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Abstract— This paper defines geometric criteria which are
then used to establish sufficient conditions for persistency of
excitation with vector functions constructed from single hidden-
layer neural networks with step or ReLU activation functions.
We show that these conditions hold when employing reference
system tracking, as is commonly done in adaptive control.
We demonstrate the results numerically on a system with
linearly parameterized activations of this type and show that
the parameter estimates converge to the true values with the
sufficient conditions met.

I. INTRODUCTION

Persistency of excitation is a fundamental concept
employed within contexts and applications related to
parameter learning, such as system identification and
adaptive control. It is often discussed, or at least mentioned,
in adaptive control textbooks, such as in [1]-[3].

It was proven in [4], [5] that persistency of excitation
is necessary and sufficient for the global uniform asymptotic
stability of the linear time-varying (LTV) system

b, =V, V," 6, (1)

where 6; € R" is the system state, and V; € R"*% is a
vector (d = 1) or matrix (d > 2) function of time that
is regulated (one-sided limits exist for all ¢ € [0, 00)).
Consider if ét = ét — 0 represents the error of a parameter
estimate ét from some fixed, unknown parameter values 6.
Then if V; is persistently exciting, the state of this system
(ie, the error of the parameter estimates) converges globally
uniformly asymptotically to zero.

In (non)linear systems with linear parameterizations,
the parameter estimate error dynamics commonly have the
form (1). For example, in [2] (sec 8.7), we see examples of
systems that can be formed into a model y;, = V; 6, where
the vector y; and the matrix V; are measurable, and then
using a simple gradient-based update rule for the parameter
estimate ét, within an estimator system ¢, = V; 9t, gives
exactly these dynamics for the parameter estimate error
6, — 6. Thus, if V; is persistently exciting, the parameter
estimate error will converge to zero.

There have been many works since [4], [5] which
utilize an assumption of persistency of excitation in order
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to achieve results in parameter learning. In [6], a simple
parameter learning scheme can be employed for a general
class of nonlinear systems which have some kind of working
(nonlinear) feedback controller. An integral condition similar
to persistency of excitation is assumed to be satisfiable. This
inspired the work in [7], which assumes a similar integral
condition in order to identify, and then providle MRAC
control for, an unknown MIMO LTI system. And in [3], [8]
we see additional examples of MRAC control which assume
persistency of excitation in order to achieve parameter
convergence, while in [9], persistently exciting assumptions
are made in reinforcement learning applications. In [10], a
sufficient condition for windows of observed behavior of an
LTI system (in discrete time) to span the space of possible
windows, is for a component signal (like the input) to be
persistently exciting. In [11], conditions for neural networks
excitation are given to guarantee bounds on the function
estimate error. Lastly, in [12] it is proven that for a general
class of nonlinear systems which are feedback linearizable
(see [13], [14]), global uniform asymptotic stability can be
achieved for linearly paramatrized vector functions meeting
relaxed persistency of excitation conditions.

However, in these and other works which utilize persistency
of excitation assumptions, there is often no explicit sufficient
conditions provided for how to ensure that persistency of
excitation is satisfied.

On the other hand, there have been some works which do
provide these sufficient conditions. A classic result is that
the state of an LTI system satisfies persistence of excitation
if the (stationary) input to that system contains sufficient
frequency content (“sufficient richness”, see [15]). In [16],
[17] this is extended to certain linear time-varying systems,
while in [18] frequency arguments for sufficient conditions
for excitation are then extended to nonlinear systems in
parametric-strict-feedback form and in [19] to the context
of adaptive dynamic programming, in which optimal control
value functions are approximated using polynomial basis
functions. In [20], a rank condition is proven sufficient
and necessary for the state of time-invariant systems to
be persistently exciting, and in [21], strong Lyapunov
functions are provided that are equivalent to the persistency
of excitation condition. Finally, and closest in spirit to this
paper, in [22] a sufficient condition, based on geometric
criteria, is given for satisfying persistency of excitation with
vector functions composed of radial basis functions.
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Our primary contributions are sufficient conditions, based
on geometric criteria, for satisfying persistency of excitation
with vector functions ¢ : R® — RN which are composed
of ReLU or step activation functions, together with affine
transformations of the state space. We then demonstrate
this using a simulated MRAC control application with the
parameter estimates converging to the true values.

The organization of the remaining parts of the paper
are as follows. Section II provides preliminary notation.
Section IIl sets up problem definitions and geometry.
Section IV presents the main theoretical results, while
Section V presents numerical results, and closing remarks
are given in Section VI.

II. NOTATION

We interpret w,z € R™ as column vectors and denote
their inner product as w "z. Similarly, we denote the product
of matrix W € R"*YN with vector « as W 'z, which is a
length N vector where the ith (row) element is the inner
product W, z. Index subscripts on vectors and matrices
denote the row index, for example I/ViT is the ith row of
WT. The standard Euclidean norm and Frobenius matrix
norm are respectively denoted ||w||2 and ||W || F. The integer
set {1,...,k} is denoted by [k]. We use t subscripts on
time-dependent variables to reduce parentheses, for example
¢(x(t)) is instead denoted ¢(x;). The ith row of a time-
varying vector or matrix is thus denoted with ¢,4 subscript.
For square n x n matrix A, we use al, < A < bl, to
denote that eig(A) € [a,b], where I, denotes the n X n
identity matrix. We denote the n-length zeros vector as 0,,.

III. SETUP

This section formally defines the nonlinear vector function
¢ and what persistency of excitation means with regards to
this definition, then describes the geometry induced on the
state space R™ by this construction.

A. Nonlinear, Positive Semidefinite Activation Functions
Let ¢ : R” — RY be a vector function defined as
o1(x) o(wiz +bp)
gla)=1 1 | = : 7 2)
on () o(wye +by)

where ¢1,...,0n : R™ — R are composed of nonlinear,
piecewise continuous functions o : R — R together with
affine transformations w{x + b1, ..., whz + by : R* — R.
We allow w; € R™\ {0,} and b; € R to be arbitrary
for all i € [N], except we assume each w,z + b; = 0
hyperplane in R™ is unique with dimension n — 1. Let
W = [wl wN] and b = [bl bn T. For any
§ C [N], let W{ and be the submatrix of W' with rows
given by w, for i € 8. Define bs similarly for b.

Note then that (2) is equivalent to the output of a
single hidden neural network layer with N neurons fully
connected to the input x € R", having nonlinear (eg, ReLU)

activations, and being initialized with weights and biases
defining unique hyperplanes. Hence why we refer to o as
an activation function or simply an activation. This paper
will focus on the following activations:

w=1""" adsep) )
Oes(y) = ¢ ify>0 scaled step
0 ify<o0
oy)y=4 Y= (ReLU) | @)
y ify>0

where ¢ > 0 is an arbitrary positive scalar.

B. Persistency of Excitation

Let z : [0,00) — R™ be some continuous trajectory in
the state space. Then, ¢(z;) is a piecewise continuous (and
regulated) vector function of time, mapping [0, 00) — R,
For any time window ¢ € [7,7 4+ T] with 7 > 0 and T > 0,
the integral

T+T
/ d(xy) p(xy) " dt (5)

defines a N x N Gramian matrix since the corresponding
i, j-th entry fTHT ¢i(xy) ¢;(x;) dt is an inner product of the
composition functions ¢q(x¢),...,¢n(z) : [0,00) — R.
Gramian matrices are always positive semidefinite, which
can be shown using the bi-linearity of inner products.

Persistency of excitation is the requirement that the
Gramian matrix (5) must be strictly positive definite, with
eigenvalues in some bounded interval [aq,as], over all
shifts 7 > 0 of the sliding time window [7, T + T'] for some
window length 7' > 0. Formally, persistency of excitation
requires existence of constants oy, a2, T > 0 such that

T+T
aly = / S(e) dla)Tdt < asly  (6)

holds for all 7 > 0. An equivalent scalar requirement is that

T+T
alol < [ TP < aslulf )

must hold for all v € RY and 7 > 0. This follows since

vl p(a) = ¢(a) "o

Note that if these hold for some 7' > 0, then they
also hold for all T > T'. This follows because the integrals
can be broken into a sum of two integrals over ¢ € [7,7+T]
and t € [T+ T, 7+T], with the former being strictly positive
(definite) and the latter positive semidefinite (nonegative).
C. Activation Geometry

We define the following subsets for all activations ¢ € [N]:

X} ={zeR" | w/z+b; >0}
X? ={zx € R" | w'z +b; <0}

(active)
(zero) .
Each is a half-space of R™ formed by the hyperplane w: T+

b; = 0. These are then used to define the activation regions
A;, with indices corresponding to a binary string indicating
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which active (binary 1) and zero (binary 0) half-spaces are
in the intersection:

Ao=X3 N X3y N ... N XgnNn X7
Al=X3 N Xy, N ...n Xgn X;
Aoy 1 =X5E N X5, n...n Xyn X

These partition R™ into, at most, 2" convex polytopes. It is
likely that some of the regions will be infeasible (A; = ().
For example, in the n = 1 case, there are always only N + 1
feasible activation regions, since there will be N unique
(by assumption) points partitioning the R line. In higher
dimensions, more feasible regions are possible.

For all j € {0,...,2N — 1}, we define the active set
S as

S;={ie[N]|w/z+b >0 VzeA} .

This captures which of the N activations are active in a
particular activation region. For any two activation regions
j,k € {0,...,2N — 1} with a nonempty intersection
AN Ay # (), their intersection defines a border between
the two regions. We define a nondegenerate border to mean
dim(A; N Ag) = n — 1. In this case, only one activation
is different (active to zero or vice-versa) between those
regions. This is because the borders between activation
regions must be (subsets of) the hyperplanes that define
the half-spaces X, and the intersection of more than one
unique hyperplane with dimension n — 1 must have a
dimension less than n — 1. Thus, a nondegenerate border
must be a subset of (or equal to) a single hyperplane,
meaning only one X, half-space can flip from active to
zero or vice-versa. We then define a degenerate border to
mean dim(A; N A;) < n — 1. In this case, the border is
a (subset of) the lower dimensional intersection of two or
more unique hyperplanes. Thus, multiple activations are
different between the regions.

Now consider a continuous state trajectory z; € R"
visiting a sequence of activation regions over the time
window [7,7 + T, for some 7 > 0 and 7" > 0. Assume
x; only crosses nondegenerate borders and that the number
of regions visited is L > 2. Let us denote Ay,..., Ar
as the activation region indices of the visited sequence
and Jq,...,9,_1 as the sequence of activation indices
corresponding to the hyperplanes crossed in order to visit
that sequence of activation regions. For all s € [L], we
define time window subsets T; C [r,7 + T as

To={te[rr+T] |z e Ar} . )

Since we assume z; crosses only nondegenerate borders
when visiting the activation regions during the time window,
we have by definition over all s € [-£L — 1] that

IV. THEORETICAL RESULTS

This section presents our main theoretical results, which
provide sufficient conditions for satisfying persistency of
excitation with (scaled) step or ReLU activations.

A. Main Results

Theorem 1: Let state trajectory x; be continuous and
stay within some compact set B C R™ for all t > 0,
and let ¢(z;) = [ocs(wi x4 + b1),...,00s(wWNTs + by)]
be composed of (scaled) step functions (3) with positive

scalars ¢ = [c1,...,cn]T together with N unique affine
transformations of R™ according to wy, ..., wy € R"\{0,}
and by, ..., by € R. If x4 over t > 0 is such that there exists

a window length T* > 0 whereby the sequence s € [L]
of activation regions visited during any shift T > 0 of the
time window |1, T + T*] always satisfies the following two
conditions:

1. all i € [N] hyperplanes w, x; + b; = 0 are crossed

2. only nondegenerate borders are crossed,
then ¢(x) satisfies the persistency of excitation conditions
(6) and (7).

Proof: Given in Appendix I of [23]. |

Theorem 2: Let state trajectory x; be continuous and
stay within some compact set B C R™ for all t > 0,
and let ¢(z) = [op(w] z¢ + b1),...,00(whze + by)] be
comprised of ReLU functions (4) together with N unique
dffine transformations of R™ according to wy,...,wy €
R™\{0,} and by, ..., by € R. If &1 over t > 0 is such that
there exists a window length T* > 0 whereby the sequence
s € [L] of activation regions visited during any shift 7 > 0
of the time window |7, T + T*| always satisfies the following
three conditions:

1. all i € [N] hyperplanes w, v, + b; = 0 are crossed

2. only nondegenerate borders are crossed

3. for each s € [L], there are times 11, t1, ..
such that

Stastar €T

rank(WXﬂs) = rank (WXZS [T4, —xp -0 iy — fo]) ,
then ¢(x) satisfies the persistency of excitation conditions
(6) and (7).

Proof: Given in Appendix I of [23]. [ ]
Note that a sufficient condition for property (iii) is that
[e, — a3, T, — ;.| has rank n. This can be
achieved, for example, if x; is the state trajectory of a system
that satisfies a suitable (local) controllability property.

B. Proof Sketch

Both proofs rely on the same overall contradiction method.
That is, we assume there exists a nonzero vector v € RY \
{On} such that

T+T
v’ </ () qb(wt)Tdt> v =20

(10)

: +
Sq. = Sa, U {95} if Az, €Xg 9) We show that if the state trajectory z; meets certain require-
s Sa,\ {9s} it Az, € Xg, ments over any shift 7 > 0 of the window [, 7 + T*], for
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some window length 7* > 0, then in fact (10) can only
hold if v = Op. This is a contradiction and thus proves that
the LHS integral must be strictly positive definite, uniformly
over all windows [r,7 + T%] for all 7 > 0.

V. NUMERICAL RESULTS

In this section we provide a numerical simulation' of the
theoretical results, using a MRAC application which is a
variation on the setup from Chapter 9 of [3]. The plant and
reference systems have n = 2 states, allowing convenient
visualization of the hyperplanes and state space.

A. Setup
The plant is given by

iy = Az + Bu + 0o (zy)) (11)

where A is a known n X n state matrix for the plant state
x¢ € R™, B is a known n x ¢ input matrix for the input
u; € RY, and © is an unknown N x £ matrix which linearly
parameterizes the known vector function ¢ : R® — RV
defined by (2). The setup in [3] also includes an unknown
diagonal scaling matrix A, such that the overall input matrix
is BA. We have omitted this for simplicity.

The control input u; will be designed in order to force the
plant states x; to track the states of a reference system xj
that is driven by a bounded reference input r,. The reference
system is given by

& = Apa} + Bery (12)

where A, and B, are known reference matrices, with A,
Hurwitz, and 7, € R is a bounded reference input.

We assume there exists an n x ¢ matrix of feedback
gains K, and an ¢ x ¢ matrix of feedforward gains K,
satisfying the matching conditions

A+BK] =A, and BK, =B, (13)

The setup in [3] has A and A as unknown, and thus K,
and K, need to be estimated. For this simulation, we will
assume that K, and K, can be directly calculated from
known A and B, and used within the control law.

Next, we introduce parameter estimates @t, which will be
dynamically updated to estimate true parameter values ©.
Thus, by applying to the plant (18) the feedback control law
u = K] o+ K,Jry — 0/ ¢(x;), the plant dynamics become

iy = Ay 2, + Brry — B (0, — ©)To(x) (14)

This in turn gives the dynamics of the state tracking error
et =T — T} as
& =iy — iy = Are; — B(6; — ©) () (15)

In [3], it is then shown that these state tracking error
dynamics é; are globally uniformly asymptotically stable,

All code is available at: https:/github.com/tylerlekang/CDC2022

such that lim;_, ||e¢]|]2 = 0, if the parameter estimates are
dynamically updated as

O, =T¢(x;) e, P,B . (16)

This is shown by analyzing the Lyapunov function ¥ =
ef Pre; + tr((©y — ©)'T71(O, — ©)), along with using
Barbalat’s lemma, such that the update rule (16) results in
© < fetTQmet for all values of e; and ©;—0©. Here, P, is the
unique symmetric, positive-definite n X n matrix that solves
the algebraic Lyapunov equation P, A, + A'P, = —Q,
for some symmetric, positive-definite n x n matrix Q,,
and adaptation rates I is some symmetric, positive-definite
N x N matrix, where we denote ||T'||r := C.

Remark 1: In the case where K, and K, are also being
estimated by Xx,t and K’T’t respectively, the true values can
be appended to O, the estimates can be appended to @t,
and an overall vector function ®(x;,r;) which combines z,
r¢, and ¢(z;), can be formed. However, such ® then do not
strictly meet the definition of (2), and are thus beyond the
scope of this paper.

B. Persistency of Excitation

The dynamic update rule (16) only guarantees asymptotic
convergence of the state tracking error e; to zero. We now
show that the parameter estimation error, which we will
denote compactly as ©; = O; — ©, also goes to zero if
o(x¢) is persistently exciting.

Since A, is Hurwitz, it is guaranteed invertible. And
so, from (15) we have

e] P,B=¢] A-V P.B + ¢(2,) ©, BTAZY P,B
and then combined with (16) we get
6, =0, =T () e] P,B =
T g(a)d(x) O, BT A PuB+T d(a) ] A7 PB .

Note that the second term asymptotically goes to zero
with ¢, and we have in the first term BT A-''P,B =
—IBTA; 170, A1 B by the Lyapunov equation definition
for P,.

Let us now restrict to the case of ¢ = 1. Since

@, is positive-definite we have the positive scalar
T . .

¢ = $BTA' Q. A 'B, and obtain that the dynamics

of the parameter estimation error vector ©, € RY
asymptotically tend to the linear time-varying system

ét =TI, ¢(9Ct)¢($t)—rét

T'. = ¢T is symmetric, positive-definite with [|T'c||F = ¢G.

a7

Therefore, if ¢(x;) satisfies the persistency of excitation
condition (6), then the parameter estimation error dynamics
(17) are globally uniformly asymptotically stable such
that we have lim;_, o |[|©¢|l2 = 0. We show explicitly in
Appendix II of [23] how this follows from Lemmas 1 and
2 and Theorem 1 of [5].
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C. Simulation

We perform the numerical simulation in the z; € R? state
space. Euler integration with a timestep of df = 0.001 sec.
is used to obtain all solutions to differential equations. We
use a basic controllable canonical form for the plant:

iy = { 0 1 Hx“} + m (us +O0Tp(xy)) , (18)

—a7 2(12 Tt,2

where aq,aq, 5 > 0 are positive scalars, u; € Ris the £ =1
dimensional input, and © is a fixed vector of nonzero scalars
which linearly parameterizes the known nonlinear vector
function ¢(z;) = [op(w] z; + b1) -+ or(w]z; + by)]T
with ReLU activation functions, meeting the definition (2).
This plant model is an n = 2 example of a general class of
single-input systems with dynamics characterized by an nth
order nonlinear ordinary differential equation. See section
9.5 in [3] and section 4.1 in [14] for examples of physical
systems in this form using various nonlinear functions.

The reference system is a unity-gain damped harmonic
oscillator with a bounded reference input r, € R:

Ly 0 1 Ty 0

iy = {—w% _2&0} L??z] + L(Qj re o, (19)
where wy, £ > 0 are the natural frequency and damping ratio.
This gives the plant and reference eigenvalues as A = ao +
Va3 —aj and \" = (—£4+4/€2 — 1 ) wy, thus A is unstable
with oscillations if a; > a% and A, is always Hurwitz, and
without oscillations if £ > 1. Thus, we can always directly
calculate the required feedback and feedforward gains that
satisfy the matching conditions (13) as

w? —ay 28wp + 2a9 w?
K =|-=2 — ] and KTz{—O]
‘ g B " g
For the plant system, we use a; = 2, ag = 0.5, 8 =

0.75. This results in an unstable, oscillatory A matrix with
eig(A) = 0.5+ jv/1.75 . The reference system uses wy = 2
and £ = 1, ensuring that A, is Hurwitz and nonoscillatory
with eig(A4,) = —2. The matching conditions are thus
satisfied with K| = [~2.667 —6.667] and K,| = [5.333].
For the parameter estimate dynamic updates we use:

50 0 0
0100 10 5.625 0.125
=100 5 0 Q”_[O 10]P“_{0.125 1.281]’

000 2

and for the linearly parameterized nonlinear vector function
O T ¢(x;) we use:

—1.2 2 1 1
e R
©= 0.8 W= 1.5 —-0.5 b= 2.5
—3.2 0.5 2 3

Defining parameter estimates (:)t = [ém e étA]T and using

the known K, and K, we apply the feedback control law
ug = K*ry + K"ry — ©/¢(z4) to the plant and update the
parameter estimates according to the update law (16).

We use the following bounded reference inputs to drive the
reference system as two different scenarios:

2
r? =10sin(0.5) P =40+ 10sin(0.25k 1) .
k=1

The resulting plant and reference state trajectories x; and
xy are plotted in state space along with the hyperplanes
WTz +b = 04, in Figure 1 and Figure 2 respectively
for the two scenarios. We see clearly that the limit cycles
in both cases stay within a compact set B € R2, and so
the ReLU activations within ¢ are bounded on this B, and
the trajectories never maintain a linear path. The parameter
estimation error ||©; — O||2 for both cases is plotted over
simulation time in Fig. 3. For the case with rﬁl), we see
that the error converges to zero as the parameter estimators
converge to the true values, while for the case with 7"752) the
error does not converge and is well above zero.

6-

Xt.2
o

Fig. 1. Phase plot of x¢ (cyan), tracking into =} (magenta) driven by T,ED.

Crosses all N hyperplanes at nondegenerate borders along the limit cycle.

X2

Fig. 2. Phase plot of =+ (cyan), tracking into z; (magenta) driven by r§2>.

Does not cross all N hyperplanes along the limit cycle.

VI. CONCLUSION

In this paper, we defined a geometric criteria that leads to
sufficient conditions for persistency of excitation with single
hidden-layer neural networks of step or ReLU activation
functions. Future work will focus on using the function ap-
proximation properties of ReLU activations to obtain similar
results when the plant nonlinearity is not known but can be
approximated by ©T ¢(x;) with ReLU’s.
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Fig. 3. Norm of state tracking error ||et||2 converges to zero in both cases,

while the parameter estimation error ||©¢ — ©||2 converges to zero for the
. 1 .

case with rg ) and but not for the case with T
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