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Abstract

Tools that classify sequencing reads against a database of reference sequences require efficient
index data structures. The r-index is a compressed full-text index that answers substring pres-
ence/absence, count and locate queries in space proportional to the amount of distinct sequence in
the database: O(r) space where r is the number of Burrows-Wheeler runs. To date, the r-index has
lacked the ability to quickly classify matches according to which reference sequences (or sequence
groupings, i.e. taxa) a match overlaps. We present new algorithms and methods for solving this
problem. Specifically, given a collection D of d documents D = {T1, T2, . . . , Td} over an alphabet
of size σ, we extend the r-index with O(rd) additional words to support document listing queries
for a pattern S[1..m] that occurs in ndoc documents in D in O(m log logw(σ + n/r) + ndoc) time
and O(rd) space, where w is the machine word size. Applied in a bacterial mock community exper-
iment, our method is up to 3 times faster than a comparable method that uses the standard r-index
locate queries. We show that our method classifies both simulated and real nanopore reads at the
strain level with higher accuracy compared to other approaches. Finally, we present strategies for
compacting this structure in applications where read lengths or match lengths can be bounded.
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Introduction

Metagenomic read (Wood et al., 2019) classification allows researchers to study organisms present in
an environmental sample. Tools like Kraken 2 (Wood et al., 2019) and Centrifuge (Kim et al., 2016)
accomplish this using an index of the reference sequences. Kraken 2 (Wood et al., 2019) builds a
compact hash table that maps minimizer sequences onto the taxonomic lowest-common ancestor of
the genomes it occurs in. Centrifuge (Kim et al., 2016) uses an FM-index (Ferragina and Manzini,
2000) to find substring matches which are combined to make classification decisions. But as databases
of reference sequences continue to grow, these tools encounter difficulties with scaling and accuracy.
Nasko et al. (Nasko et al., 2018) showed that the specificity of k-mer based approaches like Kraken 2
can suffer as the reference database (i.e., RefSeq) grows, since the addition of new sequences causes
more k-mers (or minimizers) to co-occur in distant parts of the taxonomy. The FM-index at the core
of Centrifuge does not naturally scale to pangenomes; rather, it requires an initial work-intensive step
that compresses the genomes in a way that elides some of the underlying genetic variation.

The r-index (Gagie et al., 2020) is a successor to the FM-index that indexes repetitive texts using
O(r)-space, where r is the number of runs in the text’s Burrows-Wheeler Transform (BWT). Since r
grows only with the amount of distinct sequence in the collection, the r-index scales naturally to large
pangenomes and reference databases like the ones used for taxonomic classification. Since it is a full-text
index, the r-index can find matches of any length, unconstrained by a particular choice of k-mer length.

While the r-index has already been applied to pangenomic pattern-matching (Kuhnle et al., 2020;
Rossi et al., 2022) and binary classification (Ahmed et al., 2021), it has so far lacked the ability to solve
multi-class classification problems in an accurate and efficient manner. A straightforward approach
would be to use standard backward search in the r-index, then use locate queries to locate the offsets in
the concatenated text where the pattern occurs. These offsets can then be cross-referenced with another
structure to determine which documents they occur in. This requires an amount of work proportional
to the number of occurrences occ, which is expensive, particularly for repetitive matches against a
pangenome.

We hypothesized that extending the r-index to multi-class classification could be accomplished by
augmenting it with efficient facilities for document listing, i.e. the ability to report all the reference
sequences (documents) where a particular pattern occurs. A document—which we will sometimes call
a “class”—could consist of a single genome or a collection of related genomes.

An early study by Muthukrishnan (Muthukrishnan, 2002) described a specialized index for document
listing consisting of a generalized suffix tree and a document array. It provided O(m + ndoc) queries,
where m is the length of the pattern and ndoc is the number of distinct documents it occurs in. But
this came at the cost of O(n log n) bits of space, where n is the total length of the texts, which is
impractical for large pangenome databases. Sadakane (Sadakane, 2007) improved on this by introducing
a new succinct document array representation and building on succinct representations of suffix trees
and arrays. He showed how to reduce the index size to |CSA| + O(n) bits, where |CSA| is the
size of the compressed suffix array using statistical compression with an increased time complexity of
O(m+ndoc · log n), a high cost for repetitive text collections (Cobas and Navarro, 2019). Later efforts
further reduced the required space using grammar-compression (Cobas and Navarro, 2019) and relative
Lempel-Ziv compression (Puglisi and Zhukova, 2021).

We present a new method that solves the document listing problem in O(m log logw σ+ndoc)-time
and O(rd)-space using the r-index. Importantly, we also show how to use the prefix-free parsing process
to build the profile simultaneously with the BWT. This document-array structure can be sampled and
stored at the run boundaries of the BWT, yielding a space complexity of O(rd). At query time, after
performing backward search for a pattern, we can report the document listing by simply examining the
current document array profile which is an array of d integers—as opposed to performing a query for
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each occurrence of a pattern. We also discuss practical optimizations that can be used to reduce the
space usage of this data structure even further in the context of metagenomic read classification. In our
evaluations, we compare the query time and index size for our approach to an alternative that uses the
standard r-index locate query to report document listings. Furthermore, we attempt to classify different
strains of Escherichia coli and Salmonella enterica using our document array profiles in comparison
into using SPUMONI 2’s sampled document array (Ahmed et al., 2022). Finally, we believe that our
theoretical guarantees will prove useful for the community by allowing read classification to be compared
in a grounded manner that complements practical evaluation.

Results

We performed all the experiments on an Intel Xeon Gold 6248R 32-core processor running at 3.00GHz
with 1.59 TB of RAM with 64-bit Linux. Time was measured using std::chrono::system clock
from the C++ standard library. Our source code can be found at https://github.com/oma219/
docprofiles, and our experimental code can be found at https://github.com/oma219/docprof-experiments.
The r-index code used in our experiments can be found at https://github.com/maxrossi91/r-index.

Comparing the query time and index size

To assess the speed of document listing, we compared the query time for the document array profiles
to the query time for locate queries using the r-index. We attempted to compare our solution to the
method of Cobas et al. (Cobas and Navarro, 2019), however, we ran into various run-time errors when
using it as described, so we were not able to include it in the results.

We built a series of indexes over genomes from different collections of bacterial species, described
in Table 2. We simulated nanopore sequencing reads using PBSIM2 (Ono et al., 2021) at 95% read
accuracy. We then used MONI (Rossi et al., 2022) to query each read against the pangenome index,
extracting a total of 1 million maximal exact matches (MEMs) for each class.

We tested two variants of the document array profile data-structure. The first (labeled “Doc. Array”
in Figure 1) uses the standard document array profile, where the width of each profile entry requires
⌈log2(|S|)⌉ bits. The second (labeled “Doc. Array (optimized)”) instead stores truncated lcp values, so
that lcps greater than 255 are stored as 255, so that only ⌈log2(255)⌉ = 8 bits are required per entry.
This optimization is appropriate in real-world situations where either the reads are known to be short
(e.g. Illumina sequencing reads), or where we would otherwise expect MEMs longer than 255 to be rare.

We observed that the query time using document array profiles was faster than the r-index locate
query. For the 3-class database, the document array profiles ranged from 1.6–3.2 times faster. As more
genomes were added to the database, query time for the 3-class r-index increased by 2.2-fold (214.87
sec vs 96.2 sec), while query time for the document array profile was essentially constant (67.8 sec vs
61.7 sec). This exhibits a key advantage of our document-listing; unlike when using the r-index locate
queries, our query time is independent of the number of pattern occurrences.

We noted that the size of the r-index stayed relatively constant as the number of classes increased.
However, for the document array profile (both standard and optimized), the index size grew with the
number of classes, consistent with its O(rd) space complexity. As an example in the “30+” genome
database, focusing on the standard document array, the 8-class document array was 2.32 times larger
than the 5-class document array. Since d increased by 1.67 times, and r increased by 1.43 times
(79,722,710 vs 55,559,459), therefore, we would expect to see an index increase of about 2.39 times
(1.67 x 1.43), which is close to what we see in practice (2.32).

We also observed for the 3-class, “30+” genome database, the optimized document array was smaller
than the r-index. The r-index stores a run-length encoded BWT (RLEBWT) along with the suffix array
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i BWT[i]T BWMT SA[i]T LF(i) DA[i]T LCP[i]T PDA[i]T

1 C #ATATGGC$GTAGAAT$TATGAAC 24 12 3 0 [0, 0, 1]
2 C $GTAGAAT$TATGAAC#ATATGGC 8 13 1 0 [17, 1, 0]
3 T $TATGAAC#ATATGGC$GTAGAAT 16 19 2 1 [1, 9, 0]
4 G AAC#ATATGGC$GTAGAAT$TATG 21 14 3 0 [1, 2, 4]
5 G AAT$TATGAAC#ATATGGC$GTAG 13 15 2 2 [1, 12, 2]
6 A AC#ATATGGC$GTAGAAT$TATGA 22 4 3 1 [1, 1, 3]
7 T AGAAT$TATGAAC#ATATGGC$GT 11 20 2 1 [1, 14, 1]
8 A AT$TATGAAC#ATATGGC$GTAGA 14 5 2 1 [2, 11, 2]
9 # ATATGGC$GTAGAAT$TATGAAC# 1 1 1 2 [24, 2, 2]
10 T ATGAAC#ATATGGC$GTAGAAT$T 18 21 3 2 [3, 2, 7]
11 T ATGGC$GTAGAAT$TATGAAC#AT 3 22 1 3 [22, 2, 3]
12 A C#ATATGGC$GTAGAAT$TATGAA 23 6 3 0 [1, 0, 2]
13 G C$GTAGAAT$TATGAAC#ATATGG 7 16 1 1 [18, 0, 1]
14 T GAAC#ATATGGC$GTAGAAT$TAT 20 23 3 0 [1, 3, 5]
15 A GAAT$TATGAAC#ATATGGC$GTA 12 7 2 3 [1, 13, 3]
16 G GC$GTAGAAT$TATGAAC#ATATG 6 17 1 1 [19, 1, 1]
17 T GGC$GTAGAAT$TATGAAC#ATAT 5 24 1 1 [20, 1, 1]
18 $ GTAGAAT$TATGAAC#ATATGGC$ 9 2 2 1 [1, 16, 1]
19 A T$TATGAAC#ATATGGC$GTAGAA 15 8 2 0 [1, 10, 1]
20 G TAGAAT$TATGAAC#ATATGGC$G 10 18 2 1 [2, 15, 2]
21 $ TATGAAC#ATATGGC$GTAGAAT$ 17 3 3 2 [4, 2, 8]
22 A TATGGC$GTAGAAT$TATGAAC#A 2 9 1 4 [23, 2, 4]
23 A TGAAC#ATATGGC$GTAGAAT$TA 19 10 3 1 [2, 1, 6]
24 A TGGC$GTAGAAT$TATGAAC#ATA 4 11 1 2 [21, 1, 2]

(A) Example of document array profiles (PDA) for the text T which is the concatenation of the following three
documents: {ATATGGC$, GTAGAAT$, TATGAAC#}

Character: Start: End: Current Profile: Notes:

G 1 25 [1, 3, 5] Sample profile from PDA[LF(i)] where
BWT[i] is a run boundary with a G
(i=4, LF(4)=14)

T 14 19 [2, 1, 6] Sample profile from PDA[LF(i)] where
BWT[i] is a run boundary with a T
(i=14, LF(14)=23)

A 23 25 [3, 2, 7] Increment profile by 1
T 10 12 [4, 3, 8] Increment profile by 1

(B) Querying the document array profiles (PDA) for the pattern P = TATG by using backward search. The table
shows the document array profile at each step of the search, and [4, 3, 8] is the final profile, which means that the
pattern P occurs in document 1 and 3 since |P | ≤ 4 and |P | ≤ 8.

Table 1: (A) Shows an example of document array profiles for three documents and (B) shows the
results of querying a small pattern to determine its document listing.
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Species Used in Each Dataset

Dataset: 3-class 5-class 8-class

Species: Echerichia coli Echerichia coli Echerichia coli
Salmonella enterica Salmonella enterica Salmonella enterica
Bacillus subtilis Bacillus subtilis Bacillus subtilis

Listeria monocytogenes Listeria monocytogenes
Pseudomonas aeruginosa Pseudomonas aeruginosa

Lactobacillus fermentum
Enterococcus faecalis
Staphylococcus aureus

Table 2: Species included the datasets of Figure 1. For each target database size (30, 100, 300 genomes),
we include an equal number of genomes from each class. For example, for the 3-class dataset, we include
10 genomes of each species in the 30-genome database, 34 genomes of each in the 100-genome database
and 100 genomes of each species in the 300-genome database. Note that this leads to collections that
slightly exceed the target size, e.g. 3× 34 leads to an index of 102 genomes. For this reason, we refer
to the database sizes as “30+”, “100+” and “300+”.

30+ 100+ 300+
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Figure 1: Query time and index size when performing document listing queries using the document
array profiles and the r-index. We varied the size of the database increasing from 30 bacterial genomes
to 300 bacterial genomes. For each species/class, we would simulate nanopore reads at 95% accuracy
and extract 1 million maximal-exact matches (MEMs) to query the data-structures. Therefore, for the
3-class, 5-class, and 8-class indexes, we queried them with 3 million, 5 million and 8 millions MEMs
respectively. This explains why the query time would increase for the indexes containing more classes.

sampled at run boundaries in the BWT where each sample is stored in 5 bytes. The optimized document
array also stores a RLEBWT however instead of the suffix array, it replaces it with the document array
profiles. Since it is a 3-class database, each profile sampled at the run boundaries will only consist of
3 bytes which explains why overall the optimized document array is smaller than the r-index for those
conditions.

Additionally, as expected, the optimized document array profile was smaller than the standard profile;
for the 300 genome database, it was 3.3 times smaller. We suggest further optimizations to reduce the
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(A) Sequence similarity in each dataset

Dataset: Classes (1, 2, 3, 4):

Different Genera Escherichia coli, Salmonella enterica, Listeria
monocytogenes, & Pseudomonas aeruginosa

Same Genus Escherichia coli, Escherichia albertii, Escherichia
fergusonii, & Escherichia marmotae

E. coli strains GCF 025426235.1, GCF 025563475.1,
GCF 025563515.1, GCF 025563435.1

S. enterica strains GCF 025398995.1, GCF 025399055.1,
GCF 025399075.1, GCF 025399015.1

(B) Classes in each dataset

Figure 2: (A) Sequence homology, measured as Average Nucleotide Identity (ANI) for all across-class
pairs of sequences. ANI was estimated with fastANI (Jain et al., 2018). (B) Lists the specific species
and strains used for classes 1, 2, 3 and 4 for each of the four datasets. In the case of “Different Genera”
and “Same Genus,” we used 10 genomes per class. In the case of “E. coli strains” and “S. enterica
strains” we used a single genome for each strain.

document array profile size in the Discussion below.

Species and strain-level classification

We hypothesized that the document array profiles could particularly improve read classification accuracy
in difficult scenarios where it is important to be able to list all documents for each MEM. We com-
pared the performance of the document array profile to another tool and structure designed for read
classification: SPUMONI 2’s (v2.0.0) (Ahmed et al., 2022) sampled document array. SPUMONI 2’s
sampled document array is quite simple; for each BWT run boundary, it simply converts the suffix array
position to the document number that position occurs in. Using these document labels, it is capable of
reporting one document that a particular exact match occurs in. This is sufficient in situations where
reads contain many distinct matches (e.g. MEMs), so that document information can be pooled across
the various matches to come to an overall conclusion. But in situations where the documents are very
similar to each other, or where reads are short or have a high error rate, we expect the full document
array profile to impart higher accuracy.

We tested the two structures on increasingly difficult datasets, with each dataset consisting of
reference genomes from four distinct classes (Figure 2). We used used PBSIM2 (Ono et al., 2021) to
simulate 50,000 nanopore reads from each class at 95% accuracy, then classified the reads using both
document array approaches. Specifically, we identified all MEMs between the reads and the pangenome
index, filtering to just MEMs of length 15 or longer. We then used the different document structures to
obtain matching documents for each MEM; in the case of SPUMONI 2, we retrieved one document per
MEM; in the case of our document array profile, we retrieved all documents where the MEM occurred.
We then weighted the documents according to the length of the MEM and assigned each read to a
document according to which received the largest total weight across all reported MEM/document
combinations.

We observed that when the dataset consisted of classes with low between-class sequence similarity
(“Different Genera” and “Same Genus”), both methods performed well, with low classification error
(Figure 3). However for datasets with high sequence similarity (>97.5% ANI), such as the “E. coli
strains” and “S. enterica strains,” we see that the full document array profile provided greater classifi-
cation accuracy compared to SPUMONI 2’s one-document-per-match approach.
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Figure 3: Classification results using the document array profiles and SPUMONI 2’s (Ahmed et al., 2022)
sampled document array across four different datasets each with four classes described in Figure 2

Classification using real nanopore mock community reads

We extended our analysis to real sequencing reads. We used nanopore reads from the UNCALLED (Ko-
vaka et al., 2021) paper, which performed Oxford Nanopore sequencing of a Zymo Mock Community
consisting of eight species 1. We extracted a set of 582,042 reads from the dataset that uniquely mapped
to one of the seven bacterial species using minimap2 (Li, 2018). We shortened each read to 2000 bp.

For each bacterial species, we constructed a database comprising of four strains from that species,
one of which was chosen to be the actual strain used for the Zymo Mock community. The other three
strains were obtained from Refseq. We then compared the strain-level classification accuracy of the
two document-array structures using the same MEM-weighted approach as was used in the previous

1Staphylococcus aureus, Salmonella enterica, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, En-
terococcus faecalis, Bacillus subtilis, and Saccharomyces cerevisiae

6

 Cold Spring Harbor Laboratory Press on August 31, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


experiment. As in the previous experiment, we observed that the document array profile enabled more
accurate strain-level read classification (Figure 4). This was true for reads derived from all 7 of the
bacterial species (though both approaches had near-perfect recall for B. subtilis reads).
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Figure 4: Comparing the document array profiles and SPUMONI 2’s(Ahmed et al., 2022) sampled
document array on seven different strain-level classification tasks using real nanopore reads from UN-
CALLED (Kovaka et al., 2021) project.

Discussion

We described a new data structure called the document array profile, along with an efficient algorithm
for building the structure simultaneously with a pangenome r-index. This structure enables tools to
simultaneously find exact matches with respect to a full-text pangeonme index, while simultaneously
learning which reference sequences the matches belong to. This opens the door to new applications of
pangenome indexes, including in metagenomics read classification.

The structure requires O(rd) space and can compute a full document listing for a match in
O(m log logw σ+ndoc) time. We showed that, as the pangenome database grows in size, the document
array profile’s speed advantage grows relative to the standard r-index and its locate queries. Further,
we showed that the structure’s ability to list all documents associated with a match enables greater
accuracy compared to an existing alternative that considers only one document per match.

The main weakness of the document array profile is the fact that its space usage grows linearly with
the number of documents d. This makes it difficult for it to be used in scenarios with a large number
of documents (classes) which is the case in taxonomic read classification where there are thousands
of species. However, this data-structure can optimized even further to reduce its space usage with
domain-specific knowledge. For example in sequencing read classification, an exact match shorter than
15 bases might be too non-specific to be helpful for classification. In that case, each element of the
document array profile could be made “sparse,” consisting only of values greater than 14.

An additional optimization would be to adopt a “top k” strategy. That is, rather than store lcp values
to all possible documents, we can restrict the structure to store only the lcp values to the k documents
having the greatest lcp at the run boundary. This allows us to bound the size of the structure while
retaining the strongest match-to-document associations.

Recently, Cobas et al. (Cobas et al., 2020) designed solutions to the document listing with frequencies
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problem using the r-index as the text index. This problem is a more difficult task since it requires
reporting not only the document listing, but also the frequency of the pattern in each document. The
frequency information could add valuable data for taxonomic classification since it gives an indication if
a pattern is “common” within a document, or if it is rather rare. Future work on the document array
profiles will consist of exploring the possibility integrating elements of Cobas et al. solution (Cobas
et al., 2020) to allow the document array profiles to report frequencies along with the document listing.

Methods

Preliminaries

A string S[1..n] of length |S| = n is the concatenation of characters S[1] · · ·S[n] drawn from an alphabet
Σ of size σ. We denote by ε the empty string that is the only string of length 0. We assume S is
terminated by a special symbol $ /∈ Σ lexicographically smaller than all symbols in Σ. Given two integers
1 ≤ i, j ≤ n, we denote with S[i..j] = S[i] · · ·S[j] the substring of S spanning positions i through j
if i ≤ j, and S[i..j] = ε otherwise. Given two integers 1 ≤ i, j ≤ n, we refer to S[i..n] as the i-th
suffix of S and to S[1..j] as the j-th prefix of S. Given two strings S[1..n] and T [1..m], we denote with
lcp(S, T ) the length of the longest common prefix of S and T .

Suffix array, inverse suffix array, and longest common prefix array. Given a string S, the suffix
array (Manber and Myers, 1993) SAS [1..n] is the permutation of {1, . . . , n} that lexicographically sorts
the suffixes of S. The inverse suffix array ISAS [1..n] is the inverse permutation of SAS [1..n], i.e., for
all i = 1, . . . , n SAS [ISAS [i]] = i. The longest common prefix array LCPS [1..n] stores the length of the
longest common prefix between lexicographically consecutive suffixes of S, formally, LCP[1] = 0 and for
all i = 2, . . . , n LCP[i] = lcp(S[SAS [i− 1]..n], S[SAS [i]..n]).

Burrows-Wheeler transform. Given a string S, the Burrows-Wheeler transform (Burrows and Wheeler,
1994) BWTS [1..n] is the reversible permutation of S defined as the last column of the matrix of the
lexicographically sorted rotations of S. When S is terminated by $ we can define for all i = 1, . . . , n,
BWTS [i] = S[SAS [i]−1] where S[0] = S[n]. The LF-mapping is the the permutation of {1, . . . , n} that
maps every character in the BWTS to its predecessor in text order, formally LF[i] = ISAS [(SAS [i] − 2
mod n) + 1]. We define r as the number of maximal equal-letter runs of BWTS . When clear from the
context we refer to SAS , ISAS , LCPS , and BWTS as SA, ISA, LCP, and BWT respectively.

r-index. The r-index (Gagie et al., 2020) is a text index that stores the run-length encoded BWT
and the SA entries sampled at run boundaries. Given a text S[1..n] and a pattern P [1..m] the r-index
allows you to find all occurrences of P in S in O(m log logw(σ + n/r) + occs log logw(n/r)) and O(r)
words of space, where occs is the number of occurrences of P in S. This result was later improved to
O(m log logw(σ) + occs) (Nishimoto et al., 2022).

Document array. We denote with D = {T1, . . . , Td} the collection of documents (strings) T1, . . . , Td,
and we denote with T [1..n] = T1 · · ·Td the concatenation of the documents. The document ar-
ray (Muthukrishnan, 2002) DA[1..n] stores for each position i the document index of T [SAT [i]..n]. An
important problem in document retrieval is the document listing problem.

Problem 1. Given a collection D = {T1, . . . , Td} and a pattern P , return the set of documents L ⊆ D
where P occurs.
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Supporting document listing on the r-index

Given the text T that is the concatenation of the documents of D such that T has length n, let BWT
be the Burrows-Wheeler transform of T that has r equal-letter runs.

Definition 1. For all positions 1 ≤ i ≤ n in the BWT of T we define the profile of the document array
as the array PDA[i][1..d] that stores for each position j = 1, . . . , d the length of the longest common
prefix between T [SA[i]..n] and all suffixes of document Tj . Formally,

PDA[i][j] = max
{
lcp(T [SA[i]..n], T [SA[k]..n]) | 1 ≤ k ≤ n and DA[k] = j

}
Lemma 1. Given the BWT of T and the profile of the document array PDA, for all pairs (i, ℓ) of
positions and lengths corresponding to a substring S = T [SA[i]..SA[i] + ℓ − 1], we can find the list of
ndoc documents where S occurs in T in O(d) time.

Proof. By definition of PDA[i] we have that S occurs in document Tj if and only if ℓ ≤ PDA[i][j].
Hence, we can scan the profile of the document array in position i. For all documents j = 1, . . . , d we
check if the length of the substring is less than or equal to the value stored in the profile for the j-th
document. This requires one comparison per document, or O(d) time.

Example 1. In the example in Table 1(A), if we look at PDA[4] = [1, 2, 4] corresponding to the suffix
AAC#, we have that i) for the pair (21, 1) the substring S = A occurs in documents 1,2, and 3, since all
values of PDA[4] are not smaller than 1; ii) for the pair (21, 2) the substring S = AA occurs in documents
2, and 3 since 2 > PDA[4][1]; iii) for the pair (21, 3) the substring S = AAC occurs only in document 3
since 3 is greater than both PDA[4][1] and PDA[4][2].

If we store each entry of the profile of the document array PDA[i] as a list of sorted pairs (PDA[i][j], j),
the query time can be reduced to O(ndoc) by simply scanning the list of pairs from the document with
the largest profile value, to the first document that has a profile value smaller than ℓ.

Sampling the profile of the document array.

Storing the entire profile of the document array requires O(nd) words of space, which will be excessive
for pangenomes. We seek to compress the profile of the document array by sampling it similarly to how
r-index samples the suffix array.

Let BWT[s..e] be a maximal equal-letter run of the BWT of T . We store in position s and e the
entries of the profile of the document array in positions LF(s) and LF(e) respectively. Applying the
same reasoning as the toehold lemma (Policriti and Prezza, 2016) we can show that this is enough to
recover the document listing for a query pattern S.

The first property of the profile of the document array that we show is an upper bound on the values
of the profile, when performing an LF step.

Lemma 2. For all positions 1 ≤ i ≤ n in the BWT of T such that DA[i] = DA[LF(i)], for all j = 1, . . . , d
it holds that PDA[LF(i)][j] ≤ PDA[i][j] + 1.

Proof. From the definition of PDA[i][j] there exists a position 1 ≤ k ≤ n such that

lcp(T [SA[i]..n], T [SA[k]..n]) ≥ max
{
lcp(T [SA[i]..n], T [SA[k′]..n]) | 1 ≤ k′ ≤ n and DA[k′] = j

}
.

Hence, if we consider the character preceding SA[i], i.e. BWT[i], then by maximality of k we have that

max
{
lcp(T [SA[i]−1..n], T [SA[k′]..n]) | 1 ≤ k′ ≤ n and DA[k′] = j

}
≤ lcp(T [SA[i]..n], T [SA[k]..n])+

1, concluding the proof.
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Example 2. In the example in Table 1(A), if we look at PDA[4] = [1, 2, 4] and at PDA[LF (4)] =
PDA[14] = [1, 3, 5], we have that Lemma 2 is verified.

We now show which elements of the profile of the document array can be extended when performing
an LF mapping from a position in a maximal equal-letter run. Those are all the profiles corresponding
to occurrences that are all preceded by the same character, i.e., the corresponding interval in the suffix
array is contained in the maximal equal-letter run. We first recall that given a maximal equal-letter
run BWTT [s..e], the length ℓ of the smallest substring S of T such that all occurrences of S in T are
in SAT [s..e] is given by ℓ = max(LCPT [s], LCPT [e + 1]) + 1, assuming LCPT [n + 1] = 0. Note that
SAT [s..e] can also contain occurrences of substrings different from S.

Lemma 3. Given a position i in the BWT of T such that DA[i] = DA[LF(i)], let BWT[s..e] be the
maximal equal-letter run such that s ≤ i ≤ e, let ℓ be the length of the smallest substring S of T such
that all occurrences of S in T are in SAT [s..e]. Then for all j = 1, . . . , d such that PDA[i][j] ≥ ℓ it
holds that PDA[LF(i)][j] = PDA[i][j] + 1.

Proof. The first observation is that if PDA[i][j] ≥ ℓ, then there exists a s ≤ k ≤ e such that DA[k] = j
otherwise, by definition of ℓ and PDA[i][j], PDA[i][j] < ℓ. Hence, T [SA[k]..n] is preceded by the same
character as T [SA[i]..n] because i and k are in the same BWT run. Therefore, if DA[k] = DA[LF[k]] we
have that lcp(T [SA[LF(k)]..n], T [SA[LF(i)]..n]) = lcp(T [SA[k]..n], T [SA[i]..n]) + 1, which concludes
the proof.

Example 3. In the example in Table 1(A), if we consider i = 4, we have that the maximal equal-letter
run containing i is BWT[4..5] hence the the smallest substring S of T such that all occurrences of S in
T are in SAT [4..5] is AA and its length is given by ℓ = max(LCP[4], LCP[6]) + 1 = max(0, 1) + 1 = 2.
Looking at PDA[4] = [1, 2, 4] and PDA[LF (4)] = PDA[14] = [1, 3, 5], the only elements of PDA[4] that
are not smaller than 2 are PDA[4][2] and PDA[4][3] and we have that PDA[14][2] = PDA[4][2] + 1 and
PDA[14][3] = PDA[4][3] + 1, while PDA[14][1] < PDA[4][1] + 1.

Note that the only case where we have that DA[i] ̸= DA[LF(i)] is if the BWT runs is a run of $s.
Hence, the above lemma can be applied generally when performing pattern matching queries. We can
summarize our solution to Problem 1 in the following theorem.

Theorem 1. Given a collection D of d documents D = {T1, T2, . . . , Td} over an alphabet of size σ, we
show how to extend the r-index with O(rd) additional words to support document listing queries for
a pattern S[1..m] that occurs in ndoc documents in D in O(m log logw(σ + n/r) + ndoc) 2 time and
O(rd) space, where w is the machine word size.

Proof. Given a collection D, we store the BWT of the concatenation T of the documents of D and for
all maximal equal-letter runs BWT[s..e] we store in the positions of s and e the SA samples SA[s] and
SA[e], and the document array profile samples PDA[LF[s]] and PDA[LF[e]].

Let S[1..m] be a pattern for which we want to compute the list of documents such that S occurs
in D. After we have processed S[q..m] we have an interval BWT[sq..eq] containing all the occurrences
of S[q..m] in T , and a profile P ′ such that for all documents j, P ′[j] ≥ (m− q + 1) if S[q..m] occurs
in Tj , and P ′[j] < (m− q + 1) otherwise. Note that the profile is not required to be a document array
profile entry for a given position.

If q > 1, we now want to extend the match of S[q..m] to S[q − 1..m] and show how we can
maintain the invariant of the profile P ′. We consider two cases. The first case is if BWT[sq..eq]
contains either the beginning or the end of a run of the character S[q − 1]. Here, we can update

2query time can be improved to O(m log logw σ + ndoc) by using the approach from Nishimoto et al. (2022)
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the interval BWT[sq−1..eq−1] with the standard backward-search and can select as P ′ the sample of
the profile of the document array stored in the run boundary in BWT[sq..eq]. The invariant of P ′ is
preserved by Lemma 1. The second case is when BWT[sq..eq] is completely contained in a run, i.e.,
BWT[sq − 1] = BWT[sq] = . . . = BWT[eq] = BWT[eq + 1], then we have that all occurrences of
S[q..m] are preceded by the same character, hence by Lemma 3 for all j such that S[q..m] occurs in
Tj , the profile of the document array P ′′ after the backward step is P ′′[j] = P ′[j] + 1 ≥ (m − q).
Furthermore, for all j such that S[q..m] does not occur in Tj we have that P ′[j] < (m− q + 1), hence
by Lemma 2 we have that P ′′[j] ≤ P ′[j] + 1 < (m − q). Hence, if for all j we set P ′′[j] = P ′[j] + 1,
we have that the invariant requiring that for all documents j, P ′′[j] ≥ (m− q) if S[q − 1..m] occurs in
Tj , and P ′′[j] < (m− q) otherwise is satisfied, concluding the proof.

Computing the document array profiles

The computation of the document array profiles is performed by scanning the values of BWT, SA, LCP,
and DA in a streaming fashion. For all position i = 1, . . . , n we base the computation of PDA[LF(i)] on
the observation that given a collection of documents D and a suffix u of document Ti. The suffix u of
document Tj with the largest longest common prefix with u is the suffix of Tj that either immediately
precedes or immediately follows the suffix u in SA order. Formally,

Proposition 2. Given a collection of documents D let T be the concatenation of its documents. For all
indexes i = 1, . . . , n let ui be the suffix T [SA[i]..n] of document DA[i]. For all documents k = 1, . . . , d
let vk be a suffix T [SA[j]..n] of document DA[j] = k with the largest longest common prefix with ui.
We assume w.l.o.g. that vk is the only suffix with the largest longest common prefix with ui. Then
position j corresponding to vk is either the position of the suffix preceding ui that is a suffix of document
k, i.e., max{j <= i | DA[j] = k}, or the position of the suffix following ui that is a suffix of document
k, i.e., min{j > i | DA[i] = k}.

Therefore, we can divide the computation of PDA[LF(i)] into two components, the computation
of the longest common prefix of T [SA[i]..n] with the suffix of each document immediately preceding
the suffix in position i, and the longest common prefix of T [SA[i]..n] with the suffix of each document
immediately following the suffix in position i.

To compute the former, while scanning the values of BWT, SA, LCP, and DA from 1 to n, we
maintain an auxiliary table Pred[1..d][1..σ] such that at step i, for all documents j = 1, . . . , d, and for
all characters c = 1, . . . , σ, Pred[j][c] stores the length of the longest common prefix value between
suffix T [SA[i]..n] and the immediately preceding suffix of document j that is preceded by character c.
The values of Pred[1..d][1..σ] can be iteratively computed from the values of Pred[1..d][1..σ] at step
i− 1 as Pred[j][c] = min(Pred[j][c], LCP[i]), and we set Pred[DA[LF(i)]][BWT[i]] = |T [SA[i]..n]|.

To compute the latter, the intuition is to simulate the maintenance of an auxiliary table equivalent to
Pred but for following suffixes and apply an equivalent reasoning for Pred i.e., Succ[1..d][1..σ] such that
at step i, for all documents j = 1, . . . , d, and for all characters c = 1, . . . , σ, Succ[j][c] stores the length
of the longest common prefix value between suffix T [SA[i]..n] and the immediately following suffix of
document j that is preceded by character c, if it exists. However, since we are scanning the values of
BWT, SA, LCP, and DA from 1 to n the maintenance of such Succ table becomes more difficult. the
intuition is that we will build the Succ table for position i, while evaluating the positions following i,
and the table will be complete when when we have encountered at least one suffix of all documents
j = 1, . . . , d that is preceded by the character BWT[i]. To achieve this at each step we maintain i) a
queue LQ storing tuples of (pos, ch, doc, lcp); ii) a list of incomplete document array profiles that is the
same size as LQ; iii) a table LQC[1..d][1..σ] where for all documents j = 1, . . . , d and for all characters
c = 1, . . . , σ LQC[j][c] stores the number of tuples t in LQ such that t.doc = j and t.ch = c.
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At the step i we start by inserting the tuple (i,BWT[i],DA[LF(i)], LCP[i]) in the queue LQ, then
we insert Pred[DA[LF[i]]][BWT[i]] in the list of incomplete document profiles, and and we increment
the counter in LQC[DA[LF[i]]][BWT[i]] by one. Then, we update the incomplete document profiles
by iterating through all tuples t in LQ starting from the last inserted element of the queue. While
processing tuple t, let ℓ be the length of the longest common prefix between the suffix T [SA[i]..n] and the
suffix T [SA[t.pos]..n], we update PDA[LF(t.pos)][DA[LF(i)]] with max(PDA[LF(t.pos)][DA[LF(i)]], ℓ)
if t.ch = BWT[i] and t.doc ̸= DA[LF(i)]. Note that ℓ can be computed while scanning the tuples by
initially setting ℓ = |T [SA[i]..n]|, and updating ℓ as ℓ as ℓ = min(ℓ, t.lcp).

Finally, we scan the queue LQ from the first inserted element to check for finalized, completed
document profiles that can be reported. Therefore, while scanning tuple t, PDA[LF(t.pos)] is complete
if all the values in LQC[1..d][t.ch] > 0, meaning we have encountered at least one suffix of all documents
j = 1, . . . , d that is preceded by the character BWT[i]. We then output PDA[LF(t.pos)] if it corresponds
to a sampled position, i.e., if t.pos is the beginning or the end of a run. We then decrement the counter
in LQC[t.doc][t.ch] by 1 and proceed with the next tuple in the queue and we stop at the first tuple
corresponding to an incomplete document profile.

We illustrate an example of the document array profiles in Table 1 along with an example query.
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