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Advancesin technologies that canrecord and stimulate deep brain
activity in humans have led to impactful discoveries within the field of
neuroscience and contributed to the development of novel therapies for
neurological and psychiatric disorders. Further progress, however, has
been hindered by device limitations in that recording of single-neuron
activity during freely moving behaviors in humans has not been possible.
Additionally, implantable neurostimulation devices, currently approved
for human use, have limited stimulation programmability and restricted

full-duplex bidirectional capability. In this study, we developed awearable
bidirectional closed-loop neuromodulation system (Neuro-stack) and used
ittorecord single-neuron and local field potential activity during stationary
and ambulatory behavior in humans. Together with a highly flexible

and customizable stimulation capability, the Neuro-stack provides an
opportunity to investigate the neurophysiological basis of disease, develop
improved responsive neuromodulation therapies, explore brain function
during naturalistic behaviors in humans and, consequently, bridge decades

of neuroscientific findings across species.

Understanding brain functionanditsrelation to cognition and behav-
iorrequires the integration of multiple levels of inquiry, ranging from
the examination of single cells all the way up to the probing of human
experience under naturalistic conditions. One major barrier that sepa-
rates these approachesis the inability to record single-neuron activity
during naturalistic behaviors in humans, which frequently involve
full-body locomotion as well as twitches, gestures and actions of the
face and hands. Single-neuron studies of freely moving behaviors

are currently exclusively done in animals (for example, rodents)".
Although single-neuronstudies in humans have yielded unique insights
into memory, perception, decision-making as well as pathologies such
asParkinson’s disease (PD) and epilepsy (for review, see refs. ), they
have been solely done in immobile participants. Thus, major gaps
remain between understanding findings from neuroscience studies
in animals to those in humans. Determining the single-neuron mech-
anisms of naturalistic behavior in individuals who can declare their
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thoughts and imaginations, interact socially, move freely and navigate
real-world environments would present an unprecedented opportunity
inthe field of systems neuroscience.

In parallel with progress in neuroscience, the medical field has
seen aconsiderable increase in the use of therapies delivered through
implanted neural devices to treat and evaluate abnormal brain activity in
patients with brain disorders”">. However, current clinicalimplantable
devices do not allow single-neuron recording or extensive customiza-
tion of stimulation parameters (for example, pulse shape and precise
timing with respect to ongoing neural activity), capabilities that would
markedly expand the types of research questions that could be investi-
gated. Furthermore, developing accurate animal models of humanbrain
disorders and reproducing associated impairments/symptomsinlabo-
ratory settings remain major challenges. Recordings of single-neuron
activity in patients with brain disorders, however, especially under
naturalistic settings, would provide a unique window into the neural
mechanisms of brain pathology, symptoms and treatment response and
would lead to more personalized and effective therapies®*. Although
several closed-loop neuromodulation therapies using intracranial
electroencephalographic (iEEG) recordings are effective, a substantial
portion of patients still do not respond to treatment. Furthermore,
giventemporal relationships between single-unit spiking and ongoing
oscillatory activity™ 7, closed-loop neuromodulation therapies may
benefit from personalization during a period when both single-unit
andlocalfield potential (LFP) activity is available. Finally, an additional
impedimentinoptimizing closed-loop neuromodulation treatmentsis
thelack of acustomizable bidirectional interface with alarger dynamic
input range that can record multi-channel single-unit and LFP activity
during temporally precise phase-locked stimulation (PLS).

Intracranial neurophysiological studies, using micro-electrodes
in patients with epilepsy or PD, can record LFPs and single-unit activ-
ity; however, research participants must be tethered to large equip-
ment and remain immobile. There are two possibilities for studies
to leverage these clinical opportunities. The first is to use existing
research equipment (for example, Blackrock Microsystems (https://
blackrockneurotech.com/research), Neuralynx (https://neuralynx.
com), NihonKohden (EEG-1200 EEG system, https://us.nihonkohden.
com/products/eeg-1200) and Ripple Neuro (Custom Neuroscience
Research Tools, https://rippleneuro.com)), whichis bulky and expen-
sive (up to~$200,000), withimmobile participants who participate in
voluntary research studies while hospitalized. Intracranial stimulation
studies are similarly done bedside, primarily using open-loop stimula-
tion'®?, although recent studies have explored the use of closed-loop
stimulation”?’, The second option is to use FDA-approved, commer-
cially available devices already implanted in thousands of individuals
to treat epilepsy or movement disorders (for example, Neuropace
RNS System®* and Medtronic Percept™). These chronically implanted
devices offer research participants mobility at the expense of using
larger electrodes and fewer channels (usually four) that cannot record
single-unit activity. Other devices (for example, Medtronic Summit
RC+S*7**) allow for 16-channel iEEG recording at higher sampling rates
(but nosingle units) and exist only in a handful of patients withan FDA
investigational device exemption (IDE), limiting their widespread use
by the scientific community. These closed-loop implantable neural
technologies also have limited full-duplex ability, where multi-channel
PLS during single-unit and LFP recording is not possible. Although
research studies using existing systems have given rise to several
impactful discoveries®***", the possibility of devices one day recording
fromsingle neurons, delivering customizable closed-loop stimulation,
would provide unparalleled opportunities for first-in-human scientific
discovery and development of more effective medical therapies for
braindisorders.

Here we present a potential technological pathway toward more
advanced implantable technologies with the development of a minia-
turized bidirectional neuromodulation external device, Neuro-stack.

The Neuro-stack cansimultaneously record up to 128-channel monopo-
lar or bipolar (from 256 macro-recording contacts) iEEG and 32-channel
monopolar (from32 micro-recording contacts) single-unit/LFP activity
during ambulatory behaviors in humans who have macro-electrodes
and micro-electrodes implanted for clinical reasons. Moreover, the
Neuro-stack can deliver customizable closed-loop multi-channel (up
to 32 simultaneous) stimulation where parameters such as pulse shape,
frequency, amplitude, pulse width, inter-pulse width, polarity, channel
selection and timing (for example, for PLS) are configurable.

We include data acquired using the Neuro-stack showing
single-unit, LFP and iEEG activity recorded in 12 participants who had
depthelectrodesimplanted for epilepsy evaluation. In one participant,
we used the Neuro-stack to perform binary prediction of memory
performanceinreal time (69% F1score) using neural activity recorded
from medial temporal lobe (MTL) regions. We also demonstrate the
Neuro-stack’s ability to record single-neuron activity during walk-
ing behavior and deliver customized stimulation. These capabilities
could be useful for future studies investigating the neural mechanisms
underlying naturalistic behaviors in humans and developing novel
closed-loop neuromodulation therapies for patients with brain dis-
orders that will be effective in real-world settings.

Results

The Neuro-stack (Fig.1a,b) provides a bidirectional neuromodulation
platform for single-unit, LFP and iEEG recording and stimulation of
deepbrainareas for basic and clinical neuroscience studies. Compared
to larger existing devices (Extended Data Fig. 1) that are used bedside
and carried on a cart, the Neuro-stack’s small handheld size enables
concurrentstimulation and recording of real-time electrophysiology
during freely moving behavior (Fig. 2) by connecting to commonly
used implanted macro-electrodes and micro-electrodes (Fig. 1c,d).
Apart from its small form factor and unique on-body wearability, the
Neuro-stack can support:

1. Recording from up to 256 contacts for a total of 128 monopolar
or bipolar recordings with a sampling rate of up to 6,250 Hz.
Furthermore, sensing from up to 32 monopolar recordings at
38.6 kHz allows for the recording of single-unit and LFP activity
simultaneously.

2. Flexible and programmable stimulation (Fig. 3) allowing for
delivery of bipolar/monopolar stimulation to any 32 out of 256
contacts simultaneously. Stimulation engines are current con-
trolled and allow the user to program current amplitude, fre-
quency, timing, pulse shape and other parameters (Fig. 3 and
Supplementary Table 3).

3. Closed-loop neuromodulation. The Neuro-stack has built-in (in
hardware) theta (3-8 Hz) power detection and the ability to trig-
ger stimulation at a predefined phase of theta activity for PLS.
Future hardware upgrades to the PLS integrated circuit (IC)
could expand detection to frequencies outside of the thetaband
depending on user needs. Furthermore, sensing of neural activ-
ity is concurrent with stimulation for unrestricted (full-duplex)
closed-loop capabilities. Resources for designing custom
closed-loop stimulation algorithms are available at both the em-
bedded hardware and external software levels.

4. Software support that comes in two formats. First, a graphical
user interface (GUI) running on a Windows-based tablet or lap-
top is available for manual research purposes (Fig. 1a). Second,
a full-access application programming interface (API) library
written in C++ allows custom, programmable recording and
open/closed-loop stimulation capabilities for research studies
(Extended Data Fig. 4).

5. Tensor multiplication accelerator (Edge TPU; Fig. 2a and Extend-
ed Data Fig. 4, middle) that is integrated with the Neuro-stack,
enabling an extended range of applications, such as real-time in-
ference for neural decoding (Fig. 4) or closed-loop stimulation.
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Fig.1|Neuro-stack platform. a, Neuro-stack and GUI-based tablet for
single-neuron and LFP recordings and closed-loop PLS. The tablet allows for
selection of recording and stimulation channel(s), sampling rate, monopolar/
bipolar recordings and other parameters. Shown are the packaged (left) and
unpackaged (right) versions. b, The Neuro-stack consists of three stacked
layers: (1) Communication (Comm), (2) Digital and (3) Analog. Presented are
the PCBs (size =90 x 60 mm?) and 5 x 2 pins (eight channels, one reference and
one ground, ten total pins) Omnetics headstage connectors to which micro-
electrodes can be connected (only top Analog layer connected). Note that each
Analog layer receives up to two Omnetics connectors to connect, with up to four
electrodes through one headstage. A high-level block diagram of each layer is
shown (right). The Comm layer contains an FPGA that mediates command and
datatransmission (via USB) between external software and IC chips. The Digital
layer contains the PLSIC. The Analog layer contains chips for sensing (Sense IC)

Frequency (Hz)

and stimulation (Stim IC). Three Analog layers are shown to allow recording of
192 channels (64 x 3 layers). SPlis used for FPGA communication with the Sense
and Stim ICs and shift register for FPGA communication with the PLS and Spike
ICs. ¢, The Neuro-stack connected to micro-electrodes in a participant wearing
an eye-tracking system. d, Shown are ten-pin touchproof jumpers for macro-
electrode and ten-pin connectors (for example, Adtech) for micro-electrode
recordings. e, Example data recorded simultaneously using a clinical monitoring
system (Nihon Kohden, gray) and Neuro-stack (black) showing similarity of
signals. f,Zoomed-in traces from e. g, Example power spectrograms from data
(e) showing concordant activity patterns (Nihon Kohden, top; Neuro-stack,
bottom). Frequency (0.1-200 Hz) is shown using a logarithmic scale. h, Example
normalized PSD plots using FFT (0.1-200 Hz, 500-Hz sampling) on datashownin
e.i, Example smoothed normalized PSD plots using the Welch method (1-200 Hz,
500-Hz sampling) on datashownine.
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Fig.2|Neuro-stack as awearable platform for recording neural activity
during ambulatory behavior in humans. a, An example research participant
wearing the backpack carrying the Neuro-stack system, a single board computer
witha TPU and abattery, to allow for recording of single-neuron and LFP activity
during ambulatory behavior. The participant was also wearing an eye-tracking
device that keeps track of head direction, pupil size changes and eye movements.
Data captured from the eye-tracker were synchronized with the neural data
using aprogrammable LED that is visible on the eye-tracker world-view camera.
Wireless communication among the Neuro-stack, eye-tracker and other external
monitoring devices is enabled through a Wi-Fi access point on the TPU device.

b, Neural activity was recorded during an ambulatory task where participants
walked repeatedly (ten times) between two opposite corners of a5 x 5 ft>room
(from X to Y; Extended Data Fig. 2b). Example video frame from the eye-tracking
world-view camera as an example participant approached point Y in the room
(bottom). ¢, Neural activity (line noise removed, voltage-normalized separately
for each channel) from 12 micro-electrode channels (1-6: hippocampus, 6-12:
anterior cingulate) during the ambulatory walking task from an example
participant. d, Ten seconds of filtered data from channel 12 (arrows point to

corresponding sections on cand e). e, A raster plot of two single units isolated
(Cluster,and Cluster,) from channel 12. f, Cluster, from channel 12 and its
corresponding ISI histogram (right). All detected single-unit waveforms are
plotted together with mean (black line) +s.d. (dotted black line). g, Cluster, from
channel12 and its corresponding ISl histogram (right). All detected single-unit
waveforms are plotted together with mean (black line) +s.d. (dotted black line).
h, Top-down view of the hospital room layout in which an example participant
walked back and forth repeatedly between points X and Y within asmall area of
the hospital room (=25 ft2). Points A and B represent points 1/3 and 2/3 of the XY
path, respectively, and are used to define the boundary versus inner areas of the
room. i, Increase in theta (3-12 Hz) bandpower when participants were located
near the environmental roomboundary (h, BY) compared to the inner area of
theroom (h, AB).*P=5.7 x10°° (two-sided permutation test, n =16 channels).

On each box, the central bolded black line indicates the median, and the bottom
and top edges of the box indicate the 25th and 75th percentiles, respectively. The
whiskers extend to the most extreme data points, minima on the bottom and
maxima on the top.
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Fig.3|Neuro-stack as aprogrammable closed-loop neuromodulation
system. a, Stimulation parameters can be customized, including frequency,
amplitude (0-5,080 mA insteps of 20 mA), polarity (anodic/cathodic), timing
(of pulse width, inter-phase width and inter-pulse/burst interval) and pulse
shape (for example, sinusoidal or rectangular pulses shown). b, Key features and
capabilities on the stimulation integrated circuit (Stim IC) including the number
of channels (that is, eight out of 64 per Analog layer) that can be selected for
stimulation, amplitude and configurable pulse shapes where amplitude in each
of up to 16 steps (a) can be programmed for custom waveform design, frequency,
polarity, pulse width (a,10-1,280 ps, steps: 10 pis) and inter-phase width

(a, 0-150 ps, steps: 10 ps). ¢, Example macro-electrode channel recorded

during the delivery of macro-stimulation, which was delivered with varying
combinations of amplitudes x frequencies ((0.25, 0.5, 0.75,1.00 and 1.25) mA x
(60, 80,100,120 and 140) Hz). Each stimulation burst contained ten biphasic
rectangular pulses (pulse width =1.28 ms), after which adelay of 16.67 s occurred
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before the next burst cycle. d, Zoomed- in view of ¢ (outlined box) where six
stimulation bursts (red arrows) are shown with different parameters (bursts 1-3:
1.25mA, 80 Hz; bursts 4-6: 0.25 mA, 100 Hz). e, Zoomed-in view of a single burst
(outlined box) from the same channelind and another example channel (29).

f, Time-aligned bipolar pulses from a stimulation burst (ten pulses, 1.25mA,

60 Hz) fromall channels (n = 33). g, Mean and s.d. values of all time-aligned
bipolar stimulation pulses from an example recording channel (1). h, Normalized
power (mean and s.d.) of the propagated stimulation pulses across channels
(n=33) recorded with respect to varying stimulation current (0.25-1.25 mA). i, SD
of normalized power (SD(power/max[power])) as a function of mean normalized
power (mean(power/max[power])) differentiates pulse propagation across
channels with respect to varying stimulation burst frequencies (60-140 Hz,
steps: 20 Hz) with a fixed pulse width (1.28 ms) and current amplitude (0.75 mA).
Electrode channels are marked in shades of gray (n = 33). P, power.

6. Wired or wireless mode. The Neuro-stack can be externally
controlled and powered via a USB cable or remotely controlled
through a secure local network using a battery-powered config-
uration (Fig. 2a and Extended Data Fig. 4). This flexibility allows
researchers to perform single-unit and LFP/iEEG recording and
stimulation during either stationary or ambulatory (freely mov-
ing) behavioral tasks.

The central hardware component of the Neuro-stack platform
(Fig. 1a,b) consists of three printed circuit board (PCB) layers: (1)
Analog, (2) Digital and (3) Communication. Each layer is embedded
with one or several dedicated IC chips. The analog layer (Fig. 1b, bot-
tom) contains mixed-signal sensing IC (Sense IC and Spike IC) and
stimulation IC (Stim IC) chips, which were previously developed as part
of the DARPA SUBNETS program®**, A single Sense IC (one per analog
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Fig. 4 |Decoding memory performance with the Neuro-stack system.

a, Neural activity was recorded during completion of a verbal memory task,
whichincluded three phases: (1) Learning (encoding), during which alist of
words were presented (2 s each, 0.8-s ISI); (2) Distraction, during which numbers
were presented serially (0.7 s each, 0.3-sISI), and participants were instructed to
respond odd/even; and (3) Recall (retrieval), where previously presented words
wererecalled. b, Neuro-stack recording setup and processing pipelines used
during the memory task. A tablet was used to present words during encoding and
record to identify in real time the spoken words recalled during retrieval (using
speech recognition). Minimally processed data were then fed into an external
computer with synchronized retrieval results. The neural network model (Model,
e) was trained in real time to predict retrieval performance based on neural
activity during encoding. The model was then ported to the TPU to performreal-
time predictions. ¢, Filtered theta (3-12 Hz) activity from the left hippocampus
(LHC) is shown because it was the most critical feature used by the trained neural
network model to predict memory (top). Vertical lines mark the onset of each
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word (10) during seven repetitions (blocks) shown of the memory task.

Decoding performance (accuracy) is shown (bottom) during the first three
blocks, which were used to train the neural network (Training) and the associated
F1score. The last four blocks were used to predict memory performance
(Predict) and the associated accuracy. Training and Prediction graphs are not
aligned with the task flow in real time (c, top) for illustration purposes.

d, Zoomed-in-view of example theta activity shownin c. e, The neural network
model (2 x CNNI1D + LSTM + Dense network) parameters. f, Time-frequency
representation of the first most significant filter (from the trained CNN layer
activation filter), which checks for theta power during encoding. g, Time-
frequency representation of the second most significant filter (trained CNN

layer activation filter), which checks for temporal patterns in theta activity with
respect to the onset of word presentation. h, Overlapping ROC curves calculated
from the offline base model performances across ten participants (colors). i, ROC
curve from the online prediction phase of the verbal memory study using asingle
participant’s datarecorded on the Neuro-stack. AUC, area under the curve.

layer) accepts neural activity from up to 64 electrode contacts fed into
voltage-controlled oscillators (VCOs), which serve as analog-digital
converters (ADCs). Each VCO ADC supports 6,250/N Hz sampling

frequencies, where N=1, 2,4, 8, ..., 128 and a100-mV,, linear input
dynamic range with 12/21 (macro/micro) bits of resolution, ensuring
that the underlying neural signal is captured in the presence of large
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artifacts (for example, from stimulation). The Sense IC contains digital
non-linearity correctionto account for non-linear amplification across
the input range. Moreover, it also contains a digital logic for adaptive
stimulation artifact rejection (ASAR) that subtracts atemplate stimu-
lation artifact extracted from adjacent channels*. The total power
consumption per channel is 8.2 uW. A single Spike IC (one per analog
layer) accepts neural activity from up to eight micro-wire contacts and
supports sampling rates of up to 38.6 kHz, witha1l60-mV,, linear input
dynamicrange*. Asingle StimIC contains eight engines that can drive
current through any individual or combination of 64 electrode con-
tacts. Stimulation output current, amplitude, frequency and waveform
shapes are configurable (Fig. 3a,b), which allows for stimulation using
previous protocols*~* as well as exploration of novel protocols. These
capabilities also enableincreased degrees of freedom (timing and PLS;
Fig.3) compared to currently available intracranial neurostimulation
systems (Supplementary Table 3).

The Neuro-stack’s digital layer (Fig. 1a,b, middle) routes signals
betweenthe analogand communication layers and contains a custom
IC chip (PLS IC) for closed-loop stimulation based on the detected
oscillatory (for example, theta) phase in the recorded neural signal
coming fromthe analog layer to enable PLS***. A field-programmable
gate array (FPGA, Xilinx Spartan-6 board) serves asa communication
layer (Fig.1a,b, top, and Extended Data Fig. 4) between external devices
and custom ICs (Fig. 1b).

The Neuro-stack uses the serial peripheral interface (SPI) at
12 MHz (Sense and Stim ICs) and serial shift register (PLS and Spike
ICs) for internal communication between layers and IC chips and aUSB
interface for external communication and power supply. The device
is assembled by physically stacking the described layers (Fig. 1a,b).
One Neuro-stack supports up to four analog layers at a time, for up
to 256 micro-wire (LFP) electrode contacts (64 per layer) and up to 32
micro-wire (single-unit) electrode contacts (eight per layer).

Aready-to-use GUIis available (connected to the Neuro-stack via
USB) and allows for real-time multi-channel monitoring and control
ofrecording and stimulation (Fig. 1a). A platform-agnostic APl library
written in C++ that allows for custom applications and experiments
is also provided. To allow ambulatory experiments, the Neuro-stack
canbewirelessly controlled using the Coral Development Board (CDB;
Extended Data Fig. 4, tensor processing unit (TPU) in Fig. 2a) and an
ARM-based single-board computer, running a Mendel Linux distri-
bution. Similar microprocessors with wireless capabilities, such as
a Raspberry Pi, can also be used for this purpose. Our Neuro-stack
setup included an ARM-compiled Neuro-stack API, which supports
wireless applications through a secure local Wi-Fi (2.4-GHz or 5-GHz)
network created using theincluded APllibrary. Only adevice that uses
asecure (X.509 certification) connection to a local server can control
the Neuro-stack. The CDB contains an onboard TPU (Fig. 2a), which
can make real-time inferences for neural decoding or closed-loop
applications (for example, see ‘Stationary verbal memory task’ sub-
sectionand Fig. 4).

Invitro sensing and stimulation

The Neuro-stack IC chips (that is, Stim, Sense, Spike and PLS) were
validated in vitro®*****24¢ and some (Sense and Stim) as part of an
implantable system®® before moving to human in vivo studies. To
validate sensing capability, pre-recorded analog neural data were fed
viaan NI PXI System (digital-to-analog converter) through a PBS solu-
tion. An oscilloscope was used to observe true signals at front-end
(FE) inputs and a computer to control and power the Neuro-stack
(Extended DataFig. 5 and Methods). The captured signals were of sat-
isfactory quality (Sense and Spike IC; Extended Data Fig. 6a,b). PLS was
also tested using the same in vitro setup (Extended Data Fig. 5). For
300 s of LFP data, the results showed 400 detections within the theta
band (3-8 Hz) and triggered stimulations with a circular variance of
0.3 (ref.*).

Measurements of stimulation and synchronization delivery delays
were also characterized. First, the round-trip delay, important for
closed-loop stimulation, was measured from sensed input to stimu-
lation output by feeding a train of 50 pulses into the sensing FE. The
pulserising edge detection triggered stimulation on the CDB software
side (connected to the Neuro-stack via USB; Extended Data Fig. 6c).
Input/output observations by the oscilloscope showed al.57 + 0.19-ms
round-trip delay (Extended Data Fig. 6d). This result was consistent
with the PLS-based round-trip delay of 1.7 + 0.3 ms measured from the
sensed input to stimulation output”. Second, synchronization with
external devices was done by time-stamping neural samples using the
CDB; accuracy depended on the system latency through hardware and
software. We applied the same approach as the round-trip delay with
the addition of sending a test pulse on a general purpose pin once the
samplereached the time-stamping step (Extended Data Fig. 6¢), which
resulted in a delay, measured from sensed input to CDB output, of
0.56 + 0.07 ms (Extended DataFig. 6e). For more details, see Methods
(‘In-vitro testing’ subsection).

In vivo sensing and stimulation
Twelve participants with indwelling macro-electrodes and
micro-electrodes implanted for pharmacoresistant epilepsy volun-
teered for the study. Each Behnke-Fried macro-micro depthelectrode
(Ad-Tech Medical) contained 7-8 macro-contacts and nine (eight record-
ingand onereference) 40-pm-diameter platinum-iridium micro-wires*®
inserted through the macro-electrode’s hollow lumen. Neural activ-
ity was recorded from macro-wire and micro-wire contacts using the
Neuro-stack during wakeful rest (Methods, ‘Participants’ subsection)
and from various brain regions (Supplementary Table 2 and Meth-
ods, ‘Electrode localization’ subsection). Neuro-stack setup was done
bedside (Fig.1c,d) or on-body during ambulatory movement (Fig. 2a),
where the system was connected to implanted electrodes using a
custom-built connector (that is, touchproof Cabrio and Tech-Attach
connectors for macro-electrodes and micro-electrodes, respectively).
iEEG data were recorded simultaneously with the Neuro-stack
using commercially available recording systems (that is, Nihon
Kohden) for comparison purposes. Raw iEEG activity traces from an
example participant are shown using simultaneous Nihon Kohden
and Neuro-stack recordings (Fig. 1e,f), together with time-frequency
power spectrum data (frequency band:1-200 Hz, sampling frequency:
500 Hz; Fig. 1g), fast Fourier transform (FFT) and Welch-based power
spectral density (PSD) plots (frequency band: 1-200 Hz, sampling
frequency: 500 Hz; Fig. 1h,i). Further comparison metrics*’ are pro-
vided in the Methods (‘Concordance iEEG comparison’ subsection)
and Supplementary Table 1.

Stimulation was performed in three participants (P4, P5 and P10;
Supplementary Table 2) to test stimulationartifact propagation across
channels and assess associated statistics. In the first two participants,
bipolar macro-stimulation was applied to the left hippocampus (ampli-
tude: 0.5 mA; pulses/burst: 11; waveform shape: rectangular; pulse
width: 1 ms; frequency:100 Hz). After successful delivery was observed
insurrounding channels, aseries of bipolar macro-stimulation bursts
with varying parameters was delivered in the third participant (P10)
(Fig. 3c). Stimulation delivery (Fig. 3c, entire session; Fig. 3d, multi
burst; Fig.3e, single burst level) was observed on 40 nearby recording
channels, obtained using the Sense IC (samplingrate: 6,250 Hz). Over-
layed pulses from an example burst with the same parameters showed
successful delivery across all channels (Fig. 3f). Furthermore, all pulses
from the same burst showed consistent artifacts in the channel adja-
cent to the stimulation site (Fig. 3g). Higher stimulation amplitudes
resultedinlower variability in delivered power (Fig. 3h), whereas higher
burst frequency resulted in higher variability across channels (Fig. 3i).
Note that stimulation artifacts were not caused or affected by channel
saturation (Fig. 3f), with absolute voltage levels much lower than the
50-mV cutoff. Thus, these results (Fig. 3h,i) suggest that stimulation
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parameters, notjust underlying neural activity, contribute to stimula-
tion artifact waveform uncertainty. Full quantification of the impact
of different stimulation parameters on stimulation artifact statistics
should be addressed in future work.

Ambulatory walking task

We used the wireless Neuro-stack setup (Fig. 2a) in six participants
(P6-9, P11 and P12; Supplementary Table 2) while they walked in their
hospital rooms to record single-neuron activity (Supplementary
Table 2) synchronized with world-view and eye-tracking cameras
(Fig.2band Extended DataFig. 2c,d). The first four participants walked
freely around the room, during which motion artifacts (slow and sharp
transients; Extended Data Fig. 3a—c) were examined. To assess quality
of recordings, we calculated the artifact-to-signal time ratio (ASTR),
yield, signal-to-noise ratio (SNR) and artifact removal impact (ARI)
on spike sorting. Slow transients occupied frequency bands lower
than 4 Hz and were removed by filtering, whereas sharp transients
were detected using independent component analysis (ICA; Extended
Data Fig. 3d) and removed by linear interpolation. Although the use
of anearby electrode (same bundle) as a reference reduced common
noise artifacts using the FE amplifiers (Extended Data Fig. 2a) and
allowed some single units to be isolated (Extended Data Fig. 2a, right)
inthefirst four participants (P6-9), the large ASTRs prevented stabile
recordings, successful spike sorting and single-unit cluster isolation.
However, after copper shielding of the Neuro-stack’s electronics and
headstages, fixation of headstages to the participants’ head and rein-
forcement of each channel connection, the ASTRs were sufficiently
low (Extended Data Fig. 3g) in the next two participants (P11and P12).
Example raw 12-channel neural activity recorded from P11 (Fig. 2c)
and P12 (Extended Data Fig. 3a) during walking is shown. Despite a
lower SNR during walking compared to rest (Extended Data Fig. 3g),
spike sorting® of the bandpass-filtered (300-3,000 Hz) (Fig. 2d)
and artifact-free data successfully isolated single-unit clusters
(Fig. 2e-g). Recordings were stable and showed non-zero firing rates
(for example, Extended Data Fig. 3h) across the task, which included
both rest and walking periods (Extended Data Fig. 3a). Furthermore,
artifact removal had no significantimpact on the results of spike sort-
ing (ARl =—0.4 +1.6%, P=0.287; ARl,, = -0.2 £ 1.4%, P= 0.354), and
average (+s.e.m) single-unit yield across channels (P11=0.56 + 0.63,
P12 =1.00 = 0.96 units per channel; Extended Data Fig. 3g) was similar
to previous studies in stationary participants. LFP activity from the
same MTL micro-electrodes recorded in P11 and P12 during the walk-
ing task (Fig.2h) showed that thetaactivity (3-12 Hz) was significantly
increased near the wall (boundary) compared to the inner room area
(Fig. 2i; P< 0.001) in line with previous findings™®.

Stationary verbal memory task

Neuro-stack’s ability to record neural data in real time and decode
behavioral performance was tested in a participant (P7) while they
completed a verbal memory task (Fig. 4a). During the task, the par-
ticipant was instructed to learn (encode) a list of ten words and then
verbally recall as many as possible after adelay (30 s). During the delay,
anon-mnemonic (distraction) task was completed thatinvolved iden-
tifying whether the sum of two random numbers (1-9) was odd or even.
Encoding, distraction and recall blocks were repeated nine times while
the Neuro-stack recorded LFP activity from 16 micro-wire channels,
which was used to decode memory performance in real time using
artificial neural networks (ANNSs). The goal of decoding/classification
was to predict the binary outcome of verbal memory (subsequently
remembered/forgotten) based on LFP activity during encoding.

The TPU device (Extended Data Fig. 4) was integrated with the
Neuro-stack and used to embed a neural network model that was
small enough to be successful with using solely on-system computa-
tion. ANNs were pretrained on multi-channel raw (downsampled)
LFP data previously acquired using a Blackrock Neuroport recording

system. Offline pretraining performance successfully differentiated
remembered from forgotten words during recall with a test F1 score
(F,=2x(PxR)/(P+R);P,precision, R, recall) of 88.6 + 5.5% and a test
accuracy of 91.7 + 3.3%. The model was built and trained in a Keras
(TensorFlow back-end) framework after detailed comparison with
commonly used machine learning methods (support vector machine
(SVM) and principal component analysis (PCA) plus SVM, various
neural network architectures; Supplementary Table 4). The decoder
consisted of aninput 2 x CNNI1D + LSTM (one-dimensional convolu-
tional neural network +long short-term memory) layers that extracted
multi-channel LFP features and an output Dense (fully connected
network) + Classifier layers (Fig. 4e). For further details, see Methods.

During the memory task, the offline model’s output layers were
retrained in real time on an external computer. The trained model
was then translated to TensorFlow Lite and ported to the Edge TPU,
to predict memory during the last four task blocks (Fig. 4b). The
training phase and improving accuracy/loss metrics are presented in
Fig.4c.Theonlinetest (prediction) phase resultedinanF1score of 69%
(Fig. 4c,bottom). Average total theta power of the data (Fig.4d) and a
time-frequency heat map of the second CNNI1D layer activation filters
confirmed that theta multimodal activity timed to the population
activations in the left and right hippocampus was used by the model
to separate the two classes (Fig. 4f,g). The model’s above-chance per-
formance was confirmed by receiver operating characteristic (ROC)
curves (0.5 threshold) for both the offline base model (Fig. 4h) and the
online Neuro-stack prediction phase (Fig. 4i). Participant’s memory
performance during the testing phase of the online study was 42.5%
(summary of recall performances inboth training and testing datasets
isshownin Extended DataFig. 7c).

Discussion

We present the Neuro-stack, anovel miniaturized recording and stimu-
lation system that can interface withimplanted electrodesin humans
duringstationary (bedside) orambulatory behaviors. The Neuro-stack
presents a unique system fully developed and tested in an academic
environment (Methods, ‘Neuro-stack developmentin an academic set-
ting’ subsection), which can deliver closed-loop PLS (to up to 32 chan-
nels simultaneously) during single-unit and LFP recording. Full-duplex
and PLS capability have been a key challenge in the development of
implantable neuromodulation devices due to small marginsin devices’
input dynamic range compared to externalized systems. Current human
implantable systems require mitigation before recording of neural
activity when stimulation is on (for example, amplifier blanking and
differential recordings). The Neuro-stack’s larger dynamic (FE) input
range and its amplifier’s digital non-linearity correction (NLC) allows
for capturing of large-magnitude stimulation artifacts in the absence
of amplifier saturation or neural signal degradation. The Neuro-stack
alsoincludesadigital ASARIC*, which could provide improved ability
to sense multi-channel single-unit/LFP neural activity (with160-mV,,
single-unit and 100-mV,, LFP linear input range) concurrent with
stimulation. However, future studies will be needed to characterize
advantages and effectiveness of added ASAR capability. Altogether,
the Neuro-stack offers an advantage over existing systems in that it
providesunrestricted full-duplex with PLS capability during single-unit/
LFPrecordingin the presence of large stimulation artifacts.

A second major advantage of the Neuro-stack is its smaller hand-
heldsize thatenablesittobe carried on-body and wirelessly controlled.
These features allowed us to record single-neuron activity during
walking, which, to our knowledge, are the first recordings of their kind
inhumans. Future studies using the Neuro-stack could determine the
neural mechanisms underlying human freely moving behaviors to
identify, for example, spatially selective neurons and their modula-
tion by cognition (for example, hippocampal place or entorhinal grid
cells”) that have been discovered in freely moving animals. Doing so
would bridge decades of findings between animals and humans and
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potentially lead the way toward scientifically informed therapies for
hippocampal-entorhinal-related dysfunctions (for example, Alzhei-
mer’s disease). Although we did not identify spatially selective single
units, possibly due to the restricted spatial environment in which
walking took place, future studies using the Neuro-stack over longer
distances (for example, hallways) may be able to identify these neurons
inhumans.

Athird advantage of the Neuro-stack s its APl that allows fast and
flexible prototyping of behavioral experiments with a range of back-end
functions thataccurately align behavioral and neural events. We dem-
onstrated how an offline neural network model can decode verbal
memory performancein aparticipant with accuracy levels that exceed
previous reports'®, whereas a similar real-time result was obtained using
the Neuro-stack’s APlintegrated witha TPU. Future studies with larger
sample sizes will confirm whether our reported decoding accuracy can
be improved and generalized across participants. It should be noted
that wetested the decodingalgorithmina participant using the model
pretrained with recordings from a different device with different noise
levels (Fig.1g); hence, performance could increase as more Neuro-stack
dataareincorporatedinto the pretrained model. Given theincreasing
benefit of using machine learning approaches™*in neuroscience stud-
ies, the Neuro-stack could be useful for validating decoding models
and testing novel closed-loop stimulation therapies (for example, to
improve memory in patients with severe memory impairments).

Future studies could also determine which stimulation parameters
are most beneficial for restoring cognitive or behavioral functions
given the Neuro-stack’s highly flexible programmability compared
to existing human-approved stimulators. For example, continuous
adjustments of custom pulse shapes and/or timing of stimulation
relative to ongoing neural activity could allow for the development of
more effective therapies. Given the wireless and wearable nature of the
Neuro-stack, studies could also determine whether closed-loop stimu-
lation protocols effectively translate to more naturalistic behaviors
during everyday experiences that occur during mobility.

Although the Neuro-stack offers several advantages over cur-
rently available systems, there are limitations that warrant discussion.
First, the Neuro-stack can only support a maximum of 32 single-unit
recording channels. Other existing bedside systems can allocate
more than 128 channels solely for single-unit recordings. The use of
multiple Neuro-stack devices, however, would address this issue and
increase single-unit channel count substantially. Second, although
the Neuro-stack is small enough to be carried on-body and allows for
full mobility, its connection with implanted electrodes is still wired.
Thus, significant movements can resultin motion artifacts. However,
single-unit spike waveforms can still be detected and isolated during
walking behavior as we show using techniques such as differential
recordings between nearby contacts as well as proper wire isolation
and fixation. Lastly, the Neuro-stack can only be used in research stud-
ies with patients who have externalized electrodes implanted during
clinical (for example, epilepsy) monitoring. Because these patients
need to be continuously tethered to bedside intracranial recording
systems to assess for symptomatic episodes (for example, seizures),
this limits the amount of time a patient can be freely moving. How-
ever, ambulatory studies can be completed after clinical data have
been captured, as was done in the current study, on the last day of the
patient’s hospital stay before electrode de-plantation surgery, or dur-
ing circumstances where continuous monitoring may not be necessary
(for example, depression or chronic pain studies®**). Furthermore,
proper precautions and safety measures should beimplemented, such
aswaiting to complete studies until patients with epilepsy are back on
anti-epileptic medications to minimize risks associated with seizures
during ambulatory tasks.

AlthoughNeuro-stackis much smaller than other external systems,
anevensmaller versioncould be tested in future studies, because its IC
chipsareallimplantable®***** and require acombined area of 113 mm?

(four analog layers). An implantable version of the Neuro-stack® but
with its added single-neuron and closed-loop stimulation capabili-
ties thus presents an exciting avenue toward a completely wireless
intracranial single-unit and LFP recording system that would not be
susceptible to motion artifacts. This would present a considerable
advancement over current FDA-approved chronic neurostimulation
devices in that it would allow for single-neuron and multi-channel
(current state-of-the-art is four channels) recordings, bidirectional
recording and PLS stimulation (full-duplex) capability and the ability
touse advanced strategies for decoding (for example, neural network
models) behavior or disease-related states. Altogether, these capabili-
ties would provide cognitive and clinical neuroscience studies with a
promising future pathway toward determining the deep brainmecha-
nisms of naturalistic behavior inhumans and developing more effective
closed-loop intracranial neuromodulation strategies for individuals
with debilitating brain disorders.
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Methods

Equipment designed and used in this research was approved by the
University of California, Los Angeles (UCLA) institutional review board
(IRB). The research protocol, informed consent and in vivo studies in
human participants described in this work were also approved by the
UCLAIRB.

Neuro-stack hardware design

The Neuro-stack was built from four implantable and previously
reported application-specific IC chips. The Sense IC contains
32 low-noise, high-dynamic-range LFP sensing FEs, which can be
duplexed to 32 electrodes for single-ended recording with respect
to the reference electrode or to 32 pairs of electrodes for differential
recording, matching up to 64-electrode probes (or 8 x 10-electrode
probes, where the 9this areference and the 10this aground contact).
After linearization in the NLC module, the recorded output can be
optionally sent to four ASAR engines, which use adjacent recording
channels to adaptively learn the shape of the stimulation artifact to
improve stimulation artifact removalinreal time. The signal processing
chain of FE + NLC + ASAR provides the ability to sense neural activity
concurrent with stimulation. Each of the stepsin this chaincanbe con-
figured andincluded/bypassedin the pipeline. The Sense IC provides a
three-wire SPlinterface. It also downstreams the commands to control
the StimIC. The controllerintegrated into the Sense ICimplements the
state machine for SPlcommunication, schedules the data for the sens-
ingoutput and features the capability of individual control of every FE/
NLC/ASAR module®* . The PLSICis a previously developed digital chip
thatsupports 16-channel detection of the power at selectable frequen-
cieswithin thetaband (3-8 Hz) and triggers configured stimulation at
aspecified phase of the detected oscillation*®*.

We designed alayout and manufactured a digital (Fig. 1b, middle)
and ananalog (Fig.1b, bottom) PCB using specialized software (Altium
Designer 14.0) where each board consisted of two PCB layers. The
Sense, Stim and Spike IC footprints were placed on the analog layer and
the PLSIC footprint on the digital layer. The SPlinterface was routed
fromthe analog layer input/output connector to the Sense IC and from
the Sense IC to the Stim IC (Fig. 1b, right). We used an SPI with three
wires: clock, master input/output slave (MISO) and master output/
inputslave (MOSI). Two-wire shift register interfaces were routed from
the analog/digital layer input/output connector to the PLSIC/SpikeIC
(Fig.1b, right). The sensing and stimulation FEs were routed to the two
Omnetics PS1-16-AA connectorstowhich electrodesare connected. The
digital and analog layer input/output connectors are compatible and
can be stacked on top of each other. On the top connector, we placed
the Xilinx Spartan-6 (XC6SLX150-2FGG484C) FPGA board to serve the
role of the communication layer (Fig. 1a, top). The FPGA is configured
tosupport four SPlinterfaces and five shift registers, thus allowing up
tofouranaloglayerstobe stacked together. We used atwo-analog layer
setup forallinvitroand in vivo experiments. Because we used separate
SPlinterfaces for each analog layer IC, the 4th wire (select) on the SPI
was not needed in the PCB design. The FPGA contains a finite state
machine (FSM) that converts USB input (FTDI controller) into SPI (SPI
controller) packet stream and vice versa. For FPGA programming, we
used the Xilinx ISE 14.2 software (Verilog language). In brief, the FSM
always begins with a Reset state after areboot and then enters an Idle
statein which it waits forincoming packets. Once apacketisavailable,
the FSM receives it byte by byte (Receive Byte) until the complete
message is transferred (Receive Packet). The received packet is then
being processed (Process Packet), converted into the appropriate
interface (forexample, USB to SPI) and transmitted to the Neuro-stack
ICs (via SPI or Shift Register). Similarly, after the processingis done, the
response packet fromtheICs entersastate during whichit can transmit
the packet (Transmit Packet) byte by byte (Transmit Byte) externally.
Oncethe transmissionis done, the FSM goes back to the Idle state and
waits for new packets unless the streaming of the neural datais taking

place,inwhich case the FSM enters the Process Packet state indefinitely
until therecordingis stopped (Extended Data Fig. 4, left). Stacked lay-
ers were placed inside a plastic enclosure (Fig. 1a) and wrapped from
the inside with copper foil shielding tape to reduce the impact of the
noise. Custom headstages (Fig. 1b,d) were built on a protoboard by
placing two 5 x 2 connectors on each, which were internally routed to
the Omnetics connector.

Neuro-stack’s communication layer uses a USB interface for
external connections and a specificcommunication protocol that can
address, configure and start/stop each IC. The protocolis described by
apacket structure (up to 520 bytes) that captures Command (such as
Reset, Start/Stop, Read/Write configuration registers, etc.), Board ID
(toselect analoglayer), Spike and PLS commands and optional Payload
(varies in length (Payload Length) depending on the command). The
FPGA’s FSM processes the input packet and decides which IC is to be
addressed and forwards relevant bytes toit. The protocol alsoincludes
safety error and cyclic redundancy check bytes (Extended Data Fig. 3,
bottom). Every command returnsits specific acknowledgment receipt,
indicating that the execution of the command was successful.

Neuro-stack software design

The Neuro-stack GUI (Fig. 1a) was built as a Universal Windows Platform
application using Visual Studio (2017) and the Visual C# language. The
application can be installed on any Windows (8.1 or higher) machine.
We specifically used Surface Pro 5 for running the GUl application. The
application uses a USB connection to directly communicate with the
Neuro-stack (Fig.1a) to enable viewing and configuration of real-time
neural data, the configuration of PLS and other stimulation parameters
and manually triggered delivery of stimulation.

Asanalternative to the GUI, the Neuro-stack APlis alibrary of func-
tions built in C++that the user can call in custom-design experiments.
The APlcombines all core and backhand GUI functionsinto a faster and
more resource-efficient implementation. It is built as a multi-thread
real-time software pipeline, which threads mirror hardware blocks
(for example, Sense Process controls the Sense IC and Stim Process
controls the Stim IC; Extended Data Fig. 4, middle). Processes respon-
sibleforeachICruninparalleland asynchronously forward commands
to their associated IC, or they await a command receipt or a recorded
neural sample via the Input Queue (Extended Data Fig. 4, middle).
Neural samples are time-stamped using network time protocol (NTP,
ref.>®) in the Sense and Spike Process threads upon their arrival. They
are sent together with a sample value either to an external device or
stored inlog memory (Extended Data Fig. 4, middle), which was used
for synchronization. The library can be compiled for commonly used
Linux, Windows, macOS or ARM-based target devices. We used the
ARM-based (NXP i.MX 8M SoC) CDB to run the Neuro-stack API. To
use all CDB capabilities, we complemented the library with functions
that can store/save the TensorFlow Lite model and run inference on
recorded neural samples using the CDB’s onboard TPU. CDB supports
bothwired (USB-C) and wireless (using alocal network access point and
aTCP/IPserver witha X.509 certificate authentication) interfaces with
external control capability and use of a real-time monitoring device
(for example, Experimental Computer). X.509 is a digital certificate
that uses public key infrastructure. We used self-signed certificates
because we used only one Experimental Computer to connect to the
Neuro-stack. We used aMacBook Pro (2015) laptop as an Experimental
Computer, which ran a client Python 3.6.9 script for triggering sens-
ing, stimulation, TPU-specific commands and transferring/storing/
monitoring neural activity by using the Neuro-stack API running on
the CDB (Extended Data Fig. 4).

For in vivo resting state neural recording experiments, we used
the GUI application to control the Neuro-stack (Fig. 1). For in vitro
testing, in vivo macro-stimulation (Fig. 3), behavioral stationary
(Fig.4) and ambulatory experiments (Fig. 2), we used the Neuro-stack
APl and CDB wireless configuration (Extended Data Fig. 3).

Nature Neuroscience


http://www.nature.com/natureneuroscience

Technical Report

https://doi.org/10.1038/s41593-023-01260-4

Invitro testing

In vitro studies involved the use of an oscilloscope, a PBS solution, a
National Instruments Digital-to-Analog Converter (NI-DAC) and the
Neuro-stack (using both wired and wireless configurations; Extended
DataFig. 5). Testing of the Sense and Spike ICs involved feeding 100 s
of pre-recorded LFP/single-unit data through the NI-DAC. The analog
signals were observed using an oscilloscope and recorded by a single
channel using the Neuro-stack. For visualizing results, atime domain
comparison was used for Sense IC and Spike IC (Extended DataFig. 6).
The StimICwas tested as part of closed-loop delay measurements and
in previous reports®. Delivered stimulation was captured by the oscillo-
scope and on one channel using the Neuro-stack (Extended Data Figs. 5
and 6). The PLSIC was tested in vitro as part of a previous study***.

The round-trip delays were measured by sending a pulse train
(50 pulses, 20-mV amplitude, 1-s pulse width, duty cycle 50%) from
the NI-DAC to one channel recorded using the Neuro-stack. The modi-
fied software onthe CDB continuously pooled incoming samples and
detected the increase from O (rising edge) in these incoming values.
Oncedetected, therising edge triggered one pulse of stimulation. The
delay (mean £ s.d. for 50 pulses) was measured on the oscilloscope by
capturingboth the recording input and stimulation output rising edges
and their time difference (Extended Data Fig. 6d).

The Neuro-stack system and software latency from the recording
input to the Sense Process thread on the CDB was measured using the
same pulse train process, but, instead of triggering stimulation, the
detected rising edge triggers a 1-s pulse to the CDB general purpose
input/output (GPIO) pin. We used the oscilloscope to observe the
recording input and GPIO output and measure the time difference
betweentherising edges (Extended Data Fig. 6), which was equivalent
to the system latency (mean +s.d. for 50 pulses).

Invivo testing
Participants. Research participants were 12 patients (mean age
24.15 years, nine females; Supplementary Table 2) with pharmacore-
sistant epilepsy who were previously implanted with acute stereo EEG
depthelectrodes for seizure monitoring. Participants volunteered for
the research study during their hospital stay by providing informed
consent accordingto aresearch protocol approved by the UCLA IRB.
In each patient, 8-12 flexible polyurethane depth electrodes
(1.25-mm diameter) were implanted solely for clinical purposes and
before completion of the research study. Each depth electrode termi-
natedinasetof eightinsulated 40-um platinum-iridium micro-wires
(impedances 200-500 kQ).

Electrode localization. Electrodes were localized to specific brain
regions using methods that have been previously used”. In brief, a
high-resolution postoperative computed tomography (CT) scan was
co-registered to a preoperative whole brainmagnetic resonance imag-
ing (MRI) and high-resolution MRI using BrainLab stereotactic locali-
zation software (https://www.brainlab.com/) and FSL FLIRT (FMRIB’s
Linear Registration Tool*®). MTL regions, including the hippocampus
and entorhinal cortex, were delineated using Automatic Segmenta-
tion of Hippocampal Subfields (ASHS*’) software using boundaries
determined from MRl visible landmarks that correlate with underlying
cellular histology. White matter and cerebrospinal fluid areas were out-
lined using FSL FAST software®®. Macro-electrode and micro-electrode
contacts wereidentified and outlined on the postoperative CT. Foralist
oflocalized brainregionsinall participants, see Supplementary Table 2.

Dataacquisition and stimulation

For all in vivo validation sessions, a Neuro-stack with two analog lay-
ers was used, which allowed for up to two micro-electrode bundles
(16 channels) and eight macro-electrodes (32 bipolar or 64 monopolar
channels). Allmicro-electrode and macro-electrode recording sessions
were sampled at 38.6 kHzand 6,250 Hz, respectively. Base recordings

were done without hardware decimation, non-linear correction and
artifact rejection on the Sense IC. Refer to the ‘Data analysis and sta-
tistics’ subsection for details about data analyses.

Macro-stimulation was performed in three participants while
they rested in their hospital beds. In the first two participants, three
stimulation bursts (0.5 mA) were delivered to asingle bipolar electrode
channel.Inathird participant, we performed stimulation propagation
mapping, where macro-stimulation was delivered to a single bipolar
channel (Fig. 3c,d), and recording was done in the other 40 channels.
The parameter test space included (amplitude, frequency) combina-
tions of (0.25, 0.50, 0.75,1.00 and 1.25) mA x (60, 80, 100, 120 and
140) Hz where every combination was repeated four times for a total
of 100 bursts (Fig. 3c) with the following parameters (pulse width:
1.28 ms; interphase width: 150 ps; rectangular pulse shape; interburst
delay:16.67 s). The desired burst frequency was achieved by setting the
inter-pulse delay appropriately.

Rectangular pulsesrecordedinall 40 channels were identified by
using cross-correlationacross all channels against atemplate waveform
of the delivered stimulation pulse, which was later used for align-
ment (Fig. 3f,g) and calculating statistics of propagation in 33 out of
40 channels (seven channels did not have artifacts) with respect to
varying amplitudes (Fig. 3h) and frequencies (Fig. 3i). For statistical
calculations of the propagated power, all pulse waveforms across
channels were normalized using the same value of the largest pulse
that was propagated.

Ambulatory walking task

Single-unit data were recorded in six participants during an ambula-
tory walking task. Four of the participants (P6-9; Supplementary
Table2) wereinstructed to walk around their hospital room freely and
visit prominent ‘landmarks’, such as locations near windows, doors and
tables. Aseparate group of two participants (P11and P12) was instructed
to walk repeatedly (ten times) from one position to another position
in the room using a linear path (Fig. 2h). Ambulatory movement and
position were tracked using an eye-tracking headset (Pupil Labs Core
device®), which contained inward-facing eye cameras (sampling rate:
200 frames per second) and an outward-facing world-view camera
(sampling rate: 120 frames per second). The recordings were per-
formed using Pupil Capture software (version 2.3). The Neuro-stack
was connected to two micro-wire electrode bundles (Behnke-Fried,
Ad-Tech Medical) to record from 18 micro-wire contacts (16 recorded
single-unit activity, and two served as reference contacts). Record-
ings with respect to local references (same bundle) were recorded at
asampling rate of 38.6 kHz.

During the walking task, the participants wore an eye-tracker
headset and asmall backpack (Fig. 2a), which carried the Neuro-stack,
the TPU (CDB) using the wireless configuration (Extended Data Fig. 4)
and a Voltaic V75 USB Battery Pack. The researcher used an Experimen-
tal Computer running an application (Python) to start/stop record-
ings and view in real time the neural data. Both the Neuro-stack and
eye-tracker were connected to the same local network fromwhichthe
NTP time-stamps were fetched. For aredundant method of synchroni-
zation, a miniature LED was attached to the corner of the world-view
camera on the eye-tracking headset (Fig. 2a and Extended Data
Fig. 2d). The LED was programmed to turn on for 50 ms every 20 s
during the experimental walking task, which was not visible to the
participant and was also NTP time-stamped.

LFP analysis

After spike sorting and artifact detection (see ‘Data analysis and statis-
tics’subsection), we performed LFP extraction and analysis and aligned
the datawithbehavior. Single units and artifacts were removed fromthe
datausinglinear interpolation of +1 ms around the detected samples.
Spike-free and artifact-free data were downsampled to 386 Hz (using
MATLAB’s multistep ‘resample’ function). A high-passinfinite impulse

Nature Neuroscience


http://www.nature.com/natureneuroscience
https://www.brainlab.com/

Technical Report

https://doi.org/10.1038/s41593-023-01260-4

8th order, 1-Hz cutoff filter (MATLAB’s ‘designfilt’ function) was then
applied to the downsampled data.

The BOSC toolbox®* was used for time-frequency analysis. The
base waveletincluded six waves, and the transformation was performed
onthe3-90 Hzrange (0.25-Hzincrements for <30-Hz,1-Hzincrements
for 230 Hz). The sum of the power time-series over frequency incre-
ments resulted in a bandpower range (for example, 3-12 Hz) in time.
The bandpower was then normalized, by z-scoring each time-series
for a frequency band over the entire time-series data, separately for
eachrecording channel.

Position extraction during the walking task

Each participant’s location in the room during walking was estimated
using the Pupil Labs world-view video, Pupil Player software (version
2.3) and pretrained models for optical flow extraction from video
frames®. First, for each walking trial across the room, the turning
frames (points X and Y; Fig. 2h) were identified. Points A and B (Fig. 2h)
used for the boundary analysis were determined as the video frames
that were, respectively, located at 1/3 and 2/3 of the time that was
necessary tocross fromXto Y. Bandpower time-series were then sepa-
rated into two conditions: inner (A to B; Fig. 2h) and boundary (Bto Y;
Fig.2h). To correct for adifferent number of datasamples withineach
of the two conditions, statistical analysis was performed on mean
bandpower values from 500 iterations of randomly sampled data from
the larger dataset using the length of the lower dataset (MATLAB’s
‘datasample’ function).

Statistical analyses

Astatistical comparison betweeninner and boundary positions on LFP
bandpower from the walking task was completed using a two-sided
paired permutation test with 10,000 permutations®. We assumed
that random sampling of data points between conditions in time,
after which the bandpower across channels was calculated satisfied
the exchangeability, which is the only condition of a non-parametric
permutation test. The P value was calculated as the sum of the ran-
dom differences that were larger than the observed mean difference
between the bandpower vectors from all channels, which was then
divided by the total number of samples in the distribution. Figure 2i
was plotted using MATLAB’s ‘boxplot’ function.

Stationary verbal memory task

Behavioral task. Verbal memory performance was decoded using the
Neuro-stack in a single participant (P7; Supplementary Table 2). The
memory task began with an encoding period, where the participant
wasinstructed tolearnalist of ten words that were randomly selected
andserially presented in an audio and visual format on aniPad Pro (3rd
generation) screen (Fig. 4b and Extended DataFig. 4, top right). During
encoding, each word was presented for 2 s with an inter-trial fixation
period of 4 s. Words were drawn from clusters of six and seven of the
word norms and were all 4-8-letter nouns that were rated as highly
familiar (range 5.5-7 on al-7scale), moderate to high on concreteness
andimagery (range 4.5-6 onal-7 scale) and moderate in pleasantness
(range 2.5-5.50nal-7scale)®. After the encoding period, participants
completed a distractor task where they were instructed to determine
whether a presented number (1-9) was odd or even. The distractor task
was thenimmediately followed by a verbal recall period where partici-
pants were cued to verbalize as many words as they could remember
during a 30-s period. During the experimental paradigm, encoding,
distractor and retrieval periods were repeated ten times. Memory
performance was calculated as the proportion of previously encoded
verbalized words that were recalled.

Base neural network model. For the online binary classification of
incoming neural data into remembered/forgotten words, we used a
pretrained base neural network model. The base model architecture

included two CNN1Ds (1st with 32 nodes, 2nd with 64 nodes) and an
LSTM neural network layer with 64 nodes. The L2 regularization was
usedinthe CNN1D and Dense layers and was proportional to the square
of the weight coefficients’ value. Moreover, the training dropout tech-
nique® was applied after eachlayer witha 0.2 rate, except for the LSTM,
whichusedaO0.1rateand arecurrentdropout (0.5rate). The complete
structure of one branch is presented in Fig. 4e. The branches were
structurally identical for all brain regions but had different weights
after training. The model was pretrained offline using data from six
MTL regions (left/right anterior hippocampus, left/right posterior
hippocampus and left/right entorhinal cortex) from ten participants
who performed the exact same verbal memory task (Fig. 4a) previ-
ously using a Blackrock Neuroport system to record neural data. LFP
data (samplingrate 250 Hz, batch size 512) were extracted around the
verbal memory task word onsets (same Gaussian window as before)
and fed into the model for training (Extended Data Fig. 7a). The data
fromall participants were divided into training (50%), validation (25%)
and test (25%) sets. Then, training and validation datasets were com-
bined, shuffled and used for training of the base model (Extended Data
Fig. 7c). Because the number of forgotten (words) trials (forgotten
class samples) compared to remembered trials (remembered class
samples) was always fewer, we randomly selected an equal number
of remembered class samples to balance the training dataset. Binary
cross-entropy was used for the loss function, with root mean square
propagation for the optimizer (learning rate of 0.001). Five-fold
cross-validation (Extended Data Fig. 7d, average across folds) was
used for validation using the presented hyperparameters. Hyper-
parameter optimization of the final decoding model (Fig. 4e) was
done during the validation phase and with respect to the F1 score
(0.5threshold).

Transfer learning and online prediction. During the verbal memory
task, we used the Neuro-stack in a wireless configuration (Extended
DataFig. 3) together with both the Experimental Computer and Stimu-
lus Presentation device (iPad). We used the Sense IC to record 16 chan-
nels fromtwo (left/right hippocampus) micro-wire bundles. Stimulus
presentationontheiPad wasimplemented as agame using Xcode 11.2.1
and Swift 5.0.1 programming languages. For network communication,
we used two transmission control protocol (TCP) channels (Fig. 4b
and Extended Data Fig. 4; (1) Experimental Computer—CDB and (2)
Experimental Computer—iPad). The background processing of the
task’sdatawasdivided into two phases: (1) training and (2) prediction,
which consisted of five and four blocks of the verbal memory task cycle,
respectively (Fig. 4c, presented seven blocks only—three training and
four prediction). The purpose of the training phase was to personalize
the model for the participant. Only the last two Dense layers from the
model were used for retraining and embedding selected filters into
the prediction model. The training phase involved downsampling and
filtering of raw data (0.1-250 Hz), packing the data separately for each
observed brain region (Preprocess step) and transmitting packages
fromthe Neuro-stack externally to the Experimental Computer where
the model retraining took place (Fig. 4b and Extended Data Fig. 8a).
The words were presented using an iPad Pro tablet, which also used a
built-in speech recognition algorithm to supply real-time outcomes
(that is, remembered or forgotten) to the Experimental Computer.
The word onset events were isolated and weighted using a Gaussian
window where one standard deviation was 2.5 s, and cutoffs were made
at-5sand 5s (before and after word onset), thus giving data around
the word onset higher priority. The retraining of the model took place
duringevery Distraction phase (30 s) of the verbal memory task. Once
retrained, the model was automatically converted (Python 3.6.9 and
Bash scripts) on the Experimental Computer from TensorFlow 2.2 to
TensorFlow Lite and uploaded wirelessly to the Edge TPU (Extended
DataFig. 8c). During the prediction phase, the same format of preproc-
essed datawasrerouted to the Edge TPU, where prediction took place.
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The predictions from TPU and labels from the iPad were transmitted
to the Experimental Computer for performance assessment after each
word trial (Fig. 4b).

Transfer learning was used to decode performance on the ver-
bal memory task in a single participant. During the training phase
with Neuro-stack, we used the same training parameters except
that CNNI1D and LSTM layer coefficients were fixed (Extended Data
Fig.8b),and only Dense coefficients were adjusted. Also, we used only
two model branches out of six that were previously trained on the
Blackrock-acquired data (hippocampal channels only) to match the
left/right hippocampal electrode placement in the single participant
who performed the verbal memory task Neuro-stack experiment.
During the online training phase, all incoming windows (chunks) of
LFP datawere continuously combined with previous chunks, shuffled
and used for retraining, whereas the new retraining iterations done
after each learning block updated the coefficients saved from the
previouslearning blocks (Extended Data Fig. 8d). This way, the retrain-
ing process used a semi-shuffled dataset as the training set and then
sequentially updated it with incoming data. Participants (Blackrock:
B1-B10; Neuro-stack: N1(P7)), their memory performance during ver-
balmemory task and test accuracies using offline (B1-B10) and online
(N1) models are shown in Extended Data Fig. 7c.

Visualization. To getinsightinto the trained convolutional portion of
the network model during inference, we observedits filter activations
by visualizing the patterns that the filters were meant to respond to.
Specifically, we applied gradient ascent at the input chunk values so as
to maximize the response of aspecificfilter. The starting input chunk
was 10 s with all samples having a value of 0. The resulting chunk was
the one that the chosen filter was maximally responsive to. This was
performed at the output of everyfilterin the second CNN1D layer for all
channel models. The process aimed to build aloss function that maxi-
mized the output of each filter and then to apply stochastic gradient
descent, which adjusted theinput chunk values so that the filter output
values were maximized. The loss function used was an average of the
outputforagivenfilter,and the gradient was with respect to the chan-
nelmodelinput chunk. We also used L2 normalization during gradient
descent.Once completed, the resultinginput chunk was transformed
into the time-frequency domain using continuous wavelet transform
with complex Morlet base, to visualize whether the CNNI1D layers
were using specific oscillatory bands known to be signatures of verbal
memory encoding. lllustrated are filters from the middle hippocampal
branch, which maximally responded to theta bands (4-8 Hz) around
the word onset (Fig. 4f,g). Association between hippocampal and MTL
theta activity and memory function has been well established'®®. Note
that theseresults (Fig. 4f,g) do not necessarily suggest that neural10 s
of datawith strong theta power around the word onset is predictive of
successful encoding. Rather, these results suggest that filters with a
time-frequency transfer function thatisolates theta activity (Fig. 4f,g)
contributed to the model’s final decision, ultimately made by layers
that followed the second CNNID layer, which could have been either a
remembered or a forgotten word.

Other classification methods. The above-described neural network
model was chosen after an extensive trial-and-error process during
which multiple classification algorithms were tested on the same data-
set. Specifically, before using the neural network model, the datawere
classified using shallow methods, such as SVM. As part of the feature
engineering process, we supplied SVM models with raw, power and
phase datain 0-250-Hzrange chunks of 7 s (word onset at 3.5s) orina
sequence of 1-s sliding time windows (withno overlap). Before choosing
the final decoding model, we also tested several convolutional neural
network (CNN) and recurrent neural network (RNN) architectures.
Summary of the accuracies for each of these decoding methods is
presented in Supplementary Table 4.

Neuro-stack developmentin an academic setting

The Neuro-stack is a neural interface that was designed, validated
and tested in human participants all at an academic center, unlike
other existing devices discussed (for example, NeuroPace, Medtronic
and Blackrock Microsystems), which were developed in commercial
environments. The Neuro-stack development was informed by in vivo
human testing (for example, wearability, pre-existing stimulation
protocols and available online electrophysiological data processing),
all of which were made possible by research and close collaboration
among academic researchers across the Departments of Electrical
and Computer Engineering, Neurosurgery and Neurology and the
Neuroscience Interdepartmental Program at UCLA.

As mentioned previously, much of the hardware (Sense, Spike
and Stim ICs) integrated in the Neuro-stack was developed for the
implantable SUBNETS system through a multi-institutional effort that
was initiated, supported and funded by DARPA. The SUBNETS system
and its components were developed following standard operating
procedures and FDA guidance for active implantable medical devices
incorporating requisite International Organization for Standardiza-
tion (ISO) standards. In addition to the Sense IC for LFPs and Stim IC
for the SUBNETS program, an additional Sense IC for spikes and a PLS
IC were developed, conforming to the same guidelines. The technol-
ogyincorporatedinthe Neuro-stack was developed in two fabrication
cycles (Istiteration* and 2nd iteration’®), with a series of tests involv-
ing benchtop verification with in vitro validation. In the final version
ofthe system, Sense, Spike and PLS ICs were designed and fabricated
at Taiwan Semiconductor Manufacturing Company using a 40-nm
complementary metal-oxide semiconductor (CMOS), whereas the
Stim IC was fabricated at X-FAB using a high-voltage 180-nm CMOS.
Neuro-stack assembly and software development were internally veri-
fied and validated at UCLA to meet safety requirements set by the FDA
and the UCLA IRB. The functionality of each hardware and software
component was, thus, thoroughly tested and documented before
obtaining IRB approval. Thisincluded testing of recording functionali-
tiesat specified parameters for agiven channel, at adefined sampling
frequency and under a specific amplifier configuration and not oth-
ers. Likewise, validation of stimulation capability was done to ensure
that software control and triggering of stimulation delivered current
with the exact programmed parameters, as per ISO 14708-1and ISO
14708-3. Given that stimulation requires additional safety checks, a
separate condition, which enables stimulation, needed to be checked
atthe firmwarelevel to ensure that delivery could happen only during
triggered stimulation trials and not others. This ensured aredundant
checkin cases where an altered command would be read by the firm-
ware as a stimulation command. Furthermore, all commands sent to
the firmware contained an 8-bit cyclic redundancy check (CRC) code
to reduce the probability of an incorrect command delivery. During
validationand humanin vivo testing, only one password-protected and
encrypted experimental computer containing asigned certificate was
used to control the Neuro-stack, thus simplifying the necessary security
infrastructure required for acommercial medical device.

Leakage currents of all channels were verified independently
of software and hardware designers by a clinical engineer in an idle,
active recording and stimulation mode of operation. Furthermore,
all hardware and software documentation, including but not limited
to design history, schematics, code and in vitro validation tests, were
reviewed and approved by anindependent clinical engineer at the UCLA
Ronald Reagan Medical Center as precursor to the IRB review process.

Reproducibility

The Neuro-stack was completed as part of a multi-institutional effort
involving a large group of academic researchers over several years.
The Neuro-stack integrates hardware (IC) components already devel-
oped as part ofa previous program (DARPA SUBNETS) with additional
development of firmware and software to enable practical research
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applications with human participants who have intracranial electrodes
already implanted. Thus, reproduction of the Neuro-stack would first
require replication of individual application-specific integrated cir-
cuits (ASICs) reported in previous work (***2%¢), It would take addi-
tional effortand resources for UCLA to manufacture and distribute the
devicesand provide user manuals and customer support. Additionally,
revisions of the technology aimed at manufacturing economy of scale
(for example, integrationin 180-nm technology) and miniaturization
for dual external and future implant use would be desired to increase
access and utility of the technology in clinical research.

Data analysis and statistics

All custom data analyses were performed using MATLAB (2021b; Wave-
let, Signal Processing, Statistics and Machine Learning Toolboxes) and
Python 3.6.9.

iEEG power spectrum extraction. Unless specified otherwise, all
time-frequency power scalograms were obtained using continuous
wavelet transform (CWT) (MATLAB ‘cwt’ command) performed on
z-scored time-domain data (each channel normalized separately). The
base wavelet chosen was the complex Morlet withasymmetry param-
eter (gamma) equal to 3 and a time-bandwidth product equal to 60.
The wavelet coefficients were calculated at 70 logarithmic frequency
points from 1 Hz to 125 Hz, after which the squared absolute value of
the coefficients resulted in a power scalogram.

Allfrequency power spectrums were obtained using FFT (MATLAB
‘fft’command). The FFT length chosen was the largest power of 2, less
thanthelength of the observediEEG trace. The coefficients were then
normalized with the trace length. Finally, the squared absolute value
ofthe spectral coefficients multiplied by 2 (one-sided FFT) resulted in
the power spectrum. The smoothed PSD plot (Fig. 1i) was calculated
using MATLAB's ‘pwelch’ command.

Motion artifact detection and removal. Artifacts during the walking
task due to movement of the participant and/or Neuro-stack cables
were present in two forms: large slow and large sharp transients
(Fig. 2a and Extended Data Fig. 3a,b). Although almost all slow tran-
sients occupied afrequency range below 1 Hz, sharp transients affected
both the LFP (Extended Data Fig. 3b) and single-unit (Extended Data
Fig.3c) frequency bands of interest. Toisolate sharp transients, we used
ICA. Three components were chosen after an exploratory phase witha
criterion of computing acomponent that did not include single units
after spike sorting (component ICA;; Extended Data Fig. 3d). Filtered
(300-3,000 Hz) ICA; clearly showed much larger (>1 mV) transients
than the usual single-unit waveforms, although they could have the
same time resolution (Extended Data Fig. 3d). Sharp transients were
detected whenthe z-scored filtered ICA, envelope was higher than four
standard deviations. Each block of consecutive artifactual samples,
including 1 ms before and 1 ms after the block, was removed using
linear interpolation (MATLAB'’s ‘interpl’ function). The proportion of
dataremoved for each participantis shown in Extended Data Fig. 3g.

Spike sorting. We performed spike sorting using Wave_clus 3 (ref.*°).
Preprocessingincluded the use of anotch filter to remove 60-Hz noise.
Selected clusters were chosen so that more than 250 spikes were identi-
fied and that, out of these, 1% or less had ISIs of less than 3 ms. Firing rate
was calculated by counting the number of spikes in non-overlapping
50-mswindows across the duration of the experiment and convolving
the resulting time histogram with 50-point Gaussian window.

Quality of recordings. To quantify the quality of single-unit record-
ings, we observed firing rate stability and calculated yield, SNR, ASTR
(percentage of artifactual samples in the observed multi-channel
time-series) and ARI on spike sorting. Yield was defined as the num-
ber of successfully extracted units after spike sorting per electrode.

Stability was visually observed through range-normalized firing rates
of each clustered unit (for example, Extended Data Fig. 3h). SNR was
defined as the maximum unit amplitude of the average waveform for
each sorted unit divided by three average standard deviations of the
background noise (obtained from 300-3,000-Hz range; Extended Data
Fig. 3f). SNR was calculated during two separate conditions: wakeful
rest and walking (Extended Data Fig. 3a). ASTR was defined as the
number of data samples removed after the artifact removal process
(see ‘Motion artifact detection and removal’ subsection) divided by
the total number of samples for each channel. For ASTR, we calculated
the average value (Extended Data Fig. 3g) across all channels with the
standard deviation being less than 1% of the mean as identical motion
artifacts were presentin all channels. ARIwas defined as amean (across
units) percent change in the number of spikes before and after motion
artifact removal (Extended Data Fig. 3g).

Concordance iEEG comparison. Figure 1e-i provides visual com-
parisons of iEEG recordings acquired from the Neuro-stack and Nihon
Kohden systems in time, frequency and time-frequency domains. To
provide amore systematic comparison of the presented data (Fig. le),
we also used additional metrics, such as Pearson correlation, Hjorth
parameters (activity, mobility and complexity), artifact spike count,
60-Hz power and kurtosis (Supplementary Table1). These metrics were
obtained fromref. * and defined as follows:

1 N Ai— Bi—
Pearson correlation (0 (4,8)) = —— %, (U_“A> (a_"B)
—1iz1 A B

Activity = var(y(t))

var(dy—(ﬂ)

Mobility = 4
var(y())
Mobility( 22
Complexity = L(‘“)
Mobility(y(t))
Kurtosis = E2=0"
ot

Theartifact spike count represented the number of sample points
withinanobserved z-scored iEEG trace (250-Hz samplingrate) that fell
outside +6 value range. Power of 60 Hz was calculated using MATLAB’s
‘bandpower’function for the frequency range 55-65 Hz at a sampling
frequency of 250 Hz.

Statistics and reproducibility
Research participants were 12 patients (mean age 24.15 years, nine
females) who took part in four types of experiments: (1) stationary
recording, (2) ambulatory recording, (3) stationary stimulation and (4)
stationary verbal. Each experiment and data analyses were previously
described in corresponding sections. Participants were not offered
any compensation for theirinvolvement in this research. No statistical
methods were used to predetermine sample size. Because the mainaim
ofthis study was the validation of recording and stimulation capabili-
ties of our developed Neuro-stack system, we chose sample sizes that
aresimilarto (or larger than) previous studies, where similar recordings
were performed with other similar technical systems***’,
Participants were asked to perform different experimental tasks
(that is, stationary recording, recording during ambulatory walking,
stationary stimulation or verbal memory) based on their physical,
cognitive and clinical condition. Thus, selection of participants or
assignment to different experimental tasks, sample sizes and replica-
tion decisions were determined in close collaboration with the clini-
cal staff and were primarily based on the participant’s condition. For
example, stationary stimulation required the presence of neurologists
on-site for safety reasons (as per IRB and safety requirements), and only
participants in good physical condition who were able to walk safely
were asked to participate in the ambulatory walking task.
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For these reasons, full randomization and random assignment
of participants to experimental tasks was not possible in this study
(Supplementary Table 2). Given that the main aim of this work was
the validation of the Neuro-stack recording and stimulation system,
rather than empirical conclusions regarding cognitive or behavioral
effects in individuals, it is the authors’ opinion that this non-random
assignment of participants to experimental tasks had minimal or no
impact ontherelevance of the work.

Data collection and analysis were not performed blinded to the
conditions of the experiments. Data from each participant (Supple-
mentary Table 2) were analyzed separately, but not all results or redun-
dant conclusions about recording or stimulation signal quality were
presented for each participant. Two participants (notincluded in this
work), who attempted to perform the stationary verbal memory task,
were excluded from analysis because the session was stopped at their
request before sufficient results could be obtained.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Dataareavailable uponreasonable request. Source data are provided
with this paper.

Code availability

Codeis available upon reasonable request.
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Extended Data Fig. 1| Comparison of Neuro-stack with commonly used and total number of stimulation channels that can be used simultaneously
bedside intracranial recording and stimulation systems used in humans. (Max stim modules). The main advantages of the Neuro-stack come from
Neuro-stack capabilities as compared to existing human intracranial recording the miniaturization of the electronics per channel (channels/cm?) that allow
and stimulation systems. Characteristics shown include the device sampling for its small size and wearability and its integrated full-duplex capability
rate, noise of the Sense IC (Noise V,,"**), number of recording channels that thatincorporates both stimulation and sensing (red line). BR: Blackrock, NL:
canbe used, linear input dynamic range (V,,°), maximum stimulation current Neuralynx.
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Extended DataFig. 2| Overview of the ambulatory walking task. a, Motion
artifacts from four example Neuro-stack recording channels from an example
participant during walking behavior when referencing is done using a separate
(black, channels1-2) or the same (grey, channels 3-4) micro-wire bundle. Single-
unitactivity (example spikes in raw and filtered data shown to the right) that can
be extracted using waveform shape and temporal differences as compared to
the motion artifact. b, Shown is a top-down view of the hospital room layoutin

which an example participant completed the walking task, during which they
were asked to walk back and forth between points X and Y repeatedly. Points X
and Y were placed within a small area of the hospital room (-25 ft2). ¢, Example
screenshots from the world-view camera as an example participant approached
pointY from X (gray arrow shown in b that was captured via an eye-tracking
headset. d, Same as ¢ but ascreenshot when the LED pulse that is used for
synchronization (sync LED) was turned on versus off (c).
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Extended Data Fig. 3| Analysis of recording quality and motion artifacts.

a, Six example channels (P6-9, P11-12; Supplementary Table 2) of raw recordings
from micro-electrodes during wakeful rest and the walking task toillustrate
visible slow transient and sharp motion artifacts. b, Time-frequency domain
(using BOSC) of channel 1 from (a), showing impact of slow and sharp transients
onthe1-10 Hz frequency (Freq) band. ¢, Same six channels from (a), but filtered
(300-3000 Hz). d, Independent component analysis (ICA) showing the 3™
independent component (ICA;) with isolated sharp motion artifacts, which are
more problematic than large and slow transients. Red: unfiltered; blue: filtered
[300-3000 Hz]). e, Power spectral density (power/frequency, mean + SD;
frequency range: 1-100 Hz) over all channels for two conditions (wakeful rest
and walking states) matched in time duration. Data from both conditions were
preprocessed using a high-pass filter (cut-off1Hz) and sharp artifact detection

0.3 1 2

Time [s]

(based on thresholding of the filtered ICA;) and removal. f, Power spectral density
(power/frequency, mean + SD; frequency range: 300-3000 Hz) over all channels
for the same two conditions match in time duration from (e). Data from both
conditions were preprocessed using a high-pass filter (cut-off1 Hz) and sharp
artifact detection (based on thresholding of the filtered ICA;) and removal.

g, Metrics quantifying the motion artifact removal process and quality of the
recordings including artifact-to-signal time ratio (ASTR), yield (total number of
sorted units and mean + SD per channel), signal-to-noise ratio (SNR), and artifact
removal impact (ARI) on spike sorting. Single-units were detected in participants
P11-12. h, Example firing rates over the entire walking task as participant (12)
transitioned from the stationary resting state to walking. Shown are two example
isolated single-unit clusters from channels1and 2.
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Extended Data Fig. 4 | Neuro-stack experimental setup. A simplified block
diagram showing Neuro-stack setup including the (LEFT) Communication
Layer, which uses a field-programmable gate array (FPGA, Xilinx Spartan 6
model) with a finite-state machine (FSM) built within it to allow for receipt of
external messages (packets) via USB (for example, stimulation command) and
streaming of the neural data. These packets are then processed and converted
to serial peripheral interface (SPI) or Shift Register packets, and transmitted to
the Neuro-stack integrated circuits (ICs, SPI: Stim and Sense IC; Shift Register:
Spike and PLSIC). This FSMis bi-directional and thus also processes SPI packets
received from the Neuro-stack and converts them into USB packets, which are
then transmitted to the external Coral Development Board (Coral Dev Board)
device. The FSM always begins with a Reset state after areboot, and then enters
anldle state in which it waits for incoming packets. Once a packet is available,
the FSMreceives it byte by byte (Receive Byte) until the complete message
istransferred (Receive Packet). The received packet is then being processed
(Process Packet), converted into the appropriate interface (for example, USB to
SPI1), and transmitted to the Neuro-stack ICs (via SP1 or Shift Register). Similarly,
after the processingis done, the response packet from the ICs enters a state
during which it can transmit the packet (Transmit Packet) byte by byte (Transmit
Byte) externally. Once the transmission is done, the FSM goes back to the Idle
state and waits for new packets unless the streaming of the neural datais taking
place, in which case the FSM enters Process Packet state indefinitely until the
recordingis stopped. (CENTER) Coral Dev Board that can directly communicate
with the Neuro-stack Communication Layer (via USB connection) using an
Application Programming Interface (API, shown here) or adevice (for example,
Experimental Computer) with aninstalled GUI via USB (Fig. 1a). The Coral Dev
Board contains aregular ARM-based central processing unit (NXPi.MX 8 M SoC)
and a Google Edge Coprocessor, a tensor processing unit (TPU). The Neuro-
stack APl library runs on the ARM processor and contains a real-time pipeline
for handling control and data flow to and from the Neuro-stack for each IC and
Communication Layer (or FPGA). The Input Queue handles streams of both
neural dataand acknowledgment receipts from the Communication Layer and
redirects them to the appropriate block on the Coral Dev Board responsible for
eachICs (forexample, Sense, Stim,... Process). The Neuro-stack Control block
contains all of the API functions, which are then multiplexed to additional layers

responsible for wireless (via Server Interface) or wired (via Local Interface)
communication with the Experimental Computer. Additionally, the Neuro-
stack Control block also contained functions for controlling the TPU, such as
loading/saving the machine learning model (TensorFlow Lite Model) to/from
the Memory block, redirecting the data streams directly towards the TPU, and
receiving the TPU’s output onceiitis ready. The incoming neural data streams can
also bestored locally in Log Memory or transferred to external storage on the
Experimental Computer through the Neuro-stack Control block. Furthermore,
an LED light can be triggered (to turn on/off) through available general-purpose
input/output (GPIO) pins for synchronization purposes. These triggered on/off
events are internally temporally aligned with the incoming neural data in order
to synchronize it with data from eye-tracking cameras. (RIGHT) A local network
canbe created either by using a separate access point (shown here, for example,
router, hotspot, etc.), or by the Coral Dev Board, which contains a network
controller that can support access point topology and thus can create its own
local network. This wireless mode means that a server is created on the Coral
Dev Board to allow for other devices, such as the Stimulus Presentation device
(for example, iPad used to present the verbal memory task) or Experimental
Computer (for example, to view neural datain real-time) to access the Neuro-
stack APIfunctions. Security warning points to the importance of a safe wireless
connection,implemented by X.509 certificate authentication. Wired mode

is also supported through Local Interface block (for example, Experimental
Computer connected via USB-C). All devices connected to the local network

use Network Time Protocol (NTP) to log events with timestamps fetched from a
common server in order to synchronize them. (BOTTOM) The structure of the
USB packets sent from the Coral Dev Board to the Neuro-stack Communication
Layer, which contains up to 520 bytes that describe the type of Command, Board
ID to address specific analog layer, Spike byte, phase-locked stimulation (PLS)
byte, and Payload for additional information where its length (Payload Length)
depends on the type of command. The packet also contains bytes for error codes
(Error) and acyclic redundancy check (CRC) to detect accidental changes in the
raw packets. The communication layer extracts a relevant portion of the USB
packet, converts it to desired interface (SP1 or Shift Register), and transmits it to
theaddressed IC.
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Extended Data Fig. 5| Neuro-stack in-vitro validation setup. Setup for in-vitro signals, and an oscilloscope for monitoring the signal and measuring delivery
validation of recordings and stimulation includes the Neuro-stack platform and time (of synchronization and stimulation pulses). The oscilloscope shows a single
GUI, aphosphate-buffered saline (PBS) solution, a NI-DAC (National Instruments pulse of stimulation that was delivered using the Neuro-stack™.

Digital to Analog Converter) device for conversion of pre-recorded neural
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Extended Data Fig. 6 | Neuro-stack in-vitro validation results. a, Pre-recorded
and normalized (V,,,,) LFP signal (black) fed into the Neuro-stack Sense IC
front-end and the resulting Sense IC recording (blue). Presented results were
filtered to remove 60 Hz noise. b, Pre-recorded and normalized (V,,,,.,) single-
unit signal (black) fed into the Neuro-stack Spike IC front-end and resulting
Spike IC recording (blue). On the right is azoomed-in comparison of an example
spike-unit waveform. Presented results were filtered to remove 60 Hz noise.

¢, Validation setup from Extended Data Fig. 4 in more detail, showing in-vitro
signal sensing path (black arrows; NI-DAC - PBS - Sense IC - FPGA - CDB) and for
in-vitro stimulation path (red arrows; CDB - FPGA - Stim IC - PBS). The round-trip
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delay was measured from point 1 (signal generator) to the CDB (black arrows),
and back (red arrows) to point 2 (stimulation output). The test sensing signal was
apulse train fed into the PBS, which triggered stimulation once detected on the
CDB. The sensing system delay was measured from point 1 (signal generator) to
point 2 (GPIO output). The test signal was again a pulse train, which triggered

the GPIO pulse once detected on the CDB. The output stimulation current was
converted to voltage using resistors and was observed on the oscilloscope.d, The
round-trip delay observed on the oscilloscope (Point1and 2; zoomed-in at the
bottom). e, The system sensing delay observed on the oscilloscope (Point1and 3;
zoomed-in at the bottom).
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Extended Data Fig. 7 | Offline base neural network model. a, Neural network
model training procedure extracted overlapping 10 s windows of data around
the word onsets during the verbal memory task and created raw chunks for each
brain region before inputting theminto the corresponding channel model.

b, Downsampled (30 kHz to 250 Hz) windows of LFP data from 6 brain regions:
Left/Right Anterior Hippocampus (LAH/RAH), Left/Right Entorhinal Cortex
(LEC/REC), and Left/Right Posterior Hippocampus (LPH/RPH), which were
range [-1,1] normalized and multiplied with a Gaussian, centered around the
word onset. Each channel was then fed into a dedicated Channel Model (N = 6)
and concatenated results were then classified. Note that data fromall channels
from each micro-wire bundle were merged together and then divided into 6
brain region categories. Data was then split into training (50%), validation (25%),

Epoch

and test (25%) data sets for each participants. Training and validation data sets
fromall participants were merged, shuffled, and used for training and 5-fold
validation of the base model. ¢, Shown are 10 participants recorded using a
Blackrock system (B1-B10) and the participant recorded using the Neuro-stack
(N1or participant P7 from Supplementary Table 2). Total memory performances
for each participant are shown including both training and test samples (2™
column), and accuracy of the base model on the test dataset for each participant
(3" column). Test accuracy for participant N1is from the online model, which was
retrained in real-time during the completion of the verbal memory task. d, Train-
ingaccuracy and loss of the base model. e, Validation accuracy and loss, averaged
across Sfolds.
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Extended Data Fig. 8 | Online embedded Transfer Learning used for inference. During the online retraining phase neural samples were directly
retraining and prediction. a, Neural network TPU embedded implementation forwarded over the wireless network to the experimental computer, where
showing the structure of the software responsible for the TPU inference, which Python and Bash scripts automatically performed training and conversion to
consisted of channels from particular brain regions (channel branch). Each the TensorFlow Lite model. The model was then automatically transferred to
channel branch accepted incoming neural data, preprocessed it and then the TPU’s memory, ready to be triggered during the prediction phase. Channel
forwarded the output to the Edge TPU once inference was externally triggered. branches were equivalent to those described in (a). d, Real-time transfer learning
b, Online (partial) retraining of the neural network model locked the channel retrained the model with shuffled data (old and new). During the online training
model coefficients. This transfer learning kept coefficients of the base channel phase allincoming chunks were used for training as such that whenever new
models fixed and then retrained all layers after LSTM nodes. ¢, Transfer learning chunks were received, they were shuffled with the previous ones from the same
embedded implementation with (partial) external retraining and embedded session and used them for retraining.
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Python (3.6.9), Pupil Capture (Pupil Labs, v2.3), Xilinx ISE 14.2 (Hardware description language: Verilog), Xcode 11.2.1 (Language: Swift 5.0.1),
Microsoft Visual Studio 2017 (Language: C#, Universal Windows Platform development), Keras/TensorFlow and TensorFlow Lite 2.2. Operating
systems: Windows 8, MacOS 10.13-11, Linux Mendel distribution, iOS 11.

Data analysis MATLAB (2021b; Wavelet, Signal Processing, Statistics and Machine Learning Toolboxes), Python (3.6.9), Pupil Player (Pupil Labs, v2.3),
BrainLab, FSL FLIRT, FSL FAST, ASHS. Operating systems: MacOS 11.
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Reporting on sex and gender Twelve participants (mean age 24 years, three males and nine females) took part in this study. Sex or gender information was
not considered nor used for study design or experimental purposes, because the goal of the study was in-vivo validation of
the proposed technical system, rather than an investigation of behavioral/cognitive effects in or differences between
individuals. Information regarding the participants’ sex or gender data was collected only for descriptive purposes during the
recruitment process, according to an approved protocol.

Population characteristics Twelve participants (mean age 24 years, three males and nine females) with pharmaco-resistant epilepsy and implanted
depth electrodes for clinical monitoring in the hospital took part in this study. Electrode placements were determined solely
based on clinical criteria.

Recruitment During or before the scheduled hospital stay, participants were contacted in-person or via phone/e-Mail. They were given a
detailed explanation of the study and were asked whether they would be willing to volunteer and consent to participate in
the study. Participants were not offered compensation for their involvement in this research. Given that some of our
experiments involved stimulation and physical walking, the participants were part of this experimental groups were always
tested a day before or on the day of deplantation, while they were on medication. The participants were always informed in
advance, during consent process, and during the experimental session about the experimental procedure. For the
experiment with freely-walking participants, authors, in collaboration with the clinical team, specifically asked for
participants, who were in good physical condition (i.e., able to walk freely) at the time of the experiment to avoid
unnecessary risks (e.g., falling) in participants that were physically less fit. Brain stimulation was performed only in adult
participants (>21 years of age) for ethical and safety reasons. However, these criteria were unlikely to impact the Neuro-
stack's ability to record or stimulate, nor to substantially change the data and conclusions presented in the manuscript.
Allocation to other experimental groups (stationary recording and verbal memory task) was not based on specific selection
criteria.

Ethics oversight All participants volunteered for the study by providing informed consent according to a protocol approved by the UCLA
Medical Institutional Review Board (IRB)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Sample size Twelve participants (mean age 24 years, three males and nine females) with pharmaco-resistant epilepsy and implanted depth electrodes for
clinical monitoring in the hospital took part in this study. No statistical methods were used to predetermine sample size. Since the main aim of
this study was the validation of recording and stimulation capabilities of our developed Neuro-stack system, we chose sample sizes that are
similar to (or larger than) previous studies, where similar recordings were performed with other similar technical systems (for example: Gilron
etal., 2021, Paulk et al., 2022).

Data exclusions  Data from each participant were analyzed separately, but not all results or redundant conclusions about recording or stimulation signal quality
were presented for each participant. Data from two participants (not included in the manuscript), who attempted to perform the stationary
verbal memory task, were excluded from analysis, these participants did not complete the whole task procedure, but asked to stop the
experiment after insufficient number of trials.
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Replication All methods used to perform this study are detailed in the Methods section. The Reproducibility subsection, within the Methods section,
contains a statement about the reproducibility of this work. Data were analyzed for each individual participant separately.
Selection of participants, assignment of participants to different experimental tasks (i.e., stationary recording, recording during ambulatory
walking, stationary stimulation, or verbal memory), sample sizes per experimental tasks, and number of replications and task durations per
participant were determined in close collaboration with the clinical stuff and were primarily based on the participant's clinical, cognitive,
and physical condition. For example, only participants in good physical condition who were able to walk freely were asked to participate in the
ambulatory walking experiment.
Consequently, stationary recording, ambulatory recording, stationary stimulation, and stationary verbal memory task were successfully tested
in 12, 6, 3, and 1 participants respectively. Hence, with the exception of the verbal memory task (described below), all experimental tasks
were replicated in multiple participants. All attempts of stationary recordings and stimulation were of high quality and deemed successful. As
reported in the manuscript, mobile recordings in the first 4 participants were used to determine and adjust technical parameters and the
setup, and then remained constant for successful recordings in two more participants.
The stationary verbal memory task was successfully completed in one participant, with two more attempts with participants (excluded from
analysis) who did not wish to continue with the experiment before the artificial neural networks could be trained to provide meaningful
results. While the main goal of this work was the technical system's human in-vivo validation rather than empirically characterizing neural
effects related to participant’s behavior and cognition, the aim of neural recordings during the verbal memory task was to showcase the
technical feasibility of an automatic real-time analysis of the neural data, as an example use case of the Neuro-stack. This technical feasibility
could be successfully demonstrated in one participant; however, behavioral/cognitive effects and conclusions regarding the verbal memory
task were not replicated in this study and warrant future investigation.
In-vitro recording and stimulation results were replicated and recorded 3 times independently prior to in-vivo experiments, in addition to
numerous other in-vitro tests carried out as part of acquiring IRB approval, and as part of previous publications (Rozgic et al., 2017; Rozgic., et
al 2018; Basir-Kazeruni et al., 2017; Chandrakumar et al., 2017; Alzuhair et al., 2018; Alzuhair et al., 2019). The delay measurements were
performed twice independently with multiple measurements (50) during each and as part of previous publications (Alzuhair et al., 2019).

Randomization  The Neuro-stack setup was the same for all tested participants, but the protocols differed for recording and stimulation tests as well as for
resting state, stationary, and ambulatory tests. Recording and stimulation functionality were tested in twelve and three participants,
respectively. During these tests, we varied, depending on the given participant’s clinical, cognitive, and physical condition (in collaboration
with their clinical team), the number of channels to record from as well as stimulation parameters (current, amplitude, etc.) in order to
showcase stimulation programmability. The stationary verbal memory task was performed in one participant, and the ambulatory walking task
was performed in six participants. Some of the participants were involved in multiple tests as stated in the manuscript.

Participants were asked to perform different experimental tasks (i.e., stationary recording, recording during ambulatory walking, stationary
stimulation, or verbal memory), based on their physical, cognitive, and clinical condition. Thus, selection of participants, or assignment to
different experimental tasks, sample sizes, and replication decisions were determined in close collaboration with the clinical staff and were
primarily based on the participant's condition. For example, stationary stimulation required the presence of neurologists on-site for safety
reasons (as per IRB and safety requirements), and only participants in good physical condition who were able to walk safely were asked to
participate in the ambulatory walking task.

For these reasons, full randomization and random assignment of participants to experimental tasks was not possible in this study. Given that
the main aim of this work was the validation of the Neuro-stack recording and stimulation system, rather than empirical conclusions regarding
cognitive or behavioral effects in individuals, it is the authors' opinion that this non-random assignment of participants to experimental tasks
had minimal or no impact on the relevance of the work.

Blinding We tested a group of participants with pharmaco-resistant epilepsy, while they were implanted with depth electrodes for clinical monitoring.

All experimenters were aware of this fact and were not blinded with regards to the participant's condition. Participant's condition and clinical
setting influenced the allocation into the experimental groups and the Neuro-stack's setup, which is why blinding was not possible.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a 7 Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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Dual use research of concern

Magnetic resonance imaging

Experimental design

Design type MRI was used only to determine the localization of electrode contacts within the brain.
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Design specifications MRI was used only for electrode contact localization. Participants did not perform any experimental task in this study

during MRI scanning. 8

c

Behavioral performance measures  No behavioral performance measures were acquired or derived. o)
©

. ©
Acquisition =
o

Imaging type(s) Structural (@)
Field strength 3 Tesla _rg
o

Sequence & imaging parameters Standard T1- and T2-weighted sequences. %"
(@]

Area of acquisition Whole brain A
3

Diffusion MRI [ ]Used Not used 3
Q

<

Preprocessing

Preprocessing software BrainLab, FSL (FMRIB Software Library) FLIRT and FAST, Automatic Segmentation of Hippocampal Subfields (ASHS).
Normalization MRI images were not normalized.

Normalization template MRI images were not normalized.

Noise and artifact removal No noise or artifact removal procedures were used.

Volume censoring No volume censoring were used.

Statistical modeling & inference

Model type and settings No modeling of MRI data was performed.

Effect(s) tested MRI was used only to determine the localization of electrode contacts within the brain, and not for testing.
Specify type of analysis:  [X|] Whole brain [ ] ROI-based [ ] Both

Statistic type for inference No statistical analyses were performed using MRI data.
(See Eklund et al. 2016)

Correction No correction methods were applied.

Models & analysis

n/a | Involved in the study
|X| |:| Functional and/or effective connectivity

Xl |:| Graph analysis

|X| |:| Multivariate modeling or predictive analysis
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