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Advances in technologies that can record and stimulate deep brain 
activity in humans have led to impactful discoveries within the field of 
neuroscience and contributed to the development of novel therapies for 
neurological and psychiatric disorders. Further progress, however, has 
been hindered by device limitations in that recording of single-neuron 
activity during freely moving behaviors in humans has not been possible. 
Additionally, implantable neurostimulation devices, currently approved 
for human use, have limited stimulation programmability and restricted 
full-duplex bidirectional capability. In this study, we developed a wearable 
bidirectional closed-loop neuromodulation system (Neuro-stack) and used 
it to record single-neuron and local field potential activity during stationary 
and ambulatory behavior in humans. Together with a highly flexible 
and customizable stimulation capability, the Neuro-stack provides an 
opportunity to investigate the neurophysiological basis of disease, develop 
improved responsive neuromodulation therapies, explore brain function 
during naturalistic behaviors in humans and, consequently, bridge decades 
of neuroscientific findings across species.

Understanding brain function and its relation to cognition and behav-
ior requires the integration of multiple levels of inquiry, ranging from 
the examination of single cells all the way up to the probing of human 
experience under naturalistic conditions. One major barrier that sepa-
rates these approaches is the inability to record single-neuron activity 
during naturalistic behaviors in humans, which frequently involve 
full-body locomotion as well as twitches, gestures and actions of the 
face and hands. Single-neuron studies of freely moving behaviors 

are currently exclusively done in animals (for example, rodents)1,2. 
Although single-neuron studies in humans have yielded unique insights 
into memory, perception, decision-making as well as pathologies such 
as Parkinson’s disease (PD) and epilepsy (for review, see refs. 3–6), they 
have been solely done in immobile participants. Thus, major gaps 
remain between understanding findings from neuroscience studies 
in animals to those in humans. Determining the single-neuron mech-
anisms of naturalistic behavior in individuals who can declare their 
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The Neuro-stack can simultaneously record up to 128-channel monopo-
lar or bipolar (from 256 macro-recording contacts) iEEG and 32-channel 
monopolar (from 32 micro-recording contacts) single-unit/LFP activity 
during ambulatory behaviors in humans who have macro-electrodes 
and micro-electrodes implanted for clinical reasons. Moreover, the 
Neuro-stack can deliver customizable closed-loop multi-channel (up 
to 32 simultaneous) stimulation where parameters such as pulse shape, 
frequency, amplitude, pulse width, inter-pulse width, polarity, channel 
selection and timing (for example, for PLS) are configurable.

We include data acquired using the Neuro-stack showing 
single-unit, LFP and iEEG activity recorded in 12 participants who had 
depth electrodes implanted for epilepsy evaluation. In one participant, 
we used the Neuro-stack to perform binary prediction of memory 
performance in real time (69% F1 score) using neural activity recorded 
from medial temporal lobe (MTL) regions. We also demonstrate the 
Neuro-stack’s ability to record single-neuron activity during walk-
ing behavior and deliver customized stimulation. These capabilities 
could be useful for future studies investigating the neural mechanisms 
underlying naturalistic behaviors in humans and developing novel 
closed-loop neuromodulation therapies for patients with brain dis-
orders that will be effective in real-world settings.

Results
The Neuro-stack (Fig. 1a,b) provides a bidirectional neuromodulation 
platform for single-unit, LFP and iEEG recording and stimulation of 
deep brain areas for basic and clinical neuroscience studies. Compared 
to larger existing devices (Extended Data Fig. 1) that are used bedside 
and carried on a cart, the Neuro-stack’s small handheld size enables 
concurrent stimulation and recording of real-time electrophysiology 
during freely moving behavior (Fig. 2) by connecting to commonly 
used implanted macro-electrodes and micro-electrodes (Fig. 1c,d). 
Apart from its small form factor and unique on-body wearability, the 
Neuro-stack can support:

	1.	 Recording from up to 256 contacts for a total of 128 monopolar 
or bipolar recordings with a sampling rate of up to 6,250 Hz. 
Furthermore, sensing from up to 32 monopolar recordings at 
38.6 kHz allows for the recording of single-unit and LFP activity 
simultaneously.

	2.	 Flexible and programmable stimulation (Fig. 3) allowing for 
delivery of bipolar/monopolar stimulation to any 32 out of 256 
contacts simultaneously. Stimulation engines are current con-
trolled and allow the user to program current amplitude, fre-
quency, timing, pulse shape and other parameters (Fig. 3 and 
Supplementary Table 3).

	3.	 Closed-loop neuromodulation. The Neuro-stack has built-in (in 
hardware) theta (3–8 Hz) power detection and the ability to trig-
ger stimulation at a predefined phase of theta activity for PLS. 
Future hardware upgrades to the PLS integrated circuit (IC) 
could expand detection to frequencies outside of the theta band 
depending on user needs. Furthermore, sensing of neural activ-
ity is concurrent with stimulation for unrestricted (full-duplex) 
closed-loop capabilities. Resources for designing custom 
closed-loop stimulation algorithms are available at both the em-
bedded hardware and external software levels.

	4.	 Software support that comes in two formats. First, a graphical 
user interface (GUI) running on a Windows-based tablet or lap-
top is available for manual research purposes (Fig. 1a). Second, 
a full-access application programming interface (API) library 
written in C++ allows custom, programmable recording and 
open/closed-loop stimulation capabilities for research studies 
(Extended Data Fig. 4).

	5.	 Tensor multiplication accelerator (Edge TPU; Fig. 2a and Extend-
ed Data Fig. 4, middle) that is integrated with the Neuro-stack, 
enabling an extended range of applications, such as real-time in-
ference for neural decoding (Fig. 4) or closed-loop stimulation.

thoughts and imaginations, interact socially, move freely and navigate 
real-world environments would present an unprecedented opportunity 
in the field of systems neuroscience.

In parallel with progress in neuroscience, the medical field has 
seen a considerable increase in the use of therapies delivered through 
implanted neural devices to treat and evaluate abnormal brain activity in 
patients with brain disorders7–12. However, current clinical implantable 
devices do not allow single-neuron recording or extensive customiza-
tion of stimulation parameters (for example, pulse shape and precise 
timing with respect to ongoing neural activity), capabilities that would 
markedly expand the types of research questions that could be investi-
gated. Furthermore, developing accurate animal models of human brain 
disorders and reproducing associated impairments/symptoms in labo-
ratory settings remain major challenges. Recordings of single-neuron 
activity in patients with brain disorders, however, especially under 
naturalistic settings, would provide a unique window into the neural 
mechanisms of brain pathology, symptoms and treatment response and 
would lead to more personalized and effective therapies3,4. Although 
several closed-loop neuromodulation therapies using intracranial 
electroencephalographic (iEEG) recordings are effective, a substantial 
portion of patients still do not respond to treatment. Furthermore, 
given temporal relationships between single-unit spiking and ongoing 
oscillatory activity13–17, closed-loop neuromodulation therapies may 
benefit from personalization during a period when both single-unit 
and local field potential (LFP) activity is available. Finally, an additional 
impediment in optimizing closed-loop neuromodulation treatments is 
the lack of a customizable bidirectional interface with a larger dynamic 
input range that can record multi-channel single-unit and LFP activity 
during temporally precise phase-locked stimulation (PLS).

Intracranial neurophysiological studies, using micro-electrodes 
in patients with epilepsy or PD, can record LFPs and single-unit activ-
ity; however, research participants must be tethered to large equip-
ment and remain immobile. There are two possibilities for studies 
to leverage these clinical opportunities. The first is to use existing 
research equipment (for example, Blackrock Microsystems (https://
blackrockneurotech.com/research), Neuralynx (https://neuralynx.
com), Nihon Kohden (EEG-1200 EEG system, https://us.nihonkohden.
com/products/eeg-1200) and Ripple Neuro (Custom Neuroscience 
Research Tools, https://rippleneuro.com)), which is bulky and expen-
sive (up to ~$200,000), with immobile participants who participate in 
voluntary research studies while hospitalized. Intracranial stimulation 
studies are similarly done bedside, primarily using open-loop stimula-
tion18–24, although recent studies have explored the use of closed-loop 
stimulation25–29. The second option is to use FDA-approved, commer-
cially available devices already implanted in thousands of individuals 
to treat epilepsy or movement disorders (for example, Neuropace 
RNS System30 and Medtronic Percept31). These chronically implanted 
devices offer research participants mobility at the expense of using 
larger electrodes and fewer channels (usually four) that cannot record 
single-unit activity. Other devices (for example, Medtronic Summit 
RC+S32–34) allow for 16-channel iEEG recording at higher sampling rates 
(but no single units) and exist only in a handful of patients with an FDA 
investigational device exemption (IDE), limiting their widespread use 
by the scientific community. These closed-loop implantable neural 
technologies also have limited full-duplex ability, where multi-channel 
PLS during single-unit and LFP recording is not possible. Although 
research studies using existing systems have given rise to several 
impactful discoveries30,34–37, the possibility of devices one day recording 
from single neurons, delivering customizable closed-loop stimulation, 
would provide unparalleled opportunities for first-in-human scientific 
discovery and development of more effective medical therapies for 
brain disorders.

Here we present a potential technological pathway toward more 
advanced implantable technologies with the development of a minia-
turized bidirectional neuromodulation external device, Neuro-stack. 
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Fig. 1 | Neuro-stack platform. a, Neuro-stack and GUI-based tablet for 
single-neuron and LFP recordings and closed-loop PLS. The tablet allows for 
selection of recording and stimulation channel(s), sampling rate, monopolar/
bipolar recordings and other parameters. Shown are the packaged (left) and 
unpackaged (right) versions. b, The Neuro-stack consists of three stacked 
layers: (1) Communication (Comm), (2) Digital and (3) Analog. Presented are 
the PCBs (size = 90 × 60 mm2) and 5 × 2 pins (eight channels, one reference and 
one ground, ten total pins) Omnetics headstage connectors to which micro-
electrodes can be connected (only top Analog layer connected). Note that each 
Analog layer receives up to two Omnetics connectors to connect, with up to four 
electrodes through one headstage. A high-level block diagram of each layer is 
shown (right). The Comm layer contains an FPGA that mediates command and 
data transmission (via USB) between external software and IC chips. The Digital 
layer contains the PLS IC. The Analog layer contains chips for sensing (Sense IC) 

and stimulation (Stim IC). Three Analog layers are shown to allow recording of 
192 channels (64 × 3 layers). SPI is used for FPGA communication with the Sense 
and Stim ICs and shift register for FPGA communication with the PLS and Spike 
ICs. c, The Neuro-stack connected to micro-electrodes in a participant wearing 
an eye-tracking system. d, Shown are ten-pin touchproof jumpers for macro-
electrode and ten-pin connectors (for example, Adtech) for micro-electrode 
recordings. e, Example data recorded simultaneously using a clinical monitoring 
system (Nihon Kohden, gray) and Neuro-stack (black) showing similarity of 
signals. f, Zoomed-in traces from e. g, Example power spectrograms from data 
(e) showing concordant activity patterns (Nihon Kohden, top; Neuro-stack, 
bottom). Frequency (0.1–200 Hz) is shown using a logarithmic scale. h, Example 
normalized PSD plots using FFT (0.1–200 Hz, 500-Hz sampling) on data shown in 
e. i, Example smoothed normalized PSD plots using the Welch method (1–200 Hz, 
500-Hz sampling) on data shown in e.
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Fig. 2 | Neuro-stack as a wearable platform for recording neural activity 
during ambulatory behavior in humans. a, An example research participant 
wearing the backpack carrying the Neuro-stack system, a single board computer 
with a TPU and a battery, to allow for recording of single-neuron and LFP activity 
during ambulatory behavior. The participant was also wearing an eye-tracking 
device that keeps track of head direction, pupil size changes and eye movements. 
Data captured from the eye-tracker were synchronized with the neural data 
using a programmable LED that is visible on the eye-tracker world-view camera. 
Wireless communication among the Neuro-stack, eye-tracker and other external 
monitoring devices is enabled through a Wi-Fi access point on the TPU device. 
b, Neural activity was recorded during an ambulatory task where participants 
walked repeatedly (ten times) between two opposite corners of a 5 × 5 ft2 room 
(from X to Y; Extended Data Fig. 2b). Example video frame from the eye-tracking 
world-view camera as an example participant approached point Y in the room 
(bottom). c, Neural activity (line noise removed, voltage-normalized separately 
for each channel) from 12 micro-electrode channels (1–6: hippocampus, 6–12: 
anterior cingulate) during the ambulatory walking task from an example 
participant. d, Ten seconds of filtered data from channel 12 (arrows point to 

corresponding sections on c and e). e, A raster plot of two single units isolated 
(Cluster0 and Cluster1) from channel 12. f, Cluster0 from channel 12 and its 
corresponding ISI histogram (right). All detected single-unit waveforms are 
plotted together with mean (black line) ± s.d. (dotted black line). g, Cluster1 from 
channel 12 and its corresponding ISI histogram (right). All detected single-unit 
waveforms are plotted together with mean (black line) ± s.d. (dotted black line). 
h, Top–down view of the hospital room layout in which an example participant 
walked back and forth repeatedly between points X and Y within a small area of 
the hospital room (~25 ft2). Points A and B represent points 1/3 and 2/3 of the XY 
path, respectively, and are used to define the boundary versus inner areas of the 
room. i, Increase in theta (3–12 Hz) bandpower when participants were located 
near the environmental room boundary (h, BY) compared to the inner area of 
the room (h, AB). *P = 5.7 × 10−5 (two-sided permutation test, n = 16 channels). 
On each box, the central bolded black line indicates the median, and the bottom 
and top edges of the box indicate the 25th and 75th percentiles, respectively. The 
whiskers extend to the most extreme data points, minima on the bottom and 
maxima on the top.
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	6.	 Wired or wireless mode. The Neuro-stack can be externally 
controlled and powered via a USB cable or remotely controlled 
through a secure local network using a battery-powered config-
uration (Fig. 2a and Extended Data Fig. 4). This flexibility allows 
researchers to perform single-unit and LFP/iEEG recording and 
stimulation during either stationary or ambulatory (freely mov-
ing) behavioral tasks.

The central hardware component of the Neuro-stack platform  
(Fig. 1a,b) consists of three printed circuit board (PCB) layers: (1) 
Analog, (2) Digital and (3) Communication. Each layer is embedded 
with one or several dedicated IC chips. The analog layer (Fig. 1b, bot-
tom) contains mixed-signal sensing IC (Sense IC and Spike IC) and 
stimulation IC (Stim IC) chips, which were previously developed as part 
of the DARPA SUBNETS program38–41. A single Sense IC (one per analog 
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Fig. 3 | Neuro-stack as a programmable closed-loop neuromodulation 
system. a, Stimulation parameters can be customized, including frequency, 
amplitude (0–5,080 mA in steps of 20 mA), polarity (anodic/cathodic), timing 
(of pulse width, inter-phase width and inter-pulse/burst interval) and pulse 
shape (for example, sinusoidal or rectangular pulses shown). b, Key features and 
capabilities on the stimulation integrated circuit (Stim IC) including the number 
of channels (that is, eight out of 64 per Analog layer) that can be selected for 
stimulation, amplitude and configurable pulse shapes where amplitude in each 
of up to 16 steps (a) can be programmed for custom waveform design, frequency, 
polarity, pulse width (a, 10–1,280 μs, steps: 10 μs) and inter-phase width  
(a, 0–150 μs, steps: 10 μs). c, Example macro-electrode channel recorded 
during the delivery of macro-stimulation, which was delivered with varying 
combinations of amplitudes × frequencies ((0.25, 0.5, 0.75, 1.00 and 1.25) mA × 
(60, 80, 100, 120 and 140) Hz). Each stimulation burst contained ten biphasic 
rectangular pulses (pulse width = 1.28 ms), after which a delay of 16.67 s occurred 

before the next burst cycle. d, Zoomed- in view of c (outlined box) where six 
stimulation bursts (red arrows) are shown with different parameters (bursts 1–3: 
1.25 mA, 80 Hz; bursts 4–6: 0.25 mA, 100 Hz). e, Zoomed-in view of a single burst 
(outlined box) from the same channel in d and another example channel (29).  
f, Time-aligned bipolar pulses from a stimulation burst (ten pulses, 1.25 mA, 
60 Hz) from all channels (n = 33). g, Mean and s.d. values of all time-aligned 
bipolar stimulation pulses from an example recording channel (1). h, Normalized 
power (mean and s.d.) of the propagated stimulation pulses across channels 
(n = 33) recorded with respect to varying stimulation current (0.25–1.25 mA). i, SD 
of normalized power (SD(power/max[power])) as a function of mean normalized 
power (mean(power/max[power])) differentiates pulse propagation across 
channels with respect to varying stimulation burst frequencies (60–140 Hz, 
steps: 20 Hz) with a fixed pulse width (1.28 ms) and current amplitude (0.75 mA). 
Electrode channels are marked in shades of gray (n = 33). P, power.
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layer) accepts neural activity from up to 64 electrode contacts fed into 
voltage-controlled oscillators (VCOs), which serve as analog–digital 
converters (ADCs). Each VCO ADC supports 6,250/N Hz sampling 

frequencies, where N = 1, 2, 4, 8, …, 128 and a 100-mVpp linear input 
dynamic range with 12/21 (macro/micro) bits of resolution, ensuring 
that the underlying neural signal is captured in the presence of large 
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Fig. 4 | Decoding memory performance with the Neuro-stack system.  
a, Neural activity was recorded during completion of a verbal memory task, 
which included three phases: (1) Learning (encoding), during which a list of 
words were presented (2 s each, 0.8-s ISI); (2) Distraction, during which numbers 
were presented serially (0.7 s each, 0.3-s ISI), and participants were instructed to 
respond odd/even; and (3) Recall (retrieval), where previously presented words 
were recalled. b, Neuro-stack recording setup and processing pipelines used 
during the memory task. A tablet was used to present words during encoding and 
record to identify in real time the spoken words recalled during retrieval (using 
speech recognition). Minimally processed data were then fed into an external 
computer with synchronized retrieval results. The neural network model (Model, 
e) was trained in real time to predict retrieval performance based on neural 
activity during encoding. The model was then ported to the TPU to perform real-
time predictions. c, Filtered theta (3–12 Hz) activity from the left hippocampus 
(LHC) is shown because it was the most critical feature used by the trained neural 
network model to predict memory (top). Vertical lines mark the onset of each  

word (10) during seven repetitions (blocks) shown of the memory task.  
Decoding performance (accuracy) is shown (bottom) during the first three 
blocks, which were used to train the neural network (Training) and the associated 
F1 score. The last four blocks were used to predict memory performance 
(Predict) and the associated accuracy. Training and Prediction graphs are not 
aligned with the task flow in real time (c, top) for illustration purposes.  
d, Zoomed-in-view of example theta activity shown in c. e, The neural network 
model (2 × CNN1D + LSTM + Dense network) parameters. f, Time–frequency 
representation of the first most significant filter (from the trained CNN layer 
activation filter), which checks for theta power during encoding. g, Time–
frequency representation of the second most significant filter (trained CNN 
layer activation filter), which checks for temporal patterns in theta activity with 
respect to the onset of word presentation. h, Overlapping ROC curves calculated 
from the offline base model performances across ten participants (colors). i, ROC 
curve from the online prediction phase of the verbal memory study using a single 
participant’s data recorded on the Neuro-stack. AUC, area under the curve.
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artifacts (for example, from stimulation). The Sense IC contains digital 
non-linearity correction to account for non-linear amplification across 
the input range. Moreover, it also contains a digital logic for adaptive 
stimulation artifact rejection (ASAR) that subtracts a template stimu-
lation artifact extracted from adjacent channels41. The total power 
consumption per channel is 8.2 µW. A single Spike IC (one per analog 
layer) accepts neural activity from up to eight micro-wire contacts and 
supports sampling rates of up to 38.6 kHz, with a 160-mVpp linear input 
dynamic range42. A single Stim IC contains eight engines that can drive 
current through any individual or combination of 64 electrode con-
tacts. Stimulation output current, amplitude, frequency and waveform 
shapes are configurable (Fig. 3a,b), which allows for stimulation using 
previous protocols43–45 as well as exploration of novel protocols. These 
capabilities also enable increased degrees of freedom (timing and PLS; 
Fig. 3) compared to currently available intracranial neurostimulation 
systems (Supplementary Table 3).

The Neuro-stack’s digital layer (Fig. 1a,b, middle) routes signals 
between the analog and communication layers and contains a custom 
IC chip (PLS IC) for closed-loop stimulation based on the detected 
oscillatory (for example, theta) phase in the recorded neural signal 
coming from the analog layer to enable PLS46,47. A field-programmable 
gate array (FPGA, Xilinx Spartan-6 board) serves as a communication 
layer (Fig. 1a,b, top, and Extended Data Fig. 4) between external devices 
and custom ICs (Fig. 1b).

The Neuro-stack uses the serial peripheral interface (SPI) at 
12 MHz (Sense and Stim ICs) and serial shift register (PLS and Spike 
ICs) for internal communication between layers and IC chips and a USB 
interface for external communication and power supply. The device 
is assembled by physically stacking the described layers (Fig. 1a,b). 
One Neuro-stack supports up to four analog layers at a time, for up 
to 256 micro-wire (LFP) electrode contacts (64 per layer) and up to 32 
micro-wire (single-unit) electrode contacts (eight per layer).

A ready-to-use GUI is available (connected to the Neuro-stack via 
USB) and allows for real-time multi-channel monitoring and control 
of recording and stimulation (Fig. 1a). A platform-agnostic API library 
written in C++ that allows for custom applications and experiments 
is also provided. To allow ambulatory experiments, the Neuro-stack 
can be wirelessly controlled using the Coral Development Board (CDB; 
Extended Data Fig. 4, tensor processing unit (TPU) in Fig. 2a) and an 
ARM-based single-board computer, running a Mendel Linux distri-
bution. Similar microprocessors with wireless capabilities, such as 
a Raspberry Pi, can also be used for this purpose. Our Neuro-stack 
setup included an ARM-compiled Neuro-stack API, which supports 
wireless applications through a secure local Wi-Fi (2.4-GHz or 5-GHz) 
network created using the included API library. Only a device that uses 
a secure (X.509 certification) connection to a local server can control 
the Neuro-stack. The CDB contains an onboard TPU (Fig. 2a), which 
can make real-time inferences for neural decoding or closed-loop 
applications (for example, see ‘Stationary verbal memory task’ sub-
section and Fig. 4).

In vitro sensing and stimulation
The Neuro-stack IC chips (that is, Stim, Sense, Spike and PLS) were 
validated in vitro38,39,41,42,46 and some (Sense and Stim) as part of an 
implantable system39 before moving to human in vivo studies. To 
validate sensing capability, pre-recorded analog neural data were fed 
via an NI PXI System (digital-to-analog converter) through a PBS solu-
tion. An oscilloscope was used to observe true signals at front-end 
(FE) inputs and a computer to control and power the Neuro-stack 
(Extended Data Fig. 5 and Methods). The captured signals were of sat-
isfactory quality (Sense and Spike IC; Extended Data Fig. 6a,b). PLS was 
also tested using the same in vitro setup (Extended Data Fig. 5). For 
300 s of LFP data, the results showed 400 detections within the theta 
band (3–8 Hz) and triggered stimulations with a circular variance of  
0.3 (ref. 47).

Measurements of stimulation and synchronization delivery delays 
were also characterized. First, the round-trip delay, important for 
closed-loop stimulation, was measured from sensed input to stimu-
lation output by feeding a train of 50 pulses into the sensing FE. The 
pulse rising edge detection triggered stimulation on the CDB software 
side (connected to the Neuro-stack via USB; Extended Data Fig. 6c). 
Input/output observations by the oscilloscope showed a 1.57 ± 0.19-ms 
round-trip delay (Extended Data Fig. 6d). This result was consistent 
with the PLS-based round-trip delay of 1.7 ± 0.3 ms measured from the 
sensed input to stimulation output47. Second, synchronization with 
external devices was done by time-stamping neural samples using the 
CDB; accuracy depended on the system latency through hardware and 
software. We applied the same approach as the round-trip delay with 
the addition of sending a test pulse on a general purpose pin once the 
sample reached the time-stamping step (Extended Data Fig. 6c), which 
resulted in a delay, measured from sensed input to CDB output, of 
0.56 ± 0.07 ms (Extended Data Fig. 6e). For more details, see Methods 
(‘In-vitro testing’ subsection).

In vivo sensing and stimulation
Twelve participants with indwelling macro-electrodes and 
micro-electrodes implanted for pharmacoresistant epilepsy volun-
teered for the study. Each Behnke–Fried macro–micro depth electrode 
(Ad-Tech Medical) contained 7–8 macro-contacts and nine (eight record-
ing and one reference) 40-µm-diameter platinum–iridium micro-wires48 
inserted through the macro-electrode’s hollow lumen. Neural activ-
ity was recorded from macro-wire and micro-wire contacts using the 
Neuro-stack during wakeful rest (Methods, ‘Participants’ subsection) 
and from various brain regions (Supplementary Table 2 and Meth-
ods, ‘Electrode localization’ subsection). Neuro-stack setup was done 
bedside (Fig. 1c,d) or on-body during ambulatory movement (Fig. 2a),  
where the system was connected to implanted electrodes using a 
custom-built connector (that is, touchproof Cabrio and Tech-Attach 
connectors for macro-electrodes and micro-electrodes, respectively).

iEEG data were recorded simultaneously with the Neuro-stack 
using commercially available recording systems (that is, Nihon 
Kohden) for comparison purposes. Raw iEEG activity traces from an 
example participant are shown using simultaneous Nihon Kohden 
and Neuro-stack recordings (Fig. 1e,f), together with time–frequency 
power spectrum data (frequency band: 1–200 Hz, sampling frequency: 
500 Hz; Fig. 1g), fast Fourier transform (FFT) and Welch-based power 
spectral density (PSD) plots (frequency band: 1–200 Hz, sampling 
frequency: 500 Hz; Fig. 1h,i). Further comparison metrics49 are pro-
vided in the Methods (‘Concordance iEEG comparison’ subsection) 
and Supplementary Table 1.

Stimulation was performed in three participants (P4, P5 and P10; 
Supplementary Table 2) to test stimulation artifact propagation across 
channels and assess associated statistics. In the first two participants, 
bipolar macro-stimulation was applied to the left hippocampus (ampli-
tude: 0.5 mA; pulses/burst: 11; waveform shape: rectangular; pulse 
width: 1 ms; frequency: 100 Hz). After successful delivery was observed 
in surrounding channels, a series of bipolar macro-stimulation bursts 
with varying parameters was delivered in the third participant (P10) 
(Fig. 3c). Stimulation delivery (Fig. 3c, entire session; Fig. 3d, multi 
burst; Fig. 3e, single burst level) was observed on 40 nearby recording 
channels, obtained using the Sense IC (sampling rate: 6,250 Hz). Over-
layed pulses from an example burst with the same parameters showed 
successful delivery across all channels (Fig. 3f). Furthermore, all pulses 
from the same burst showed consistent artifacts in the channel adja-
cent to the stimulation site (Fig. 3g). Higher stimulation amplitudes 
resulted in lower variability in delivered power (Fig. 3h), whereas higher 
burst frequency resulted in higher variability across channels (Fig. 3i). 
Note that stimulation artifacts were not caused or affected by channel 
saturation (Fig. 3f), with absolute voltage levels much lower than the 
50-mV cutoff. Thus, these results (Fig. 3h,i) suggest that stimulation 
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parameters, not just underlying neural activity, contribute to stimula-
tion artifact waveform uncertainty. Full quantification of the impact 
of different stimulation parameters on stimulation artifact statistics 
should be addressed in future work.

Ambulatory walking task
We used the wireless Neuro-stack setup (Fig. 2a) in six participants 
(P6–9, P11 and P12; Supplementary Table 2) while they walked in their 
hospital rooms to record single-neuron activity (Supplementary  
Table 2) synchronized with world-view and eye-tracking cameras  
(Fig. 2b and Extended Data Fig. 2c,d). The first four participants walked 
freely around the room, during which motion artifacts (slow and sharp 
transients; Extended Data Fig. 3a–c) were examined. To assess quality 
of recordings, we calculated the artifact-to-signal time ratio (ASTR), 
yield, signal-to-noise ratio (SNR) and artifact removal impact (ARI) 
on spike sorting. Slow transients occupied frequency bands lower 
than 4 Hz and were removed by filtering, whereas sharp transients 
were detected using independent component analysis (ICA; Extended 
Data Fig. 3d) and removed by linear interpolation. Although the use 
of a nearby electrode (same bundle) as a reference reduced common 
noise artifacts using the FE amplifiers (Extended Data Fig. 2a) and 
allowed some single units to be isolated (Extended Data Fig. 2a, right) 
in the first four participants (P6–9), the large ASTRs prevented stabile 
recordings, successful spike sorting and single-unit cluster isolation. 
However, after copper shielding of the Neuro-stack’s electronics and 
headstages, fixation of headstages to the participants’ head and rein-
forcement of each channel connection, the ASTRs were sufficiently 
low (Extended Data Fig. 3g) in the next two participants (P11 and P12). 
Example raw 12-channel neural activity recorded from P11 (Fig. 2c) 
and P12 (Extended Data Fig. 3a) during walking is shown. Despite a 
lower SNR during walking compared to rest (Extended Data Fig. 3g), 
spike sorting50 of the bandpass-filtered (300–3,000 Hz) (Fig. 2d)  
and artifact-free data successfully isolated single-unit clusters  
(Fig. 2e–g). Recordings were stable and showed non-zero firing rates 
(for example, Extended Data Fig. 3h) across the task, which included 
both rest and walking periods (Extended Data Fig. 3a). Furthermore, 
artifact removal had no significant impact on the results of spike sort-
ing (ARI11 = −0.4 ± 1.6%, P = 0.287; ARI12 = −0.2 ± 1.4%, P = 0.354), and 
average (±s.e.m) single-unit yield across channels (P11 = 0.56 ± 0.63, 
P12 = 1.00 ± 0.96 units per channel; Extended Data Fig. 3g) was similar 
to previous studies in stationary participants. LFP activity from the 
same MTL micro-electrodes recorded in P11 and P12 during the walk-
ing task (Fig. 2h) showed that theta activity (3–12 Hz) was significantly 
increased near the wall (boundary) compared to the inner room area 
(Fig. 2i; P < 0.001) in line with previous findings35.

Stationary verbal memory task
Neuro-stack’s ability to record neural data in real time and decode 
behavioral performance was tested in a participant (P7) while they 
completed a verbal memory task (Fig. 4a). During the task, the par-
ticipant was instructed to learn (encode) a list of ten words and then 
verbally recall as many as possible after a delay (30 s). During the delay, 
a non-mnemonic (distraction) task was completed that involved iden-
tifying whether the sum of two random numbers (1–9) was odd or even. 
Encoding, distraction and recall blocks were repeated nine times while 
the Neuro-stack recorded LFP activity from 16 micro-wire channels, 
which was used to decode memory performance in real time using 
artificial neural networks (ANNs). The goal of decoding/classification 
was to predict the binary outcome of verbal memory (subsequently 
remembered/forgotten) based on LFP activity during encoding.

The TPU device (Extended Data Fig. 4) was integrated with the 
Neuro-stack and used to embed a neural network model that was 
small enough to be successful with using solely on-system computa-
tion. ANNs were pretrained on multi-channel raw (downsampled) 
LFP data previously acquired using a Blackrock Neuroport recording 

system. Offline pretraining performance successfully differentiated 
remembered from forgotten words during recall with a test F1 score 
(F1 = 2 × (P × R) / (P + R); P, precision, R, recall) of 88.6 ± 5.5% and a test 
accuracy of 91.7 ± 3.3%. The model was built and trained in a Keras 
(TensorFlow back-end) framework after detailed comparison with 
commonly used machine learning methods (support vector machine 
(SVM) and principal component analysis (PCA) plus SVM, various 
neural network architectures; Supplementary Table 4). The decoder 
consisted of an input 2 × CNN1D + LSTM (one-dimensional convolu-
tional neural network + long short-term memory) layers that extracted 
multi-channel LFP features and an output Dense (fully connected 
network) + Classifier layers (Fig. 4e). For further details, see Methods.

During the memory task, the offline model’s output layers were 
retrained in real time on an external computer. The trained model 
was then translated to TensorFlow Lite and ported to the Edge TPU, 
to predict memory during the last four task blocks (Fig. 4b). The 
training phase and improving accuracy/loss metrics are presented in  
Fig. 4c. The online test (prediction) phase resulted in an F1 score of 69% 
(Fig. 4c, bottom). Average total theta power of the data (Fig. 4d) and a 
time–frequency heat map of the second CNN1D layer activation filters 
confirmed that theta multimodal activity timed to the population 
activations in the left and right hippocampus was used by the model 
to separate the two classes (Fig. 4f,g). The model’s above-chance per-
formance was confirmed by receiver operating characteristic (ROC) 
curves (0.5 threshold) for both the offline base model (Fig. 4h) and the 
online Neuro-stack prediction phase (Fig. 4i). Participant’s memory 
performance during the testing phase of the online study was 42.5% 
(summary of recall performances in both training and testing datasets 
is shown in Extended Data Fig. 7c).

Discussion
We present the Neuro-stack, a novel miniaturized recording and stimu-
lation system that can interface with implanted electrodes in humans 
during stationary (bedside) or ambulatory behaviors. The Neuro-stack 
presents a unique system fully developed and tested in an academic 
environment (Methods, ‘Neuro-stack development in an academic set-
ting’ subsection), which can deliver closed-loop PLS (to up to 32 chan-
nels simultaneously) during single-unit and LFP recording. Full-duplex 
and PLS capability have been a key challenge in the development of 
implantable neuromodulation devices due to small margins in devices’ 
input dynamic range compared to externalized systems. Current human 
implantable systems require mitigation before recording of neural 
activity when stimulation is on (for example, amplifier blanking and 
differential recordings). The Neuro-stack’s larger dynamic (FE) input 
range and its amplifier’s digital non-linearity correction (NLC) allows 
for capturing of large-magnitude stimulation artifacts in the absence 
of amplifier saturation or neural signal degradation. The Neuro-stack 
also includes a digital ASAR IC41, which could provide improved ability 
to sense multi-channel single-unit/LFP neural activity (with 160-mVpp 
single-unit and 100-mVpp LFP linear input range) concurrent with 
stimulation. However, future studies will be needed to characterize 
advantages and effectiveness of added ASAR capability. Altogether, 
the Neuro-stack offers an advantage over existing systems in that it 
provides unrestricted full-duplex with PLS capability during single-unit/
LFP recording in the presence of large stimulation artifacts.

A second major advantage of the Neuro-stack is its smaller hand-
held size that enables it to be carried on-body and wirelessly controlled. 
These features allowed us to record single-neuron activity during 
walking, which, to our knowledge, are the first recordings of their kind 
in humans. Future studies using the Neuro-stack could determine the 
neural mechanisms underlying human freely moving behaviors to 
identify, for example, spatially selective neurons and their modula-
tion by cognition (for example, hippocampal place or entorhinal grid 
cells51) that have been discovered in freely moving animals. Doing so 
would bridge decades of findings between animals and humans and 
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potentially lead the way toward scientifically informed therapies for 
hippocampal–entorhinal-related dysfunctions (for example, Alzhei-
mer’s disease). Although we did not identify spatially selective single 
units, possibly due to the restricted spatial environment in which 
walking took place, future studies using the Neuro-stack over longer 
distances (for example, hallways) may be able to identify these neurons 
in humans.

A third advantage of the Neuro-stack is its API that allows fast and 
flexible prototyping of behavioral experiments with a range of back-end 
functions that accurately align behavioral and neural events. We dem-
onstrated how an offline neural network model can decode verbal 
memory performance in a participant with accuracy levels that exceed 
previous reports18, whereas a similar real-time result was obtained using 
the Neuro-stack’s API integrated with a TPU. Future studies with larger 
sample sizes will confirm whether our reported decoding accuracy can 
be improved and generalized across participants. It should be noted 
that we tested the decoding algorithm in a participant using the model 
pretrained with recordings from a different device with different noise 
levels (Fig. 1g); hence, performance could increase as more Neuro-stack 
data are incorporated into the pretrained model. Given the increasing 
benefit of using machine learning approaches52–54 in neuroscience stud-
ies, the Neuro-stack could be useful for validating decoding models 
and testing novel closed-loop stimulation therapies (for example, to 
improve memory in patients with severe memory impairments).

Future studies could also determine which stimulation parameters 
are most beneficial for restoring cognitive or behavioral functions 
given the Neuro-stack’s highly flexible programmability compared 
to existing human-approved stimulators. For example, continuous 
adjustments of custom pulse shapes and/or timing of stimulation 
relative to ongoing neural activity could allow for the development of 
more effective therapies. Given the wireless and wearable nature of the 
Neuro-stack, studies could also determine whether closed-loop stimu-
lation protocols effectively translate to more naturalistic behaviors 
during everyday experiences that occur during mobility.

Although the Neuro-stack offers several advantages over cur-
rently available systems, there are limitations that warrant discussion. 
First, the Neuro-stack can only support a maximum of 32 single-unit 
recording channels. Other existing bedside systems can allocate 
more than 128 channels solely for single-unit recordings. The use of 
multiple Neuro-stack devices, however, would address this issue and 
increase single-unit channel count substantially. Second, although 
the Neuro-stack is small enough to be carried on-body and allows for 
full mobility, its connection with implanted electrodes is still wired. 
Thus, significant movements can result in motion artifacts. However, 
single-unit spike waveforms can still be detected and isolated during 
walking behavior as we show using techniques such as differential 
recordings between nearby contacts as well as proper wire isolation 
and fixation. Lastly, the Neuro-stack can only be used in research stud-
ies with patients who have externalized electrodes implanted during 
clinical (for example, epilepsy) monitoring. Because these patients 
need to be continuously tethered to bedside intracranial recording 
systems to assess for symptomatic episodes (for example, seizures), 
this limits the amount of time a patient can be freely moving. How-
ever, ambulatory studies can be completed after clinical data have 
been captured, as was done in the current study, on the last day of the 
patient’s hospital stay before electrode de-plantation surgery, or dur-
ing circumstances where continuous monitoring may not be necessary 
(for example, depression or chronic pain studies36,55). Furthermore, 
proper precautions and safety measures should be implemented, such 
as waiting to complete studies until patients with epilepsy are back on 
anti-epileptic medications to minimize risks associated with seizures 
during ambulatory tasks.

Although Neuro-stack is much smaller than other external systems, 
an even smaller version could be tested in future studies, because its IC 
chips are all implantable38–42,46 and require a combined area of 113 mm2 

(four analog layers). An implantable version of the Neuro-stack39 but 
with its added single-neuron and closed-loop stimulation capabili-
ties thus presents an exciting avenue toward a completely wireless 
intracranial single-unit and LFP recording system that would not be 
susceptible to motion artifacts. This would present a considerable 
advancement over current FDA-approved chronic neurostimulation 
devices in that it would allow for single-neuron and multi-channel 
(current state-of-the-art is four channels) recordings, bidirectional 
recording and PLS stimulation (full-duplex) capability and the ability 
to use advanced strategies for decoding (for example, neural network 
models) behavior or disease-related states. Altogether, these capabili-
ties would provide cognitive and clinical neuroscience studies with a 
promising future pathway toward determining the deep brain mecha-
nisms of naturalistic behavior in humans and developing more effective 
closed-loop intracranial neuromodulation strategies for individuals 
with debilitating brain disorders.
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Methods
Equipment designed and used in this research was approved by the 
University of California, Los Angeles (UCLA) institutional review board 
(IRB). The research protocol, informed consent and in vivo studies in 
human participants described in this work were also approved by the 
UCLA IRB.

Neuro-stack hardware design
The Neuro-stack was built from four implantable and previously 
reported application-specific IC chips. The Sense IC contains  
32 low-noise, high-dynamic-range LFP sensing FEs, which can be 
duplexed to 32 electrodes for single-ended recording with respect 
to the reference electrode or to 32 pairs of electrodes for differential 
recording, matching up to 64-electrode probes (or 8 × 10-electrode 
probes, where the 9th is a reference and the 10th is a ground contact). 
After linearization in the NLC module, the recorded output can be 
optionally sent to four ASAR engines, which use adjacent recording 
channels to adaptively learn the shape of the stimulation artifact to 
improve stimulation artifact removal in real time. The signal processing 
chain of FE + NLC + ASAR provides the ability to sense neural activity 
concurrent with stimulation. Each of the steps in this chain can be con-
figured and included/bypassed in the pipeline. The Sense IC provides a 
three-wire SPI interface. It also downstreams the commands to control 
the Stim IC. The controller integrated into the Sense IC implements the 
state machine for SPI communication, schedules the data for the sens-
ing output and features the capability of individual control of every FE/
NLC/ASAR module38–41. The PLS IC is a previously developed digital chip 
that supports 16-channel detection of the power at selectable frequen-
cies within theta band (3–8 Hz) and triggers configured stimulation at 
a specified phase of the detected oscillation46,47.

We designed a layout and manufactured a digital (Fig. 1b, middle) 
and an analog (Fig. 1b, bottom) PCB using specialized software (Altium 
Designer 14.0) where each board consisted of two PCB layers. The 
Sense, Stim and Spike IC footprints were placed on the analog layer and 
the PLS IC footprint on the digital layer. The SPI interface was routed 
from the analog layer input/output connector to the Sense IC and from 
the Sense IC to the Stim IC (Fig. 1b, right). We used an SPI with three 
wires: clock, master input/output slave (MISO) and master output/
input slave (MOSI). Two-wire shift register interfaces were routed from 
the analog/digital layer input/output connector to the PLS IC/Spike IC 
(Fig. 1b, right). The sensing and stimulation FEs were routed to the two 
Omnetics PS1-16-AA connectors to which electrodes are connected. The 
digital and analog layer input/output connectors are compatible and 
can be stacked on top of each other. On the top connector, we placed 
the Xilinx Spartan-6 (XC6SLX150-2FGG484C) FPGA board to serve the 
role of the communication layer (Fig. 1a, top). The FPGA is configured 
to support four SPI interfaces and five shift registers, thus allowing up 
to four analog layers to be stacked together. We used a two-analog layer 
setup for all in vitro and in vivo experiments. Because we used separate 
SPI interfaces for each analog layer IC, the 4th wire (select) on the SPI 
was not needed in the PCB design. The FPGA contains a finite state 
machine (FSM) that converts USB input (FTDI controller) into SPI (SPI 
controller) packet stream and vice versa. For FPGA programming, we 
used the Xilinx ISE 14.2 software (Verilog language). In brief, the FSM 
always begins with a Reset state after a reboot and then enters an Idle 
state in which it waits for incoming packets. Once a packet is available, 
the FSM receives it byte by byte (Receive Byte) until the complete 
message is transferred (Receive Packet). The received packet is then 
being processed (Process Packet), converted into the appropriate 
interface (for example, USB to SPI) and transmitted to the Neuro-stack 
ICs (via SPI or Shift Register). Similarly, after the processing is done, the 
response packet from the ICs enters a state during which it can transmit 
the packet (Transmit Packet) byte by byte (Transmit Byte) externally. 
Once the transmission is done, the FSM goes back to the Idle state and 
waits for new packets unless the streaming of the neural data is taking 

place, in which case the FSM enters the Process Packet state indefinitely 
until the recording is stopped (Extended Data Fig. 4, left). Stacked lay-
ers were placed inside a plastic enclosure (Fig. 1a) and wrapped from 
the inside with copper foil shielding tape to reduce the impact of the 
noise. Custom headstages (Fig. 1b,d) were built on a protoboard by 
placing two 5 × 2 connectors on each, which were internally routed to 
the Omnetics connector.

Neuro-stack’s communication layer uses a USB interface for 
external connections and a specific communication protocol that can 
address, configure and start/stop each IC. The protocol is described by 
a packet structure (up to 520 bytes) that captures Command (such as 
Reset, Start/Stop, Read/Write configuration registers, etc.), Board ID 
(to select analog layer), Spike and PLS commands and optional Payload 
(varies in length (Payload Length) depending on the command). The 
FPGA’s FSM processes the input packet and decides which IC is to be 
addressed and forwards relevant bytes to it. The protocol also includes 
safety error and cyclic redundancy check bytes (Extended Data Fig. 3, 
bottom). Every command returns its specific acknowledgment receipt, 
indicating that the execution of the command was successful.

Neuro-stack software design
The Neuro-stack GUI (Fig. 1a) was built as a Universal Windows Platform 
application using Visual Studio (2017) and the Visual C# language. The 
application can be installed on any Windows (8.1 or higher) machine. 
We specifically used Surface Pro 5 for running the GUI application. The 
application uses a USB connection to directly communicate with the 
Neuro-stack (Fig. 1a) to enable viewing and configuration of real-time 
neural data, the configuration of PLS and other stimulation parameters 
and manually triggered delivery of stimulation.

As an alternative to the GUI, the Neuro-stack API is a library of func-
tions built in C++ that the user can call in custom-design experiments. 
The API combines all core and backhand GUI functions into a faster and 
more resource-efficient implementation. It is built as a multi-thread 
real-time software pipeline, which threads mirror hardware blocks 
(for example, Sense Process controls the Sense IC and Stim Process 
controls the Stim IC; Extended Data Fig. 4, middle). Processes respon-
sible for each IC run in parallel and asynchronously forward commands 
to their associated IC, or they await a command receipt or a recorded 
neural sample via the Input Queue (Extended Data Fig. 4, middle). 
Neural samples are time-stamped using network time protocol (NTP, 
ref. 56) in the Sense and Spike Process threads upon their arrival. They 
are sent together with a sample value either to an external device or 
stored in log memory (Extended Data Fig. 4, middle), which was used 
for synchronization. The library can be compiled for commonly used 
Linux, Windows, macOS or ARM-based target devices. We used the 
ARM-based (NXP i.MX 8M SoC) CDB to run the Neuro-stack API. To 
use all CDB capabilities, we complemented the library with functions 
that can store/save the TensorFlow Lite model and run inference on 
recorded neural samples using the CDB’s onboard TPU. CDB supports 
both wired (USB-C) and wireless (using a local network access point and 
a TCP/IP server with a X.509 certificate authentication) interfaces with 
external control capability and use of a real-time monitoring device 
(for example, Experimental Computer). X.509 is a digital certificate 
that uses public key infrastructure. We used self-signed certificates 
because we used only one Experimental Computer to connect to the 
Neuro-stack. We used a MacBook Pro (2015) laptop as an Experimental 
Computer, which ran a client Python 3.6.9 script for triggering sens-
ing, stimulation, TPU-specific commands and transferring/storing/
monitoring neural activity by using the Neuro-stack API running on 
the CDB (Extended Data Fig. 4).

For in vivo resting state neural recording experiments, we used 
the GUI application to control the Neuro-stack (Fig. 1). For in vitro 
testing, in vivo macro-stimulation (Fig. 3), behavioral stationary  
(Fig. 4) and ambulatory experiments (Fig. 2), we used the Neuro-stack 
API and CDB wireless configuration (Extended Data Fig. 3).
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In vitro testing
In vitro studies involved the use of an oscilloscope, a PBS solution, a 
National Instruments Digital-to-Analog Converter (NI-DAC) and the 
Neuro-stack (using both wired and wireless configurations; Extended 
Data Fig. 5). Testing of the Sense and Spike ICs involved feeding 100 s 
of pre-recorded LFP/single-unit data through the NI-DAC. The analog 
signals were observed using an oscilloscope and recorded by a single 
channel using the Neuro-stack. For visualizing results, a time domain 
comparison was used for Sense IC and Spike IC (Extended Data Fig. 6). 
The Stim IC was tested as part of closed-loop delay measurements and 
in previous reports39. Delivered stimulation was captured by the oscillo-
scope and on one channel using the Neuro-stack (Extended Data Figs. 5  
and 6). The PLS IC was tested in vitro as part of a previous study46,47.

The round-trip delays were measured by sending a pulse train 
(50 pulses, 20-mV amplitude, 1-s pulse width, duty cycle 50%) from 
the NI-DAC to one channel recorded using the Neuro-stack. The modi-
fied software on the CDB continuously pooled incoming samples and 
detected the increase from 0 (rising edge) in these incoming values. 
Once detected, the rising edge triggered one pulse of stimulation. The 
delay (mean ± s.d. for 50 pulses) was measured on the oscilloscope by 
capturing both the recording input and stimulation output rising edges 
and their time difference (Extended Data Fig. 6d).

The Neuro-stack system and software latency from the recording 
input to the Sense Process thread on the CDB was measured using the 
same pulse train process, but, instead of triggering stimulation, the 
detected rising edge triggers a 1-s pulse to the CDB general purpose 
input/output (GPIO) pin. We used the oscilloscope to observe the 
recording input and GPIO output and measure the time difference 
between the rising edges (Extended Data Fig. 6), which was equivalent 
to the system latency (mean ± s.d. for 50 pulses).

In vivo testing
Participants. Research participants were 12 patients (mean age 
24.15 years, nine females; Supplementary Table 2) with pharmacore-
sistant epilepsy who were previously implanted with acute stereo EEG 
depth electrodes for seizure monitoring. Participants volunteered for 
the research study during their hospital stay by providing informed 
consent according to a research protocol approved by the UCLA IRB.

In each patient, 8–12 flexible polyurethane depth electrodes 
(1.25-mm diameter) were implanted solely for clinical purposes and 
before completion of the research study. Each depth electrode termi-
nated in a set of eight insulated 40-μm platinum–iridium micro-wires 
(impedances 200–500 kΩ).

Electrode localization. Electrodes were localized to specific brain 
regions using methods that have been previously used57. In brief, a 
high-resolution postoperative computed tomography (CT) scan was 
co-registered to a preoperative whole brain magnetic resonance imag-
ing (MRI) and high-resolution MRI using BrainLab stereotactic locali-
zation software (https://www.brainlab.com/) and FSL FLIRT (FMRIB’s 
Linear Registration Tool58). MTL regions, including the hippocampus 
and entorhinal cortex, were delineated using Automatic Segmenta-
tion of Hippocampal Subfields (ASHS59) software using boundaries 
determined from MRI visible landmarks that correlate with underlying 
cellular histology. White matter and cerebrospinal fluid areas were out-
lined using FSL FAST software60. Macro-electrode and micro-electrode 
contacts were identified and outlined on the postoperative CT. For a list 
of localized brain regions in all participants, see Supplementary Table 2.

Data acquisition and stimulation
For all in vivo validation sessions, a Neuro-stack with two analog lay-
ers was used, which allowed for up to two micro-electrode bundles  
(16 channels) and eight macro-electrodes (32 bipolar or 64 monopolar 
channels). All micro-electrode and macro-electrode recording sessions 
were sampled at 38.6 kHz and 6,250 Hz, respectively. Base recordings 

were done without hardware decimation, non-linear correction and 
artifact rejection on the Sense IC. Refer to the ‘Data analysis and sta-
tistics’ subsection for details about data analyses.

Macro-stimulation was performed in three participants while 
they rested in their hospital beds. In the first two participants, three 
stimulation bursts (0.5 mA) were delivered to a single bipolar electrode 
channel. In a third participant, we performed stimulation propagation 
mapping, where macro-stimulation was delivered to a single bipolar 
channel (Fig. 3c,d), and recording was done in the other 40 channels. 
The parameter test space included (amplitude, frequency) combina-
tions of (0.25, 0.50, 0.75, 1.00 and 1.25) mA × (60, 80, 100, 120 and 
140) Hz where every combination was repeated four times for a total 
of 100 bursts (Fig. 3c) with the following parameters (pulse width: 
1.28 ms; interphase width: 150 μs; rectangular pulse shape; interburst 
delay: 16.67 s). The desired burst frequency was achieved by setting the 
inter-pulse delay appropriately.

Rectangular pulses recorded in all 40 channels were identified by 
using cross-correlation across all channels against a template waveform 
of the delivered stimulation pulse, which was later used for align-
ment (Fig. 3f,g) and calculating statistics of propagation in 33 out of 
40 channels (seven channels did not have artifacts) with respect to 
varying amplitudes (Fig. 3h) and frequencies (Fig. 3i). For statistical 
calculations of the propagated power, all pulse waveforms across 
channels were normalized using the same value of the largest pulse 
that was propagated.

Ambulatory walking task
Single-unit data were recorded in six participants during an ambula-
tory walking task. Four of the participants (P6–9; Supplementary  
Table 2) were instructed to walk around their hospital room freely and 
visit prominent ‘landmarks’, such as locations near windows, doors and 
tables. A separate group of two participants (P11 and P12) was instructed 
to walk repeatedly (ten times) from one position to another position 
in the room using a linear path (Fig. 2h). Ambulatory movement and 
position were tracked using an eye-tracking headset (Pupil Labs Core 
device61), which contained inward-facing eye cameras (sampling rate: 
200 frames per second) and an outward-facing world-view camera 
(sampling rate: 120 frames per second). The recordings were per-
formed using Pupil Capture software (version 2.3). The Neuro-stack 
was connected to two micro-wire electrode bundles (Behnke–Fried, 
Ad-Tech Medical) to record from 18 micro-wire contacts (16 recorded 
single-unit activity, and two served as reference contacts). Record-
ings with respect to local references (same bundle) were recorded at 
a sampling rate of 38.6 kHz.

During the walking task, the participants wore an eye-tracker 
headset and a small backpack (Fig. 2a), which carried the Neuro-stack, 
the TPU (CDB) using the wireless configuration (Extended Data Fig. 4) 
and a Voltaic V75 USB Battery Pack. The researcher used an Experimen-
tal Computer running an application (Python) to start/stop record-
ings and view in real time the neural data. Both the Neuro-stack and 
eye-tracker were connected to the same local network from which the 
NTP time-stamps were fetched. For a redundant method of synchroni-
zation, a miniature LED was attached to the corner of the world-view 
camera on the eye-tracking headset (Fig. 2a and Extended Data  
Fig. 2d). The LED was programmed to turn on for 50 ms every 20 s 
during the experimental walking task, which was not visible to the 
participant and was also NTP time-stamped.

LFP analysis
After spike sorting and artifact detection (see ‘Data analysis and statis-
tics’ subsection), we performed LFP extraction and analysis and aligned 
the data with behavior. Single units and artifacts were removed from the 
data using linear interpolation of ±1 ms around the detected samples. 
Spike-free and artifact-free data were downsampled to 386 Hz (using 
MATLAB’s multistep ‘resample’ function). A high-pass infinite impulse 
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8th order, 1-Hz cutoff filter (MATLAB’s ‘designfilt’ function) was then 
applied to the downsampled data.

The BOSC toolbox62 was used for time–frequency analysis. The 
base wavelet included six waves, and the transformation was performed 
on the 3–90 Hz range (0.25-Hz increments for <30-Hz, 1-Hz increments 
for ≥30 Hz). The sum of the power time-series over frequency incre-
ments resulted in a bandpower range (for example, 3–12 Hz) in time. 
The bandpower was then normalized, by z-scoring each time-series 
for a frequency band over the entire time-series data, separately for 
each recording channel.

Position extraction during the walking task
Each participant’s location in the room during walking was estimated 
using the Pupil Labs world-view video, Pupil Player software (version 
2.3) and pretrained models for optical flow extraction from video 
frames63. First, for each walking trial across the room, the turning 
frames (points X and Y; Fig. 2h) were identified. Points A and B (Fig. 2h) 
used for the boundary analysis were determined as the video frames 
that were, respectively, located at 1/3 and 2/3 of the time that was 
necessary to cross from X to Y. Bandpower time-series were then sepa-
rated into two conditions: inner (A to B; Fig. 2h) and boundary (B to Y;  
Fig. 2h). To correct for a different number of data samples within each 
of the two conditions, statistical analysis was performed on mean 
bandpower values from 500 iterations of randomly sampled data from 
the larger dataset using the length of the lower dataset (MATLAB’s 
‘datasample’ function).

Statistical analyses
A statistical comparison between inner and boundary positions on LFP 
bandpower from the walking task was completed using a two-sided 
paired permutation test with 10,000 permutations35. We assumed 
that random sampling of data points between conditions in time, 
after which the bandpower across channels was calculated satisfied 
the exchangeability, which is the only condition of a non-parametric 
permutation test. The P value was calculated as the sum of the ran-
dom differences that were larger than the observed mean difference 
between the bandpower vectors from all channels, which was then 
divided by the total number of samples in the distribution. Figure 2i 
was plotted using MATLAB’s ‘boxplot’ function.

Stationary verbal memory task
Behavioral task. Verbal memory performance was decoded using the 
Neuro-stack in a single participant (P7; Supplementary Table 2). The 
memory task began with an encoding period, where the participant 
was instructed to learn a list of ten words that were randomly selected 
and serially presented in an audio and visual format on an iPad Pro (3rd 
generation) screen (Fig. 4b and Extended Data Fig. 4, top right). During 
encoding, each word was presented for 2 s with an inter-trial fixation 
period of 4 s. Words were drawn from clusters of six and seven of the 
word norms and were all 4–8-letter nouns that were rated as highly 
familiar (range 5.5–7 on a 1–7 scale), moderate to high on concreteness 
and imagery (range 4.5–6 on a 1–7 scale) and moderate in pleasantness 
(range 2.5–5.5 on a 1–7 scale)64. After the encoding period, participants 
completed a distractor task where they were instructed to determine 
whether a presented number (1–9) was odd or even. The distractor task 
was then immediately followed by a verbal recall period where partici-
pants were cued to verbalize as many words as they could remember 
during a 30-s period. During the experimental paradigm, encoding, 
distractor and retrieval periods were repeated ten times. Memory 
performance was calculated as the proportion of previously encoded 
verbalized words that were recalled.

Base neural network model. For the online binary classification of 
incoming neural data into remembered/forgotten words, we used a 
pretrained base neural network model. The base model architecture 

included two CNN1Ds (1st with 32 nodes, 2nd with 64 nodes) and an 
LSTM neural network layer with 64 nodes. The L2 regularization was 
used in the CNN1D and Dense layers and was proportional to the square 
of the weight coefficients’ value. Moreover, the training dropout tech-
nique65 was applied after each layer with a 0.2 rate, except for the LSTM, 
which used a 0.1 rate and a recurrent dropout (0.5 rate). The complete 
structure of one branch is presented in Fig. 4e. The branches were 
structurally identical for all brain regions but had different weights 
after training. The model was pretrained offline using data from six 
MTL regions (left/right anterior hippocampus, left/right posterior 
hippocampus and left/right entorhinal cortex) from ten participants 
who performed the exact same verbal memory task (Fig. 4a) previ-
ously using a Blackrock Neuroport system to record neural data. LFP 
data (sampling rate 250 Hz, batch size 512) were extracted around the 
verbal memory task word onsets (same Gaussian window as before) 
and fed into the model for training (Extended Data Fig. 7a). The data 
from all participants were divided into training (50%), validation (25%) 
and test (25%) sets. Then, training and validation datasets were com-
bined, shuffled and used for training of the base model (Extended Data 
Fig. 7c). Because the number of forgotten (words) trials (forgotten 
class samples) compared to remembered trials (remembered class 
samples) was always fewer, we randomly selected an equal number 
of remembered class samples to balance the training dataset. Binary 
cross-entropy was used for the loss function, with root mean square 
propagation for the optimizer (learning rate of 0.001). Five-fold 
cross-validation (Extended Data Fig. 7d, average across folds) was 
used for validation using the presented hyperparameters. Hyper-
parameter optimization of the final decoding model (Fig. 4e) was 
done during the validation phase and with respect to the F1 score  
(0.5 threshold).

Transfer learning and online prediction. During the verbal memory 
task, we used the Neuro-stack in a wireless configuration (Extended 
Data Fig. 3) together with both the Experimental Computer and Stimu-
lus Presentation device (iPad). We used the Sense IC to record 16 chan-
nels from two (left/right hippocampus) micro-wire bundles. Stimulus 
presentation on the iPad was implemented as a game using Xcode 11.2.1 
and Swift 5.0.1 programming languages. For network communication, 
we used two transmission control protocol (TCP) channels (Fig. 4b 
and Extended Data Fig. 4; (1) Experimental Computer—CDB and (2) 
Experimental Computer—iPad). The background processing of the 
task’s data was divided into two phases: (1) training and (2) prediction, 
which consisted of five and four blocks of the verbal memory task cycle, 
respectively (Fig. 4c, presented seven blocks only—three training and 
four prediction). The purpose of the training phase was to personalize 
the model for the participant. Only the last two Dense layers from the 
model were used for retraining and embedding selected filters into 
the prediction model. The training phase involved downsampling and 
filtering of raw data (0.1–250 Hz), packing the data separately for each 
observed brain region (Preprocess step) and transmitting packages 
from the Neuro-stack externally to the Experimental Computer where 
the model retraining took place (Fig. 4b and Extended Data Fig. 8a). 
The words were presented using an iPad Pro tablet, which also used a 
built-in speech recognition algorithm to supply real-time outcomes 
(that is, remembered or forgotten) to the Experimental Computer. 
The word onset events were isolated and weighted using a Gaussian 
window where one standard deviation was 2.5 s, and cutoffs were made 
at −5 s and 5 s (before and after word onset), thus giving data around 
the word onset higher priority. The retraining of the model took place 
during every Distraction phase (30 s) of the verbal memory task. Once 
retrained, the model was automatically converted (Python 3.6.9 and 
Bash scripts) on the Experimental Computer from TensorFlow 2.2 to 
TensorFlow Lite and uploaded wirelessly to the Edge TPU (Extended 
Data Fig. 8c). During the prediction phase, the same format of preproc-
essed data was rerouted to the Edge TPU, where prediction took place. 
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The predictions from TPU and labels from the iPad were transmitted 
to the Experimental Computer for performance assessment after each 
word trial (Fig. 4b).

Transfer learning was used to decode performance on the ver-
bal memory task in a single participant. During the training phase 
with Neuro-stack, we used the same training parameters except 
that CNN1D and LSTM layer coefficients were fixed (Extended Data  
Fig. 8b), and only Dense coefficients were adjusted. Also, we used only 
two model branches out of six that were previously trained on the 
Blackrock-acquired data (hippocampal channels only) to match the 
left/right hippocampal electrode placement in the single participant 
who performed the verbal memory task Neuro-stack experiment. 
During the online training phase, all incoming windows (chunks) of 
LFP data were continuously combined with previous chunks, shuffled 
and used for retraining, whereas the new retraining iterations done 
after each learning block updated the coefficients saved from the 
previous learning blocks (Extended Data Fig. 8d). This way, the retrain-
ing process used a semi-shuffled dataset as the training set and then 
sequentially updated it with incoming data. Participants (Blackrock: 
B1–B10; Neuro-stack: N1 (P7)), their memory performance during ver-
bal memory task and test accuracies using offline (B1–B10) and online 
(N1) models are shown in Extended Data Fig. 7c.

Visualization. To get insight into the trained convolutional portion of 
the network model during inference, we observed its filter activations 
by visualizing the patterns that the filters were meant to respond to. 
Specifically, we applied gradient ascent at the input chunk values so as 
to maximize the response of a specific filter. The starting input chunk 
was 10 s with all samples having a value of 0. The resulting chunk was 
the one that the chosen filter was maximally responsive to. This was 
performed at the output of every filter in the second CNN1D layer for all 
channel models. The process aimed to build a loss function that maxi-
mized the output of each filter and then to apply stochastic gradient 
descent, which adjusted the input chunk values so that the filter output 
values were maximized. The loss function used was an average of the 
output for a given filter, and the gradient was with respect to the chan-
nel model input chunk. We also used L2 normalization during gradient 
descent. Once completed, the resulting input chunk was transformed 
into the time–frequency domain using continuous wavelet transform 
with complex Morlet base, to visualize whether the CNN1D layers 
were using specific oscillatory bands known to be signatures of verbal 
memory encoding. Illustrated are filters from the middle hippocampal 
branch, which maximally responded to theta bands (4–8 Hz) around 
the word onset (Fig. 4f,g). Association between hippocampal and MTL 
theta activity and memory function has been well established18,66. Note 
that these results (Fig. 4f,g) do not necessarily suggest that neural 10 s 
of data with strong theta power around the word onset is predictive of 
successful encoding. Rather, these results suggest that filters with a 
time–frequency transfer function that isolates theta activity (Fig. 4f,g) 
contributed to the model’s final decision, ultimately made by layers 
that followed the second CNN1D layer, which could have been either a 
remembered or a forgotten word.

Other classification methods. The above-described neural network 
model was chosen after an extensive trial-and-error process during 
which multiple classification algorithms were tested on the same data-
set. Specifically, before using the neural network model, the data were 
classified using shallow methods, such as SVM. As part of the feature 
engineering process, we supplied SVM models with raw, power and 
phase data in 0–250-Hz range chunks of 7 s (word onset at 3.5 s) or in a 
sequence of 1-s sliding time windows (with no overlap). Before choosing 
the final decoding model, we also tested several convolutional neural 
network (CNN) and recurrent neural network (RNN) architectures. 
Summary of the accuracies for each of these decoding methods is 
presented in Supplementary Table 4.

Neuro-stack development in an academic setting
The Neuro-stack is a neural interface that was designed, validated 
and tested in human participants all at an academic center, unlike 
other existing devices discussed (for example, NeuroPace, Medtronic 
and Blackrock Microsystems), which were developed in commercial 
environments. The Neuro-stack development was informed by in vivo 
human testing (for example, wearability, pre-existing stimulation 
protocols and available online electrophysiological data processing), 
all of which were made possible by research and close collaboration 
among academic researchers across the Departments of Electrical 
and Computer Engineering, Neurosurgery and Neurology and the 
Neuroscience Interdepartmental Program at UCLA.

As mentioned previously, much of the hardware (Sense, Spike 
and Stim ICs) integrated in the Neuro-stack was developed for the 
implantable SUBNETS system through a multi-institutional effort that 
was initiated, supported and funded by DARPA. The SUBNETS system 
and its components were developed following standard operating 
procedures and FDA guidance for active implantable medical devices 
incorporating requisite International Organization for Standardiza-
tion (ISO) standards. In addition to the Sense IC for LFPs and Stim IC 
for the SUBNETS program, an additional Sense IC for spikes and a PLS 
IC were developed, conforming to the same guidelines. The technol-
ogy incorporated in the Neuro-stack was developed in two fabrication 
cycles (1st iteration40 and 2nd iteration39), with a series of tests involv-
ing benchtop verification with in vitro validation. In the final version 
of the system, Sense, Spike and PLS ICs were designed and fabricated 
at Taiwan Semiconductor Manufacturing Company using a 40-nm 
complementary metal-oxide semiconductor (CMOS), whereas the 
Stim IC was fabricated at X-FAB using a high-voltage 180-nm CMOS. 
Neuro-stack assembly and software development were internally veri-
fied and validated at UCLA to meet safety requirements set by the FDA 
and the UCLA IRB. The functionality of each hardware and software 
component was, thus, thoroughly tested and documented before 
obtaining IRB approval. This included testing of recording functionali-
ties at specified parameters for a given channel, at a defined sampling 
frequency and under a specific amplifier configuration and not oth-
ers. Likewise, validation of stimulation capability was done to ensure 
that software control and triggering of stimulation delivered current 
with the exact programmed parameters, as per ISO 14708-1 and ISO 
14708-3. Given that stimulation requires additional safety checks, a 
separate condition, which enables stimulation, needed to be checked 
at the firmware level to ensure that delivery could happen only during 
triggered stimulation trials and not others. This ensured a redundant 
check in cases where an altered command would be read by the firm-
ware as a stimulation command. Furthermore, all commands sent to 
the firmware contained an 8-bit cyclic redundancy check (CRC) code 
to reduce the probability of an incorrect command delivery. During 
validation and human in vivo testing, only one password-protected and 
encrypted experimental computer containing a signed certificate was 
used to control the Neuro-stack, thus simplifying the necessary security 
infrastructure required for a commercial medical device.

Leakage currents of all channels were verified independently 
of software and hardware designers by a clinical engineer in an idle, 
active recording and stimulation mode of operation. Furthermore, 
all hardware and software documentation, including but not limited 
to design history, schematics, code and in vitro validation tests, were 
reviewed and approved by an independent clinical engineer at the UCLA 
Ronald Reagan Medical Center as precursor to the IRB review process.

Reproducibility
The Neuro-stack was completed as part of a multi-institutional effort 
involving a large group of academic researchers over several years. 
The Neuro-stack integrates hardware (IC) components already devel-
oped as part of a previous program (DARPA SUBNETS) with additional 
development of firmware and software to enable practical research 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01260-4

applications with human participants who have intracranial electrodes 
already implanted. Thus, reproduction of the Neuro-stack would first 
require replication of individual application-specific integrated cir-
cuits (ASICs) reported in previous work (38–42,46). It would take addi-
tional effort and resources for UCLA to manufacture and distribute the 
devices and provide user manuals and customer support. Additionally, 
revisions of the technology aimed at manufacturing economy of scale 
(for example, integration in 180-nm technology) and miniaturization 
for dual external and future implant use would be desired to increase 
access and utility of the technology in clinical research.

Data analysis and statistics
All custom data analyses were performed using MATLAB (2021b; Wave-
let, Signal Processing, Statistics and Machine Learning Toolboxes) and 
Python 3.6.9.

iEEG power spectrum extraction. Unless specified otherwise, all 
time–frequency power scalograms were obtained using continuous 
wavelet transform (CWT) (MATLAB ‘cwt’ command) performed on 
z-scored time-domain data (each channel normalized separately). The 
base wavelet chosen was the complex Morlet with a symmetry param-
eter (gamma) equal to 3 and a time–bandwidth product equal to 60. 
The wavelet coefficients were calculated at 70 logarithmic frequency 
points from 1 Hz to 125 Hz, after which the squared absolute value of 
the coefficients resulted in a power scalogram.

All frequency power spectrums were obtained using FFT (MATLAB 
‘fft’ command). The FFT length chosen was the largest power of 2, less 
than the length of the observed iEEG trace. The coefficients were then 
normalized with the trace length. Finally, the squared absolute value 
of the spectral coefficients multiplied by 2 (one-sided FFT) resulted in 
the power spectrum. The smoothed PSD plot (Fig. 1i) was calculated 
using MATLAB’s ‘pwelch’ command.

Motion artifact detection and removal. Artifacts during the walking 
task due to movement of the participant and/or Neuro-stack cables 
were present in two forms: large slow and large sharp transients  
(Fig. 2a and Extended Data Fig. 3a,b). Although almost all slow tran-
sients occupied a frequency range below 1 Hz, sharp transients affected 
both the LFP (Extended Data Fig. 3b) and single-unit (Extended Data 
Fig. 3c) frequency bands of interest. To isolate sharp transients, we used 
ICA. Three components were chosen after an exploratory phase with a 
criterion of computing a component that did not include single units 
after spike sorting (component ICA3; Extended Data Fig. 3d). Filtered 
(300–3,000 Hz) ICA3 clearly showed much larger (>1 mV) transients 
than the usual single-unit waveforms, although they could have the 
same time resolution (Extended Data Fig. 3d). Sharp transients were 
detected when the z-scored filtered ICA3 envelope was higher than four 
standard deviations. Each block of consecutive artifactual samples, 
including 1 ms before and 1 ms after the block, was removed using 
linear interpolation (MATLAB’s ‘interp1’ function). The proportion of 
data removed for each participant is shown in Extended Data Fig. 3g.

Spike sorting. We performed spike sorting using Wave_clus 3 (ref. 50). 
Preprocessing included the use of a notch filter to remove 60-Hz noise. 
Selected clusters were chosen so that more than 250 spikes were identi-
fied and that, out of these, 1% or less had ISIs of less than 3 ms. Firing rate 
was calculated by counting the number of spikes in non-overlapping 
50-ms windows across the duration of the experiment and convolving 
the resulting time histogram with 50-point Gaussian window.

Quality of recordings. To quantify the quality of single-unit record-
ings, we observed firing rate stability and calculated yield, SNR, ASTR 
(percentage of artifactual samples in the observed multi-channel 
time-series) and ARI on spike sorting. Yield was defined as the num-
ber of successfully extracted units after spike sorting per electrode. 

Stability was visually observed through range-normalized firing rates 
of each clustered unit (for example, Extended Data Fig. 3h). SNR was 
defined as the maximum unit amplitude of the average waveform for 
each sorted unit divided by three average standard deviations of the 
background noise (obtained from 300–3,000-Hz range; Extended Data 
Fig. 3f). SNR was calculated during two separate conditions: wakeful 
rest and walking (Extended Data Fig. 3a). ASTR was defined as the 
number of data samples removed after the artifact removal process 
(see ‘Motion artifact detection and removal’ subsection) divided by 
the total number of samples for each channel. For ASTR, we calculated 
the average value (Extended Data Fig. 3g) across all channels with the 
standard deviation being less than 1% of the mean as identical motion 
artifacts were present in all channels. ARI was defined as a mean (across 
units) percent change in the number of spikes before and after motion 
artifact removal (Extended Data Fig. 3g).

Concordance iEEG comparison. Figure 1e–i provides visual com-
parisons of iEEG recordings acquired from the Neuro-stack and Nihon 
Kohden systems in time, frequency and time–frequency domains. To 
provide a more systematic comparison of the presented data (Fig. 1e), 
we also used additional metrics, such as Pearson correlation, Hjorth 
parameters (activity, mobility and complexity), artifact spike count, 
60-Hz power and kurtosis (Supplementary Table 1). These metrics were 
obtained from ref. 49 and defined as follows:

Pearson correlation (ρ (A,B)) = 1
N−1

N
∑
i=1
( Ai−μA

σA
) ( Bi−μB

σB
)

Activity = var( y(t))

Mobility =√
var( dy(t)

dt
)

var( y(t))

Complexity =
Mobility( dy(t)

dt
)

Mobility( y(t))

Kurtosis = E( y−μ)4

σ4

The artifact spike count represented the number of sample points 
within an observed z-scored iEEG trace (250-Hz sampling rate) that fell 
outside ±6 value range. Power of 60 Hz was calculated using MATLAB’s 
‘bandpower’ function for the frequency range 55–65 Hz at a sampling 
frequency of 250 Hz.

Statistics and reproducibility
Research participants were 12 patients (mean age 24.15 years, nine 
females) who took part in four types of experiments: (1) stationary 
recording, (2) ambulatory recording, (3) stationary stimulation and (4) 
stationary verbal. Each experiment and data analyses were previously 
described in corresponding sections. Participants were not offered 
any compensation for their involvement in this research. No statistical 
methods were used to predetermine sample size. Because the main aim 
of this study was the validation of recording and stimulation capabili-
ties of our developed Neuro-stack system, we chose sample sizes that 
are similar to (or larger than) previous studies, where similar recordings 
were performed with other similar technical systems34,67.

Participants were asked to perform different experimental tasks 
(that is, stationary recording, recording during ambulatory walking, 
stationary stimulation or verbal memory) based on their physical, 
cognitive and clinical condition. Thus, selection of participants or 
assignment to different experimental tasks, sample sizes and replica-
tion decisions were determined in close collaboration with the clini-
cal staff and were primarily based on the participant’s condition. For 
example, stationary stimulation required the presence of neurologists 
on-site for safety reasons (as per IRB and safety requirements), and only 
participants in good physical condition who were able to walk safely 
were asked to participate in the ambulatory walking task.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01260-4

For these reasons, full randomization and random assignment 
of participants to experimental tasks was not possible in this study 
(Supplementary Table 2). Given that the main aim of this work was 
the validation of the Neuro-stack recording and stimulation system, 
rather than empirical conclusions regarding cognitive or behavioral 
effects in individuals, it is the authors’ opinion that this non-random 
assignment of participants to experimental tasks had minimal or no 
impact on the relevance of the work.

Data collection and analysis were not performed blinded to the 
conditions of the experiments. Data from each participant (Supple-
mentary Table 2) were analyzed separately, but not all results or redun-
dant conclusions about recording or stimulation signal quality were 
presented for each participant. Two participants (not included in this 
work), who attempted to perform the stationary verbal memory task, 
were excluded from analysis because the session was stopped at their 
request before sufficient results could be obtained.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data are available upon reasonable request. Source data are provided 
with this paper.

Code availability
Code is available upon reasonable request.
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Extended Data Fig. 1 | Comparison of Neuro-stack with commonly used 
bedside intracranial recording and stimulation systems used in humans. 
Neuro-stack capabilities as compared to existing human intracranial recording 
and stimulation systems. Characteristics shown include the device sampling 
rate, noise of the Sense IC (Noise Vin

LFP), number of recording channels that 
can be used, linear input dynamic range (Vin

AC), maximum stimulation current 
(Istim), number of channels that can be used for stimulation (Stim channels), 

and total number of stimulation channels that can be used simultaneously 
(Max stim modules). The main advantages of the Neuro-stack come from 
the miniaturization of the electronics per channel (channels/cm3) that allow 
for its small size and wearability and its integrated full-duplex capability 
that incorporates both stimulation and sensing (red line). BR: Blackrock, NL: 
Neuralynx.
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Extended Data Fig. 2 | Overview of the ambulatory walking task. a, Motion 
artifacts from four example Neuro-stack recording channels from an example 
participant during walking behavior when referencing is done using a separate 
(black, channels 1-2) or the same (grey, channels 3-4) micro-wire bundle. Single-
unit activity (example spikes in raw and filtered data shown to the right) that can 
be extracted using waveform shape and temporal differences as compared to 
the motion artifact. b, Shown is a top-down view of the hospital room layout in 

which an example participant completed the walking task, during which they 
were asked to walk back and forth between points X and Y repeatedly. Points X 
and Y were placed within a small area of the hospital room (~25 ft2). c, Example 
screenshots from the world-view camera as an example participant approached 
point Y from X (gray arrow shown in b that was captured via an eye-tracking 
headset. d, Same as c but a screenshot when the LED pulse that is used for 
synchronization (sync LED) was turned on versus off (c).
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Extended Data Fig. 3 | Analysis of recording quality and motion artifacts.  
a, Six example channels (P6-9, P11-12; Supplementary Table 2) of raw recordings 
from micro-electrodes during wakeful rest and the walking task to illustrate 
visible slow transient and sharp motion artifacts. b, Time-frequency domain 
(using BOSC) of channel 1 from (a), showing impact of slow and sharp transients 
on the 1–10 Hz frequency (Freq) band. c, Same six channels from (a), but filtered 
(300–3000 Hz). d, Independent component analysis (ICA) showing the 3rd 
independent component (ICA3) with isolated sharp motion artifacts, which are 
more problematic than large and slow transients. Red: unfiltered; blue: filtered 
[300–3000 Hz]). e, Power spectral density (power/frequency, mean ± SD; 
frequency range: 1–100 Hz) over all channels for two conditions (wakeful rest 
and walking states) matched in time duration. Data from both conditions were 
preprocessed using a high-pass filter (cut-off 1 Hz) and sharp artifact detection 

(based on thresholding of the filtered ICA3) and removal. f, Power spectral density 
(power/frequency, mean ± SD; frequency range: 300–3000 Hz) over all channels 
for the same two conditions match in time duration from (e). Data from both 
conditions were preprocessed using a high-pass filter (cut-off 1 Hz) and sharp 
artifact detection (based on thresholding of the filtered ICA3) and removal. 
g, Metrics quantifying the motion artifact removal process and quality of the 
recordings including artifact-to-signal time ratio (ASTR), yield (total number of 
sorted units and mean ± SD per channel), signal-to-noise ratio (SNR), and artifact 
removal impact (ARI) on spike sorting. Single-units were detected in participants 
P11-12. h, Example firing rates over the entire walking task as participant (12) 
transitioned from the stationary resting state to walking. Shown are two example 
isolated single-unit clusters from channels 1 and 2.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Neuro-stack experimental setup. A simplified block 
diagram showing Neuro-stack setup including the (LEFT) Communication 
Layer, which uses a field-programmable gate array (FPGA, Xilinx Spartan 6 
model) with a finite-state machine (FSM) built within it to allow for receipt of 
external messages (packets) via USB (for example, stimulation command) and 
streaming of the neural data. These packets are then processed and converted 
to serial peripheral interface (SPI) or Shift Register packets, and transmitted to 
the Neuro-stack integrated circuits (ICs, SPI: Stim and Sense IC; Shift Register: 
Spike and PLS IC). This FSM is bi-directional and thus also processes SPI packets 
received from the Neuro-stack and converts them into USB packets, which are 
then transmitted to the external Coral Development Board (Coral Dev Board) 
device. The FSM always begins with a Reset state after a reboot, and then enters 
an Idle state in which it waits for incoming packets. Once a packet is available, 
the FSM receives it byte by byte (Receive Byte) until the complete message 
is transferred (Receive Packet). The received packet is then being processed 
(Process Packet), converted into the appropriate interface (for example, USB to 
SPI), and transmitted to the Neuro-stack ICs (via SPI or Shift Register). Similarly, 
after the processing is done, the response packet from the ICs enters a state 
during which it can transmit the packet (Transmit Packet) byte by byte (Transmit 
Byte) externally. Once the transmission is done, the FSM goes back to the Idle 
state and waits for new packets unless the streaming of the neural data is taking 
place, in which case the FSM enters Process Packet state indefinitely until the 
recording is stopped. (CENTER) Coral Dev Board that can directly communicate 
with the Neuro-stack Communication Layer (via USB connection) using an 
Application Programming Interface (API, shown here) or a device (for example, 
Experimental Computer) with an installed GUI via USB (Fig. 1a). The Coral Dev 
Board contains a regular ARM-based central processing unit (NXP i.MX 8 M SoC) 
and a Google Edge Coprocessor, a tensor processing unit (TPU). The Neuro-
stack API library runs on the ARM processor and contains a real-time pipeline 
for handling control and data flow to and from the Neuro-stack for each IC and 
Communication Layer (or FPGA). The Input Queue handles streams of both 
neural data and acknowledgment receipts from the Communication Layer and 
redirects them to the appropriate block on the Coral Dev Board responsible for 
each ICs (for example, Sense, Stim,… Process). The Neuro-stack Control block 
contains all of the API functions, which are then multiplexed to additional layers 

responsible for wireless (via Server Interface) or wired (via Local Interface) 
communication with the Experimental Computer. Additionally, the Neuro-
stack Control block also contained functions for controlling the TPU, such as 
loading/saving the machine learning model (TensorFlow Lite Model) to/from 
the Memory block, redirecting the data streams directly towards the TPU, and 
receiving the TPU’s output once it is ready. The incoming neural data streams can 
also be stored locally in Log Memory or transferred to external storage on the 
Experimental Computer through the Neuro-stack Control block. Furthermore, 
an LED light can be triggered (to turn on/off) through available general-purpose 
input/output (GPIO) pins for synchronization purposes. These triggered on/off 
events are internally temporally aligned with the incoming neural data in order 
to synchronize it with data from eye-tracking cameras. (RIGHT) A local network 
can be created either by using a separate access point (shown here, for example, 
router, hotspot, etc.), or by the Coral Dev Board, which contains a network 
controller that can support access point topology and thus can create its own 
local network. This wireless mode means that a server is created on the Coral 
Dev Board to allow for other devices, such as the Stimulus Presentation device 
(for example, iPad used to present the verbal memory task) or Experimental 
Computer (for example, to view neural data in real-time) to access the Neuro-
stack API functions. Security warning points to the importance of a safe wireless 
connection, implemented by X.509 certificate authentication. Wired mode 
is also supported through Local Interface block (for example, Experimental 
Computer connected via USB-C). All devices connected to the local network 
use Network Time Protocol (NTP) to log events with timestamps fetched from a 
common server in order to synchronize them. (BOTTOM) The structure of the 
USB packets sent from the Coral Dev Board to the Neuro-stack Communication 
Layer, which contains up to 520 bytes that describe the type of Command, Board 
ID to address specific analog layer, Spike byte, phase-locked stimulation (PLS) 
byte, and Payload for additional information where its length (Payload Length) 
depends on the type of command. The packet also contains bytes for error codes 
(Error) and a cyclic redundancy check (CRC) to detect accidental changes in the 
raw packets. The communication layer extracts a relevant portion of the USB 
packet, converts it to desired interface (SPI or Shift Register), and transmits it to 
the addressed IC.
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Extended Data Fig. 5 | Neuro-stack in-vitro validation setup. Setup for in-vitro 
validation of recordings and stimulation includes the Neuro-stack platform and 
GUI, a phosphate-buffered saline (PBS) solution, a NI-DAC (National Instruments 
Digital to Analog Converter) device for conversion of pre-recorded neural 

signals, and an oscilloscope for monitoring the signal and measuring delivery 
time (of synchronization and stimulation pulses). The oscilloscope shows a single 
pulse of stimulation that was delivered using the Neuro-stack26.
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Extended Data Fig. 6 | Neuro-stack in-vitro validation results. a, Pre-recorded 
and normalized (Vnorm) LFP signal (black) fed into the Neuro-stack Sense IC  
front-end and the resulting Sense IC recording (blue). Presented results were 
filtered to remove 60 Hz noise. b, Pre-recorded and normalized (Vnorm) single- 
unit signal (black) fed into the Neuro-stack Spike IC front-end and resulting  
Spike IC recording (blue). On the right is a zoomed-in comparison of an example 
spike-unit waveform. Presented results were filtered to remove 60 Hz noise.  
c, Validation setup from Extended Data Fig. 4 in more detail, showing in-vitro 
signal sensing path (black arrows; NI-DAC - PBS - Sense IC - FPGA - CDB) and for 
in-vitro stimulation path (red arrows; CDB - FPGA - Stim IC - PBS). The round-trip 

delay was measured from point 1 (signal generator) to the CDB (black arrows), 
and back (red arrows) to point 2 (stimulation output). The test sensing signal was 
a pulse train fed into the PBS, which triggered stimulation once detected on the 
CDB. The sensing system delay was measured from point 1 (signal generator) to 
point 2 (GPIO output). The test signal was again a pulse train, which triggered 
the GPIO pulse once detected on the CDB. The output stimulation current was 
converted to voltage using resistors and was observed on the oscilloscope. d, The 
round-trip delay observed on the oscilloscope (Point 1 and 2; zoomed-in at the 
bottom). e, The system sensing delay observed on the oscilloscope (Point 1 and 3; 
zoomed-in at the bottom).
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Extended Data Fig. 7 | Offline base neural network model. a, Neural network 
model training procedure extracted overlapping 10 s windows of data around 
the word onsets during the verbal memory task and created raw chunks for each 
brain region before inputting them into the corresponding channel model.  
b, Downsampled (30 kHz to 250 Hz) windows of LFP data from 6 brain regions: 
Left/Right Anterior Hippocampus (LAH/RAH), Left/Right Entorhinal Cortex 
(LEC/REC), and Left/Right Posterior Hippocampus (LPH/RPH), which were 
range [-1,1] normalized and multiplied with a Gaussian, centered around the 
word onset. Each channel was then fed into a dedicated Channel Model (N = 6) 
and concatenated results were then classified. Note that data from all channels 
from each micro-wire bundle were merged together and then divided into 6 
brain region categories. Data was then split into training (50%), validation (25%), 

and test (25%) data sets for each participants. Training and validation data sets 
from all participants were merged, shuffled, and used for training and 5-fold 
validation of the base model. c, Shown are 10 participants recorded using a 
Blackrock system (B1-B10) and the participant recorded using the Neuro-stack 
(N1 or participant P7 from Supplementary Table 2). Total memory performances 
for each participant are shown including both training and test samples (2nd 
column), and accuracy of the base model on the test dataset for each participant 
(3rd column). Test accuracy for participant N1 is from the online model, which was 
retrained in real-time during the completion of the verbal memory task. d, Train- 
ing accuracy and loss of the base model. e, Validation accuracy and loss, averaged 
across 5 folds.
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Extended Data Fig. 8 | Online embedded Transfer Learning used for 
retraining and prediction. a, Neural network TPU embedded implementation 
showing the structure of the software responsible for the TPU inference, which 
consisted of channels from particular brain regions (channel branch). Each 
channel branch accepted incoming neural data, preprocessed it and then 
forwarded the output to the Edge TPU once inference was externally triggered. 
b, Online (partial) retraining of the neural network model locked the channel 
model coefficients. This transfer learning kept coefficients of the base channel 
models fixed and then retrained all layers after LSTM nodes. c, Transfer learning 
embedded implementation with (partial) external retraining and embedded 

inference. During the online retraining phase neural samples were directly 
forwarded over the wireless network to the experimental computer, where 
Python and Bash scripts automatically performed training and conversion to 
the TensorFlow Lite model. The model was then automatically transferred to 
the TPU’s memory, ready to be triggered during the prediction phase. Channel 
branches were equivalent to those described in (a). d, Real-time transfer learning 
retrained the model with shuffled data (old and new). During the online training 
phase all incoming chunks were used for training as such that whenever new 
chunks were received, they were shuffled with the previous ones from the same 
session and used them for retraining.
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Neuro-stack Integrated Circuits (related papers stated in the manuscript), Custom printed circuit boards (Altium Designer 14.0); C++, Bash, 
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Microsoft Visual Studio 2017 (Language: C#, Universal Windows Platform development), Keras/TensorFlow and TensorFlow Lite 2.2. Operating 

systems: Windows 8, MacOS 10.13-11, Linux Mendel distribution, iOS 11.

Data analysis MATLAB (2021b; Wavelet, Signal Processing, Statistics and Machine Learning Toolboxes), Python (3.6.9), Pupil Player (Pupil Labs, v2.3), 

BrainLab, FSL FLIRT, FSL FAST, ASHS. Operating systems: MacOS 11.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
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- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data is available upon reasonable request

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Twelve participants (mean age 24 years, three males and nine females) took part in this study. Sex or gender information was 

not considered nor used for study design or experimental purposes, because the goal of the study was in-vivo validation of 

the proposed technical system, rather than an investigation of behavioral/cognitive effects in or differences between 

individuals. Information regarding the participants’ sex or gender data was collected only for descriptive purposes during the 

recruitment process, according to an approved protocol.

Population characteristics Twelve participants (mean age 24 years, three males and nine females) with pharmaco-resistant epilepsy and implanted 

depth electrodes for clinical monitoring in the hospital took part in this study. Electrode placements were determined solely 

based on clinical criteria.

Recruitment During or before the scheduled hospital stay, participants were contacted in-person or via phone/e-Mail. They were given a 

detailed explanation of the study and were asked whether they would be willing to volunteer and consent to participate in 

the study. Participants were not offered compensation for their involvement in this research. Given that some of our 

experiments involved stimulation and physical walking, the participants were part of this experimental groups were always 

tested a day before or on the day of deplantation, while they were on medication. The participants were always informed in 

advance, during consent process, and during the experimental session about the experimental procedure. For the 

experiment with freely-walking participants, authors, in collaboration with the clinical team, specifically asked for 

participants, who were in good physical condition (i.e., able to walk freely) at the time of the experiment to avoid 

unnecessary risks (e.g., falling) in participants that were physically less fit. Brain stimulation was performed only in adult 

participants (>21 years of age) for ethical and safety reasons. However, these criteria were unlikely to impact the Neuro-

stack's ability to record or stimulate, nor to substantially change the data and conclusions presented in the manuscript. 

Allocation to other experimental groups (stationary recording and verbal memory task) was not based on specific selection 

criteria.

Ethics oversight All participants volunteered for the study by providing informed consent according to a protocol approved by the UCLA 

Medical Institutional Review Board (IRB)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Twelve participants (mean age 24 years, three males and nine females) with pharmaco-resistant epilepsy and implanted depth electrodes for 

clinical monitoring in the hospital took part in this study. No statistical methods were used to predetermine sample size. Since the main aim of 

this study was the validation of recording and stimulation capabilities of our developed Neuro-stack system, we chose sample sizes that are 

similar to (or larger than) previous studies, where similar recordings were performed with other similar technical systems (for example: Gilron 

et al., 2021, Paulk et al., 2022).

Data exclusions Data from each participant were analyzed separately, but not all results or redundant conclusions about recording or stimulation signal quality 

were presented for each participant. Data from two participants (not included in the manuscript), who attempted to perform the stationary 

verbal memory task, were excluded from analysis, these participants did not complete the whole task procedure, but asked to stop the 

experiment after insufficient number of trials.
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Replication All methods used to perform this study are detailed in the Methods section. The Reproducibility subsection, within the Methods section, 

contains a statement about the reproducibility of this work. Data were analyzed for each individual participant separately.  

Selection of participants, assignment of participants to different experimental tasks (i.e., stationary recording, recording during ambulatory 

walking, stationary stimulation, or verbal memory), sample sizes per experimental tasks, and number of replications and task durations per 

participant were determined in close collaboration with the clinical stuff and were primarily based on the participant's clinical, cognitive, 

and physical condition. For example, only participants in good physical condition who were able to walk freely were asked to participate in the 

ambulatory walking experiment. 

Consequently, stationary recording, ambulatory recording, stationary stimulation, and stationary verbal memory task were successfully tested 

in 12, 6, 3, and 1 participants respectively. Hence, with the exception of the verbal memory task (described below), all experimental tasks 

were replicated in multiple participants. All attempts of stationary recordings and stimulation were of high quality and deemed successful. As 

reported in the manuscript, mobile recordings in the first 4 participants were used to determine and adjust technical parameters and the 

setup, and then remained constant for successful recordings in two more participants. 

The stationary verbal memory task was successfully completed in one participant, with two more attempts with participants (excluded from 

analysis) who did not wish to continue with the experiment before the artificial neural networks could be trained to provide meaningful 

results. While the main goal of this work was the technical system's human in-vivo validation rather than empirically characterizing neural 

effects related to participant’s behavior and cognition, the aim of neural recordings during the verbal memory task was to showcase the 

technical feasibility of an automatic real-time analysis of the neural data, as an example use case of the Neuro-stack. This technical feasibility 

could be successfully demonstrated in one participant; however, behavioral/cognitive effects and conclusions regarding the verbal memory 

task were not replicated in this study and warrant future investigation. 

In-vitro recording and stimulation results were replicated and recorded 3 times independently prior to in-vivo experiments, in addition to 

numerous other in-vitro tests carried out as part of acquiring IRB approval, and as part of previous publications (Rozgic et al., 2017; Rozgic., et 

al 2018; Basir-Kazeruni et al., 2017; Chandrakumar et al., 2017; Alzuhair et al., 2018; Alzuhair et al., 2019). The delay measurements were 

performed twice independently with multiple measurements (50) during each and as part of previous publications (Alzuhair et al., 2019). 

Randomization The Neuro-stack setup was the same for all tested participants, but the protocols differed for recording and stimulation tests as well as for 

resting state, stationary, and ambulatory tests. Recording and stimulation functionality were tested in twelve and three participants, 

respectively. During these tests, we varied, depending on the given participant’s clinical, cognitive, and physical condition (in collaboration 

with their clinical team), the number of channels to record from as well as stimulation parameters (current, amplitude, etc.) in order to 

showcase stimulation programmability. The stationary verbal memory task was performed in one participant, and the ambulatory walking task 

was performed in six participants. Some of the participants were involved in multiple tests as stated in the manuscript.  

Participants were asked to perform different experimental tasks (i.e., stationary recording, recording during ambulatory walking, stationary 

stimulation, or verbal memory), based on their physical, cognitive, and clinical condition. Thus, selection of participants, or assignment to 

different experimental tasks, sample sizes, and replication decisions were determined in close collaboration with the clinical staff and were 

primarily based on the participant's condition. For example, stationary stimulation required the presence of neurologists on-site for safety 

reasons (as per IRB and safety requirements), and only participants in good physical condition who were able to walk safely were asked to 

participate in the ambulatory walking task. 

For these reasons, full randomization and random assignment of participants to experimental tasks was not possible in this study. Given that 

the main aim of this work was the validation of the Neuro-stack recording and stimulation system, rather than empirical conclusions regarding 

cognitive or behavioral effects in individuals, it is the authors' opinion that this non-random assignment of participants to experimental tasks 

had minimal or no impact on the relevance of the work.

Blinding We tested a group of participants with pharmaco-resistant epilepsy, while they were implanted with depth electrodes for clinical monitoring. 

All experimenters were aware of this fact and were not blinded with regards to the participant's condition. Participant's condition and clinical 

setting influenced the allocation into the experimental groups and the Neuro-stack's setup, which is why blinding was not possible.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type MRI was used only to determine the localization of electrode contacts within the brain.



4

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Design specifications MRI was used only for electrode contact localization. Participants did not perform any experimental task in this study 

during MRI scanning.

Behavioral performance measures No behavioral performance measures were acquired or derived.

Acquisition

Imaging type(s) Structural

Field strength 3 Tesla

Sequence & imaging parameters Standard T1- and T2-weighted sequences.

Area of acquisition Whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software BrainLab, FSL (FMRIB Software Library) FLIRT and FAST, Automatic Segmentation of Hippocampal Subfields (ASHS).

Normalization MRI images were not normalized.

Normalization template MRI images were not normalized.

Noise and artifact removal No noise or artifact removal procedures were used.

Volume censoring No volume censoring were used.

Statistical modeling & inference

Model type and settings No modeling of MRI data was performed.

Effect(s) tested MRI was used only to determine the localization of electrode contacts within the brain, and not for testing.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

No statistical analyses were performed using MRI data.

Correction No correction methods were applied.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis
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