity guarantees. As a result, our first-order
proximal AL method overcomes the aforementioned issue faced by the methods in
[1, 7, 8, 10, 12, 14, 15, 17]. Besides, our method is equipped with a verifiable termination
criterion and almost parameter-free except that the knowledge on convexity parameter
of f is required. Moreover, we show that it achieves an operation complexity of
O(ε−1 log ε−1) and O(ε−1/2 log ε−1) for finding an ε-KKT solution of (1.2) when f is
convex and strongly convex, respectively.

The main contributions of our paper are summarized as follows.
• We propose and analyze APG methods for solving problem (1.1) under local

Lipschitz continuity of ∇f on cl(dom(P)) for the first time. Our proposed
methods are almost parameter-free, equipped with a verifiable termination
criterion, and enjoy an operation complexity of O(ε−1/2 log ε−1) andO(log ε−1)
for finding an ε-residual solution of (1.1) when f is convex and strongly convex,
respectively.
• We propose and analyze a first-order proximal AL method for solving problem

(1.2) under local Lipschitz continuity of∇f and∇g on cl(dom(P)) and possible
unboundedness of dom(P) for the first time. Our proposed method is almost
parameter-free, equipped with a verifiable termination criterion, and enjoys
an operation complexity of O(ε−1 log ε−1) and O(ε−1/2 log ε−1) for finding an
ε-KKT solution of (1.2) when f is convex and strongly convex, respectively.

The rest of this paper is organized as follows. In Subsection 1.1 we introduce
some notation and terminology. In Section 2 we propose accelerated proximal gradient
methods for problem (1.1) and study their worst-case complexity. In Section 3 we
propose a first-order proximal augmented Lagrangian method for problem (1.2) and
study its worst-case complexity. In addition, we present some preliminary numerical
results and the proofs of the main results in Sections 4 and 5. Finally, we make some
concluding remarks in Section 6.

1.1. Notation and terminology. The following notation will be used through-
out this paper. Let Rn denote the Euclidean space of dimension n, 〈·, ·〉 denote the
standard inner product, and ‖ · ‖ stand for the Euclidean norm or its induced matrix

6An ε-KKT solution of (1.2) is generally an O(ε)-gap solution of (1.2) (see Theorems 3 and 6 of
[12]). However, the converse may not be true.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 5

norm. For any ω ∈ R, let ω+ = max{ω, 0} and dωe denote the least integer number
greater than or equal to ω. Let Z+ denote the set of positive integers. For any
t,M ∈ Z+, mod(t,M) denotes the remainder of t when divided by M .

For a closed convex function P : Rn → (−∞,∞], let ∂P and dom(P) denote the
subdifferential and domain of P , respectively. The proximal operator associated with
P is denoted by proxP , that is,

proxP (z) = arg min
x∈Rn

{
1

2
‖x− z‖2 + P (x)

}
∀z ∈ Rn.

Since evaluation of proxγP (z) is often as cheap as that of proxP (z), we count evaluation
of proxγP (z) as one evaluation of proximal operator of P for any γ > 0 and z ∈ Rn. For

a mapping h : Rn → Rl, ∇h denotes the transpose of the Jacobian of h. ∇h is called L-
Lipschitz continuous on a set Ω for some constant L > 0 if ‖∇h(x)−∇h(y)‖ ≤ L‖x−y‖
for all x, y ∈ Ω. In addition, ∇h is called locally Lipschitz continuous on Ω if for
any x ∈ Ω, there exist Lx > 0 and an open set Ux containing x such that ∇h is
Lx-Lipschitz continuous on Ux.

Given a nonempty closed convex set Ω ⊆ Rn, dist(x,Ω) stands for the Euclidean
distance from x to Ω, and ΠΩ(x) denotes the Euclidean projection of x onto C. The
normal cone of Ω at any x ∈ Ω is denoted by NΩ(x). For a closed convex cone K ⊆ Rm,
we use K∗ to denote the dual cone of K, that is, K∗ = {y ∈ Rm : 〈y, x〉 ≥ 0, ∀x ∈ K}.

2. Accelerated proximal gradient methods for unconstrained convex
optimization. In this section we consider problem (1.1) and propose accelerated
proximal gradient (APG) methods for solving it. In particular, we aim to find an
ε-residual solution of (1.1), which is defined below.

Definition 2.1. Given any ε > 0, we say x ∈ Rn is an ε-residual solution of
problem (1.1) if it satisfies dist(0, ∂F (x)) ≤ ε.

To proceed, let µ ≥ 0 denote the convexity parameter of f on dom(P), that is,

(2.1) f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖2, ∀x ∈ dom(P), y ∈ Rn.

Clearly, f is strongly convex on dom(P) when µ > 0. In addition, we assume that the
proximal operator associated with P can be exactly evaluated and problem (1.1) has
at least one optimal solution. Let x∗ be an arbitrary optimal solution of (1.1) and
fixed throughout this section.

2.1. An APG method without a termination criterion for problem (1.1).
We propose an APG method for (1.1) in Algorithm 2.1 below, which is a modification
of [9, Algorithm 1 with a single block] by incorporating a backtracking line search
scheme and an adaptive update strategy on the algorithm parameters.

Remark 2.2. (i) Algorithm 2.1 is almost parameter-free except that the convexity
parameter µ of f is required.

(ii) One can observe that the fundamental operations of Algorithm 2.1 consist of
evaluations of ∇f and proximal operator of P . Specifically, at iteration t, Algorithm
2.1 requires nt + 1 evaluations of ∇f and proximal operator of P for finding xt+1

satisfying (2.6).
(iii) Notice from Algorithm 2.1 that 0 < α0 ∈ [

√
µγ0, 1], which implies α0 ∈ (0, 1]

regardless of µ = 0 or µ > 0. Suppose that αt−1 ∈ (0, 1] and γt−1, γt ∈ (0, γ0] are

7By convention, we define 1/0 =∞. Consequently, when µ = 0, γ0 can be any positive number.

6 ZHAOSONG LU AND SANYOU MEI

Algorithm 2.1 An APG method without a termination criterion for problem (1.1)

Input: γ0 ∈ (0, 1/µ],7 0 < α0 ∈ [
√
µγ0, 1], δ ∈ (0, 1), and x1 = z1 ∈ dom(P).

1: for t = 1, 2, . . . do
2: Compute

yt =
(
(1− αt)xt + αt(1− βt)zt

)
/(1− αtβt),(2.2)

zt+1 = arg min
x

{
γt[〈∇f(yt), x〉+ P (x)] +

αt
2
‖x− βtyt − (1− βt)zt‖2

}
,(2.3)

xt+1 = (1− αt)xt + αtz
t+1,(2.4)

where γt = γ0δ
nt and βt = µγtα

−1
t with αt ∈ (0, 1] being the solution of

(2.5) γt−1α
2
t = (1− αt)α2

t−1γt + µαtγtγt−1,

and nt being the smallest non-negative integer such that

(2.6) 2γt
(
f(xt+1)− f(yt)− 〈∇f(yt), xt+1 − yt〉

)
≤ ‖xt+1 − yt‖2.

3: end for

given for some t ≥ 1. Then αt ∈ (0, 1] is well defined by the equation (2.5). Indeed,
let φ(α) = γt−1α

2 − (1− α)α2
t−1γt − µαγtγt−1. Observe that φ(0) = −α2

t−1γt < 0 and
φ(1) = γt−1(1 − µγt) ≥ γt−1(1 − µγ0) ≥ 0 due to γ0 ∈ (0, 1/µ]. Hence, (2.5) has a
solution in (0, 1] and αt is well-defined.

We next study well-definedness of Algorithm 2.1 and also its convergence rate in
terms of F (xt)− F (x∗). To proceed, we define

(2.7)

r0 =

√
F (x1)− F (x∗) +

α2
0

2γ0
‖x1 − x∗‖2,

S =

{
x ∈ dom(P) : ‖x− x∗‖ ≤

√
2γ0r0

α0

}
.

The following lemma establishes that ∇f is Lipschitz continuous on S and also
on an enlarged set induced by α0, γ0, r0, x∗, f and S, albeit ∇f is locally Lipschitz
continuous on cl(dom(P)). This result will play an important role in this section.

Lemma 2.3. Let r0 and S be defined in (2.7), and let γ0 and α0 be the input
parameters of Algorithm 2.1. Then the following statements hold.

(i) ∇f is LS-Lipschitz continuous on S for some constant LS > 0.

(ii) ∇f is LŜ-Lipschitz continuous on Ŝ for some constant LŜ > 0, where

(2.8) Ŝ =

{
x ∈ dom(P) : ‖x− x∗‖ ≤ (1 + γ0LS)

√
2γ0r0

α0

}
.

Proof. Notice that S is a convex and bounded subset in dom(P). By this and the
local Lipschitz continuity of ∇f on cl(dom(P)), it is not hard to observe that there
exists some constant LS > 0 such that ∇f is LS-Lipschitz continuous on S. Hence,
statement (i) holds and moreover the set Ŝ is well-defined. By a similar argument,
one can see that statement (ii) also holds.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 7

The following theorem shows that Algorithm 2.1 is well-defined at each iteration.
Its proof is deferred to Subsection 5.1.

Theorem 2.4. Algorithm 2.1 is well-defined at each iteration. Moreover, it holds
that xt, yt, zt ∈ S and nt ≤ N for all t ≥ 1, where S is defined in (2.7) and

(2.9) N =

⌈
log(γ0LŜ)

log(1/δ)

⌉
+

.

The next theorem presents a result regarding convergence rate of Algorithm 2.1,
whose proof is deferred to Section 5.

Theorem 2.5. Let {xt} be generated by Algorithm 2.1. Then for all t ≥ 1, it
holds that

(2.10)

F (xt)− F (x∗)

≤min


(

1−
√
µmin

{
γ0, δL

−1

Ŝ

})t−1

, 4

(
2 + (t− 1)α0

√
min

{
1, δγ−1

0 L−1

Ŝ

})−2
 r2

0.

Remark 2.6. (i) Despite only assuming local Lipschitz continuity of ∇f on
cl(dom(P)), Algorithm 2.1 enjoys a similar convergence rate as the optimal APG
method [9, Algorithm 1 with a single block] which was proposed and analyzed for solving
a special case of problem (1.1) with ∇f being Lipschitz continuous on Rn.

(ii) An adaptive gradient method was recently proposed in [13, Algorithm 1] for
solving a special case of problem (1.1) with P ≡ 0. It is a variant of classical gradient
methods without acceleration and enjoys a much worse convergence rate than the one
given in (2.10). In particular, when f is convex, it has a convergence rate of O(1/t)
(see [13, Theorem 1]).

From theoretical perspective, it follows from Theorem 2.5 that Algorithm 2.1 enjoys
an iteration complexity of O(ε−1/2) and O(log ε−1) for finding an ε-gap solution xt of
(1.1) satisfying F (xt) − F ∗ ≤ ε when f is convex and strongly convex, respectively.
However, since F ∗, L−1

Ŝ
and r0 are typically unknown, it is difficult to come up with

a verifiable termination criterion for Algorithm 2.1 to find an ε-gap solution of (1.1).
To circumvent this issue, we propose some variants of Algorithm 2.1 with a verifiable
termination criterion in the next two subsections.

2.2. An APG method with a termination criterion for problem (1.1)
with µ > 0. In this subsection we propose an APG method with a verifiable termina-
tion criterion for finding an ε-residual solution of problem (1.1) with µ > 0, namely, f
being strongly convex on dom(P). Our method is presented in Algorithm 2.2 below.
It is a slight variant of Algorithm 2.1 by incorporating a termination criterion that is
checked only periodically.

Remark 2.7. It is clear to see that Algorithm 2.2 is well-defined at each iteration
and equipped with a verifiable termination criterion. In addition, it is almost parameter-
free except that the convexity parameter µ of f is required.

The following theorem presents an iteration and operation complexity of Algo-
rithm 2.2 for finding an ε-residual solution of problem (1.1) with a strongly convex f
on dom(P), whose proof is deferred to Subsection 5.2.

Theorem 2.8. Suppose that µ > 0, i.e., f is strongly convex on dom(P). Let ε,
M , δ, α0 and γ0 be the input parameters of Algorithm 2.2, r0 and LŜ be given in (2.7)
and Lemma 2.3 respectively, and let

8 ZHAOSONG LU AND SANYOU MEI

Algorithm 2.2 An APG method with a termination criterion for problem (1.1) with
µ > 0

Input: ε > 0, γ0 ∈ (0, 1/µ], 0 < α0 ∈ [
√
µγ0, 1], δ ∈ (0, 1), M ∈ Z+, and x1 = z1 ∈

dom(P).
1: for t = 1, 2, . . . do
2: Compute

yt =
(
(1− αt)xt + αt(1− βt)zt

)
/(1− αtβt),

zt+1 = arg min
x

{
γt[〈∇f(yt), x〉+ P (x)] +

αt
2
‖x− βtyt − (1− βt)zt‖2

}
,

xt+1 = (1− αt)xt + αtz
t+1,

where γt = γ0δ
nt and βt = µγtα

−1
t with αt ∈ (0, 1] being the solution of

γt−1α
2
t = (1− αt)α2

t−1γt + µαtγtγt−1,

and nt being the smallest non-negative integer such that

2γt
(
f(xt+1)− f(yt)− 〈∇f(yt), xt+1 − yt〉

)
≤ ‖xt+1 − yt‖2.

3: if mod(t,M) = 0 then
4: Call Algorithm 2.3 with (xt+1, γ0, δ) as the input and output (x̃t+1, γ̃t+1).
5: Terminate the algorithm and output x̃t+1 if

(2.11) ‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖ ≤ ε.

6: end if
7: end for

Algorithm 2.3 Adaptive proximal gradient iteration

Input: v ∈ S and γ̃0, δ > 0.
1: Compute

(2.12) ṽ = arg min
x

{
γ̃〈∇f(v), x〉+ γ̃P (x) +

1

2
‖x− v‖2

}
,

where γ̃ = γ̃0δ
ñ with ñ being the smallest non-negative integer such that

(2.13) 2γ̃(f(ṽ)− f(v)− 〈∇f(v), ṽ − v〉) ≤ ‖ṽ − v‖2.

2: Terminate the algorithm and output (ṽ, γ̃).

T = M +


2 log ε

r0

(√
2 max{γ−1

0 ,LŜδ
−1}+

√
2γ0LŜ

)

log

(
1−

√
µmin

{
γ0, δL

−1

Ŝ

})


+

,(2.14)

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 9

N̄ = (1+M−1)

M+


2 log ε

r0

(√
2 max{γ−1

0 ,LŜδ
−1}+

√
2γ0LŜ

)

log

(
1−

√
µmin

{
γ0, δL

−1

Ŝ

})


+


(

1+

⌈
log(γ0LŜ)

log(1/δ)

⌉
+

)
.(2.15)

Then Algorithm 2.2 terminates and outputs an ε-residual solution of problem (1.1) in
at most T iterations. Moreover, the total number of evaluations of ∇f and proximal
operator of P performed in Algorithm 2.2 is no more than N̄ , respectively.

Remark 2.9. It can be seen from Theorem 2.8 that Algorithm 2.2 enjoys an
operation complexity of O(log ε−1) for finding an ε-residual solution of problem (1.1)
with a strongly convex f on dom(P).

2.3. An APG method with a termination criterion for problem (1.1)
with µ = 0. In this subsection we propose an APG method in Algorithm 2.4 with
a verifiable termination criterion for finding an ε-residual solution of problem (1.1)
with µ = 0, namely, f being convex but not strongly convex on dom(P). Specifically,
the proposed APG method applies Algorithm 2.2 to a sequence of strongly convex
optimization problems arising from a perturbation of problem (1.1).

Algorithm 2.4 An APG method with a termination criterion for problem (1.1) with
µ = 0

Input: ε > 0, x0 ∈ dom(P), M ∈ Z+, 0 < δ < 1, ρ0 > 1, 0 < γ0 ≤ ρ0, α0 ∈
[
√
γ0/ρ0, 1], 0 < η0 ≤ 1, ζ > 1, 0 < σ < 1/ζ, ρk = ρ0ζ

k, ηk = η0σ
k for all k ≥ 0.

1: for k = 0, 1, . . . do
2: Call Algorithm 2.2 with F ← Fk, f ← fk, ε← ηk, µ← ρ−1

k , x1 = z1 ← xk and
the parameters α0, γ0, δ and M , and denote its output by xk+1, where

fk(x) = f(x) +
1

2ρk
‖x− xk‖2, Fk(x) = fk(x) + P (x).(2.16)

3: Terminate the algorithm and output xk+1 if

1

ρk
‖xk+1 − xk‖ ≤ ε

2
, ηk ≤

ε

2
.(2.17)

4: end for

Remark 2.10. Algorithm 2.4 is parameter-free and equipped with a verifiable
termination criterion. In addition, by the monotonicity of {ρk}, one has

0 < γ0 ≤ ρ0 ≤ ρk,
√
ρ−1
k γ0 ≤

√
ρ−1

0 γ0 ≤ α0 ≤ 1.

Consequently, the choice of α0 and γ0 in Algorithm 2.4 satisfies the requirements
specified in Algorithm 2.2. It then follows from Theorem 2.8 that at the kth outer
iteration of Algorithm 2.4, xk+1 must be successfully generated by Algorithm 2.2, which
is an ηk-residual solution of the problem minx{Fk(x) = fk(x) + P (x)}. Thus, it holds
that

(2.18) dist(0, ∂Fk(xk+1)) ≤ ηk.

We next study iteration and operation complexity of Algorithm 2.4 for finding an
ε-residual solution of problem (1.1) with f being convex but not strongly convex on

10 ZHAOSONG LU AND SANYOU MEI

dom(P). Before proceeding, we introduce some notation that will be used subsequently.
We define

r0 = ‖x0 − x∗‖, θ =
∞∑
i=0

ρiηi =
ρ0η0

1− σζ
,(2.19)

r̃0 = max

{√
2γ0α

−2
0 (F (x0)− F (x∗)) + r2

0,√
2γ0α

−2
0 (r0 + θ)

(
η0 + ρ−1

0 (r0 + θ)
)

+ (r0 + θ)2

}
.

(2.20)

Also, we define

(2.21) Q = {x ∈ dom(P) : ‖x− x∗‖ ≤ r̃0 + r0 + θ} .

Let L∇f be the Lipschitz constant of ∇f on Q and

(2.22)
L = L∇f + ρ−1

0 , L̂ = L̂∇f + ρ−1
0 ,

Q̂ = {x ∈ dom(P) : ‖x− x∗‖ ≤ (1 + γ0L)r̃0 + r0 + θ} ,

where L̂∇f is the Lipschitz constant of ∇f on Q̂. By the local Lipschitz continuity
of ∇f on cl(dom(P)) and a similar argument as in the proof of Lemma 2.3, one can

easily observe that L, L̂, L∇f , L̂∇f , Q, and Q̂ are well-defined.
The following theorem presents an iteration and operation complexity of Algo-

rithm 2.4 for finding an ε-residual solution of problem (1.1) with f being convex but
not strongly convex on dom(P), namely, a point x satisfying dist(0, ∂F (x)) ≤ ε, whose
proof is deferred to Subsection 5.3.

Theorem 2.11. Suppose that µ = 0, i.e., f is convex but not strongly convex on
dom(P). Let ε, M , δ, ρ0, α0, γ0, η0, ζ and σ be the input parameters of Algorithm 3.1,

and let r0, θ, r̃0 and L̂ be given in (2.19), (2.20) and (2.22), respectively. Define

C̃1=(1 +M−1)

(
1 +

⌈
log(γ0L̂)

log(1/δ)

⌉
+

)
,(2.23)

C̃2=

√
ρ0ζC̃1

log α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η20


+

(
√
ζ − 1)min

{√
γ0,
√
δL̂−1

} ,(2.24)

C̃3=
2
√
ρ0ζC̃1 log(1/σ)

(
√
ζ − 1)min

{√
γ0,
√
δL̂−1

} .(2.25)

Then the following statements hold.
(i) Algorithm 2.4 outputs an ε-residual solution of problem (1.1) after at most

K + 1 outer iterations, where

(2.26) K =

⌈
max

{
log

(
2r0 + 2θ

ρ0ε

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 11

(ii) The total number of evaluations of ∇f and proximal operator of P performed

in Algorithm 2.4 is no more than Ñ , respectively, where

Ñ = (M + 1)C̃1 + (M + 1)C̃1

⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

+ C̃2 max


√

2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1



+ C̃3

max

 log
(

2r0+2θ
ερ0

)
log ζ

,
log(2η0/ε)

log(1/σ)




+

max


√

2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1

 .

(2.27)

Remark 2.12. Since 1 < ζ < 1/σ, it can be seen from Theorem 2.11 that Algo-
rithm 2.4 enjoys an operation complexity of O(ε−1/2 log ε−1) for finding an ε-residual
solution of problem (1.1) with f being convex but not strongly convex on dom(P).

3. A first-order proximal augmented Lagrangian method for constrained
convex optimization. In this section we consider problem (1.2) and propose a first-
order proximal augmented Lagrangian (AL) method for solving it. Let µ ≥ 0 denote
the convexity parameter of f on dom(P), that is, (2.1) holds for f and µ. Before
proceeding, we make the following additional assumptions for problem (1.2).

Assumption 3.1. (a) The proximal operator associated with P and the pro-
jection onto K∗ can be exactly evaluated.

(b) Both problem (1.2) and its Lagrangian dual problem

sup
λ∈K∗

inf
x
{f(x) + P (x) + 〈λ, g(x)〉}(3.1)

have optimal solutions, and moreover, they share the same optimal value.

Under the assumptions on problem (1.2), it can be observed that (x, λ) is a pair of
optimal solutions of (1.2) and (3.1) if and only if it satisfies the Karush-Kuhn-Tucker
(KKT) condition

0 ∈
(
∇f(x) +∇g(x)λ+ ∂P (x)

−g(x) +NK∗(λ)

)
.

In general, it is difficult to find an exact optimal solution of (1.2) and (3.1). Instead,
for any given ε > 0, we are interested in finding an ε-KKT solution (x, λ) of problems
(1.2) and (3.1) that is defined below.

Definition 3.2. Given any ε > 0, we say (x, λ) ∈ Rn×Rm is an ε-KKT solution
of problems (1.2) and (3.1) if

dist(0,∇f(x) + ∂P (x) +∇g(x)λ) ≤ ε, dist(g(x),NK∗(λ)) ≤ ε.

We next propose a first-order proximal AL method in Algorithm 3.1 with a verifi-
able termination criterion for solving problem (1.2), which follows the same framework
as [12, Algorithm 2] except that the proximal AL subproblems are approximately
solved by our newly proposed APG method, namely, Algorithm 2.2. Specifically, at the
kth iteration, our method applies Algorithm 2.2 to approximately solve the proximal
AL subproblem

min
x
L(x, λk; ρk) +

1

2ρk
‖x− xk‖2

12 ZHAOSONG LU AND SANYOU MEI

for some λk ∈ K∗ and ρk > 0, where L is the AL function associated with problem
(1.2) defined as

(3.2) L(x, λ; ρ) = f(x) + P (x) +
1

2ρ

(
dist2 (λ+ ρg(x),−K)− ‖λ‖2

)
.

Algorithm 3.1 A first-order proximal augmented Lagrangian method for problem
(1.2)

Input: ε > 0, (x0, λ0) ∈ dom(P)×K∗, M ∈ Z+, 0 < δ < 1, ρ0 > (µ+
√
µ2 + 4)/2,

α0 ∈ [
√

(µ+ 1/ρ0)/ρ0, 1], 0 < η0 ≤ 1, ζ > 1, 0 < σ < 1/ζ, ρk = ρ0ζ
k, ηk = η0σ

k

for all k ≥ 0.
1: for k = 0, 1, . . . do
2: Call Algorithm 2.2 with F ← Fk, f ← fk, ε ← ηk, γ0 ← ρ−1

k , µ ← µ + ρ−1
k ,

x1 = z1 ← xk and the parameters α0, δ and M , and denote its output by xk+1,
where

fk(x) = f(x) +
1

2ρk

(
dist2

(
λk + ρkg(x),−K

)
− ‖λk‖2 + ‖x− xk‖2

)
,

Fk(x) = fk(x) + P (x).

(3.3)

3: Set λk+1 = ΠK∗
(
λk + ρkg(xk+1)

)
.

4: Terminate the algorithm and output (xk+1, λk+1) if

1

ρk
‖(xk+1, λk+1)− (xk, λk)‖ ≤ ε

2
, ηk ≤

ε

2
.(3.4)

5: end for

Remark 3.3. (i) Algorithm 3.1 is equipped with a verifiable termination criterion
and almost parameter-free except that the convexity parameter µ of f is required.

(ii) Since ρ0 > (µ +
√
µ2 + 4)/2, it follows that ρ−1

0 < 1/(µ + ρ−1
0). By this,

α0 ∈ [
√

(µ+ 1/ρ0)/ρ0, 1], and the monotonicity of {ρk}, one has

0 < ρ−1
k ≤ ρ

−1
0 <

1

µ+ ρ−1
0

≤ 1

µ+ ρ−1
k

,√
(µ+ ρ−1

k)ρ−1
k ≤

√
(µ+ ρ−1

0)ρ−1
0 ≤ α0 ≤ 1.

Consequently, the choice of α0 and γ0 in Algorithm 3.1 satisfies the requirements
specified in Algorithm 2.2. It then follows from Theorem 2.8 that at the kth outer
iteration of Algorithm 3.1, xk+1 must be successfully generated by Algorithm 2.2, which
is an ηk-residual solution of the problem minx{Fk(x) = fk(x) + P (x)}. Thus, it holds
that

(3.5) dist(0, ∂Fk(xk+1)) ≤ ηk.

We next study iteration and operation complexity of Algorithm 3.1 for finding an
ε-KKT solution of problems (1.2) and (3.1). Before proceeding, we introduce some
notation that will be used subsequently.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 13

Let (x∗, λ∗) be an arbitrary pair of optimal solutions of problems (1.2) and (3.1)
and fixed throughout this section. We define

(3.6)
r0 = ‖(x0, λ0)− (x∗, λ∗)‖, θ =

∞∑
i=0

ρiηi =
ρ0η0

1− σζ
,

Q̃ = {x ∈ dom(P) : ‖x− x∗‖ ≤ r0 + θ} .

Let L̃g be the Lipschitz constant of g on Q̃ and

r̃0 =max

{√
2ρ−1

0 α−2
0 (F (x0)− F (x∗))+ρ−2

0 α−2
0 (‖ΠK∗ (λ0 + ρ0g(x0))‖2+‖λ0 − λ∗‖2−‖λ0‖2) + r2

0 ,√
2ρ−1

0 α−2
0 (r0 + θ)

(
η0 + ρ−1

0 (r0 + θ) + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ) + ρ0α2
0(r0 + θ)

)}
.(3.7)

We define

(3.8) Q = {x ∈ dom(P) : ‖x− x∗‖ ≤ r̃0 + r0 + θ} .

Let L∇f , L∇g and Lg be the Lipschitz constants of ∇f , ∇g and g on Q, respectively,
and let

(3.9)
C = L∇g sup

x∈Q
‖g(x)‖+ L2

g, B = L∇f + L∇g(‖λ∗‖+
√

2r0),

L = C + ρ−1
0 B + ρ−1

0 L∇gθ + ρ−2
0 .

We define

(3.10) Q̂ = {x ∈ dom(P) : ‖x− x∗‖ ≤ (1 + L)r̃0 + r0 + θ} .

Let L̂∇f , L̂∇g and L̂g be the Lipschitz constants of ∇f , ∇g and g on Q̂, respectively,
and let

(3.11)
Ĉ = L̂∇g sup

x∈Q̂
‖g(x)‖+ L̂2

g, B̂ = L̂∇f + L̂∇g(‖λ∗‖+
√

2r0),

L̂ = Ĉ + ρ−1
0 B̂ + ρ−1

0 L̂∇gθ + ρ−2
0 .

By the local Lipschitz continuity of ∇f and ∇g on cl(dom(P)) and a similar argument

as in the proof of Lemma 2.3, one can easily observe that L̃g, L∇f , L∇g, Lg, L̂∇f ,

L̂∇g, L̂g, B, C, L, B̂, Ĉ, L̂, Q, and Q̂ are well-defined.
The following theorem presents an iteration and operation complexity of Algo-

rithm 3.1 for finding an ε-KKT solution of problems (1.2) and (3.1), whose proof is
deferred to Subsection 5.4.

Theorem 3.4. Let ε, M , δ, ρ0, α0, η0, ζ and σ be the input parameters of
Algorithm 3.1, and let r0, θ, r̃0 and L̂ be given in (3.6), (3.7) and (3.11), respectively.
Define

Ĉ1 = (1 +M−1)

(
1 +

⌈
log L̂

log(1/δ)

⌉
+

)
,(3.12)

Ĉ2 =

Ĉ1

(
log

ρ20α
2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2
η20

)
+

(
√
ζ − 1)min

{
1,
√
δL̂−1

} , Ĉ3 =
2Ĉ1 log(ζ/σ)

(
√
ζ − 1)min

{
1,
√
δL̂−1

} .(3.13)

Then the following statements hold.

14 ZHAOSONG LU AND SANYOU MEI

(i) Algorithm 3.1 outputs an ε-KKT solution of problems (1.2) and (3.1) after at
most K + 1 outer iterations, where

(3.14) K =

⌈
max

{
log

(
2r0 + 2θ

ρ0ε

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

.

(ii) If µ = 0, i.e., f is convex but not strongly convex, the total number of evalua-
tions of ∇f , ∇g, proximal operator of P and projection onto K∗ performed in
Algorithm 3.1 is no more than N̂ , respectively, where

N̂ = 1 + (M + 1)Ĉ1 +
(

1 + (M + 1)Ĉ1

)⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

+ Ĉ2ρ0ζmax

2ζ(r0 + θ)

ερ0
, ζ

(
2η0

ε

) log ζ
log(1/σ)

, 1



+ Ĉ3ρ0ζ

max

 log
(

2r0+2θ
ερ0

)
log ζ

,
log(2η0/ε)

log(1/σ)




+

max

2ζ(r0 + θ)

ερ0
, ζ

(
2η0

ε

) log ζ
log(1/σ)

, 1

 .

(3.15)

(iii) If µ > 0, i.e., f is strongly convex, the total number of evaluations of ∇f , ∇g,
proximal operator of P and projection onto K∗ performed in Algorithm 3.1 is
no more than Ň , respectively, where

Ň = 1 + (M + 1)Ĉ1 +
(

1 + (M + 1)Ĉ1

)⌈
max

{
log

(
2r0 + 2θ

ερ0

)
/ log ζ,

log(2η0/ε)

log(1/σ)

}⌉
+

+ Ĉ2

√
ρ0ζ

µ
max


√

2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1



+ Ĉ3

√
ρ0ζ

µ

max

 log
(

2r0+2θ
ερ0

)
log ζ

,
log(2η0/ε)

log(1/σ)




+

max


√

2ζ(r0 + θ)

ερ0
,
√
ζ

(
2η0

ε

) log ζ
2 log(1/σ)

, 1

 .

(3.16)

Remark 3.5. Since 1 < ζ < 1/σ, it can be seen from Theorem 3.4 that Algo-
rithm 3.1 enjoys an operation complexity of O(ε−1 log ε−1) and O(ε−1/2 log ε−1) for
finding an ε-KKT solution of problems (1.2) and (3.1) when f is convex and strongly
convex on dom(P), respectively.

4. Numerical results. In this section we conduct some preliminary experiments
to test the performance of our proposed method (Algorithm 3.1), and compare it
with a first-order proximal AL method (FPAL) [12], the forward-reflected-backward
splitting method (FRBS) [13] and the modified forward-backward splitting method
(MFBS) with an Armijo-Goldstein-type stepsize [19], respectively. All the algorithms
are coded in Matlab and all the computations are performed on a desktop with a 3.60
GHz Intel i7-12700K 12-core processor and 32 GB of RAM.

4.1. Quadratically constrained quadratic programming with box con-
straints. In this subsection we consider quadratically constrained quadratic program-
ming (QCQP) with box constraints

min
1

2
xTAx+ bTx

s.t.
1

2
xTBix+ cTi x+ di ≤ 0, i = 1, . . . ,m,

− 1 ≤ xi ≤ 1, i = 1, . . . , n,

(4.1)

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 15

where A,B1, . . . , Bm ∈ Rn×n are positive semidefinite matrices, b, c1, . . . , cm ∈ Rn,
and d1, . . . , dm ∈ R.

For each dimension n, we set m = d0.05ne and randomly generate 10 instances
of problem (4.1). In particular, we first generate x∗ ∈ [−1, 1]n whose entries are first
independently chosen from the standard normal distribution and then projected to
[−1, 1], and λ∗ ∈ Rm+ whose entries are first independently chosen from the normal
distribution with mean 1 and standard deviation 1 and then projected to R+. We
then randomly generate an orthogonal matrix U by performing U = orth(randn(n)),
an n × n diagonal matrix D whose diagonal entries are first independently chosen
from the normal distribution with mean 0 and standard deviation 100 and then
projected to R+, and set A = UDUT . Also, we randomly generate an orthogonal

matrix Ũ by performing Ũ = orth(randn(n)), an n × n diagonal matrices D̃ whose
diagonal entries are first independently chosen from the normal distribution with mean
0 and standard deviation 0.01 and then projected to R+. We set B1 = ŨD̃ŨT , and
generate Bi, i = 2, . . . ,m in a similar vein. In addition, we generate ci, i = 1, . . . ,m
independently according the normal distribution with mean 0 and standard deviation
0.01. We finally choose b and di, i = 1, . . . ,m so that the KKT conditions of (4.1)
are satisfied at (x∗, λ∗), namely (x∗, λ∗) is a KKT point of (4.1).

Notice that (4.1) is a special case of (1.2) with f(x) = xTAx/2 + bTx, P (x) =
I[−1,1]n(x), gi(x) = xTBix/2 + cTi x+ di, i = 1, . . . ,m, and K = Rm+ , where I[−1,1]n(·)
is the indicator function of [−1, 1]n. Moreover, f and P are convex, g is K-convex,
dom(P) is compact, and ∇f and ∇g are (globally) Lipschitz continuous on dom(P).
Consequently, (4.1) can be suitably solved by Algorithm 3.1 and FPAL [12]. It shall
be mentioned that FPAL [12] is only applicable to (1.2) with dom(P) being compact.
Our aim is to find a 10−2-KKT solution of (4.1) by Algorithm 3.1 and FPAL, and
compare their performance. Due to this, we terminate them once a 10−2-KKT solution
is found. Besides, for both methods, we choose zero vector as the initial point and set
their parameters as follows.

• (ε,M, δ, ρ0, α0, η0, ζ, σ) = (10−2, 500, 0.9, 10, 1, 0.1, 2, 0.4) for Algorithm 3.1;
• ε = 10−2, ρk = ρ0ζ

k, ηk = η0σ
k with (ρ0, η0, ζ, σ) = (10, 0.1, 2, 0.4) for FPAL

[12].
The computational results of Algorithm 3.1 and FPAL for the instances generated

above are presented in Table 1. In detail, the value of n is listed in the first column.
For each n, the average number of gradient evaluations and the average CPU time (in
seconds) of Algorithm 3.1 and FPAL over 10 random instances are given in the rest of
the columns. One can observe that our method, namely Algorithm 3.1, significantly
outperforms FPAL in terms of average number of gradient evaluations and average
CPU time. This phenomenon is not surprising because Algorithm 3.1 uses a local
Lipschitz constant of the gradient of the smooth component of the AL functions, while
FPAL uses its global Lipschitz constant that can be excessively conservative.

4.2. Quadratically constrained quadratic programming. In this subsec-
tion we consider the quadratically constrained quadratic programming (QCQP)

min
1

2
xTAx+ bTx

s.t.
1

2
xTBix+ cTi x+ di ≤ 0, i = 1, . . . ,m,

(4.2)

where A,B1, . . . , Bm ∈ Rn×n are positive semidefinite matrices, b, c1, . . . , cm ∈ Rn,
and d1, . . . , dm ∈ R.

16 ZHAOSONG LU AND SANYOU MEI

Gradient evaluations CPU time (seconds)
n Algorithm 3.1 FPAL Algorithm 3.1 FPAL

100 4.97× 103 3.96× 103 0.20 0.21
200 4.57× 103 5.37× 103 6.35 12.07
300 4.47× 103 6.23× 103 12.53 27.88
400 4.18× 103 8.00× 103 33.12 93.04
500 4.18× 103 9.75× 103 22.65 248.28
600 4.18× 103 1.32× 104 58.65 617.72
700 4.08× 103 1.22× 104 122.52 889.71
800 4.08× 103 1.57× 104 186.23 1551.13
900 4.08× 103 1.94× 104 305.97 2737.96
1000 4.08× 103 2.30× 104 429.38 4398.44

Table 1
Numerical results for problem (4.1)

For each dimension n, we set m = d0.05ne and randomly generate 10 instances of
problem (4.2). In particular, we first generate x∗ ∈ Rn with all the entries indepen-
dently chosen from the standard normal distribution, and λ∗ ∈ Rm+ whose entries are
first independently chosen from the normal distribution with mean 1 and standard de-
viation 1 and then projected to R+. We then generate A and Bi, ci, i = 1, . . . ,m in the
same manner as described in Subsection 4.1. We finally choose b and di, i = 1, . . . ,m
so that the KKT conditions of (4.2) are satisfied at (x∗, λ∗), namely (x∗, λ∗) is a KKT
point of (4.2).

Notice that (4.2) is a special case of (1.2) with f(x) = xTAx/2 + bTx, P (x) = 0,
gi(x) = xTBix/2 + cTi x+ di, i = 1, . . . ,m, and K = Rm+ . Clearly, f and P are convex,
g is K-convex, ∇f and ∇g are Lipschitz continuous, while dom(P) = Rn is unbounded.
As a result, (4.2) can be suitably solved by Algorithm 3.1 but not FPAL [12], since the
latter method is only applicable to (1.2) with dom(P) being compact. On the other
hand, it is not hard to observe that problem (4.2) and its dual can be solved as the
monotone inclusion problem

0 ∈ F (x, λ) +B(x, λ),(4.3)

where

F (x, λ) =

(
∇f(x) +∇g(x)λ

−g(x)

)
, B(x, λ) =

(
0

NRm+ (λ)

)
.

One can also observe that F is monotone and locally Lipschitz continuous on cl(domB)
and B is maximal monotone. As a result, problem (4.3) and hence (4.2) can be suitably
solved by FRBS [13] and MFBS [19]. Our aim is to find a 10−2-KKT solution of (4.2)
by Algorithm 3.1, FRBS and MFBS, and compare their performance. Due to this, we
terminate them once a 10−2-KKT solution is found. In addition, for all the methods,
we choose zero vector as the initial point and set their parameters as follows.

• (ε,M, δ, ρ0, α0, η0, ζ, σ) = (10−2, 500, 0.9, 10, 1, 0.1, 2, 0.4) for Algorithm 3.1;
• (λ0, δ, σ) = (0.1, 0.5, 0.9) for FRBS [13];
• (σ, θ, β) = (0.1, 0.5, 0.9) for MFBS [19].

The computational results of Algorithm 3.1, FRBS and MFBS for the instances
generated above are presented in Table 2. In detail, the value of n is listed in the
first column. For each n, the average number of gradient evaluations and the average

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 17

CPU time (in seconds) for these methods over 10 random instances are given in
the rest of the columns. One can observe that our method, namely Algorithm 3.1,
significantly outperforms the other two methods in terms of average number of gradient
evaluations and average CPU time. This phenomenon may not be surprising because
our method enjoys a nearly optimal operation complexity while the other two methods
lack complexity guarantees.

Gradient evaluations CPU time (seconds)
n Algorithm 3.1 FRBS MFBS Algorithm 3.1 FRBS MFBS

100 5.02× 103 1.89× 105 1.62× 105 0.17 1.80 1.40
200 5.01× 103 1.38× 105 1.36× 105 7.16 80.49 77.47
300 4.68× 103 1.11× 105 1.02× 105 12.10 147.19 132.95
400 4.28× 103 9.76× 104 8.33× 104 32.52 387.91 323.89
500 4.08× 103 7.12× 104 6.16× 104 23.18 147.25 125.38
600 4.18× 103 7.37× 104 6.07× 104 53.51 427.64 346.31
700 4.08× 103 6.59× 104 5.33× 104 101.14 637.33 518.73
800 4.08× 103 5.69× 104 4.72× 104 152.60 782.77 629.80
900 4.09× 103 5.46× 104 4.54× 104 236.99 1359.02 1138.14
1000 4.08× 103 4.63× 104 3.92× 104 384.96 1854.11 1568.45

Table 2
Numerical results for problem (4.2)

5. Proof of the main results. In this section we provide a proof of our main
results presented in Sections 2 and 3, which are particularly Theorems 2.4-3.4.

5.1. Proof of the main results in Subsection 2.1. In this subsection we first
establish several technical lemmas and then use them to prove Theorems 2.4 and 2.5.

Lemma 5.1. Suppose that αt, βt and γt are generated by Algorithm 2.1 for some
t ≥ 1. Then the following statements hold.

(i)
√
µγt ≤ αt ≤ 1 and α2

tγ
−1
t ≤ α2

t−1γ
−1
t−1.

(ii) βt = µγtα
−1
t ∈ [0, 1].

Proof. (i) We first prove by induction that
√
µγi ≤ αi ≤ 1 for all 1 ≤ i ≤ t. Indeed,

notice from Algorithm 2.1 that
√
µγ0 ≤ α0 ≤ 1. Suppose that

√
µγi−1 ≤ αi−1 ≤ 1 for

some 1 ≤ i < t. By this, (2.5), and αi ∈ (0, 1], one has

γi−1α
2
i = (1− αi)α2

i−1γi + µαiγiγi−1 ≥ (1− αi)µγi−1γi + µαiγiγi−1 = µγiγi−1,

which together with γi−1 > 0 yields
√
µγi ≤ αi ≤ 1. Hence, the induction is completed

and
√
µγt ≤ αt ≤ 1 holds as desired.

We next show that α2
tγ
−1
t ≤ α2

t−1γ
−1
t−1. Indeed, by

√
µγt−1 ≤ αt−1, γt−1, γt > 0,

and (2.5), one has

γt−1α
2
t = (1− αt)α2

t−1γt + µαtγtγt−1 ≤ (1− αt)α2
t−1γt + αtγtα

2
t−1 = γtα

2
t−1,

which implies that the conclusion holds.
(ii) Notice from Algorithm 2.1 that βt = µγtα

−1
t . By this and statement (i), one

has

0 ≤ βt = µγtα
−1
t ≤

√
µγt ≤ 1.

18 ZHAOSONG LU AND SANYOU MEI

Lemma 5.2. Suppose that xt+1, yt and zt+1 are generated by Algorithm 2.1 for
some t ≥ 1. Then for all x ∈ dom(P) and P ′(zt+1) ∈ ∂P (zt+1), we have

(5.1)
γt〈P ′(zt+1), zt+1 − x〉 ≤γt〈∇f(yt), x− zt+1〉+

1

2
αtβt‖x− yt‖2

+
1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2 +Rt,

where

(5.2) Rt =
1

2
µγt(α

−1
t − 1)‖xt − yt‖2 − 1

2αt
‖xt+1 − yt‖2.

Proof. By the optimality condition of (2.3), one has

〈γt∇f(yt) + γtP
′(zt+1) + αt(z

t+1 − βtyt − (1− βt)zt), x− zt+1〉 ≥ 0

for all x ∈ dom(P) and P ′(zt+1) ∈ ∂P (zt+1). It follows from this relation that

γt〈P ′(zt+1), zt+1 − x〉
≤ γt〈∇f(yt), x− zt+1〉+ αt〈zt+1 − βtyt − (1− βt)zt, x− zt+1〉
= γt〈∇f(yt), x− zt+1〉+ αtβt〈zt+1 − yt, x− zt+1〉

+ αt(1− βt)〈zt+1 − zt, x− zt+1〉

= γt〈∇f(yt), x− zt+1〉+
1

2
αtβt

(
‖x− yt‖2 − ‖x− zt+1‖2 − ‖yt − zt+1‖2

)
+

1

2
αt(1− βt)

(
‖x− zt‖2 − ‖x− zt+1‖2 − ‖zt − zt+1‖2

)
= γt〈∇f(yt), x− zt+1〉+

1

2
αtβt‖x− yt‖2 +

1

2
αt(1− βt)‖x− zt‖2

− 1

2
αt‖x− zt+1‖2 +Qt,(5.3)

where

(5.4) Qt = −1

2
αtβt‖yt − zt+1‖2 − 1

2
αt(1− βt)‖zt − zt+1‖2.

We next show that Qt ≤ Rt. Indeed, it follows from (2.2) that

(5.5) xt − yt = αt(1− αt)−1(1− βt)(yt − zt),

which together with (2.4) implies that

xt+1 − yt = (1− αt)xt + αtz
t+1 − yt = (1− αt)(xt − yt) + αtz

t+1 − αtyt

(5.5)
= αt(1− βt)(yt − zt) + αtz

t+1 − αtyt = αt
(
zt+1 − βtyt − (1− βt)zt

)
.(5.6)

Using this relation, βt ∈ [0, 1], and the convexity of ‖ · ‖2, we obtain

α−2
t ‖xt+1−yt‖2 (5.6)

= ‖zt+1−βtyt−(1−βt)zt‖2 ≤ βt‖zt+1−yt‖2 +(1−βt)‖zt+1−zt‖2.

By this, (5.2), (5.4), and αt ∈ (0, 1], one has

2α−1
t (Qt −Rt) = − βt‖yt − zt+1‖2 − (1− βt)‖zt − zt+1‖2

+ α−2
t ‖xt+1 − yt‖2 − µγtα−2

t (1− αt)‖xt − yt‖2

≤ − βt‖yt − zt+1‖2 − (1− βt)‖zt − zt+1‖2 + α−2
t ‖xt+1 − yt‖2 ≤ 0,

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 19

which along with αt > 0 implies that Qt ≤ Rt.
The conclusion of this Lemma directly follows from (5.3) and Qt ≤ Rt.
Lemma 5.3. Suppose that xt+1, yt and zt+1 are generated by Algorithm 2.1 for

some t ≥ 1. Then for any x ∈ dom(P), we have

(5.7)

F (xt+1)− F (x) +
α2
t

2γt
‖x− zt+1‖2

≤
t∏
i=1

(1− αi)
(
F (x1)− F (x) +

α2
0

2γ0
‖x− x1‖2

)
.

Proof. By (2.4), (5.1), and the convexity of P , one has that for all P ′(zt+1) ∈
∂P (zt+1),

γtα
−1
t P (xt+1) ≤ γtα

−1
t

(
(1− αt)P (xt) + αtP (zt+1)

)
=γt(α

−1
t − 1)P (xt) + γtP (zt+1)

≤ γt(α
−1
t − 1)P (xt) + γtP (x) + γt〈P ′(zt+1), zt+1 − x〉

(5.1)

≤ γt(α
−1
t − 1)P (xt) + γtP (x) + γt〈∇f(yt), x− zt+1〉

+
1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2 +

1

2
αtβt‖x− yt‖2 +Rt.(5.8)

By (2.1), (2.4), αt ∈ (0, 1], and γt > 0, one has that for all x ∈ dom(P),

γtα
−1
t f(yt) + γtα

−1
t 〈∇f(yt), xt+1 − yt〉+ γt〈∇f(yt), x− zt+1〉

(2.4)
= γtα

−1
t f(yt) + γtα

−1
t 〈∇f(yt), (1− αt)xt + αtz

t+1 − yt〉+ γt〈∇f(yt), x− zt+1〉

= γtα
−1
t f(yt) + γt(α

−1
t − 1)〈∇f(yt), xt − yt〉+ γt〈∇f(yt), x− yt〉

= γt(α
−1
t − 1)

(
f(yt) + 〈∇f(yt), xt − yt〉

)
+ γt

(
f(yt) + 〈∇f(yt), x− yt〉

)
(2.1)

≤ γt(α
−1
t − 1)

(
f(xt)− 1

2
µ‖xt − yt‖2

)
+ γt

(
f(x)− 1

2
µ‖x− yt‖2

)
= γt(α

−1
t − 1)f(xt) + γtf(x)−

1

2
µγt(α

−1
t − 1)‖xt − yt‖2 − 1

2
µγt‖x− yt‖2.(5.9)

Using (2.6), (5.8) and (5.9), we have

γtα
−1
t F (xt+1)

(2.6)

≤ γtα
−1
t f(yt) + γtα

−1
t 〈∇f(yt), xt+1 − yt〉+

1

2αt
‖xt+1 − yt‖2 + γtα

−1
t P (xt+1)

(5.8)

≤ γtα
−1
t f(yt) + γtα

−1
t 〈∇f(yt), xt+1 − yt〉+ γt〈∇f(yt), x− zt+1〉+

1

2αt
‖xt+1 − yt‖2

+ γt(α
−1
t − 1)P (xt) + γtP (x) +

1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2

+
1

2
αtβt‖x− yt‖2 +Rt

(5.9)

≤ γt(α
−1
t − 1)F (xt) + γtF (x) +

1

2
(αtβt − µγt)‖x− yt‖2 −

1

2
µγt(α

−1
t − 1)‖xt − yt‖2

+
1

2αt
‖xt+1 − yt‖2 +

1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2 +Rt

= γt(α
−1
t − 1)F (xt) + γtF (x) +

1

2
αt(1− βt)‖x− zt‖2 −

1

2
αt‖x− zt+1‖2,

(5.10)

20 ZHAOSONG LU AND SANYOU MEI

where the equality follows from (5.2) and βt = µγtα
−1
t . In addition, it follows from

(2.5) and βt = µγtα
−1
t that

(5.11) γt−1α
2
t (1−βt) = γt−1α

2
t−γt−1α

2
tβt = γt−1α

2
t−µαtγtγt−1

(2.5)
= (1−αt)α2

t−1γt.

In view of (5.10) and (5.11), one has

F (xt+1)− F (x) +
α2
t

2γt
‖x− zt+1‖2

(5.10)

≤ (1− αt)
(
F (xt)− F (x)

)
+
α2
t (1− βt)

2γt
‖x− zt‖2

(5.11)
= (1− αt)

(
F (xt)− F (x) +

α2
t−1

2γt−1
‖x− zt‖2

)
.

The conclusion of this lemma immediately follows from the above inequality and
z1 = x1.

Suppose that xt and zt are generated by Algorithm 2.1 for some t ≥ 1. For any
0 < γ ≤ γ0, we define

yt(γ) =
(
(1− α(γ))xt + α(γ)(1− β(γ))zt

)
/ (1− α(γ)β(γ)) ,(5.12)

zt+1(γ)=argmin
x

{
γ〈∇f(yt(γ)), x〉+γP (x)+

α(γ)

2
‖x−β(γ)yt(γ)−(1− β(γ))zt‖2

}
,(5.13)

xt+1(γ) = (1− α(γ))xt + α(γ)zt+1(γ),(5.14)

where β(γ) = µγα(γ)−1 and α(γ) ∈ (0, 1] satisfies

(5.15) γt−1α(γ)2 = (1− α(γ))α2
t−1γ + µγγt−1α(γ).

Lemma 5.4. Let S and Ŝ be defined in (2.7) and (2.8). Suppose that xt, zt ∈ S,
and yt(γ) and xt+1(γ) are defined in (5.12) and (5.14) for some t ≥ 1. Then yt(γ) ∈ S
and xt+1(γ) ∈ Ŝ for all 0 < γ ≤ γ0.

Proof. Fix any 0 < γ ≤ γ0. By the optimality condition of problems (1.1) and
(5.13), one has

〈γ∇f(yt(γ)) + γP ′(zt+1(γ)) + α(γ)(zt+1(γ)− β(γ)yt(γ)− (1− β(γ))zt), x∗ − zt+1(γ)〉 ≥ 0,

〈γ∇f(x∗) + γP ′(x∗), zt+1(γ)− x∗〉 ≥ 0,

where P ′(zt+1(γ)) ∈ ∂P (zt+1(γ)) and P ′(x∗) ∈ ∂P (x∗). Letting w = β(γ)yt(γ) + (1−
β(γ))zt and using the above two inequalities and the convexity of P , we obtain

〈α(γ)(zt+1(γ)− w) + γ(∇f(yt(γ))−∇f(x∗)), x∗ − zt+1(γ)〉
≥ γ〈P ′(zt+1(γ))− P ′(x∗), zt+1(γ)− x∗〉 ≥ 0,

which yields

α(γ)‖zt+1(γ)− x∗‖2 ≤ 〈α(γ)(x∗ − w) + γ(∇f(yt(γ))−∇f(x∗)), x∗ − zt+1(γ)〉
≤ ‖α(γ)(x∗ − w) + γ(∇f(yt(γ))−∇f(x∗))‖‖zt+1(γ)− x∗‖.(5.16)

In addition, recall from Lemma 5.1 that
√
µγt−1 ≤ αt−1 ≤ 1. By this, α(γ) ∈ (0, 1],

(5.15), and a similar argument as in the proof of Lemma 5.1(ii), one can see that

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 21

β(γ) ∈ [0, 1]. It then follows from this, (5.12), the expression of w, and xt, zt ∈ S that
yt(γ), w ∈ S. By these, α(γ) > 0, (2.7), (5.16), and Lemma 2.3, one has

α(γ)‖zt+1(γ)− x∗‖
(5.16)

≤ ‖α(γ)(w − x∗) + γ(∇f(yt(γ))−∇f(x∗))‖
≤ α(γ)‖w − x∗‖+ γ‖∇f(yt(γ))−∇f(x∗)‖
≤ α(γ)‖w − x∗‖+ γLS‖yt(γ)− x∗‖

(2.7)

≤ (α(γ) + γLS)

√
2γ0r0

α0
.

Using this, (2.7), (5.14), α(γ) ∈ (0, 1], xt ∈ S, and γ ≤ γ0, we obtain that

‖xt+1(γ)− x∗‖
(5.14)

≤ (1− α(γ))‖xt − x∗‖+ α(γ)‖zt+1(γ)− x∗‖
(2.7)

≤ (1− α(γ))

√
2γ0r0

α0
+ (α(γ) + γLS)

√
2γ0r0

α0

≤ (1 + γ0LS)

√
2γ0r0

α0
.

It then follows from the last relation and (2.8) that xt+1(γ) ∈ Ŝ.

For the convenience of our subsequent analysis, we define

(5.17) λ0 = 1, λt =

t∏
i=1

(1− αi).

Lemma 5.5. Let S and N be defined in (2.7) and (2.9). Suppose that xt, zt ∈ S
for some t ≥ 1. Then xt+1, yt and zt+1 are successfully generated by Algorithm 2.1 at
iteration t with nt ≤ N , and moreover, xt+1, yt, zt+1 ∈ S.

Proof. Let γ = γ0δ
N and yt(γ) and xt+1(γ) be defined in (5.12) and (5.14). By

δ ∈ (0, 1) and (2.9), one can observe that 0 < γ ≤ γ0 and γ ≤ L−1

Ŝ
. Using these,

xt, zt ∈ S, and Lemma 5.4, we see that xt+1(γ) ∈ Ŝ and yt(γ) ∈ S ⊆ Ŝ, where Ŝ is
defined in (2.8). It then follows from γ ≤ L−1

Ŝ
and Lemma 2.3(ii) that

2γ
(
f(xt+1(γ))− f(yt(γ))− 〈∇f(yt(γ)), xt+1(γ)− yt(γ)〉

)
≤ γLŜ‖x

t+1(γ)− yt(γ)‖2 ≤ ‖xt+1(γ)− yt(γ)‖2.

This together with the definition of nt in Algorithm 2.1 implies that nt ≤ N . It then
follows that xt+1, yt and zt+1 are successfully generated by Algorithm 2.1.

Since xt, zt ∈ S and yt = yt(γt) for some 0 < γt ≤ γ0, it follows from Lemma 5.4
that yt ∈ S. We next show that xt+1, zt+1 ∈ S. Indeed, by (2.5) and (5.17), one has

λt
(5.17)

= (1− αt)λt−1
(2.5)
=

γt−1α
2
t − µαtγtγt−1

α2
t−1γt

λt−1 ≤
γt−1α

2
t

α2
t−1γt

λt−1,

which along with λ0 = 1 implies that γtλt/α
2
t ≤ γ0/α

2
0. Using this, (5.7) and (5.17),

22 ZHAOSONG LU AND SANYOU MEI

we obtain that

‖zt+1 − x∗‖2 ≤ 2γt
α2
t

(
F (xt+1)− F (x∗) +

α2
t

2γt
‖zt+1 − x∗‖2

)
≤ 2γtλt

α2
t

(
F (x1)− F (x∗) +

α2
0

2γ0
‖z1 − x∗‖2

)
≤ 2γ0

α2
0

(
F (x1)− F (x∗) +

α2
0

2γ0
‖z1 − x∗‖2

)
,

which together with (2.7) implies that zt+1 ∈ S. It then follows from this and (2.4)
that xt+1 ∈ S.

We are now ready to prove Theorems 2.4 and 2.5.

Proof of Theorem 2.4. We prove this theorem by induction. Indeed, notice
from Algorithm 2.1 that z1 = x1 ∈ S. It then follows from Lemma 5.5 that x2, y1 and
z2 are successfully generated with n1 ≤ N and x2, y1, z2 ∈ S. Now, suppose that xt,
yt−1 and zt are already generated with nt−1 ≤ N and xt, yt−1, zt ∈ S. It then follows
from Lemma 5.5 that xt+1, yt and zt+1 are successfully generated with nt ≤ N and
xt+1, yt, zt+1 ∈ S. Hence, the induction is complete and the conclusion of this theorem
holds.

Proof of Theorem 2.5. Observe from (5.17) that λi = (1− αi)λi−1 < λi−1 for
all i ≥ 1. In addition, recall from the proof of Lemma 5.5 that γiλi/α

2
i ≤ γ0/α

2
0 for

all i ≥ 1. By these relations, one has

1√
λi
− 1√

λi−1

= λi−1−λi√
λi−1λi(

√
λi−1+

√
λi)
≥ λi−1−λi

2λi−1

√
λi

= αi
2
√
λi
≥ 1

2α0

√
γi/γ0 ∀i ≥ 1.

Summing up the above inequalities for i = 1, 2, . . . , t and using λ0 = 1, we obtain

(5.18)
1√
λt
− 1 ≥ 1

2
α0

t∑
i=1

√
γi/γ0 ⇒ λt ≤ 4

(
2 + α0

t∑
i=1

√
γi/γ0

)−2

.

Also, observe from (5.17) and Lemma 5.1(i) that

(5.19) λt =

t∏
i=1

(1− αi) ≤
t∏
i=1

(1−√µγi) .

In addition, recall from Theorem 2.4 that ni ≤ N , which together with (2.9) implies
that γi = γ0δ

ni ≥ min{γ0, δ/LŜ} for all i ≥ 1. By this, (5.18) and (5.19), one has

λt ≤ min


(

1−
√
µmin

{
γ0, δL

−1

Ŝ

})t
, 4

(
2 + tα0

√
min

{
1, δγ−1

0 L−1

Ŝ

})−2
 ∀t ≥ 1.

The conclusion of Theorem 2.5 then directly follows from this relation, (5.17) and (5.7)
with x = x∗.

5.2. Proof of the main results in Subsection 2.2. In this subsection we first
establish two technical lemmas and then use them to prove Theorem 2.8.

Lemma 5.6. Let γ0, δ be given in Algorithm 2.2 and N be defined in (2.9). Suppose
that (v, γ0, δ) is the input for Algorithm 2.3 for any v ∈ S. Then (ṽ, γ̃) is successfully

generated by Algorithm 2.3 with ñ ≤ N , ṽ ∈ Ŝ and γ̃ ≥ min{γ0, δ/LŜ}.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 23

Proof. For any 0 < γ ≤ γ0, let

(5.20) ṽ(γ) = arg min
x

{
γ〈∇f(v), x− v〉+ γP (x) +

1

2
‖x− v‖2

}
.

By the optimality condition of (1.1) and (5.20) and a similar argument as for (5.16),
one has

‖ṽ(γ)− x∗‖ ≤ ‖v − x∗ − γ(∇f(v)−∇f(x∗))‖.

Using this, v ∈ S, (2.7), and Lemma 2.3(i), we obtain

‖ṽ(γ)− x∗‖ ≤ ‖v − x∗‖+ γLS‖v − x∗‖ ≤ (1 + γ0LS)

√
2γ0r0

α0
∀0 < γ ≤ γ0.

This along with the definition of Ŝ in (2.8) implies that ṽ(γ) ∈ Ŝ for all 0 < γ ≤ γ0.
Now, let γ = γ0δ

N . By δ ∈ (0, 1) and (2.9), one can observe that 0 < γ ≤ γ0 and

γ ≤ L−1

Ŝ
. It then follows that ṽ(γ) ∈ Ŝ. By these, v ∈ S ⊆ Ŝ and Lemma 2.3(ii), one

has

2γ(f(ṽ(γ))− f(v)− 〈∇f(v), ṽ(γ)− v〉) ≤ γLŜ‖ṽ(γ)− v‖2 ≤ ‖ṽ(γ)− v‖2.

These together with (2.9) and the definition of ñ in Algorithm 2.3 implies that (ṽ, γ̃)
is successfully generated by Algorithm 2.3 with ñ ≤ N , and moreover,

γ0 ≥ γ̃ = γ0δ
ñ ≥ γ0δ

N ≥ min{γ0, δ/LŜ}, ṽ = ṽ(γ̃) ∈ Ŝ.

Lemma 5.7. Suppose that xt+1 and (x̃t+1, γ̃t+1) are generated in Algorithm 2.2
for some t ≥ 1. Then we have

dist(0, ∂F (x̃t+1)) ≤ ‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖

≤
(√

2 max{γ−1
0 , LŜδ

−1}+
√

2γ0LŜ

)√
F (xt+1)− F (x∗),(5.21)

where LŜ is given in Lemma 2.3, and γ0 and δ are the input parameters of Algo-
rithm 2.1.

Proof. Notice that (x̃t+1, γ̃t+1) is the output of Algorithm 2.3 with (xt+1, γ0, δ)

as the input. By Lemma 5.6, one has that x̃t+1 ∈ Ŝ and γ0 ≥ γ̃t+1 ≥ min{γ0, δ/LŜ}.
Also, it follows from (2.12) and (2.13) with v = xt+1, ṽ = x̃t+1 and γ̃ = γ̃t+1 that

x̃t+1 = arg min
x

{
γ̃t+1〈∇f(xt+1), x〉+ γ̃t+1P (x) +

1

2
‖x− xt+1‖2

}
,(5.22)

2γ̃t+1(f(x̃t+1)− f(xt+1)− 〈∇f(xt+1), x̃t+1 − xt+1〉) ≤ ‖x̃t+1 − xt+1‖2.(5.23)

By the optimality condition of (5.22), it can be easily shown that

γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1) ∈ ∂F (x̃t+1),(5.24)

(5.25)
γ̃t+1〈∇f(xt+1), x̃t+1〉+ γ̃t+1P (x̃t+1)

≤ γ̃t+1〈∇f(xt+1), xt+1〉+ γ̃t+1P (xt+1)− ‖x̃t+1 − xt+1‖2.

24 ZHAOSONG LU AND SANYOU MEI

By (5.23) and (5.25), one has

γ̃t+1F (x̃t+1)
(5.23)

≤ γ̃t+1P (x̃t+1) + γ̃t+1f(xt+1)

+ γ̃t+1〈∇f(xt+1), x̃t+1 − xt+1〉+
1

2
‖x̃t+1 − xt+1‖2

(5.25)

≤ γ̃t+1F (xt+1)− 1

2
‖x̃t+1 − xt+1‖2,

which yields ‖x̃t+1 − xt+1‖ ≤
√

2γ̃t+1(F (xt+1)− F (x̃t+1)). This together with (5.24),

x̃t+1 ∈ Ŝ, γ0 ≥ γ̃t+1 ≥ min{γ0, δ/LŜ}, and Lemma 2.3(ii) implies

dist(0, ∂F (x̃t+1)) ≤ ‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖

≤ (γ̃−1
t+1 + LŜ)‖x̃t+1 − xt+1‖

≤
(√

2γ̃−1
t+1 +

√
2γ̃t+1LŜ

)√
F (xt+1)− F (x̃t+1)

≤
(√

2 max{γ−1
0 , LŜδ

−1}+
√

2γ0LŜ

)√
F (xt+1)− F (x∗).

We are now ready to prove Theorem 2.8.

Proof of Theorem 2.8.. Suppose for contradiction that Algorithm 2.2 does not
terminate within T iterations. It then follows that xt+1 and x̃t+1 must be generated in
Algorithm 2.2 for some T −M < t ≤ T with mod(t,M) = 0. In addition, observe that
(2.10) also holds for Algorithm 2.2. By t > T −M , (2.10), (2.14) and (5.21), one has

‖γ̃−1
t+1(xt+1 − x̃t+1) +∇f(x̃t+1)−∇f(xt+1)‖

(5.21)

≤
(√

2 max{γ−1
0 , LŜδ

−1}+
√

2γ0LŜ

)√
F (xt+1)− F (x∗)

(2.10)

≤ r0

(√
2 max{γ−1

0 , LŜδ
−1}+

√
2γ0LŜ

)(
1−

√
µmin

{
γ0, δL

−1

Ŝ

})t/2

< r0

(√
2 max{γ−1

0 , LŜδ
−1}+

√
2γ0LŜ

)(
1−

√
µmin

{
γ0, δL

−1

Ŝ

})(T−M)/2
(2.14)

≤ ε.

which implies that Algorithm 2.2 terminates at iteration t and leads to a contradiction.
Consequently, Algorithm 2.2 must terminate at some iteration t ≤ T and output x̃t+1

that satisfies (2.11). By this and Lemma 5.7, one can see that dist(0, ∂F (x̃t+1)) ≤ ε
and hence x̃t+1 is an ε-residual solution of problem (1.1).

In addition, one can observe from Algorithm 2.2 that (i) evaluations of ∇f and
proximal operator of P are performed in the backtracking line search procedure
(see step 2) and Algorithm 2.3 (see step 4); (ii) the total number of iterations of
Algorithm 2.2 is at most T ; (iii) nt backtracking trials are performed in each iteration
t and each of them requires one evaluation of ∇f and proximal operator of P ; (iv)
the total number of calls of Algorithm 2.3 in Algorithm 2.2 is at most T/M and each
call requires at most N evaluations of ∇f and proximal operator of P (see Algorithm
2.3 and Lemma 5.6), where N is given in (2.9). By this observation and Theorem 2.4,
one can see that the total number of evaluations of ∇f and proximal operator of P
performed in Algorithm 2.2 is no more than N̄ , respectively.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 25

5.3. Proof of the main results in Subsection 2.3. In this subsection we first
establish several technical lemmas and then use them to prove Theorem 2.11.

Let {xk}k∈K denote all the iterates generated by Algorithm 2.4, where K is a subset
of consecutive nonnegative integers starting from 0. We define K− 1 = {k− 1 : k ∈ K}.
For any 0 ≤ k ∈ K− 1, let fk and Fk be defined in (2.16). Also, let xk∗ be defined as

xk∗ = arg min
x
Fk(x).(5.26)

Recall that α0, γ0 and {ρk} are the input parameters of Algorithm 2.4, and L∇f and

L̂∇f are the Lipschitz constant of ∇f on Q and Q̂, respectively. Let

Lk = L∇f + ρ−1
k , L̂k = L̂∇f + ρ−1

k ,(5.27)

r̄k =

√
Fk(xk)− Fk(xk∗) +

α2
0

2γ0
‖xk − xk∗‖2,(5.28)

Sk =
{
x ∈ dom(P) : ‖x− xk∗‖ ≤ α−1

0

√
2γ0r̄k

}
,(5.29)

Ŝk =
{
x ∈ dom(P) : ‖x− xk∗‖ ≤ (1 + γ0Lk)α−1

0

√
2γ0r̄k

}
.(5.30)

Since L∇f and L̂∇f are respectively the Lipschitz constant of ∇f on Q and Q̂, it

then follows from (2.16) that ∇fk is Lk- and L̂k-Lipschitz continuous on Q and Q̂,

respectively. In addition, by the definition of L and L̂ in (2.22) and the monotonicity
of {ρk}, one has

(5.31) Lk = L∇f + ρ−1
k ≤ L, L̂k = L̂∇f + ρ−1

k ≤ L̂.

Lemma 5.8. Let xk∗ be defined in (5.26). Then the following statements hold.

‖xk − xk∗‖2 + ‖xk∗ − x∗‖2 ≤ ‖xk − x∗‖2 ∀0 ≤ k ∈ K− 1,(5.32)


‖xk − xk−1‖ ≤ ‖x0 − x∗‖+

k−1∑
i=0

ρiηi,

‖xk − x∗‖ ≤ ‖x0 − x∗‖+
k−1∑
i=0

ρiηi,

∀1 ≤ k ∈ K(5.33)

Proof. One can observe that Algorithm 2.4 is an inexact proximal point algorithm
(PPA) [18] applied to the monotone inclusion problem 0 ∈ T (x), where T : Rn ⇒ Rn
is a maximal monotone set-valued operator defined as

T (x) =

{
∂F (x) if x ∈ dom(P),
∅ otherwise,

∀x ∈ Rn.

In addition, one can observe from (2.18) and (5.26) that dist(0, T (xk+1) + ρ−1
k (xk+1−

xk)) ≤ ηk and xk∗ = (I + ρkT)−1(xk). It then follows from [18, Proposition 3] that

(5.34) ‖xk+1 − (I + ρkT)−1(xk)‖ ≤ ρkηk ∀k ∈ K− 1.

By this, 0 ∈ T (x∗), xk∗ = (I + ρkT)−1(xk) and [18, Proposition 1], one can see that
(5.32) holds. In addition, (5.33) follows from (5.34) and [12, Lemma 3].

26 ZHAOSONG LU AND SANYOU MEI

As a consequence of Lemma 5.8 and the definition of r0 and θ in (2.19), one has
that

(5.35)

{
‖x0 − x0

∗‖ ≤ r0, ‖xk − x∗‖ ≤ r0 + θ,

‖xk − xk∗‖ ≤ r0 + θ, ‖xk − xk−1‖ ≤ r0 + θ,
∀1 ≤ k ∈ K.

Lemma 5.9. Let r̃0 and r̄k be defined in (2.20) and (5.28). Then for all 0 ≤ k ∈
K− 1, we have

(5.36) r̄2
k ≤ α2

0r̃
2
0/(2γ0).

Proof. We first prove that (5.36) holds for k = 0, that is, r̄2
0 ≤ α2

0r̃
2
0/(2γ0). By

(1.1), (2.16) and the definition of x∗, one has

F0(x0
∗) = F (x0

∗) +
1

2ρ0
‖x0
∗ − x0‖2 ≥ F (x∗), F0(x0) = F (x0).

It then follows from these, (2.20), (5.28), and (5.35) that

r̄2
0

(5.28)
= F0(x0)− F0(x0

∗) +
α2

0

2γ0
‖x0 − x0

∗‖2 ≤ F (x0)− F (x∗) +
α2

0r
2
0

2γ0

(2.20)

≤ α2
0r̃

2
0

2γ0
.

We next show that (5.36) holds for all 1 ≤ k ∈ K− 1. It follows from (2.16) and
(2.18) that there exists P ′(xk) ∈ ∂P (xk) such that

(5.37)
F ′k−1(xk) = ∇f(xk) + ρ−1

k−1(xk − xk−1) + P ′(xk) ∈ ∂Fk−1(xk),

and ‖F ′k−1(xk)‖ ≤ ηk−1.

Also, we have

∇f(xk) + P ′(xk) ∈ ∂Fk(xk),

which together with (5.37) yields

(5.38) F ′k−1(xk)− ρ−1
k−1(xk − xk−1) ∈ ∂Fk(xk).

By the convexity of F , ηk−1 ≤ η0, ρk−1 ≥ ρ0, (5.35) and (5.38), one has

Fk(xk)− Fk(xk∗)
(5.38)

≤ 〈F ′k−1(xk)− ρ−1
k−1(xk − xk−1), xk − xk∗〉

≤ (‖F ′k−1(xk)‖+ ρ−1
k−1‖x

k − xk−1‖)‖xk − xk∗‖
(5.35)

≤ η0(r0 + θ) + ρ−1
0 (r0 + θ)2.

This together with (5.28) and (5.35) yields

r̄2
k = Fk(xk)− Fk(xk∗) +

α2
0

2γ0
‖xk − xk∗‖2 ≤ η0(r0 + θ) + ρ−1

0 (r0 + θ)2 +
α2

0(r0 + θ)2

2γ0
.

By this relation and the definition of r̃0 in (2.20), one can see that (5.36) holds for all
1 ≤ k ∈ K− 1.

Lemma 5.10. Let fk, Lk, L̂k, Sk and Ŝk be respectively defined in (2.16), (5.27),
(5.29) and (5.30). Then for all 0 ≤ k ∈ K− 1, ∇fk is Lipschitz continuous on Sk and

Ŝk with Lipschitz constants Lk and L̂k, respectively.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 27

Proof. Let Q and Q̂ be defined in (2.21) and (2.22). We first show that Sk ⊆ Q
and Ŝk ⊆ Q̂ for all 0 ≤ k ∈ K − 1. To this end, fix any 0 ≤ k ∈ K − 1. By (5.29),
(5.35) and (5.36), one has that for all x ∈ Sk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(5.29)

≤ α−1
0

√
2γ0r̄k + ‖xk∗ − x∗‖ ≤ r̃0 + r0 + θ,

where the last inequality follows from (5.35) and (5.36). This together with (2.21)
implies that Sk ⊆ Q. In addition, using (5.30), (5.31), (5.35) and (5.36), we obtain

that for all x ∈ Ŝk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(5.30)

≤ (1 + γ0Lk)α−1
0

√
2γ0r̄k + ‖xk∗ − x∗‖

≤ (1 + γ0Lk)r̃0 + r0 + θ
(5.31)

≤ (1 + γ0L)r̃0 + r0 + θ,

which along with (2.22) implies that Ŝk ⊆ Q̂.

Recall that ∇fk is Lk- and L̂k-Lipschitz continuous on Q and Q̂, respectively. The
conclusion of this lemma then follows from this fact and the relations Sk ⊆ Q and
Ŝk ⊆ Q̂ for all 0 ≤ k ∈ K− 1.

Lemma 5.11. Let Nk denote the number of evaluations of ∇f and proximal op-
erator of P performed by Algorithm 2.2 at the kth outer iteration of Algorithm 2.4.
Then for all 0 ≤ k ∈ K− 1, it holds that

(5.39) Nk ≤ C̃1

M + 1 +

(
log

α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η2k

)
+√

ρ−1
k min

{
γ0, δL̂−1

}
 ,

where M , δ, α0, γ0, {ρk} and {ηk} are the input parameters of Algorithm 2.4, and r̃0,

L̂ and C̃1 are given in (2.20), (2.22) and (2.23), respectively.

Proof. Notice that at the kth outer iteration of Algorithm 2.4, Algorithm 2.2 is
called to find an ηk-residual solution xk+1 of the problem minx {fk(x) + P (x)} with
the inputs ε ← ηk, µ ← ρ−1

k and x1 = z1 ← xk. In view of (5.28), (5.29), (5.30),

Lemma 5.10 and Theorem 2.8, one can replace (r0, µ, ε, LŜ) in (2.15) by (r̄k, ρ
−1
k , ηk, L̂k)

respectively and obtain that

Nk ≤ (1 +M−1)

M +


2 log ηk

r̄k

(√
2 max{γ−1

0 ,L̂kδ
−1}+

√
2γ0L̂k

)

log

(
1−

√
ρ−1
k min

{
γ0, δL̂

−1
k

})


+


1 +

⌈
log(γ0L̂k)

log(1/δ)

⌉
+



≤ (1 +M−1)


M + 1 +

log
2r̄2k

(√
max{γ−1

0 ,L̂kδ
−1}+√γ0L̂k

)2

η2
k


+

− log

(
1−

√
ρ−1
k min

{
γ0, δL̂

−1
k

})

1 +

⌈
log(γ0L̂k)

log(1/δ)

⌉
+



28 ZHAOSONG LU AND SANYOU MEI

≤ (1 +M−1)


M + 1 +

log
2γ0r̄

2
k

(√
max{γ−2

0 ,γ−1
0 L̂kδ

−1}+L̂k
)2

η2
k


+√

ρ−1
k min

{
γ0, δL̂

−1
k

}

1 +

⌈
log(γ0L̂k)

log(1/δ)

⌉
+

 ,

where the last inequality follows from the fact that − log(1− ξ) ≥ ξ for any ξ ∈ (0, 1).
By the above inequality, (2.23), (5.31) and (5.36), one can see that (5.39) holds.

We are now ready to prove Theorem 2.11.

Proof of Theorem 2.11.. (i) Let K be defined in (2.26). We first show that
Algorithm 2.4 terminates after at most K + 1 outer iterations. Indeed, suppose for
contradiction that it runs for more than K + 1 outer iterations. It then follows that
(2.17) does not hold for k = K. On the other hand, by (2.26), (5.35), ρK = ρ0ζ

K and
ηK = η0σ

K , one has

1

ρK
‖xK+1 − xK‖ ≤ r0 + θ

ρ0ζK

(2.26)

≤ ε

2
, ηK = η0σ

K
(2.26)

≤ ε

2
,

and hence (2.17) holds for k = K, which leads to a contradiction. Hence, there exists
some 0 ≤ k ≤ K such that (2.17) holds and Algorithm 2.4 terminates and outputs
xk+1. We next show that xk+1 is an ε-residual solution of problem (1.1). Indeed, it
follows from (2.16) and (2.17) that

dist(0, ∂F (xk+1)) ≤ dist(0, ∂F (xk+1) + ρ−1
k (xk+1 − xk)) + ρ−1

k ‖x
k+1 − xk‖

(2.16)
= dist(0, ∂Fk(xk+1)) + ρ−1

k ‖x
k+1 − xk‖

≤ ηk + ρ−1
k ‖x

k+1 − xk‖
(2.17)

≤ ε,

and hence the output xk+1 of Algorithm 2.4 is an ε-residual solution of problem (1.1).

(ii) Let K and Ñ be defined in (2.26) and (2.27), and let Nk denote the number
of evaluations of ∇f and proximal operator of P performed by Algorithm 2.2 at the
kth outer iteration of Algorithm 2.4. By this and statement (i) of this theorem, one
can observe that the total number of evaluations of ∇f and proximal operator of

P performed in Algorithm 2.4 is no more than
∑|K|−2
k=0 Nk. As a result, to prove

statement (ii) of this theorem, it suffices to show that
∑|K|−2
k=0 Nk ≤ Ñ . Indeed, in

view of (2.24), (2.25), (2.26), (5.39), |K| − 2 ≤ K, ρk = ρ0ζ
k and ηk = η0σ

k, one has

|K|−2∑
k=0

Nk ≤ C̃1

K∑
k=0


M + 1 +

√
ρk

log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η2
k


+

min
{√

γ0,
√
δL̂−1

}


= C̃1

K∑
k=0


M + 1 +

√
ρ0
√
ζ
k

−2k log σ + log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η20


+

min
{√

γ0,
√
δL̂−1

}


ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 29

≤ C̃1


(M + 1)(K + 1)+

√
ρ0
√
ζ
K+1

−2K log σ + log
α2
0r̃

2
0

(√
max{γ−2

0 ,γ−1
0 L̂δ−1}+L̂

)2

η20


+

(
√
ζ − 1) min

{√
γ0,
√
δL̂−1

}

≤Ñ,

where the first inequality follows from (5.39), the second inequality is due to the

relations
∑K
k=0

√
ζ
k ≤
√
ζ
K+1

/(
√
ζ − 1) and

∑K
k=0 k

√
ζ
k ≤ K

√
ζ
K+1

/(
√
ζ − 1), and

the last inequality follows from (2.24), (2.25), (2.26) and (2.27).

5.4. Proof of the main results in Section 3. In this subsection we first
establish several technical lemmas and then use them to prove Theorem 3.4.

Let {(xk, λk)}k∈K denote all the iterates generated by Algorithm 3.1, where K
is a subset of consecutive nonnegative integers starting from 0. We define K − 1 =
{k− 1 : k ∈ K}. For any 0 ≤ k ∈ K− 1, let fk and Fk be defined in (3.3). In addition,
let (xk∗, λ

k
∗) be defined as

xk∗ = arg min
x
Fk(x), λk∗ = ΠK∗

(
λk + ρkg(xk∗)

)
.(5.40)

Recall that α0, {ρk} and {ηk} are the input parameters of Algorithm 3.1, Q, B,

C, Q̂, B̂ and Ĉ are respectively given in (3.8), (3.9), (3.10) and (3.11), and L∇g and

L̂∇g are the Lipschitz constant of ∇g on Q and Q̂, respectively. Let

Lk = Cρk +B + L∇g

k−1∑
i=0

ρiηi + ρ−1
k , L̂k = Ĉρk + B̂ + L̂∇g

k−1∑
i=0

ρiηi + ρ−1
k ,(5.41)

r̄k =

√
Fk(xk)− Fk(xk∗) +

1

2
ρkα2

0‖xk − xk∗‖2,(5.42)

Sk =

{
x ∈ dom(P) : ‖x− xk∗‖ ≤ α−1

0

√
2ρ−1
k r̄k

}
,(5.43)

Ŝk =

{
x ∈ dom(P) : ‖x− xk∗‖ ≤

(
1 + Lkρ

−1
k

)
α−1

0

√
2ρ−1
k r̄k

}
.(5.44)

The following lemma states some properties of the function fk, whose proof is
similar to that of [12, Lemma 7] and thus omitted.

Lemma 5.12. Let fk, Q, Q̂, Lk and L̂k be respectively defined in (3.3), (3.8),
(3.10) and (5.41). Then fk is convex and continuously differentiable on dom(P), and

moreover, ∇fk is Lipschitz continuous on Q and Q̂ with Lipschitz constants Lk and
L̂k, respectively.

The next lemma establishes some properties of (xk, λk) and (xk∗, λ
k
∗).

Lemma 5.13. Let (xk∗, λ
k
∗) be defined in (5.40). Then the following statements

hold.

‖(xk, λk)− (xk∗, λ
k
∗)‖2 + ‖(xk∗, λk∗)− (x∗, λ∗)‖2

≤ ‖(xk, λk)− (x∗, λ∗)‖2 ∀0 ≤ k ∈ K− 1,
(5.45)

‖(xk, λk)− (xk−1, λk−1)‖ ≤ ‖(x0, λ0)− (x∗, λ∗)‖+
k−1∑
i=0

ρiηi ∀1 ≤ k ∈ K,(5.46)

30 ZHAOSONG LU AND SANYOU MEI

‖(xk, λk)− (x∗, λ∗)‖ ≤ ‖(x0, λ0)− (x∗, λ∗)‖+
k−1∑
i=0

ρiηi ∀1 ≤ k ∈ K.(5.47)

Proof. It is well-known (e.g., see [18, 12]) that Algorithm 3.1 is an inexact proximal
point algorithm (PPA) applied to the monotone inclusion problem 0 ∈ Tl(x, λ), where
l is the Lagrangian function of problem (1.2), and Tl is a maximal monotone set-valued
operator defined as

Tl : (x, λ)→ {(v, u) ∈ <n ×<m : (v,−u) ∈ ∂l(x, λ)}, ∀(x, λ) ∈ <n ×<m.

It then follows from (3.5), (5.40), and [12, Lemma 5] that

(5.48) (xk∗, λ
k
∗) = Jρk(xk, λk), ‖(xk+1, λk+1)−Jρk(xk, λk)‖ ≤ ρkηk, ∀k ∈ K− 1.

where Jρk = (I + ρkTl)−1. By the first relation in (5.48), 0 ∈ Tl(x∗, λ∗), and the
maximal monotonicity of Tl, it follows from [18, Proposition 1] that (5.45) holds. In
addition, (5.46) and (5.47) follow from the second relation in (5.48) and [12, Lemma
3].

As a consequence of Lemma 5.13 and the definition of r0 and θ in (3.6), one has
that

(5.49)

{
‖x0 − x0

∗‖ ≤ r0, ‖xk − x∗‖ ≤ r0 + θ, ‖λk − λ∗‖ ≤ r0 + θ,

‖xk − xk∗‖ ≤ r0 + θ, ‖xk − xk−1‖ ≤ r0 + θ,
∀1 ≤ k ∈ K.

Lemma 5.14. Let r̃0 and r̄k be defined in (3.7) and (5.42). Then for all 0 ≤ k ∈
K− 1, we have

(5.50) r̄2
k ≤ α2

0r̃
2
0ρk/2.

Proof. We first prove that (5.50) holds for k = 0, that is, r̄2
0 ≤ α2

0r̃
2
0ρ0/2. Indeed,

let l be the Lagrangian function of problem (1.2). By (3.2), (3.3) and (5.40), one has

F0(x0
∗) = L(x0

∗, λ
0; ρ0) +

1

2ρ0
‖x0
∗ − x0‖2

≥ L(x0
∗, λ

0; ρ0) = max
λ∈Rm

{
l(x0
∗, λ)− 1

2ρ0
‖λ− λ0‖2

}
≥ l(x∗0, λ∗)−

1

2ρ0
‖λ0 − λ∗‖2 ≥ F (x∗)− 1

2ρ0
‖λ0 − λ∗‖2,

where the second equality follows from [12, Lemma 2]. Also, we have

F0(x0) = L(x0, λ0; ρ0) = F (x0) +
1

2ρ0

(
‖ΠK∗(λ0 + ρ0g(x0))‖2 − ‖λ0‖2

)
.

It then follows from these, (3.7), (5.42), and (5.49) that

r̄2
0

(5.42)
= F0(x0)− F0(x0

∗) +
1

2
ρ0α

2
0‖x0 − x0

∗‖2

≤ F (x0)− F (x∗) +
1

2ρ0

(
‖ΠK∗(λ0 + ρ0g(x0))‖2 + ‖λ0 − λ∗‖2 − ‖λ0‖2

)
+

1

2
ρ0α

2
0r

2
0

(3.7)

≤ α2
0r̃

2
0ρ0/2.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 31

We next show that (5.50) holds for all 1 ≤ k ∈ K − 1. Indeed, observe that
‖λk‖ = dist(λk−1+ρk−1g(xk),−K) and ‖ΠK∗(λk+ρkg(xk))‖ = dist(λk+ρkg(xk),−K).
Using these, ρk = ρ0ζ

k, and (5.49), we have

‖ΠK∗(λk + ρkg(xk))− λk‖

≤ dist(λk + ρkg(xk),−K) + ‖λk‖ = ρkdist

(
λk

ρk
+ g(xk),−K

)
+ ‖λk‖

≤ ρkdist

(
λk

ρk
− λk−1

ρk−1
,−K

)
+ ρkdist

(
λk−1

ρk−1
+ g(xk),−K

)
+ ‖λk‖

≤ ρk
∥∥∥∥λkρk − λk−1

ρk−1

∥∥∥∥+
ρk
ρk−1

dist
(
λk−1 + ρk−1g(xk),−K

)
+ ‖λk‖

= ρk

∥∥∥∥λkρk − λk−1

ρk−1

∥∥∥∥+

(
ρk
ρk−1

+ 1

)
‖λk‖ ≤ ρk

ρk−1
‖λk−1‖+

(
ρk
ρk−1

+ 2

)
‖λk‖

≤ 2(ζ + 1)(‖λ∗‖+ r0 + θ).(5.51)

It follows from (3.3) and (3.5) that there exists P ′(xk) ∈ ∂P (xk) such that

(5.52)


F ′k−1(xk)=∇f(xk)+∇g(xk)ΠK∗(λ

k−1 + ρk−1g(xk))

+ ρ−1
k−1(xk−xk−1) + P ′(xk) ∈ ∂Fk−1(xk),

‖F ′k−1(xk)‖ ≤ ηk−1.

Also, we have

∇f(xk) +∇g(xk)ΠK∗(λ
k + ρkg(xk)) + P ′(xk) ∈ ∂Fk(xk),

which together with (5.52) yields

(5.53)
F ′k−1(xk) +∇g(xk)

(
ΠK∗(λ

k + ρkg(xk))−ΠK∗(λ
k−1 + ρk−1g(xk))

)
∈ ∂Fk(xk) + ρ−1

k−1(xk − xk−1).

In addition, observe from (3.6) and (5.49) that xk ∈ Q̃. Also, note that Fk is convex

and g is L̃g-Lipschitz continuous on Q̃. By these, (5.51), (5.52), (5.53), and the
monotonicity of {ρk} and {ηk}, one has

Fk(xk)− Fk(xk∗)

(5.53)

≤ 〈F ′k−1(xk), xk − xk∗〉 − ρ−1
k−1〈x

k − xk−1, xk − xk∗〉
+ 〈∇g(xk)(ΠK∗(λ

k + ρkg(xk))−ΠK∗(λ
k−1 + ρk−1g(xk))), xk − xk∗〉

≤ ‖F ′k−1(xk)‖‖xk − xk∗‖+ ρ−1
k−1‖x

k − xk−1‖‖xk − xk∗‖
+ ‖∇g(xk)‖‖ΠK∗(λk + ρkg(xk))−ΠK∗(λ

k−1 + ρk−1g(xk))‖‖xk − xk∗‖
= ‖F ′k−1(xk)‖‖xk − xk∗‖+ ρ−1

k−1‖x
k − xk−1‖‖xk − xk∗‖

+ ‖∇g(xk)‖‖ΠK∗(λk + ρkg(xk))− λk‖‖xk − xk∗‖

≤ η0(r0 + θ) + ρ−1
0 (r0 + θ)2 + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ)(r0 + θ),

32 ZHAOSONG LU AND SANYOU MEI

where the last inequality follows from (5.49) and (5.51). Then we have

2r̄2
k

ρkα2
0

=
2

ρkα2
0

(
Fk(xk)− Fk(xk∗) + ρkα

2
0‖xk − xk∗‖2

)
≤ 2

ρ0α2
0

(
Fk(xk)− Fk(xk∗)

)
+ 2‖xk − xk∗‖2

≤ 2

ρ0α2
0

(
η0(r0 + θ) + ρ−1

0 (r0 + θ)2 + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ)(r0 + θ)
)

+ 2(r0 + θ)2

=
2(r0 + θ)

ρ0α2
0

(
η0 + ρ−1

0 (r0 + θ) + 2L̃g(ζ + 1)(‖λ∗‖+ r0 + θ) + ρ0α
2
0(r0 + θ)

)
.

By this relation and the definition of r̃0 in (3.7), one can see that (5.50) holds for all
1 ≤ k ∈ K− 1.

Lemma 5.15. Let fk, Lk, L̂k, Sk and Ŝk be respectively defined in (3.3), (5.41),
(5.43) and (5.44). Then for all 0 ≤ k ∈ K− 1, ∇fk is Lipschitz continuous on Sk and

Ŝk with Lipschitz constants Lk and L̂k, respectively.

Proof. Let Q and Q̂ be defined in (3.8) and (3.10). We first show that Sk ⊆ Q
and Ŝk ⊆ Q̂ for all 0 ≤ k ∈ K − 1. To this end, fix any 0 ≤ k ∈ K − 1. By (5.43),
(5.49) and (5.50), one has that for all x ∈ Sk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(5.43)

≤ α−1
0

√
2ρ−1
k r̄k + ‖xk∗ − x∗‖ ≤ r̃0 + r0 + θ,

where the last inequality follows from (5.49) and (5.50). This together with (3.8)
implies that Sk ⊆ Q. In addition, by (3.6), (3.9), (5.41) and ρk ≥ ρ0, one has

ρ−1
k Lk

(5.41)
= C+ρ−1

k B+ρ−1
k L∇g

k−1∑
i=0

ρiηi+ρ−2
k

(3.6)

≤ C+ρ−1
0 B+ρ−1

0 L∇gθ+ρ−2
0

(3.9)
= L.

Using this, (5.44) and (5.50), we obtain that for all x ∈ Ŝk,

‖x− x∗‖ ≤ ‖x− xk∗‖+ ‖xk∗ − x∗‖
(5.44)

≤
(
1 + Lkρ

−1
k

)
α−1

0

√
2ρ−1
k r̄k + ‖xk∗ − x∗‖

≤ (1 + L)r̃0 + r0 + θ,

which along with (3.10) implies that Ŝk ⊆ Q̂.
The conclusion of this lemma then follows from Lemma 5.12 and the fact that

Sk ⊆ Q and Ŝk ⊆ Q̂ for all 0 ≤ k ∈ K− 1.

Lemma 5.16. Let Nk denote the number of evaluations of ∇f , ∇g, proximal
operator of P and projection onto K∗ performed by Algorithm 2.2 at the kth outer
iteration of Algorithm 3.1. Then for all 0 ≤ k ∈ K− 1, it holds that

(5.54) Nk ≤ Ĉ1

M + 1 +

(
log

ρ2kα
2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2

η2k

)
+√

(µ+ ρ−1
k)ρ−1

k min
{

1, δL̂−1
}
 ,

where M , δ, α0, {ρk} and {ηk} are the input parameters of Algorithm 3.1, and r̃0, L̂

and Ĉ1 are given in (3.7), (3.11) and (3.12), respectively.

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 33

Proof. By (3.6), (3.11), (5.41) and ρk ≥ ρ0, one has

(5.55)
ρ−1
k L̂k

(5.41)
= Ĉ + ρ−1

k B̂ + ρ−1
k L̂∇g

k−1∑
i=0

ρiηi + ρ−2
k

(3.6)

≤ Ĉ + ρ−1
0 B̂ + ρ−1

0 L̂∇gθ + ρ−2
0

(3.11)
= L̂.

Notice that at the kth outer iteration of Algorithm 3.1, Algorithm 2.2 is called to
find an ηk-residual solution xk+1 of the problem minx {fk(x) + P (x)} with the inputs
ε← ηk, γ0 ← ρ−1

k , µ← µ+ ρ−1
k and x1 = z1 ← xk. Moreover, when applied to this

problem, the proximal step (2.3) of Algorithm 2.2 requires one evaluation of ∇f , ∇g,
proximal operator of P and projection onto K∗, respectively. In view of this, (5.42),
(5.43), (5.44), Lemma 5.15 and Theorem 2.8, one can replace (r0, γ0, µ, ε, LŜ) in (2.15)

by (r̄k, ρ
−1
k , µ+ ρ−1

k , ηk, L̂k) respectively and obtain that

Nk ≤ (1 +M−1)

M +


2 log ηk

r̄k

(√
2 max{ρk,L̂kδ−1}+

√
2ρ−1
k
L̂k

)

log

(
1−

√
(µ+ ρ−1

k) min
{
ρ−1
k , δL̂−1

k

})


+


1 +

⌈
log(ρ−1

k L̂k)

log(1/δ)

⌉
+



≤ (1 +M−1)


M + 1 +

log
2ρk r̄

2
k

(√
max{1,ρ−1

k
L̂kδ
−1}+ρ−1

k
L̂k

)2

η2
k


+

− log

(
1−

√
(µ+ ρ−1

k)ρ−1
k min

{
1, δρkL̂

−1
k

})

1 +

⌈
log(ρ−1

k L̂k)

log(1/δ)

⌉
+



≤ (1 +M−1)


M + 1 +

log
2ρk r̄

2
k

(√
max{1,ρ−1

k
L̂kδ
−1}+ρ−1

k
L̂k

)2

η2
k


+√

(µ+ ρ−1
k)ρ−1

k min
{

1, δρkL̂
−1
k

}

1 +

⌈
log(ρ−1

k L̂k)

log(1/δ)

⌉
+

 ,

where the last inequality follows from the fact that − log(1− ξ) ≥ ξ for any ξ ∈ (0, 1).
By the above inequality, (5.50) and (5.55), one can see that (5.54) holds.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4.. (i) Let K be defined in (3.14). We first show that
Algorithm 3.1 terminates after at most K + 1 outer iterations. Indeed, suppose for
contradiction that it runs for more than K + 1 outer iterations. It then follows that
(3.4) does not hold for k = K. On the other hand, by (3.6), (5.46), (3.14), ρK = ρ0ζ

K

and ηK = η0σ
K , one has

1

ρK
‖(xK+1, λK+1)− (xK , λK)‖ ≤ r0 + θ

ρ0ζK

(3.14)

≤ ε

2
, ηK = η0σ

K
(3.14)

≤ ε

2
,

and hence (3.4) holds for k = K, which leads to a contradiction. In addition, the
output of Algorithm 3.1 is an ε-KKT solution of problems (1.2) and (3.1) due to [12,
Theorem 4].

(ii) Suppose that µ = 0, i.e., f is convex but not strongly convex on dom(P).

Let K and N̂ be defined in (3.14) and (3.15). Also, let Nk denote the number of
evaluations of ∇f , ∇g, proximal operator of P and projection onto K∗ performed
by Algorithm 2.2 at the kth outer iteration of Algorithm 3.1. In addition to these

34 ZHAOSONG LU AND SANYOU MEI

evaluations, one projection onto K∗ is performed at step 3 of Algorithm 3.1 each
iteration. By these and statement (i) of this theorem, one can observe that the total
number of evaluations of ∇f , ∇g, proximal operator of P and projection onto K∗
performed in Algorithm 3.1 is no more than

∑|K|−2
k=0 (Nk + 1). As a result, to prove

statement (ii) of this theorem, it suffices to show that
∑|K|−2
k=0 (Nk + 1) ≤ N̂ . Indeed, in

view of (3.13), (3.14), (5.54), |K| − 2 ≤ K, µ = 0, ρk = ρ0ζ
k and ηk = η0σ

k, one has

|K|−2∑
k=0

(Nk + 1) ≤ K + 1 + Ĉ1

K∑
k=0


M + 1 +

ρk

log
ρ2kα

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2

η2
k


+

min
{

1,
√
δL̂−1

}


= K + 1 + Ĉ1

K∑
k=0


M + 1 +

ρ0ζk

2k log ζ
σ

+ log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2

η20


+

min
{

1,
√
δL̂−1

}


≤ K + 1 + Ĉ1


(M + 1)(K + 1)+

ρ0ζK+1

2K log ζ
σ

+ log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2

η20


+

(ζ − 1) min
{

1,
√
δL̂−1

}

≤N̂,

where the first inequality follows from (5.54) and µ = 0, the second inequality is due

to
∑K
k=0 ζ

k ≤ ζK+1/(ζ − 1) and
∑K
k=0 kζ

k ≤ KζK+1/(ζ − 1), and the last equality
follows from (3.13), (3.14) and (3.15).

(iii) Suppose that µ > 0, namely, f is strongly convex on dom(P). Similar to the

proof of statement (ii) of this theorem, it suffices to show that
∑|K|−2
k=0 (Nk + 1) ≤ Ň .

Indeed, in view of (3.13), (3.14), (5.54), |K|− 2 ≤ K, µ > 0, ρk = ρ0ζ
k and ηk = η0σ

k,
one has

|K|−2∑
k=0

(Nk + 1) ≤ K + 1 + Ĉ1

K∑
k=0


M + 1 +

√
ρk
µ

log
ρ2kα

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2

η2
k


+

min
{

1,
√
δL̂−1

}


= K + 1 + Ĉ1

K∑
k=0


M + 1 +

√
ρ0
µ

√
ζ
k

2k log ζ
σ

+ log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2

η20


+

min
{

1,
√
δL̂−1

}


≤K+1+Ĉ1


(M + 1)(K + 1)+

√
ρ0
µ

√
ζ
K+1

2K log ζ
σ

+ log
ρ20α

2
0r̃

2
0

(√
max{1,L̂δ−1}+L̂

)2

η20


+

(
√
ζ − 1) min

{
1,
√
δL̂−1

}

≤Ň,

ACCELERATED FIRST-ORDER METHODS FOR CONVEX OPTIMIZATION 35

where the first inequality follows from (5.54) and µ > 0, the second inequality is due

to
∑K
k=0

√
ζ
k ≤
√
ζ
K+1

/(
√
ζ − 1) and

∑K
k=0 k

√
ζ
k ≤ K

√
ζ
K+1

/(
√
ζ − 1), and the last

equality follows from (3.13), (3.14) and (3.16).

6. Concluding remarks. The development and analysis of accelerated first-
order methods in this paper are based on the assumption that the proximal subproblems
associated with P can be exactly solved. Nevertheless, it is not hard to modify them
by using a suitable inexact solution of the proximal subproblems instead.

Recently, a class of problems in the form of (1.1) with f being relatively smooth
convex was considered in the literature (e.g., see [2, 5, 11]). Interestingly, this class con-
sists of some problems in which ∇f is not locally Lipschitz continuous on cl(dom(P)),
for example, the problem with P being the simplex and f containing the entropy
function and being relatively smooth to the entropy function. It shall however be men-
tioned that this class generally does not include the problems considered in this paper.
For example, it does not contain problem (1.1) with f being a convex high-degree
polynomial function and P being the indicator function of the nonnegative orthant.
Yet, this problem belongs to the class considered in this paper. As future research, it
would be interesting to investigate whether the methods studied in this paper can be
extended to relatively smooth convex optimization.

REFERENCES

[1] N. S. Aybat and G. Iyengar, An augmented Lagrangian method for conic convex programming,
2013. arXiv preprint arXiv:1302.6322.

[2] H. H. Bauschke, J. Bolte, and M. Teboulle, A descent lemma beyond Lipschitz gradient
continuity: first-order methods revisited and applications, Mathematics of Operations
Research, 42 (2017), pp. 330–348.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM Journal on Imaging Sciences, 2 (2009), pp. 183–202.

[4] O. Fercoq and P. Richtárik, Accelerated, parallel, and proximal coordinate descent, SIAM
Journal on Optimization, 25 (2015), pp. 1997–2023.

[5] F. Hanzely, P. Richtarik, and L. Xiao, Accelerated Bregman proximal gradient methods for
relatively smooth convex optimization, Computational Optimization and Applications, 79
(2021), pp. 405–440.

[6] M. Ito and M. Fukuda, Nearly optimal first-order methods for convex optimization under
gradient norm measure: An adaptive regularization approach, Journal of Optimization
Theory and Applications, 188 (2021), pp. 770–804.

[7] G. Lan and R. D. C. Monteiro, Iteration-complexity of first-order penalty methods for convex
programming, Mathematical Programming, 138 (2013), pp. 115–139.

[8] G. Lan and R. D. C. Monteiro, Iteration-complexity of first-order augmented Lagrangian
methods for convex programming, Mathematical Programming, 155 (2016), pp. 511–547.

[9] Q. Lin, Z. Lu, and L. Xiao, An accelerated randomized proximal coordinate gradient method and
its application to regularized empirical risk minimization, SIAM Journal on Optimization,
25 (2015), pp. 2244–2273.

[10] Y. F. Liu, X. Liu, and S. Ma, On the non-ergodic convergence rate of an inexact augmented
Lagrangian framework for composite convex programming, Mathematics of Operations
Research, 44 (2019), pp. 632–650.

[11] H. Lu, R. M. Freund, and Y. Nesterov, Relatively smooth convex optimization by first-order
methods, and applications, SIAM Journal on Optimization, 28 (2018), pp. 333–354.

[12] Z. Lu and Z. Zhou, Iteration complexity of first-order augmented Lagrangian methods for
convex conic programming, (2023). To appear in SIAM journal on optimization.

[13] Y. Malitsky and M. K. Tam, A forward-backward splitting method for monotone inclusions
without cocoercivity, SIAM Journal on Optimization, 30 (2020), pp. 1451–1472.

[14] R. D. Monteiro and B. F. Svaiter, Complexity of variants of Tseng’s modified FB splitting
and Korpelevich’s methods for hemivariational inequalities with applications to saddle-point
and convex optimization problems, SIAM Journal on Optimization, 21 (2011), pp. 1688–1720.

[15] I. Necoara, A. Patrascu, and F. Glineur, Complexity of first-order inexact Lagrangian and

36 ZHAOSONG LU AND SANYOU MEI

penalty methods for conic convex programming, Optimization Methods and Software, 34
(2019), pp. 305–335.

[16] Y. E. Nesterov, Gradient methods for minimizing composite functions, Mathematical Pro-
gramming, 140 (2013), pp. 125–161.

[17] A. Patrascu, I. Necoara, and T. D. Quoc, Adaptive inexact fast augmented Lagrangian
methods for constrained convex optimization, Optimization Letters, 11 (2017), pp. 609–626.

[18] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on
Control and Optimization, 14 (1976), pp. 877–898.

[19] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings,
SIAM Journal on Control and Optimization, 38 (2000), pp. 431–446.

[20] P. Tseng, On accelerated proximal gradient methods for convex-concave optimization, manu-
script, May 2008.

	Introduction
	Notation and terminology

	Accelerated proximal gradient methods for unconstrained convex optimization
	An APG method without a termination criterion for problem (1.1)
	An APG method with a termination criterion for problem (1.1) with >0
	An APG method with a termination criterion for problem (1.1) with =0

	A first-order proximal augmented Lagrangian method for constrained convex optimization
	Numerical results
	Quadratically constrained quadratic programming with box constraints
	Quadratically constrained quadratic programming

	Proof of the main results
	Proof of the main results in Subsection 2.1
	Proof of the main results in Subsection 2.2
	Proof of the main results in Subsection 2.3
	Proof of the main results in Section 3

	Concluding remarks
	References

