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Abstract— This paper defines geometric criteria which are
then used to establish sufficient conditions for persistency of
excitation with vector functions constructed from single hidden-
layer neural networks with step or ReLU activation functions.
We show that these conditions hold when employing reference
system tracking, as is commonly done in adaptive control.
We demonstrate the results numerically on a system with
linearly parameterized activations of this type and show that
the parameter estimates converge to the true values with the
sufficient conditions met.

I. INTRODUCTION

Persistency of excitation is a fundamental concept

employed within contexts and applications related to

parameter learning, such as system identification and

adaptive control. It is often discussed, or at least mentioned,

in adaptive control textbooks, such as in [1]–[3].

It was proven in [4], [5] that persistency of excitation

is necessary and sufficient for the global uniform asymptotic

stability of the linear time-varying (LTV) system

˙̃
θt = −Vt V

⊤
t θ̃t (1)

where θ̃t ∈ R
n is the system state, and Vt ∈ R

n×d is a

vector (d = 1) or matrix (d ≥ 2) function of time that

is regulated (one-sided limits exist for all t ∈ [0,∞)).
Consider if θ̃t = θ̂t − θ represents the error of a parameter

estimate θ̂t from some fixed, unknown parameter values θ.

Then if Vt is persistently exciting, the state of this system

(ie, the error of the parameter estimates) converges globally

uniformly asymptotically to zero.

In (non)linear systems with linear parameterizations,

the parameter estimate error dynamics commonly have the

form (1). For example, in [2] (sec 8.7), we see examples of

systems that can be formed into a model yt = Vt θ, where

the vector yt and the matrix Vt are measurable, and then

using a simple gradient-based update rule for the parameter

estimate θ̂t, within an estimator system ŷt = Vt θ̂t, gives

exactly these dynamics for the parameter estimate error

θ̂t − θ. Thus, if Vt is persistently exciting, the parameter

estimate error will converge to zero.

There have been many works since [4], [5] which

utilize an assumption of persistency of excitation in order
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to achieve results in parameter learning. In [6], a simple

parameter learning scheme can be employed for a general

class of nonlinear systems which have some kind of working

(nonlinear) feedback controller. An integral condition similar

to persistency of excitation is assumed to be satisfiable. This

inspired the work in [7], which assumes a similar integral

condition in order to identify, and then provide MRAC

control for, an unknown MIMO LTI system. And in [3], [8]

we see additional examples of MRAC control which assume

persistency of excitation in order to achieve parameter

convergence, while in [9], persistently exciting assumptions

are made in reinforcement learning applications. In [10], a

sufficient condition for windows of observed behavior of an

LTI system (in discrete time) to span the space of possible

windows, is for a component signal (like the input) to be

persistently exciting. In [11], conditions for neural networks

excitation are given to guarantee bounds on the function

estimate error. Lastly, in [12] it is proven that for a general

class of nonlinear systems which are feedback linearizable

(see [13], [14]), global uniform asymptotic stability can be

achieved for linearly paramatrized vector functions meeting

relaxed persistency of excitation conditions.

However, in these and other works which utilize persistency

of excitation assumptions, there is often no explicit sufficient

conditions provided for how to ensure that persistency of

excitation is satisfied.

On the other hand, there have been some works which do

provide these sufficient conditions. A classic result is that

the state of an LTI system satisfies persistence of excitation

if the (stationary) input to that system contains sufficient

frequency content (“sufficient richness”, see [15]). In [16],

[17] this is extended to certain linear time-varying systems,

while in [18] frequency arguments for sufficient conditions

for excitation are then extended to nonlinear systems in

parametric-strict-feedback form and in [19] to the context

of adaptive dynamic programming, in which optimal control

value functions are approximated using polynomial basis

functions. In [20], a rank condition is proven sufficient

and necessary for the state of time-invariant systems to

be persistently exciting, and in [21], strong Lyapunov

functions are provided that are equivalent to the persistency

of excitation condition. Finally, and closest in spirit to this

paper, in [22] a sufficient condition, based on geometric

criteria, is given for satisfying persistency of excitation with

vector functions composed of radial basis functions.
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Our primary contributions are sufficient conditions, based

on geometric criteria, for satisfying persistency of excitation

with vector functions φ : Rn → R
N which are composed

of ReLU or step activation functions, together with affine

transformations of the state space. We then demonstrate

this using a simulated MRAC control application with the

parameter estimates converging to the true values.

The organization of the remaining parts of the paper

are as follows. Section II provides preliminary notation.

Section III sets up problem definitions and geometry.

Section IV presents the main theoretical results, while

Section V presents numerical results, and closing remarks

are given in Section VI.

II. NOTATION

We interpret w, x ∈ R
n as column vectors and denote

their inner product as w⊤x. Similarly, we denote the product

of matrix W ∈ R
n×N with vector x as W⊤x, which is a

length N vector where the ith (row) element is the inner

product W⊤
i x. Index subscripts on vectors and matrices

denote the row index, for example W⊤
i is the ith row of

W⊤. The standard Euclidean norm and Frobenius matrix

norm are respectively denoted ‖w‖2 and ‖W‖F . The integer

set {1, . . . , k} is denoted by [k]. We use t subscripts on

time-dependent variables to reduce parentheses, for example

φ(x(t)) is instead denoted φ(xt). The ith row of a time-

varying vector or matrix is thus denoted with t, i subscript.

For square n × n matrix A, we use aIn � A � bIn to

denote that eig(A) ∈ [a, b], where In denotes the n × n

identity matrix. We denote the n-length zeros vector as 0n.

III. SETUP

This section formally defines the nonlinear vector function

φ and what persistency of excitation means with regards to

this definition, then describes the geometry induced on the

state space R
n by this construction.

A. Nonlinear, Positive Semidefinite Activation Functions

Let φ : Rn → R
N be a vector function defined as

φ(x) =



φ1(x)

...

φN (x)


 =



σ(w⊤

1x+ b1)
...

σ(w⊤
Nx+ bN )


 , (2)

where φ1, . . . , φN : R
n → R are composed of nonlinear,

piecewise continuous functions σ : R → R together with

affine transformations w⊤
1x+ b1, . . . , w

⊤
Nx+ bN : Rn → R.

We allow wi ∈ R
n \ {0n} and bi ∈ R to be arbitrary

for all i ∈ [N ], except we assume each w⊤
i x + bi = 0

hyperplane in R
n is unique with dimension n− 1. Let

W =
[
w1 · · · wN

]
and b =

[
b1 · · · bN

]⊤
. For any

S ⊂ [N ], let W⊤
S and be the submatrix of W⊤ with rows

given by w⊤
i for i ∈ S. Define bS similarly for b.

Note then that (2) is equivalent to the output of a

single hidden neural network layer with N neurons fully

connected to the input x ∈ R
n, having nonlinear (eg, ReLU)

activations, and being initialized with weights and biases

defining unique hyperplanes. Hence why we refer to σ as

an activation function or simply an activation. This paper

will focus on the following activations:

σcs(y) =

{
0 if y ≤ 0

c if y > 0
(scaled step) (3)

σr(y) =

{
0 if y ≤ 0

y if y > 0
(ReLU) , (4)

where c > 0 is an arbitrary positive scalar.

B. Persistency of Excitation

Let x : [0,∞) → R
n be some continuous trajectory in

the state space. Then, φ(xt) is a piecewise continuous (and

regulated) vector function of time, mapping [0,∞) → R
N .

For any time window t ∈ [τ, τ + T ] with τ ≥ 0 and T > 0,

the integral ∫ τ+T

τ

φ(xt)φ(xt)
⊤ dt (5)

defines a N × N Gramian matrix since the corresponding

i, j-th entry
∫ τ+T

τ
φi(xt)φj(xt) dt is an inner product of the

composition functions φ1(xt), . . . , φN (xt) : [0,∞) → R.

Gramian matrices are always positive semidefinite, which

can be shown using the bi-linearity of inner products.

Persistency of excitation is the requirement that the

Gramian matrix (5) must be strictly positive definite, with

eigenvalues in some bounded interval [α1, α2], over all

shifts τ ≥ 0 of the sliding time window [τ, τ + T ] for some

window length T > 0. Formally, persistency of excitation

requires existence of constants α1, α2, T > 0 such that

α1IN �

∫ τ+T

τ

φ(xt)φ(xt)
⊤ dt � α2IN (6)

holds for all τ ≥ 0. An equivalent scalar requirement is that

α1‖v‖
2
2 ≤

∫ τ+T

τ

(v⊤φ(xt))
2 dt ≤ α2‖v‖

2
2 (7)

must hold for all v ∈ R
N and τ ≥ 0. This follows since

v⊤φ(xt) = φ(xt)
⊤v.

Note that if these hold for some T > 0, then they

also hold for all T̃ > T . This follows because the integrals

can be broken into a sum of two integrals over t ∈ [τ, τ+T ]
and t ∈ [τ+T, τ+ T̃ ], with the former being strictly positive

(definite) and the latter positive semidefinite (nonegative).

C. Activation Geometry

We define the following subsets for all activations i ∈ [N ]:

X+
i = {x ∈ R

n | w⊤
i x+ bi > 0} (active)

X◦
i = {x ∈ R

n | w⊤
i x+ bi ≤ 0} (zero) .

Each is a half-space of Rn formed by the hyperplane w⊤
i x+

bi = 0. These are then used to define the activation regions

Aj , with indices corresponding to a binary string indicating
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which active (binary 1) and zero (binary 0) half-spaces are

in the intersection:

A0 = X◦
N ∩ X◦

N−1 ∩ . . . ∩ X◦
2 ∩ X◦

1

A1 = X◦
N ∩ X◦

N−1 ∩ . . . ∩ X◦
2 ∩ X+

1

...

A2N−1 = X+

N ∩ X+

N−1
∩ . . . ∩ X+

2 ∩ X+
1 .

These partition R
n into, at most, 2N convex polytopes. It is

likely that some of the regions will be infeasible (Aj = ∅).

For example, in the n = 1 case, there are always only N +1
feasible activation regions, since there will be N unique

(by assumption) points partitioning the R line. In higher

dimensions, more feasible regions are possible.

For all j ∈ {0, . . . , 2N − 1}, we define the active set

Sj as

Sj = {i ∈ [N ] | w⊤
i x+ bi > 0 ∀x ∈ Aj} .

This captures which of the N activations are active in a

particular activation region. For any two activation regions

j, k ∈ {0, . . . , 2N − 1} with a nonempty intersection

Aj ∩ Ak 6= ∅, their intersection defines a border between

the two regions. We define a nondegenerate border to mean

dim(Aj ∩ Ak) = n − 1. In this case, only one activation

is different (active to zero or vice-versa) between those

regions. This is because the borders between activation

regions must be (subsets of) the hyperplanes that define

the half-spaces Xi, and the intersection of more than one

unique hyperplane with dimension n − 1 must have a

dimension less than n − 1. Thus, a nondegenerate border

must be a subset of (or equal to) a single hyperplane,

meaning only one Xi half-space can flip from active to

zero or vice-versa. We then define a degenerate border to

mean dim(Aj ∩ Ak) < n − 1. In this case, the border is

a (subset of) the lower dimensional intersection of two or

more unique hyperplanes. Thus, multiple activations are

different between the regions.

Now consider a continuous state trajectory xt ∈ R
n

visiting a sequence of activation regions over the time

window [τ, τ + T ], for some τ ≥ 0 and T > 0. Assume

xt only crosses nondegenerate borders and that the number

of regions visited is L ≥ 2. Let us denote A1, . . . ,AL

as the activation region indices of the visited sequence

and I1, . . . ,IL−1 as the sequence of activation indices

corresponding to the hyperplanes crossed in order to visit

that sequence of activation regions. For all s ∈ [L], we

define time window subsets Ts ⊂ [τ, τ + T ] as

Ts = {t ∈ [τ, τ + T ] | xt ∈ AAs
} . (8)

Since we assume xt crosses only nondegenerate borders

when visiting the activation regions during the time window,

we have by definition over all s ∈ [L − 1] that

SAs+1
=

{
SAs

⋃
{Is} if AAs+1

⊆ X+

Is

SAs
\ {Is} if AAs+1

⊆ X◦
Is

. (9)

IV. THEORETICAL RESULTS

This section presents our main theoretical results, which

provide sufficient conditions for satisfying persistency of

excitation with (scaled) step or ReLU activations.

A. Main Results

Theorem 1: Let state trajectory xt be continuous and

stay within some compact set B ⊂ R
n for all t ≥ 0,

and let φ(xt) = [σcs(w
⊤
1 xt + b1), . . . , σcs(w

⊤
Nxt + bN )]

be composed of (scaled) step functions (3) with positive

scalars c = [c1, . . . , cN ]⊤ together with N unique affine

transformations of Rn according to w1, . . . , wN ∈ R
n\{0n}

and b1, . . . , bN ∈ R. If xt over t ≥ 0 is such that there exists

a window length T ∗ > 0 whereby the sequence s ∈ [L]
of activation regions visited during any shift τ ≥ 0 of the

time window [τ, τ + T ∗] always satisfies the following two

conditions:

1. all i ∈ [N ] hyperplanes w⊤
i xt + bi = 0 are crossed

2. only nondegenerate borders are crossed,

then φ(xt) satisfies the persistency of excitation conditions

(6) and (7).

Proof: Given in Appendix I of [23].

Theorem 2: Let state trajectory xt be continuous and

stay within some compact set B ⊂ R
n for all t ≥ 0,

and let φ(xt) = [σr(w
⊤
1 xt + b1), . . . , σr(w

⊤
Nxt + bN )] be

comprised of ReLU functions (4) together with N unique

affine transformations of R
n according to w1, . . . , wN ∈

R
n \ {0n} and b1, . . . , bN ∈ R. If xt over t ≥ 0 is such that

there exists a window length T ∗ > 0 whereby the sequence

s ∈ [L] of activation regions visited during any shift τ ≥ 0
of the time window [τ, τ +T ∗] always satisfies the following

three conditions:

1. all i ∈ [N ] hyperplanes w⊤
i xt + bi = 0 are crossed

2. only nondegenerate borders are crossed

3. for each s ∈ [L], there are times t1, t̂1, . . . , tM , t̂M ∈ Ts
such that

rank(W⊤
AAs

) = rank
(
W⊤

AAs

[xt1 − xt̂1
· · · xtM − xt̂M

]
)
,

then φ(xt) satisfies the persistency of excitation conditions

(6) and (7).

Proof: Given in Appendix I of [23].

Note that a sufficient condition for property (iii) is that[
xt1 − xt̂1

· · · xtM − xt̂M

]
has rank n. This can be

achieved, for example, if xt is the state trajectory of a system

that satisfies a suitable (local) controllability property.

B. Proof Sketch

Both proofs rely on the same overall contradiction method.

That is, we assume there exists a nonzero vector v ∈ R
N \

{0N} such that

v⊤

(∫ τ+T

τ

φ(xt)φ(xt)
⊤dt

)
v = 0 . (10)

We show that if the state trajectory xt meets certain require-

ments over any shift τ ≥ 0 of the window [τ, τ + T ∗], for
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some window length T ∗ > 0, then in fact (10) can only

hold if v = 0N . This is a contradiction and thus proves that

the LHS integral must be strictly positive definite, uniformly

over all windows [τ, τ + T ∗] for all τ ≥ 0.

V. NUMERICAL RESULTS

In this section we provide a numerical simulation1 of the

theoretical results, using a MRAC application which is a

variation on the setup from Chapter 9 of [3]. The plant and

reference systems have n = 2 states, allowing convenient

visualization of the hyperplanes and state space.

A. Setup

The plant is given by

ẋt = Axt +B
(
ut +Θ⊤φ(xt)

)
, (11)

where A is a known n × n state matrix for the plant state

xt ∈ R
n, B is a known n × ℓ input matrix for the input

ut ∈ R
ℓ, and Θ is an unknown N × ℓ matrix which linearly

parameterizes the known vector function φ : R
n → R

N

defined by (2). The setup in [3] also includes an unknown

diagonal scaling matrix Λ, such that the overall input matrix

is BΛ. We have omitted this for simplicity.

The control input ut will be designed in order to force the

plant states xt to track the states of a reference system xr
t

that is driven by a bounded reference input rt. The reference

system is given by

ẋr
t = Ar x

r
t +Br rt , (12)

where Ar and Br are known reference matrices, with Ar

Hurwitz, and rt ∈ R
ℓ is a bounded reference input.

We assume there exists an n × ℓ matrix of feedback

gains Kx and an ℓ × ℓ matrix of feedforward gains Kr

satisfying the matching conditions

A+BK⊤
x = Ar and BK⊤

r = Br . (13)

The setup in [3] has A and Λ as unknown, and thus Kx

and Kr need to be estimated. For this simulation, we will

assume that Kx and Kr can be directly calculated from

known A and B, and used within the control law.

Next, we introduce parameter estimates Θ̂t, which will be

dynamically updated to estimate true parameter values Θ.

Thus, by applying to the plant (18) the feedback control law

ut = K⊤
x xt+K⊤

r rt− Θ̂⊤
t φ(xt), the plant dynamics become

ẋt = Ar xt +Br rt −B (Θ̂t −Θ)⊤φ(xt) . (14)

This in turn gives the dynamics of the state tracking error

et = xt − xr
t as

ėt = ẋt − ẋr
t = Ar et −B (Θ̂t −Θ)⊤φ(xt) . (15)

In [3], it is then shown that these state tracking error

dynamics ėt are globally uniformly asymptotically stable,

1All code is available at: https://github.com/tylerlekang/CDC2022

such that limt→∞ ‖et‖2 = 0, if the parameter estimates are

dynamically updated as

˙̂
Θt = Γφ(xt) e

⊤
t PxB . (16)

This is shown by analyzing the Lyapunov function V =
e⊤t Pxet + tr

(
(Θ̂t − Θ)⊤Γ−1(Θ̂t − Θ)

)
, along with using

Barbalat’s lemma, such that the update rule (16) results in

V̇ ≤ −e⊤t Qxet for all values of et and Θ̂t−Θ. Here, Px is the

unique symmetric, positive-definite n× n matrix that solves

the algebraic Lyapunov equation PxAr + A⊤
r Px = −Qx

for some symmetric, positive-definite n × n matrix Qx,

and adaptation rates Γ is some symmetric, positive-definite

N ×N matrix, where we denote ‖Γ‖F := G.

Remark 1: In the case where Kx and Kr are also being

estimated by K̂x,t and K̂r,t respectively, the true values can

be appended to Θ, the estimates can be appended to Θ̂t,

and an overall vector function Φ(xt, rt) which combines xt,

rt, and φ(xt), can be formed. However, such Φ then do not

strictly meet the definition of (2), and are thus beyond the

scope of this paper.

B. Persistency of Excitation

The dynamic update rule (16) only guarantees asymptotic

convergence of the state tracking error et to zero. We now

show that the parameter estimation error, which we will

denote compactly as Θ̃t = Θ̂t − Θ, also goes to zero if

φ(xt) is persistently exciting.

Since Ar is Hurwitz, it is guaranteed invertible. And

so, from (15) we have

e⊤t PxB = ė⊤t A
−1
r

⊤
PxB + φ(xt)

⊤Θ̃t B
⊤A−1

r

⊤
PxB

and then combined with (16) we get

˙̃
Θt =

˙̂
Θt = Γφ(xt) e

⊤
t PxB =

Γφ(xt)φ(xt)
⊤Θ̃t B

⊤A−1
r

⊤
PxB + Γφ(xt) ė

⊤
t A

−1
r

⊤
PxB .

Note that the second term asymptotically goes to zero

with ėt and we have in the first term B⊤A−1
r

⊤
PxB =

− 1

2
B⊤A−1

r

⊤
Qx A

−1
r B by the Lyapunov equation definition

for Px.

Let us now restrict to the case of ℓ = 1. Since

Qx is positive-definite we have the positive scalar

c = 1

2
B⊤A−1

r

⊤
Qx A

−1
r B, and obtain that the dynamics

of the parameter estimation error vector Θ̃t ∈ R
N

asymptotically tend to the linear time-varying system

˙̃
Θt = −Γc φ(xt)φ(xt)

⊤Θ̃t . (17)

Γc = cΓ is symmetric, positive-definite with ‖Γc‖F = cG.

Therefore, if φ(xt) satisfies the persistency of excitation

condition (6), then the parameter estimation error dynamics

(17) are globally uniformly asymptotically stable such

that we have limt→∞ ‖Θ̃t‖2 = 0. We show explicitly in

Appendix II of [23] how this follows from Lemmas 1 and

2 and Theorem 1 of [5].
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