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Abstract

We review how a data infrastructure for the Plant Cell Atlas might be built using existing infrastructure and platforms. The
Human Cell Atlas has developed an extensive infrastructure for human and mouse single cell data, while the European
Bioinformatics Institute has developed a Single Cell Expression Atlas, that currently houses several plant data sets. We dis-
cuss issues related to appropriate ontologies for describing a plant single cell experiment. We imagine how such an infra-
structure will enable biologists and data scientists to glean new insights into plant biology in the coming decades, as long
as such data are made accessible to the community in an open manner.

Introduction community resource (www.plantcellatlas.org/) that will con-
The goal of the Plant Cell Atlas (PCA; Rhee et al, 2019; Rice  tain descriptions of the states of various kinds of plant cells.
et al, 2020), started in 2019, is to generate in a holistic way It will contain high-resolution spatiotemporal information of
plant cell structure and organization data to help discover = RNA and DNA molecules, proteins, and metabolites within
further cellular compartments, cell features, and cell types.  plant cells. A recent roadmap paper outlines the steps to

The PCA was conceptualized from its inception as a  achieving the Plant Cell Atlas (Plant Cell Atlas Consortium,
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ADVANCES

® High-throughput single-cell assays have led to
efforts to produce comprehensive atlases of cell
types and localization and organization of
molecules, cells, and tissues.

® Databases, visualization, and modeling tools are
being developed for exploring, analyzing, and
visualizing multiscale and multimodal data.

® Data and metadata standards and vocabularies
and consistent analysis pipelines are key for
data sharing, annotation, curation, and
integration.

® Cloud computing and cyberinfrastructure are
enabling us to build community-based data
infrastructure platforms.

2021). In this article, we dive into the data infrastructure
that will be required to support the project, and cover
aspects of data collection, curation, standardization, integra-
tion, and visualization. We also touch on funding such an
infrastructure and explore some models used by other on-
line resources. We expect that data from the Plant Cell
Atlas-associated projects will consist initially of scRNA-seq
matrices (i.e. transcript abundance for most genes in each
cell of an scRNA-seq experiment), subcellular quantitative
mass-spectrometry proteomics data, and fluorescent protein
(i.e. GFP) localization images.

Databases and the PCA

A useful way of describing databases is to think about them
being “infrastructure tier,” “consolidation tier,” or
“investigator tier” databases (IAIC et al., 2010). Each tier has
different levels of engineering, funding species-specificity,
scope, and management. In terms of repositories of gene ex-
pression data, large efforts like the Gene Expression
Omnibus and Sequence Read Archive (GEO/SRA), run by
the US National Center for Biotechnology Information
(NCBI), and the Gene Expression Atlas effort run by the
European Bioinformatics Institute (EBI), respectively, fall into
the infrastructure tier category (Barrett et al, 2013
Papatheodorou et al, 2018; Cantelli et al, 2022; Moreno
et al, 2022). Such efforts archive data from tens of thou-
sands of studies. Most recently, the EBI has introduced a
Single Cell Expression Atlas (SCEA;https://www.ebiac.uk/gxa/
sc/home) section for single-cell expression profiling experi-
ments (Papatheodorou et al, 2020), which contains data
from four plant species. The Broad Institute in
Massachusetts also offers a Single Cell Portal, at https://sin
glecell.broadinstitute.org/. These databases are great for re-
trieving data for follow-up studies or for providing interac-
tive views of expression levels across metadata/QC metrics
or mapped to cell ordinations, but in general do not focus
on plant-specific functionality. The Single Cell Portal does
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not yet contain any plant data, but in theory would be ca-
pable of hosting plant data. It does, however, provide a uni-
form query interface for Human Cell Atlas (HCA) data,
presented as curated “collections” (other collections, such as
mouse anatomy and morphology single-cell datasets, are
available). But the primary location for accessing HCA data
is the HCA’s Data Coordination Platform (see the
“Infrastructure that could support the PCA” section).

Consolidation tier databases, such as The Arabidopsis
Information Portal (TAIR; Lamesch et al, 2012), the Bio-
Analytic Resource for Plant Biology (BAR; Toufighi et al,
2005; Waese and Provart, 2017), Gramene (Monaco et al,
2014; Tello-Ruiz et al, 2018, 2021), or MaizeGDB (Portwood
et al, 2019) provide access to genomic data and to a lesser
or greater extent to transcriptomic data. These databases,
however, have yet to fully embrace single-cell RNA-seq data,
with the exception of the BAR’s root single-cell RNA-seq
eFP Browser view (Waese-Perlman et al, 2021), based on
data generated by Ryu et al. (2019).

Last, there are a small number of investigator tier data-
bases for single-cell RNA-seq data from plants, notably
the Plant Single Cell RNA-Sequencing Database from the
Timmermans Lab (Ma et al, 2020) and the Wang Lab’s
Root Cell Atlas search tool (Zhang et al, 2019). These
provide gene search functionalities. There are structural
problems associated with keeping investigator tier data-
bases online and up-to-date, and many end up going
“dark” in the absence of funding and personnel who can
keep web servers running; 62.3% of 326 databases listed
in an early overview resource called DBcat (Discala et al.,
2000) were considered “dead” when they were examined
18 years later (the first DBcat listing appear in May 1997;
Attwood et al,, 2015).

Arguably, species- or at least plant-specific consolidation
tier resources, such as TAIR, the BAR, MaizeGDB, Gramene,
and SoyKB (Joshi et al, 2014), are popular with biologists (as
opposed to computational biologists) because they provide
data from many different sources in an integrated manner.
For instance, the BAR’s ePlant tool (Waese et al,, 2017) inte-
grates natural variation data from the kilometer scale, ex-
pression data from the centimeter scale, subcellular
localization from the submillimeter scale, protein—protein in-
teraction data at the micrometer scale, and protein tertiary
structure at the nanometer scale in a common interface to
facilitate the navigation of such datasets. Several metadata
views, such as annotation and gene structure, are also avail-
able. This is not to say that such consolidation tier resources
are not useful for computational researchers. For example,
the BAR maintains ThaleMine (Krishnakumar et al, 2015;
Pasha et al, 2020), based on the InterMine framework
(Kalderimis et al,, 2014), which has an application program-
ming interface (API) called BlueGenes (Yehudi et al, 2017)
that has language bindings for Perl, Python, Ruby, and Java,
allowing computational researchers to easily run program-
matic queries of ThaleMine directly from scripts. TAIR and
other consolidation tier databases do a great job of linking
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Figure 1 The Plant Cell Atlas would sit at the nexus of an interconnected
approaches.
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Figure 1) denotes parts of the infrastructure that would require plant-specific ontologies/metadata standards. API, application programming inter-
face; DRS, data repository service; UCSC, University of California Santa Cruz; AWS, Amazon Web Services; EMBL-EBI, European Molecular Biology

Laboratory—European Bioinformatics Institute.

to external resources and keeping their data as up-to-date
as possible. The PCA would operate in a similar manner,
warehousing where necessary and linking out to various
resources where appropriate, see Figure 1. Several of these
databases are part of the AgBioData Consortium (Harper
et al, 2018) and it would make sense for the PCA to be-
come part of this to help set metadata standards for plant
single-cell data.

Infrastructure that could support the PCA

Two existing resources could be leveraged to provide infra-
structure for the PCA: The Human Cell Atlas Data
Coordination Platform or the EBI's SCEA. The goal of the
HCA is to “create comprehensive reference maps of all hu-
man cells—the fundamental units of life—as a basis for
both understanding human health and diagnosing, monitor-
ing, and treating disease” (from the HCA website at
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humancellatlas.org). The Data Coordination Platform (DCP)
section of the HCA white paper (Regev et al,, 2018) enumer-
ates the scale and scope of the HCA project: “the Human
Cell Atlas will contain petabytes of data on billions of cells
and tissue sections across multiple modalities used by hun-
dreds of labs around the world. A project of this scale and
complexity demands an open, modular, and extensible ap-
proach to coordinating, standardizing, and sharing data.” It
took a team of engineers several years to set up the DCP
and associated services, and many individuals now operate
the system (see Figure 2, the current infrastructure). The
main parts are a data ingestion service; a horizontally scal-
able synchronized data store residing on the Terra cloud
platform (developed by the Broad Institute, Microsoft, and
Verily); and a data browser and search index. Other different
sites can act as tertiary portals for analyses, visualizations,
and forms of data access, as denoted by the “Data Portals”
tag in Figure 2. Currently, HCA data are ingested into Terra
for scalable, secure storage, for which access is free for non-
profit organizations. Scientists have the option to use the
cloud for subsequent storage or computational needs but
here there are pass-through costs from the underlying cloud
platform.

Currently, the HCA data portal (datahumancellatlas.org)
permits the exploration of 26M cells from 113 anatomical
organs, and 3.3K donors, encompassing 237 projects. Tools
like the BioTuring Browser or Human Cell Atlas Galaxy in-
stance can access the HCA data portal to permit seamless
querying.

Discussions with members of the HCA DCP team, includ-
ing Kathleen Tibbetts (Director, Data Engineering for the
Data Science Platform, Broad Institute), Benedict Paten
(Director, Computational Genomics Laboratory, University
of California Santa Cruz), and Anthony Burdett (Technical
Team Leader, Archival Infrastructure and Technology, EBI),
provided insights into the possibility of leveraging compo-
nents of the HCA's infrastructure for PCA data. Whereas the
HCA Data Coordination Platform is open source, it is a
complex ecosystem of services, and the PCA might not re-
quire all elements; it would be best to pick and choose
pieces that are needed. For instance, the data ingestion ser-
vice will require modification to be suitable for plant data,
such as ontologies for environmental perturbations and
plant parts (ENVO, Buttigieg et al, 2016, PO, Walls et al,
2019). The Data Browser would also need to be aware of
such ontologies in order for researchers to be able to query
PCA data residing in the Data Science Platform residing on
Terra (https://app.terra.bio/). The ingestion service intakes
the data while also performing basic quality assurance tests,
such as metadata syntax, schemas, and file integrity, consis-
tent with ontologies and controlled vocabularies. It is impor-
tant to note that ingestion of HCA data is configured to a
specific metadata schema and depends on that robust
metadata schema. The PCA might need to develop its own
metadata schema or extend the existing HCA metadata
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schema (see https://datahumancellatlas.org/metadata) with
plant-specific ontologies as described below.

The EBI's SCEA project is simpler in its implementation
than the HCA DCP. Both researchers and data curators at
the SCEA use a tool called Annotare (Athar et al, 2019) to
submit raw data and metadata to ArrayExpress (Parkinson
et al, 2007; Athar et al, 2019), the container into which all
types of expression data are deposited. Nicely, in the case of
plant data, appropriate ontologies are available. Following
submission, a data analysis pipeline is used to summarize ex-
pression values based on the latest EMSEMBL genome
builds, and data are then integrated and may be visualized
within the SCEA. One limitation of SCEA is that program-
matic access is not very well supported, with the exception
of being able to access SCEA within the Galaxy platform
(Tekman et al., 2020). The SCEA group has worked with the
HCA to develop minimum standards for reporting single-
cell RNA-seq experiments (minSCe; Fiillgrabe et al, 2020),
and these standards in fact permit the SCEA group to use
the Annotare tool to help with ingestion of HCA and other
scRNA-seq data.

Ontologies and metadata

To build a practical data resource such as a biological data-
base, data must be identified, collected, organized, and inte-
grated into the database. It is useful to consider the
approaches and challenges associated with these tasks in the
context of the different types of databases described above.
For infrastructure tier databases (e.g. GEO/SRA), investiga-
tors are typically responsible for depositing their own data
and distributing the effort of curating research data into the
community. To collect and integrate data from many inde-
pendent investigators, infrastructure databases typically re-
quire standardized data formats and a minimum set of
experimental and sample metadata descriptors (Barrett
et al, 2013). Consolidation tier databases on the other hand
are typically not data repositories and must identify datasets
that should be included in the resource and may need to
accept the data and metadata in a wider variety of formats,
which places the effort of data curation on database cura-
tors (Harper et al, 2018).

Data curation and integration were major challenges iden-
tified for the Plant Cell Atlas during the community conven-
ing workshop (Rice et al, 2020). Development and
community utilization of standardized data formats (e.g
FASTQ) and experimental metadata standards, e.g
Minimum Information about a high-throughput Nucleotide
SEQuencing Experiment (MINSEQE; Brazma et al, 2012) and
minSCe (Fillgrabe et al, 2020), are tools that can mitigate
these challenges by distributing the effort of curating data-
sets onto data creators (Cock et al., 2010; Yilmaz et al, 2017;
Sansone et al., 2019). Data standardization also promotes in-
teroperability between resources that utilize the data, which
when successful can lead to an ecosystem of tools that are
modular and work in coordination, e.g. the wide range of
tools that utilize data in FASTQ and SAM formats (Li et al,
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2009; Cock et al, 2010). However, data and metadata stan-
dardization alone does not promote data use and reuse, but
are part of the FAIR (findable, accessible, interoperable, and
reusable) guiding principles for data sharing (Wilkinson
et al, 2016). The development and adoption of common
community standards for data accessibility, format, and de-
scription will be key to the success of the Plant Cell Atlas
data infrastructure.

For databases that provide services beyond data ware-
housing, datasets from disparate sources and of different
types need to be integrated to create a knowledgebase that
can be explored, queried, analyzed, and visualized. Two
aspects are important here: standardized analysis pipelines
and the use of ontologies. In terms of standardized analysis
pipelines, recently developed algorithms like ComBat-seq
(Zhang et al, 2020) can be used to permit comparisons be-
tween datasets generated in different laboratories.
Ontologies are structured and controlled vocabularies that
are used to represent knowledge by defining standardized
terms and the relationships between them (Smith et al,
2007). Ontologies are used to annotate and label samples
and associated datasets to create a layer of interoperability
between datasets annotated with the same vocabularies,
and provide a computational means of traversing the rela-
tionships between terms (Harper et al, 2018). For example,
the Gene Ontology, one of the most widely used ontologies
in biological databases, defines the set of possible gene func-
tions and the relationships between them, which enables
the computational analysis of gene function and gene fami-
lies, both within and between species (Ashburner et al,
2000; Harper et al, 2018; The Gene Ontology Consortium,
2021). Similarly, the Plant Ontology defines terms related to
plant anatomy and development and the relationship be-
tween structures and stages so that datasets annotated with
these terms can be analyzed with a species-neutral approach
(Walls et al,, 2019). To meet the requirements of FAIR data
standards, plant research communities will need three key
components.

First, metadata standards that list the fields necessary for
data interpretation from a specified experimental domain.
Some examples of metadata standards include MINSEQE as
well as MIAME (Minimum Information About a Microarray
Experiment; Brazma et al, 2001) and a group of phenotyp-
ing databases such as BreedBase (Morales et al, 2022),
GnplS (Steinbach et al, 2013), PSB Interface for Plant
Phenotype Analysis (PIPPA; https://pippa.psb.ugent.be/), and
Plant Hybrid Information System (PHIS; Neveu et al,, 2019).
To enable interoperability between phenotypic domains,
MIAPPE (Minimum Information About a Plant Phenotyping
Experiment; Krajewski et al,, 2015) was developed.

Second, ontologies or controlled vocabularies define meta-
data values, ensuring that they are objectively consistent
and defined across datasets. For example, the Planteome
project (Cooper et al, 2018) created three key ontologies:
the Plant Trait Ontology (Jaiswal et al, 2005; Arnaud et al,
2022), which models species-independent plant traits under
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a broader scope; the Plant Ontology (Jaiswal et al, 2005;
Cooper et al, 2013; Walls et al, 2019), which covers plant
anatomical structures and development stages and allows
interplant comparisons; and the Plant Experimental
Conditions Ontology (Cooper et al, 2018), representing
plant treatments. Other examples of ontologies include the
Crop Ontology (Shrestha et al, 2012), an assorted species-
specific ontology that depicts plant properties and techni-
ques for analyzing them; the Agronomy Ontology (Aubert
et al, 2017), which covers agronomic practices, techniques,
and variables; the Environment Ontology (Buttigieg et al,
2013), which describes ecological environments; and the
Statistics Ontology (Statistics Ontology Project, 2020), which
describes statistical approaches. In the case of plant data in
the EBI's SCEA, the Experiment Factor Ontology EFO
(Malone et al,, 2010) is able to encompass terms from other
ontologies to describe samples in experiments (e.g. http://
purl.obolibrary.org/obo/EO_0007404 uses the Environment
Ontology term EO:0007404 to describe a “drought
environment”).

Third, machine-readable metadata exchange formats are
important for data exchange. The standardized format for
MIAME is often in the form of MAGE-TAB (MicroArray
Gene Expression tabular; Rayner et al,, 2006), and plant phe-
notyping and other wide range of fields commonly uses
Investigation/Study/Assay tab-delimited (ISA-TAB) format
(Rocca-Serra et al., 2010; Sansone et al., 2012).

Additionally, vocabularies can be linked or integrated to
generate additional insights. For example, in work by Braun
and Lawrence-Dill (2020), natural language processing was
used to map text descriptions of plant phenotypes to for-
malized phenotype descriptions in the form of entity-quality
statements, e.g. “entity: leaf” and “quality: increased length,”
where these statements were composed of ontology terms
from the Plant Ontology, Gene Ontology, Phenotype and
Trait Ontology, and Chemical Entities of Biological Interest
ontology (Ashburner et al, 2000; Gkoutos et al, 2004
Cooper et al, 2013; Hastings et al, 2013). Using this ap-
proach, phenotype similarity networks were built using au-
tomated phenotype descriptions and could be successfully
used to identify genes within and between species that func-
tion within a conserved pathway, even if they do not share
sequence similarity (Braun and Lawrence-Dill, 2020). Similar
approaches could enable comparisons between cell types
within the Plant Cell Atlas or be used to make broader com-
parisons with other cell atlases (e.g. HCA). Databases like
FungiDB in EuPathDB (Amos et al., 2022) provide compara-
tive search options across species, which will be an impor-
tant functionality of the PCA infrastructure.

Genome assembly, annotation, and curation
concerns

A big issue for database curators is dealing with updated ge-
nome assemblies and constantly evolving annotations. This
is a multifaceted problem with many levels. First, as genome
sequencing technologies improve and assembly algorithms
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get better, genome assemblies will change. Long-read se-
quencing and optical mapping can improve assemblies.
Todd Michael and colleagues (Michael et al, 2018) used a
MinION sequencer to appreciably improve the Arabidopsis
Col-0 TAIR10 assembly, which still contained 29 larger mis-
assemblies, had 117 gaps with unknown bases, and was
missing about 25 Mb of repeat sequence, all in spite of the
publication of the Arabidopsis genome more than 20 years
ago (Arabidopsis Genome Initiative, 2000). The Michael
et al. (2018) assembly covered 100% of the nonrepetitive ge-
nome space, with fewer gaps present than in the current
TAIR10 assembly.

Once an assembly is updated, several downstream events
need to happen. As a first step, gene model annotations
need to be updated. Updates to gene model annotations
can also happen independently of a new assembly. For in-
stance, the Araport11 reannotation (Cheng et al, 2017) of
the Arabidopsis Col-0 reference genome used the same un-
derlying TAIR10 genome assembly as was used for the
TAIR10 annotation, but gene models were revised based on
transcripts generated from 113 published RNA-seq datasets.
Any subsequent downstream applications, such as read
mapping of RNA-seq data for expression quantification,
should ideally be redone if an updated set of gene models is
generated. In addition, it is likely that single-cell RNA-seq
data could be used to inform gene structure predictions
(Arzalluz-Luque and Conesa, 2018).

Depending on the plant species, different pipelines for
updating genome annotations exist. In Arabidopsis, TAIR is
the primary curator of the Arabidopsis Col-0 “reference” ge-
nome. And while long-read genome assemblies (e.g. Michael
et al, 2018, but also from others) for other Arabidopsis thali-
ana ecotypes have been loaded into the Genome Context
Viewer (Cleary and Farmer, 2017), released as part of
Araport’s resuscitation (Pasha et al., 2020), the creation of a
pan-genome for the Arabidopsis species is still awaiting
funding. Community-based annotations as enabled by tools
like the Generic Online Annotation Tool (GOAT, https://
goat.phoenixbioinformatics.org/) can facilitate this Herculean
task by distributing the work among many researchers. For
maize, an alternate strategy was used for the latest version
of the genome. Here, the B73 reference variety was se-
quenced and assembled along with a set of 25 maize inbred
lines known as the NAM founder lines by the National
Science  Foundation  (NSF)-funded NAM Sequencing
Consortium using long reads and a mate-pair strategy to
create the RefGen_v5 assembly, released in January 2020
(Hufford et al,, 2021). This assembly included a pangenome
analysis showing that of the ~100,000 genes found in any of
these lines, roughly only a third are present in all genotypes.

In contrast to this consortium-based approach, the prede-
cessor B73 RefGen_V4 assembly and annotation effort was
led by a smaller group of researchers in the Ware
Laboratory at USDA ARS/Cold Spring Harbor Laboratory, fo-
cused on utilizing emerging long single molecule technolo-
gies (Jiao et al, 2017). Thus, even for a single species,
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annotation strategies can change over time. Enticingly, how-
ever, RNA-seq datasets that are part of EBI's expression
atlases are reprocessed when there is a new genome release
for any species that is part of ENSEMBL Plants.

The last aspect of annotation is often called “functional
annotation,” and this involves ascribing a function to a given
gene/gene product. Typically, this is done based on arduous
literature curation, whereby a gene is identified in a mutant
screen and then characterized using molecular methods,
that story is published and then a curation group like TAIR
captures the details, or by “lifting over” the functional anno-
tations associated with homologs of a given gene. Updates
to Gene Ontology terms occur quite frequently, and thus,
enrichment tests for differentially expressed genes should be
considered only a snapshot at a given moment in
“annotation time.”

In the case of the Plant Cell Atlas, the possibility of
updated genome assemblies and new genome annotations
would need to be built into the data infrastructure. At the
very least, which genome version and GFF file (general fea-
ture format file—used to describe genome annotations,
such as where exons and introns start and stop) version was
used for a particular analysis will need to be captured in
metadata associated with a cell profiling experiment. How
many curators/data wranglers will be necessary to ensure
experiments are represented faithfully? This is a separate
question from data infrastructure needs. Data wranglers play
an important role in “ingesting” HCA data into the HCA
Data Coordination Platform and into EBI's SCEA (see the
“Infrastructure that could support the PCA” section).

Data infrastructure, sharing, and
interconnectivity

As discussed above, database resources often need to con-
sider at least two types of users. One set of users will benefit
from accessing resources through a user-friendly graphical
user interface that is designed to guide the users to the sub-
set of data they are interested in, eg the TAIR BAR
Gramene, and MaizeGDB web applications (Lamesch et al,,
2012; Waese and Provart, 2017; Portwood et al,, 2019; Tello-
Ruiz et al, 2021). Another set of users will benefit from ac-
cess to the underlying datasets and knowledgebase to do
computational analyses at larger whole-genome, pangenome,
cell atlas, and other dataset/multidataset levels. Access to
the underlying data infrastructure can also support data
sharing between databases. However, without standardized,
machine-readable methods for accessing a data infrastruc-
ture, data use and sharing are impeded by the need to cre-
ate resource-specific methods for each infrastructure
(Harper et al, 2018). An APl is a structured specification
that defines how software applications can request informa-
tion from a data infrastructure. APIs can be thought of as
analogous to the structured vocabularies discussed above
because APIs define the kinds of data that can be accessed,
the relationships between data, and the data formats and
methods that are required to both access and interpret data
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(Harper et al, 2018). Whereas APIs can be specific to a data
infrastructure (for instance, the EBI Search APl accesses only
EBI databases), APIs such as the Breeding APl have been de-
veloped to support interoperability between databases by
defining an infrastructure-independent specification (Selby
et al,, 2019). The adoption of APIs by database providers can
help build an ecosystem of interconnected data, create mu-
tual benefits between projects, and support FAIR data-
sharing principles.

The Plant Cell Atlas “vision” white paper specifies that
data infrastructure to support the PCA should incorporate
and collaborate with existing tool and data platforms to le-
verage these resources and avoid duplication of effort (Plant
Cell Atlas Consortium, 2021). Whereas data sharing and syn-
dication of resources are powerful tools for building an eco-
system of platforms, the Plant Cell Atlas will still
undoubtedly require its own storage and computing infra-
structure. For long-term sustainability, the Plant Cell Atlas
platform should be built with modularity, flexibility, and
service-agnostic principles in  mind. Virtualization and
container-based systems such as Docker (https://docker.
com) and Singularity (https://sylabs.io) allow software and
services to be packaged into portable environments that
can be moved between infrastructures (da Veiga Leprevost
et al, 2017). Management of software and service containers
can also be done using tools, such as Kubernetes, that are
commonly available on local and cloud-based infrastructure
(Novella et al, 2019). Additionally, APIs such as Tapis can be
used to create a programmatic interface to multiple infra-
structure resources so that management of a platform can
be independent of the underlying resources it uses
(Cleveland et al, 2020). Together, these tools can be used to
build a platform that can quickly adapt to new technologies,
services, and infrastructure platforms.

By developing the Plant Cell Atlas platform software and
service stack independently from any particular infrastruc-
ture service provider, the Plant Cell Atlas could utilize multi-
ple types of infrastructure platforms and adapt to changes
in the technology landscape over time. Like the HCA DCP,
the Plant Cell Atlas could similarly build a platform across
multiple commercial cloud service providers, but it is also
worth considering utilizing publicly-funded and community-
based infrastructure resources such as CyVerse, KBase,
XSEDE, Jetstream, Open Science Grid, ELIXIR, Galaxy, and
others (Altunay et al, 2011; Towns et al, 2014; Fischer et al,,
2017; Arkin et al, 2018; Swetnam et al,, 2018; Drysdale et al,,
2020; Tekman et al, 2020). For example, both the Legume
Federation and SoyKB platforms utilize CyVerse services to
publicly store data or for user authentication, respectively
(Joshi et al, 2014; Dash et al, 2016, Swetnam et al, 2018).
Whereas the EBI's SCEA does not offer an API, the SCEA is
available as a Galaxy instance, facilitating high-throughput
analyses (Papatheodorou et al,, 2020). Science Gateways are
also successful examples of community-based data and
analysis portals that utilize the XSEDE national (US) cyberin-
frastructure services (Wilkins-Diehr, 2007; Towns et al,
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2014). Building a platform that utilizes the best features of a
variety of resources will increase the resiliency of the Plant
Cell Atlas, as technologies and funding resources change
over time.

Visualizations and simulations

The OpenWorm project (openworm.org) might be a useful
effort as inspiration for visualizing Plant Cell Atlas data, and
for developing simulations based on such data. OpenWorm
(Szigeti et al, 2014) was started in 2011 and aims to create
models and frameworks for visualizing and simulating the
biology of the roundworm Caenorhabditis elegans (Sarma
et al, 2018). An early effort of OpenWorm, WormSim, cre-
ated an environment for simulations, such as the results of
virtual muscular activity driven by virtual neuronal poten-
tials. The neuronal circuits are represented in models, e.g.
€302 (Gleeson et al, 2018), and simulations may be run in
the Sibernetic framework (Palyanov et al., 2018). Such mod-
els faithfully translate to a wriggling model worm on a com-
puter screen. Researchers are also using OpenWorm
resources to e.g. “paint” their own data onto OpenWorm'’s
anatomical models of C. elegans to aid in visualization.

Another example of visualization is provided by ePlant
(Waese et al, 2017), as mentioned earlier, which provides a
unified platform for traversing a conceptual hierarchy of bio-
logical data from big (kilometer scale natural variation data)
to small (nanometer scale protein tertiary structure data).

Visualization of single-cell data is often done using
dimensionality-reducing t-distributed stochastic neighbor em-
bedding (t-SNE) or uniform manifold approximation and pro-
jection (UMAP) plots (Moon et al, 2019), whereas URD plots
(named after one of a trio of Norse goddesses who decide
the fate of people) can be used reconstruct inferred cell line-
age maps based on scRNA-seq data (Farrell et al, 2018).
Perhaps a combination of such visualization tools, including
newer ones like Azimuth (Hao et al, 2020), will provide access
to reference Plant Cell Atlas datasets. Having such data inte-
grated into a larger framework, as depicted in Figure 3, would
be welcome. It would be a useful exercise to imagine use-case
scenarios for being able to query Plant Cell Atlas data (see
the PCA “Vision” paper; Plant Cell Atlas Consortium, 2021).
One such use case is outlined in Figure 3.

Funding

A big question surrounds funding for a Plant Cell Atlas data
infrastructure. At the infrastructure tier level, funding is sta-
bly provided by the government. In the case of the EBI,
funding comes from its parent, the European Molecular
Biology Laboratory (EMBL), whose funding in turn comes
from the governments of EMBL’s member states. In the case
of NCBI, its funding is provided by Congress via bills intro-
duced starting in 1987 by Senator Claude Pepper (Smith,
2013). Other databases have not been so fortunate. The
saga of TAIR is illustrative but provides a possible model in
its resolution. From TAIR’s creation in 1999 until 2013, it
was funded for the most part by the NSF in the USA,
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Figure 3 Traversing Plant Cell Atlas and other data in an integrated manner, across species. A hypothetical browser would access different data
sources, including PCA data, to provide a unified browsing experience for plant biologists who might wish to explore, for example, how equivalent

cells in different species respond to the same environmental stimulus.

through its Division of Biological Infrastructure. In 2009,
TAIR was informed by the NSF that its grant would be re-
duced by 25% each year, ending in 2013. Another initiative,
Araport, was created to ostensibly take on the task and cost
of collecting and maintaining Arabidopsis datasets and tools,
distributed across groups and countries (IAIC et al, 2010).
Whereas the Araport framework was also funded by the
NSF and by the Biotechnology and Biological Sciences
Research Council (BBSRC) in the UK, ultimately its funding
too was eliminated, necessitating a rescue (Pasha et al,
2020). Ironically, it was TAIR that helped to rescue Araport,
and it was able to do so by implementing a subscription-
based model starting in 2014 (Reiser et al, 2016). The man-
ual curation aspect of TAIR was clearly valued enough by
the community to pay for it, and the Araport project was
never intended to do manual functional curation. Thus, the
demand for high-quality annotations could be met by a
subscription-based TAIR. Another interesting funding model
is that used by the OpenWorm project. Early parts of that
project were funded by a Kickstarter campaign that wel-
comed small contributions from the community to pay pro-
grammers. Further work is supported by volunteers who

receive virtual “badges” for their efforts, under an open-
source framework. In the case of the Plant Cell Atlas, the
data infrastructure needs are substantial, and it will take
considerable resources to build them and, importantly, to
maintain them. One option might be to consider funding
for a Plant Cell Atlas Data Synthesis Center from the
Molecular and Cellular Biosciences division of the NSF. The
National Center for Ecological Analysis and Synthesis
(NCEAS) was the first synthesis center to be established in
1995. Since then, four more synthesis centers have been
funded (Baron et al, 2017). “Synthesis centers do not sup-
port the collection of new data; instead, they add value to
the data already collected across a diverse and extensive
suite of research projects spanning a range of disciplinary
and subdisciplinary domains” (Rodrigo et al, 2013), and thus
the curation, databasing, and tool development aspects of a
Plant Cell Atlas digital ecosystem would meet the criteria
for a synthesis center.

Another opportunity to explore the possibility to use
existing HCA DCP infrastructure components to create a
prototype PCA platform was recently funded by the United
States Department of Agriculture’s Agricultural Genome to
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OUTSTANDING QUESTIONS

® To what extent can existing infrastructures and
platforms be used to build a Plant Cell Atlas
data infrastructure?

® Will community-based curation help accelerate
the development of biological databases and
permit the use of artificial intelligence
approaches to advance plant genomics and
biology?

® To what extent will artificial intelligence
generate further knowledge from the Plant Cell
Atlas and other biological data?

® What kinds of databases, tools, and resources
will be needed to integrate data at substantially
different scales or resolutions? And how can
temporal, environmental, and other metadata
be integrated?

Phenome Initiative (AG2PI), to Chris Tuggle, Christine Elsik,
Nicholas Provart, and Peter Harrison, along with collabora-
tors including co-authors Tony Burdett, Tim Tickle, and Ben
Cole. Efforts in this “seed funding” will be to test ingestion
of representative plant and livestock scRNA-seq data with
existing or newly developed metadata standards into com-
ponents of the HCA DCP, and develop tools for a prototype
data browser by Christine Elsik and teams from the EBI and
UCSC. Finally, it should be pointed out that the EBI's SCEA
is supported by the Wellcome Trust to encompass data
from all species.

Data infrastructure as a data science
platform

The field of data science formed from the combination of
statistics and computer science in response to the massive
growth of data and the need to turn “big data” into a re-
source for producing knowledge (Blei and Smyth, 2017).
Data science approaches, including artificial intelligence
approaches, are increasingly used in plant genomics, phe-
nomics, and other areas, and artificial intelligence has
emerged as a promising technology for accelerating plant
breeding (Harfouche et al, 2019; Wang et al, 2020). It is
tempting to envision that large consolidation tier databases
that bring together disparate and multimodal datasets can
be used as a platform for data science applications that
identify patterns and produce knowledge that might other-
wise remain unseen. However, it is important to recognize
that there is “no free lunch” (Wolpert and Macready, 1997).
Data management and integration, particularly for large
multidimensional and multimodal datasets from multiple
sources and produced with different approaches, are two
major challenges for unlocking the potential of artificial in-
telligence in plant science (Williamson et al, 2021). Similarly,
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for single-cell datasets, integration of data between samples,
experiments, and heterogeneous data modalities is challeng-
ing due to noise, sparsity, the lack of benchmarks, and other
challenges (Lahnemann et al, 2020; Argelaguet et al, 2021).
Methods such as ComBat-seq (Zhang et al, 2020), as men-
tioned earlier, might help, but these advances are likely in-
sufficient to permit full PCA data integration. However,
reason for optimism exists. For example, the ATTED-II plant
coexpression network database has demonstrated a success-
ful approach to integration of diverse gene expression data-
sets to enable multispecies comparisons (Obayashi et al,
2018). Artificial intelligence approaches have also been used
to successfully leverage large, multispecies datasets to pre-
dict promoter activity and design highly active synthetic
promoters (Jores et al, 2021). These successes highlight the
feasibility of achieving the Plant Cell Atlas vision and en-
courage bold thinking about the fundamental questions in
plant biology that such a resource can address. The develop-
ment of community-based data management and data shar-
ing standards, and the development of data infrastructure
to support these activities and form the basis of a reference
framework, are critical actions to address these challenges
(Ldhnemann et al., 2020; Williamson et al., 2021).

Concluding remarks

In assembling this review, it has become apparent that the
Plant Cell Atlas should not reinvent the wheel. Although a
new portal will need to be created, it would be highly bene-
ficial to use existing architectures and frameworks, such as
the Human Cell Atlas Data Coordination Platform or the
EBI's SCEA system. The benefits of enabling such a platform
will help address the Outstanding Questions we posed
above. It is exciting to imagine an ecosystem of tools and
analyses tapping into a Plant Cell Atlas digital infrastructure
helping researchers advance plant biology in the coming
decades, with stable funding provided through a synthesis
center grant.

Acknowledgments

We apologize to those colleagues whose work was not cited
due to space constraints. We are grateful to colleagues at
the Broad Institute, the EBI, and UCSC for helpful discussions
and insights into the HCA DCP. We have mentioned these
individuals in the manuscript.

Funding

NJ.P. was supported by an National Sciences and
Engineering Research Council of Canada (NSERC) Discovery
Grant. CK.T,, PH, CG.E, NJ.P, T.B, T.T., and B.C. received a
United States Department of Agriculture (USDA)
Agricultural Genome to Phenome Initiative (AG2PI) grant to
explore possible single-cell repositories for plant and animal
data.

Conflict of interest statement. None declared.

€202 1sNBny ¢ uo 1enb Aq £6561.29/5€/1/161/aI0Me/sAYd|d/Ww00 dno dlepes.)/:Sd)Y WOl) PapEojUMOQ



44 I PLANT PHYSIOLOGY 2023: 191; 35-46

References

Altunay M, Avery P, Blackburn K, Bockelman B, Ernst M, Fraser
D, Quick R, Gardner R, Goasguen S, Levshina T, et al. (2011) A
science driven production cyberinfrastructure—the open science
grid. ] Grid Comput 9: 201-218

Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY,
Bazant W, Belnap R, Blevins AS, Bohme U, Brestelli ), et al.
(2022) VEuPathDB: the eukaryotic pathogen, vector and host bio-
informatics resource center. Nucleic Acids Res 50: D898-D911

Arabidopsis Genome Initiative (2000) Analysis of the genome se-
quence of the flowering plant Arabidopsis thaliana. Nature 408:
796-815

Argelaguet R, Cuomo ASE, Stegle O, Marioni JC (2021)
Computational principles and challenges in single-cell data integra-
tion. Nat Biotechnol 39: 1202-1215

Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL,
Maslov S, Dehal P, Ware D, Perez F, Canon S, et al. (2018)
KBase: The United States department of energy systems biology
knowledgebase. Nat Biotechnol 36: 566—-569

Arnaud E, Cooper L, Shrestha R, Menda N, Nelson RT, Matteis L,
Skofic M, Bastow R, Jaiswal P, Mueller L, et al. (2022) Towards a
reference plant trait ontology for modeling knowledge of plant
traits and phenotypes. 4th International Conference on Knowledge
Engineering and Ontology Development 2012: 220-225

Arzalluz-Luque A, Conesa A (2018) Single-cell RNAseq for the study
of isoforms—how is that possible? Genome Biol 19: 110

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. (2000) Gene on-
tology: tool for the unification of biology. Nat Genet 25: 25-29

Athar A, Fiillgrabe A, George N, Igbal H, Huerta L, Ali A, Snow C,
Fonseca NA, Petryszak R, Papatheodorou 1, et al. (2019)
ArrayExpress update - from bulk to single-cell expression data.
Nucleic Acids Res 47: D711-D715

Attwood TK, Agit B, Ellis LBM (2015) Longevity of biological data-
bases. EMBnet ] 21: 803

Aubert C, Buttigieg PL, Laporte M-A, Devare M, Arnaud E (2017)
CGIAR agronomy ontology. http://purl.obolibrary.org/obo/agro.owl

Baron ), Specht A, Garnier E, Bishop P, Campbell CA, Davis FW,
Fady B, Field D, Gross L), Guru SM, et al. (2017) Synthesis cen-
ters as critical research infrastructure. BioScience 67: 113

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF,
Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM,
Holko M, et al. (2013) NCBI GEO: archive for functional genomics
data sets—update. Nucleic Acids Res 41: D991-D995

Blei DM, Smyth P (2017) Science and data science. Proc Natl Acad
Sci USA 114: 8689-8692

Braun IR, Lawrence-Dill C) (2020) Automated methods enable di-
rect computation on phenotypic descriptions for novel candidate
gene prediction. Front Plant Sci 10: 1629

Brazma A, Hingamp P, Quackenbush ), Sherlock G, Spellman P,
Stoeckert C, Aach ), Ansorge W, Ball CA, Causton HC, et al.
(2001) Minimum information about a microarray experiment
(MIAME)-toward standards for microarray data. Nat Genet 29:
365-371

Brazma A, Ball C, Bumgarner R, Furlanello C, Miller M,
Quackenbush ), Reich M, Rustici G, Stoeckert C, Trutane SC,
et al (2012) MINSEQE: Minimum Information about a
high-throughput Nucleotide SeQuencing Experiment - a proposal
for standards in functional genomic data reporting. https://zenodo.
org/record/5706412

Buttigieg PL, Morrison N, Smith B, Mungall CJ, Lewis SE, the
ENVO Consortium (2013) The environment ontology: contextualis-
ing biological and biomedical entities. ] Biomed Semant 4: 43

Buttigieg PL, Pafilis E, Lewis SE, Schildhauer MP, Walls RL,
Mungall CJ (2016) The environment ontology in 2016: bridging
domains with increased scope, semantic density, and interopera-
tion. ) Biomed Semant 7: 57

Fahlgren et al.

Cantelli G, Bateman A, Brooksbank C, Petrov Al, Malik-Sheriff
RS, Ide-Smith M, Hermjakob H, Flicek P, Apweiler R, Birney E,
et al. (2022) The European Bioinformatics Institute (EMBL-EBI) in
2021. Nucleic Acids Res 50: D11-D19

Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel
S, Town CD (2017) Araport11: a complete reannotation of the
Arabidopsis thaliana reference genome. Plant ] 89: 789-804

Cleary A, Farmer A (2017) Genome Context Viewer: visual explora-
tion of multiple annotated genomes using microsynteny.
Bioinformatics 34: 1562-1564

Cleveland SB, Jamthe A, Padhy S, Stubbs ), Packard M, Looney },
Terry S, Cardone R, Dahan M, Jacobs GA (2020) Tapis API devel-
opment with python: best practices in scientific REST APl imple-
mentation: experience implementing a distributed Stream AP In
Practice and Experience in Advanced Research Computing, PEARC
"20. Association for Computing Machinery, New York, NY, USA, pp
181-187

Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger
FASTQ file format for sequences with quality scores, and the
Solexa/lllumina FASTQ variants. Nucleic Acids Res 38: 1767-1771

Cooper L, Walls RL, Elser J, Gandolfo MA, Stevenson DW, Smith
B, Preece ], Athreya B, Mungall CJ, Rensing S, et al. (2013) The
plant ontology as a tool for comparative plant anatomy and geno-
mic analyses. Plant Cell Physiol 54: e1

Cooper L, Meier A, Laporte MA, Elser JL, Mungall C, Sinn BT,
Cavaliere D, Carbon S, Dunn NA, Smith B, et al. (2018) The
Planteome database: an integrated resource for reference ontolo-
gies, plant genomics and phenomics. Nucleic Acids Res 46:
D1168-D1180

Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer
SR, Karingula V, Rice AG, Singh J, Umale PE, et al. (2016)
Legume information system (Legumelnfo.org): a key component of
a set of federated data resources for the legume family. Nucleic
Acids Res 44: D1181-D1188

Discala C, Benigni X, Barillot E, Vaysseix G (2000) DBcat: a catalog
of 500 biological databases. Nucleic Acids Res 28: 8-9

Drysdale R, Cook CE, Petryszak R, Baillie-Gerritsen V, Barlow M,
Gasteiger E, Gruhl F, Haas ), Lanfear J, Lopez R, et al. (2020)
The ELIXIR Core Data Resources: fundamental infrastructure for
the life sciences. Bioinformatics 36: 2636-2642

Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF
(2018) Single-cell reconstruction of developmental trajectories dur-
ing zebrafish embryogenesis. Science 360: eaar3131

Fischer), Hancock DY, Lowe JM, Turner G, Snapp-Childs W,
Stewart CA (2017) Jetstream: a cloud system enabling learning in
higher education communities. In Proceedings of the 2017 ACM
SIGUCCS Annual Conference, SIGUCCS'17. Association for
Computing Machinery, New York, NY, USA, pp 67-72

Fiillgrabe A, George N, Green M, Nejad P, Aronow B, Fexova SK,
Fischer C, Freeberg MA, Huerta L, Morrison N, et al. (2020)
Guidelines for reporting single-cell RNA-seq experiments. Nat
Biotechnol 38: 1384-1386

Gkoutos GV, Green EC, Mallon A-M, Hancock JM, Davidson D
(2004) Using ontologies to describe mouse phenotypes. Genome
Biol 6: R8

Gleeson P, Lung D, Grosu R, Hasani R, Larson SD (2018) c302: a
multiscale framework for modelling the nervous system of
Caenorhabditis elegans. Philos Trans R Soc B Biol Sci 373:
20170379

Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S,
Butler A, Lee M), Wilk A), Darby C, Zager M, et al. (2020)
Integrated analysis of multimodal single-cell data. Cell 184:
3573-3587

Harfouche AL, Jacobson DA, Kainer D, Romero JC, Harfouche AH,
Mugnozza GS, Moshelion M, Tuskan GA, Keurentjes JJB,
Altman A (2019) Accelerating climate resilient plant breeding by
applying next-generation artificial intelligence. Trends Biotechnol
37:1217-1235

€202 1sNBny ¢ uo 1enb Aq £6561.29/5€/1/161/aI0Me/sAYd|d/Ww00 dno dlepes.)/:Sd)Y WOl) PapEojUMOQ


http://purl.obolibrary.org/obo/agro.owl
https://zenodo.org/record/5706412
https://zenodo.org/record/5706412

A data infrastructure for the plant cell Atlas

Harper L, Campbell ), Cannon E, Jung S, Poelchau M, Walls R,
Andorf C, Arnaud E, Berardini TZ, Birkett C, et al. (2018)
AgBioData consortium recommendations for sustainable genomics
and genetics databases for agriculture. Database 2018: bay088

Hastings ), de Matos P, Dekker A, Ennis M, Harsha B, Kale N,
Muthukrishnan V, Owen G, Turner S, Williams M, et al. (2013)
The ChEBI reference database and ontology for biologically rele-
vant chemistry: enhancements for 2013. Nucleic Acids Res 41:
D456-D463

Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S,
Liu J, Ricci WA, Guo T, Olson A, Qiu Y, et al. (2021) De novo as-
sembly, annotation, and comparative analysis of 26 diverse maize
genomes. Science 373: 655-662

Internation Arabidopsis Informatics Consortium (2010) An inter-
national bioinformatics infrastructure to underpin the Arabidopsis
community. Plant Cell 22: 2530-2536

Jaiswal P, Avraham S, llic K, Kellogg EA, McCouch S, Pujar A,
Reiser L, Rhee SY, Sachs MM, Schaeffer M, et al. (2005) Plant
Ontology (PO): a controlled vocabulary of plant structures and
growth stages. Comp Funct Genomics 6: 388-397

Jiao Y, Peluso P, Shi ), Liang T, Stitzer MC, Wang B, Campbell
MS, Stein JC, Wei X, Chin CS, et al. (2017) Improved maize refer-
ence genome with single-molecule technologies. Nature 546:
524-527

Jores T, Tonnies ], Wrightsman T, Buckler ES, Cuperus JT, Fields
S, Queitsch C (2021) Synthetic promoter designs enabled by a
comprehensive analysis of plant core promoters. Nat Plants 7:
842-855

Joshi T, Fitzpatrick MR, Chen S, Liu Y, Zhang H, Endacott RZ,
Gaudiello EC, Stacey G, Nguyen HT, Xu D (2014) Soybean knowl-
edge base (SoyKB): a web resource for integration of soybean
translational genomics and molecular breeding. Nucleic Acids Res.
42: D1245-D1252

Kalderimis A, Lyne R, Butano D, Contrino S, Lyne M, Heimbach },
Hu F, Smith R, Stépan R, Sullivan J, et al. (2014) InterMine: ex-
tensive web services for modern biology. Nucleic Acids Res 42:
W468-W472

Krajewski P, Chen D, Cwiek H, van Dijk AD, Fiorani F, Kersey P,
Klukas C, Lange M, Markiewicz A, Nap JP, et al. (2015) Towards
recommendations for metadata and data handling in plant pheno-
typing. ] Exp Bot 66: 5417-5427

Krishnakumar V, Hanlon MR, Contrino S, Ferlanti ES,
Karamycheva S, Kim M, Rosen BD, Cheng CY, Moreira W,
Mock SA, et al. (2015) Araport: the Arabidopsis information por-
tal. Nucleic Acids Res 43: D1003-D1009

Lahnemann D, Koster ), Szczurek E, McCarthy D), Hicks SC,
Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N,
Mahfouz A, et al. (2020) Eleven grand challenges in single-cell
data science. Genome Biol 21: 31

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan
R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, et al
(2012) The Arabidopsis Information Resource (TAIR): improved
gene annotation and new tools. Nucleic Acids Res 40:
D1202-D1210

Li H, Handsaker B, Wysoker A, Fennell T, Ruan ), Homer N,
Marth G, Abecasis G, Durbin R, 1000 Genome Project Data
Processing Subgroup (2009) The Sequence Alignment/Map format
and SAMtools. Bioinformatics 25: 2078-2079

Ma X, Denyer T, Timmermans MCP (2020) PscB: a browser to ex-
plore plant single cell RNA-sequencing data sets. Plant Physiol 183:
464-467

Malone ), Holloway E, Adamusiak T, Kapushesky M, Zheng ),
Kolesnikov N, Zhukova A, Brazma A, Parkinson H. (2010)
Modeling sample variables with an Experimental Factor Ontology.
Bioinforma Oxf Engl 26: 1112-1118

Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C,
Loudet O, Weigel D, Ecker JR. (2018) High contiguity Arabidopsis

PLANT PHYSIOLOGY 2023: 191; 35-46 | 45

thaliana genome assembly with a single nanopore flow cell. Nat
Commun 9:541

Monaco MK, Stein J, Naithani S, Wei S, Dharmawardhana P,
Kumari S, Amarasinghe V, Youens-Clark K, Thomason }, Preece
J, et al. (2014) Gramene 2013: comparative plant genomics resour-
ces. Nucleic Acids Res 42: D1193-D1199

Moon KR, van Dijk D, Wang Z, Gigante S, Burkhardt DB, Chen
WS, Yim K, Elzen A, van den Hirn M), Coifman RR, et al. (2019)
Visualizing structure and transitions in high-dimensional biological
data. Nat Biotechnol 37: 1482-1492

Morales N, Ogbonna AC, Ellerbrock BJ, Bauchet GJ, Tantikanjana
T, Tecle 1Y, Powell AF, Lyon D, Menda N, Simoes CC, et al.
(2022) Breedbase: a digital ecosystem for modern plant breeding.
G3 GenesGenomesGenetics 12: jkac078

Moreno P, Fexova S, George N, Manning JR, Miao Z, Mohammed
S, Munoz-Pomer A, Fullgrabe A, Bi Y, Bush N, et al. (2022)
Expression Atlas update: gene and protein expression in multiple
species. Nucleic Acids Res 50: D129-D140

Neveu P, Tireau A, Hilgert N, Neégre V, Mineau-Cesari J, Brichet
N, Chapuis R, Sanchez I, Pommier C, Charnomordic B, et al.
(2019) Dealing with multi-source and multi-scale information in
plant phenomics: the ontology-driven Phenotyping Hybrid
Information System. New Phytol 221: 588-601

Novella JA, Emami Khoonsari P, Herman S, Whitenack D,
Capuccini M, Burman J, Kultima K, Spjuth O (2019)
Container-based bioinformatics with Pachyderm. Bioinformatics
35: 839-846

Obayashi T, Aoki Y, Tadaka S, Kagaya Y, Kinoshita K (2018)
ATTED-Il in 2018: a plant coexpression database based on investi-
gation of the statistical property of the mutual rank index. Plant
Cell Physiol 59: e3

Palyanov A, Khayrulin S, Larson SD (2018) Three-dimensional sim-
ulation of the Caenorhabditis elegans body and muscle cells in lig-
uid and gel environments for behavioural analysis. Philos Trans R
Soc B Biol Sci 373: 20170376

Papatheodorou |, Fonseca NA, Keays M, Tang YA, Barrera E,
Bazant W, Burke M, Fiillgrabe A, Fuentes AM-P, George N, et
al. (2018) Expression Atlas: gene and protein expression across
multiple studies and organisms. Nucleic Acids Res 46: D246-D251

Papatheodorou I, Moreno P, Manning ), Fuentes AM-P, George N,
Fexova S, Fonseca NA, Fiillgrabe A, Green M, Huang N, et al.
(2020) Expression Atlas update: from tissues to single cells. Nucleic
Acids Res 48: D77-D83

Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N,
Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M,
et al. (2007) ArrayExpress—a public database of microarray experi-
ments and gene expression profiles. Nucleic Acids Res 35:
D747-D750

Pasha A, Subramaniam S, Cleary A, Chen X, Berardini TZ, Farmer
A, Town C, Provart NJ (2020) Araport lives: an updated frame-
work for Arabidopsis bioinformatics. Plant Cell 32: 2683-2686

Plant Cell Atlas Consortium (2021) Vision, challenges and opportu-
nities for a Plant Cell Atlas. eLife 10: e66877

Portwood JL I, Woodhouse MR, Cannon EK, Gardiner JM, Harper
LC, Schaeffer ML, Walsh JR, Sen TZ, Cho KT, Schott DA, et al.
(2019) MaizeGDB 2018: the maize multi-genome genetics and ge-
nomics database. Nucleic Acids Res 47: D1146-D1154

Rayner TF, Rocca-Serra P, Spellman PT, Causton HC, Farne A,
Holloway E, Irizarry RA, Liu J, Maier DS, Miller M, et al. (2006)
A simple spreadsheet-based, MIAME-supportive format for micro-
array data: MAGE-TAB. BMC Bioinformatics 7: 489

Regev A, Teichmann S, Rozenblatt-Rosen O, Stubbington M,
Ardlie K, Amit I, Arlotta P, Bader G, Benoist C, Biton M, et al.
(2018) The Human Cell Atlas White Paper. https://arxiv.org/abs/
1810.05192

Reiser L, Berardini TZ, Li D, Muller R, Strait EM, Li Q,
Mezheritsky Y, Vetushko A, Huala E (2016) Sustainable funding
for biocuration: The Arabidopsis Information Resource (TAIR) as a

€202 1sNBny ¢ uo 1enb Aq £6561.29/5€/1/161/aI0Me/sAYd|d/Ww00 dno dlepes.)/:Sd)Y WOl) PapEojUMOQ


https://arxiv.org/abs/1810.05192
https://arxiv.org/abs/1810.05192

46 I PLANT PHYSIOLOGY 2023: 191; 35-46

case study of a subscription-based funding model. Database ] Biol
Databases Curation 2016: baw018

Rhee SY, Birnbaum KD, Ehrhardt DW (2019) Towards building a
Plant Cell Atlas. Trends Plant Sci 24: 303-310

Rice S, Fryer E, Jha SG, Malkovskiy A, Meyer H, Thomas },
Weizbauer R, Zhao K, Birnbaum K, Ehrhardt D, et al. (2020)
First plant cell atlas workshop report. Plant Direct 4: 00271

Rocca-Serra P, Brandizi M, Maguire E, Sklyar N, Taylor C, Begley
K, Field D, Harris S, Hide W, Hofmann O, et al. (2010) ISA soft-
ware suite: supporting standards-compliant experimental annota-
tion and enabling curation at the community level. Bioinforma
Oxf Engl 26: 2354-2356

Rodrigo A, Alberts S, Cranston K, Kingsolver ), Lapp H, McClain
C, Smith R, Vision T, Weintraub ), Wiegmann B (2013) Science
incubators: synthesis centers and their role in the research ecosys-
tem. PLOS Biol 11: e1001468

Ryu KH, Huang L, Kang HM, Schiefelbein ] (2019) Single-cell RNA
sequencing resolves molecular relationships among individual plant
cells. Plant Physiol 179: 1444

Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C,
Hofmann O, Fang H, Neumann S, Tong W, Amaral-Zettler L,
et al (2012) Toward interoperable bioscience data. Nat Genet 44:
121-126

Sansone S-A, McQuilton P, Rocca-Serra P, Gonzalez-Beltran A,
Izzo M, Lister AL, Thurston M. (2019) FAIRsharing as a commu-
nity approach to standards, repositories and policies. Nat
Biotechnol 37: 358-367

Sarma P, Lee CW, Portegys T, Ghayoomie V, Jacobs T, Alicea B,
Cantarelli M, Currie M, Gerkin RC, Gingell S, et al. (2018)
OpenWorm: overview and recent advances in integrative biological
simulation of Caenorhabditis elegans. Philos Trans R Soc B Biol Sci
373: 20170382

Selby P, Abbeloos R, Backlund JE, Basterrechea Salido M, Bauchet
G, Benites-Alfaro OE, Birkett C, Calaminos VC, Carceller P,
Cornut G, et al. (2019) BrAPI—an application programming inter-
face for plant breeding applications. Bioinformatics 35: 4147-4155

Shrestha R, Matteis L, Skofic M, Portugal A, McLaren G, Hyman
G, Arnaud E (2012) Bridging the phenotypic and genetic data use-
ful for integrated breeding through a data annotation using the
Crop Ontology developed by the crop communities of practice.
Front Physiol 3:326

Smith B, Ashburner M, Rosse C, Bard ), Bug W, Ceusters W,
Goldberg L), Eilbeck K, Ireland A, Mungall CJ, et al. (2007) The
OBO Foundry: coordinated evolution of ontologies to support bio-
medical data integration. Nat Biotechnol 25: 1251-1255

Smith K (2013) A Brief History of NCBI's Formation and Growth
(National Center for Biotechnology Information, USA) https://
www.ncbi.nlm.nih.gov/books/NBK 148949/

Statistics Ontology Project (2020) Statistics Ontology

Steinbach D, Alaux M, Amselem J, Choisne N, Durand S, Flores R,
Keliet A-O, Kimmel E, Lapalu N, Luyten |, et al. (2013) GnplS:
an information system to integrate genetic and genomic data from
plants and fungi. Database 2013: bat058

Swetnam TL, Walls R, Devisetty UK, Merchant N (2018) CyVerse: a
ten-year perspective on cyberinfrastructure development, collabo-
ration, and community building. AGU Fall Meet. Abstr

Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson
J, Currie M, Cantarelli M, Idili G, Larson S (2014) OpenWorm:
an open-science approach to modeling Caenorhabditis elegans.
Front Comput Neurosci 8:137

Tekman M, Batut B, Ostrovsky A, Antoniewski C, Clements D,
Ramirez F, Etherington GJ, Hotz H-R, Scholtalbers J, Manning
JR, et al. (2020) A single-cell RNA-sequencing training and analysis
suite using the Galaxy framework. GigaScience 9: giaa102

Fahlgren et al.

Tello-Ruiz MK, Naithani S, Stein JC, Gupta P, Campbell M, Olson
A, Wei S, Preece ), Geniza M), Jiao Y, et al. (2018) Gramene
2018: unifying comparative genomics and pathway resources for
plant research. Nucleic Acids Res 46: D1181-D1189

Tello-Ruiz MK, Naithani S, Gupta P, Olson A, Wei S, Preece ),
Jiao Y, Wang B, Chougule K, Garg P, et al. (2021) Gramene 2021:
harnessing the power of comparative genomics and pathways for
plant research. Nucleic Acids Res 49: D1452-D1463

The Gene Ontology Consortium (2021) The Gene Ontology re-
source: enriching a GOId mine. Nucleic Acids Res 49: D325-D334

Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The bot-
any array resource: e-northerns, expression angling, and promoter
analyses. Plant ] 43: 153-163

Towns ), Cockerill T, Dahan M, Foster |, Gaither K, Grimshaw A,
Hazlewood V, Lathrop S, Lifka D, Peterson GD, et al. (2014)
XSEDE: accelerating scientific discovery. Comput Sci Eng 16: 62-74

da Veiga Leprevost F et al. (2017) BioContainers: an open-source
and community-driven framework for software standardization.
Bioinformatics 33: 2580-2582

Waese ), Fan ), Pasha A, Yu H, Fucile G, Shi R, Cumming M,
Kelley LA, Sternberg M), Krishnakumar V, et al. (2017) ePlant:
visualizing and exploring multiple levels of data for hypothesis gen-
eration in plant biology. Plant Cell 29: 18061821

Waese ), Provart NJ (2017) The bio-analytic resource for plant biol-
ogy. Methods Mol Biol Clifton NJ 1533: 119-148

Waese-Perlman B, Pasha A, Ho C, Azhieh A, Liu Y, Sullivan A,
Lau V, Esteban E, Waese J, Ly G, et al. (2021) ePlant in 2021: new
species, viewers, data sets, and widgets. bioRxiv: 2021.04.28.441805

Walls RL, Cooper L, Elser ), Gandolfo MA, Mungall CJ, Smith B,
Stevenson DW, Jaiswal P (2019) The plant ontology facilitates
comparisons of plant development stages across species. Front
Plant Sci 10: 1-17

Wang H, Cimen E, Singh N, Buckler E (2020) Deep learning for
plant genomics and crop mprovement. Curr Opin Plant Biol 54:
34-41

Wilkins-Diehr N (2007) Special issue: science gateways—common
community interfaces to grid resources. Concurr Comput Pract
Exp 19: 743-749

Wilkinson MD, Dumontier M, Aalbersberg lj), Appleton G, Axton
M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne
PE, et al. (2016) The FAIR Guiding Principles for scientific data
management and stewardship. SciData 3: 160018

Williamson HF, Brettschneider ), Caccamo M, Davey RP, Goble C,
Kersey PJ, May S, Morris R), Ostler R, Pridmore T, et al. (2021)
Data management challenges for artificial intelligence in plant and
agricultural research. F1000Research 10: 324

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. IEEE Trans Evol Comput 1: 67-82

Yehudi Y, Butano D, Chadwick M, Clark-Casey ), Contrino S,
Heimbach ), Lyne R, Sullivan ), Micklem G (2017) Forever in
BlueGenes: a next-generation genomic data interface powered by
InterMine. F1000Research 6, https://doi.org/10.7490/f1000research.
11145271

Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler
L, Gilbert JA, Karsch-Mizrachi |, Johnston A, Cochrane G, et al.
(2011) Minimum information about a marker gene sequence
(MIMARKS) and minimum information about any (x) sequence
(MIxS) specifications. Nat Biotechnol 29: 415-420

Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W (2019) A single-cell
RNA sequencing profiles the developmental landscape of
Arabidopsis root. Mol Plant 12: 648-660

Zhang Y, Parmigiani G, Johnson WE (2020) ComBat-seq: batch ef-
fect adjustment for RNA-seq count data. NAR Genomics
Bioinforma 2: Igaa078

€202 1sNBny ¢ uo 1enb Aq £6561.29/5€/1/161/aI0Me/sAYd|d/Ww00 dno dlepes.)/:Sd)Y WOl) PapEojUMOQ


https://www.ncbi.nlm.nih.gov/books/NBK148949/
https://www.ncbi.nlm.nih.gov/books/NBK148949/
https://doi.org/10.7490/f1000research.1114527.1
https://doi.org/10.7490/f1000research.1114527.1

