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Abstract— Neural networks form a general purpose archi-
tecture for machine learning and parameter identification.
The simplest neural network consists of a single hidden layer
connected to a linear output layer. It is often assumed that
the components of the hidden layer correspond to linearly
independent functions, but proofs of this are only known
for a few specialized classes of network activation functions.
This paper shows that for wide class of activation functions,
including most of the commonly used activation functions in
neural network libraries, almost all choices of hidden layer
parameters lead to linearly independent functions. These linear
independence properties are then used to derive sufficient
conditions for persistence of excitation, a condition commonly
used to ensure parameter convergence in adaptive control.

I. INTRODUCTION

Neural networks are widely employed in machine learning

and adaptive control. Common applications include natural

language processing and image processing from learning[1]

and model reference adaptive control [2].

This simplest neural network architecture consists of a

single hidden layer and an output layer. Such a network is a

function, ψ(x, θ), defined by:

ψ(x, θ) = c0 +

m∑

i=1

ciσ(w
⊤
i x+ bi), (1)

where θ = (w, b, c) contains the parameters of the network,

x is the input variable, and σ is a nonlinear function called

the activation function. Common activation functions include

sigmoids, step functions, and ReLUs.

Classical results in neural network theory [3], [4] establish

than under minimal assumptions on the activation function,

any continuous function can be approximated to arbitrary

accuracy by a single hidden layer neural network from (1).

The main contribution of this paper gives sufficient con-

ditions to ensure that σ(w⊤
i x+ bi) are linearly independent

as functions of x. We prove that for large class of activation

functions, which includes most activation functions in the

PyTorch library [5], the functions σ(w⊤
i x+ bi) are linearly

independent for almost all choices of wi and bi. The result

implies, in particular, that if wi and bi are generated inde-

pendently from a continuous distribution whose support has

positive measure (with respect to Lebesgue measure), the

functions are linearly independent with probability 1.
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We utilize the linear independence to give sufficient con-

ditions for persistency of excitation, which is commonly

assumed without proof in adaptive control.

Beyond persistency of excitation, linear independence of

neural networks is assumed in proofs of consistency of

function approximation schemes [6], [7]. However, these

works do not give conditions for linear independence to hold.

Linear independence properties were showed for classes of

analytic activation functions in [8], but the literature directly

addressing linear independence of neural networks is sparse.

The most closely related topics that have received wide

study are neural network interpolation (see [3], [9], [10])

and network identifiability (see [8], [11], [12]).

Section II presents the main results on linear independence

and Section III shows how they can be used to derive

persistence of excitation conditions for adaptive control.

Conclusions are given in Section IV

Notation: The indicator function is denoted by 1. If x
is a vector, its Euclidean norm is denoted by ‖x‖. N denotes

the set of non-negative integers, R denotes the set of real

numbers, and C denotes the set of complex numbers. The

Lebesgue measure over Rn is denoted by µ.

II. LINEAR INDEPENDENCE OF NONLINEAR FUNCTIONS

A. Fourier Transforms of Generalized Functions

Our results will be derived via Fourier transforms. The

Fourier transforms of most common activation functions

must be interpreted as generalized functions, also known as

tempered distributions. The required background is reviewed

briefly below. See [13], [14] for more details.

For a differentiable function f and a multi-index m =
(m1, . . . ,mn) ∈ N

n, let f (m)(x) = ∂m1

∂y
m1
1

· · · ∂mn

∂y
mn
n
f(y)|y=x

and let |m| =
∑n

i=1mi. The function f is called a Schwartz

function if it is infinitely differentiable, and for every n ≥ 1

max
|m|≤n

sup
x∈R

(1 + ‖x‖2)n
∣∣∣f (m)(x)

∣∣∣ <∞ (2)

The space of Schwartz functions from R
n to C is called

the Schwartz space, and is denoted by Sn. For simplicity of

notation, we denote S1 = S . The expression on the left of (2)

can be used to define a topology on the space of Schwartz

space. See [14]. A generalized function is a continuous linear

functional on S . Its action on a Schwartz function, f , is

denoted by 〈g, f〉. We often use the term regular function to

distinguish from generalized functions.

A function g : R → C has polynomial growth if there is

a constant c and an integer n such that |g(x)| ≤ c(1 + |x|)n
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for all x. If g is measurable and has polynomial growth, it

can be identified with a generalized function via

〈g, f〉 =

∫ ∞

−∞

g(x)f(x)dx. (3)

As a minor abuse of notation, we denote the “value” of a

generalized function as g(x), since the generalized functions

in this paper will behave like regular functions, except at a

few singular points.

The Fourier transform of a Schwartz function is given by

f̂(ω) =

∫ ∞

−∞

e−j2πωxf(x)dx,

where j is the imaginary unit.

If g is a generalized function, its Fourier transform and

its distributional derivative are defined as the generalized

functions that respectively satisfy for all f ∈ S:

〈ĝ, f〉 = 〈g, f̂〉

〈g′, f〉 = −〈g, f ′〉.

We will show that the Fourier transforms of many common

neural network activation functions can be expressed in terms

of Dirac delta functions and generalized functions of the form
1

ωmh(ω), where h(ω) is a regular function.

The Dirac delta and its distributional derivatives of order

m ≥ 0 are given by

〈δ(m), f〉 = (−1)mf (m)(0).

The functions p−m(x) = 1
xm for integers m ≥ 1 can

be viewed as generalized functions with singularities at 0.

As discussed in [13], p−m can be defined as distributional

derivatives p−m = (−1)m+1

(m−1)! ℓ
(m+2) of the regular function

ℓ(x) = x log |x| − x, with action given by

〈p−m, f〉 =

∫ ∞

−∞

f(x)−
∑m−1

i=0
1
i!f

(i)(0)xi

xm
dx. (4)

So, we can see that p−m(x) behaves exactly like 1
xm on all

f ∈ S with f(0) = f (1)(0) = · · · = f (m−1)(0) = 0.

In general, the product of a generalized function with a

regular function may not be a generalized function. If h :
R → C satisfies the following property

hf ∈ S ∀f ∈ S, (5)

then gh is the generalized function with action defined by:

〈gh, f〉 = 〈g, hf〉 ∀f ∈ S.

A sufficient condition for (5) is if h is infinitely differentiable

and h(k) has polynomial growth for all k ≥ 0.

If h satisfies (5), then p−m(x)h(x) = 1
xmh(x) is a

generalized function. Then since xm and all its derivatives

have polynomial growth, xmp−m(x)h(x) is a generalized

function, and it can be shown that xmp−m(x)h(x) = h(x).
The following lemma is used to give expressions for

Fourier transforms of neural network activation functions.

Lemma 1: Say that h is a generalized function such that

ĥ is a regular function that satisfies (5). If g is a generalized

function such that g(m)(x) = h(x), then there are constants,

c1, . . . , cm−1, such that

ĝ(ω) =
1

(j2πω)m
ĥ(ω) +

m−1∑

i=0

ciδ
(i)(ω) (6)

Proof: Applying the derivative rule for Fourier trans-

forms gives ĥ(ω) = (j2πω)mĝ(ω).
The assumptions on ĥ(ω) imply that ĥ(ω) =

(j2πω)m
(

1
(j2πω)m ĥ(ω)

)
, where 1

(j2πω)m ĥ(ω) defines a

valid generalized function. It follows that

(j2πω)m
(
ĝ(ω)−

1

(j2πω)m
ĥ(ω)

)
= 0.

Exercise 7.23 of [13] shows that there must be constants

c0, . . . , cm−1 such that 6 holds.

Example 1: If σ(t) is piecewise polynomial with m ≥ 1
non-smooth points, then there is an integer n, non-negative

integers k1, . . . , km ≤ n, and real numbers a1, . . . , am and

b1, . . . , bm such that

σ(n)(t) =

m∑

i=1

aiδ
(ki)(t− bi).

Lemma 1 implies that there exist c0, . . . , cn−1 such that

σ̂(ω) =
m∑

i=1

ai(j2πω)
ki−ne−j2πωbi +

n−1∑

i=0

ciδ
(i)(ω).

This formula gives expressions for the Fourier transforms

the following activation functions from PyTorch [5]: Hard-

Shrink, HardSigmoid, HardTanh, HardSwish, LeakyReLU,

PReLU, ReLU, ReLU6, RReLU, SoftShrink, Threshold.

Also note that σ̂(n)(ω) =
∑m

i=1 ai(j2πω)
kie−j2πωbi must

be non-zero for almost all ω ∈ R with respect to the

Lebesgue measure. Arguing as in Theorem 1, it can be shown

that if σ̂(n)(ω) were zero on a set of positive measure, then it

must be identically zero. But then σ(t) must be a polynomial,

contradicting the assumption that σ(t) is non-smooth.

Example 2: If σ is one of the PyTorch functions LogSig-

moid, Sigmoid, SoftPlus, Tanh, and TanShrink then there

is some n ≥ 1, and non-zero numbers a and b, σ(n)(t) =
a·sech2(bt). Thus, there are constants c0, . . . , cn−1 such that

σ̂(ω) =
1

(j2πω)n
2π
aω

|b|
csch(π2ω/b) +

n−1∑

i=0

ciδ
(i)(ω).

It can be shown that the function ωcsch(ω) is infinitely

differentiable and all of its derivatives have polynomial

growth, so the multiplication is well-defined. Also note that

ωcsch(ω) > 0 for all ω 6= 0.

Example 3: The PyTorch functions CELU, ELU, and

SELU all have the form

σ(t) = a
(
ebt − 1

)
1(t ≤ 0) + ct1(t > 0),

with b > 0 and a and c are not both zero. It follows that

σ(2)(t) = ab2ebt1(t ≤ 0) + (c− ab)δ(t).
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Lemma 1 shows that there are numbers, r0 and r1 such that

σ̂(ω) =
1

(j2πω)2

(
cb− j2π(c− ab)ω

b− j2πω

)
+

1∑

i=0

riδ
(i)(ω).

Also note that the fraction is non-zero for all ω 6= 0 since

b > 0 and a and c are not both zero.

In each of the activation function examples, we have seen

that the Fourier transform, σ̂(ω), behaves like a regular

function at all ω 6= 0, and the corresponding regular function

is continuous at all ω 6= 0 and non-zero for almost all ω ∈ R.

B. An Intermediate Result on Linear Independence

This subsection presents a lemma on the linear indepen-

dence of functions which will be used to prove Theorem 1

on independence of neural network activation functions.

A collection of generalized functions g1, . . . , gm is lin-

early dependent if there are numbers, v1, . . . , vm ∈ C, not

all zero such that for all f ∈ Sn,
〈

m∑

i=1

vigi, f

〉
= 0.

The generalized functions, g1, . . . , gm are linearly indepen-

dent if they are not linearly dependent.

Say now that g1, . . . , gm are regular functions that have

polynomial growth which are continuous almost everywhere.

If we regard these functions as generalized functions, then

they are linearly dependent if and only if there is a collection

of numbers, v1, . . . , vm ∈ C, not all zero such that

m∑

i=1

vigi(x) = 0 for almost all x ∈ R
n. (7)

This definition rules out pathologies that arise from func-

tions for which (7) fails on a set of measure zero.

The following lemma gives a condition that can be used

for checking linear independence of a collection of functions.

It builds on an argument from [3] for continuous functions.

Lemma 2: Let g1, . . . , gm be a collection of functions

gi : Rn → C with polynomial growth that are continuous

almost everywhere. The collection is linearly independent

(as generalized functions) if and only if there are points

x1, . . . , xm ∈ R
n such that gi are continuous at xj for

i, j = 1, . . . ,m and the following matrix is invertible:

M(x) =



g1(x

1) · · · gm(x1)
...

...

g1(x
m) · · · gm(xm)


 .

Proof: Let x = (x1, . . . , xm) be a collection of points

such that each gi is continuous at each xj and M(x) is

invertible. Thus, M(y) must be invertible for all y in a

neighborhood U of x.

Let v be such that (7) holds for almost all x ∈ R
n and let

Y be the set of x ∈ R
n such that (7) holds. Then, we must

have that µ(U ∩Ym) = µ(U) > 0, so that U ∩Ym 6= ∅. For

any y ∈ U ∩ Ym, we must have that M(y) is invertible and

M(y)v = 0. Thus, we must have that v = 0.

Conversely, say that g1, . . . , gm are linearly independent.

We will show how to construct the desired x1, . . . , xm so

that M is invertible and each gi is continuous at each xj .

Throughout, let C denote the set of x ∈ R
n such that all gi

are continuous at x. We must have that µ(Rn \ C) = 0.

In the case that m = 1, M(x) = g1(x
1). There must be a

set of non-zero measure such that M(x) 6= 0, and so at least

some points in this set must belong to C. So, any point in

this intersection suffices. So, assume that m ≥ 2.

Fix any 0 6= v1 ∈ C
m. The set of vectors, x1, such that

[
g1(x

1) · · · gm(x1)
]

︸ ︷︷ ︸
M1

v1 6= 0

has non-zero measure. So, we can choose an x1 ∈ C such

that M1v
1 = d1 6= 0.

Now assume that for some i < m, x1, . . . , xi and

v1, . . . , vi have been chosen so that


g1(x

1) · · · gm(x1)
...

...

g1(x
i) · · · gm(xi)




︸ ︷︷ ︸
Mi

[
v1 · · · vi

]
︸ ︷︷ ︸

Vi

=



d1 0

. . .

⋆ di


 ,

(8)

where the right side is lower triangular and invertible.

Take any vi+1 6= 0 in the nullspace of Mi. Such a vector

must exist because Mi has i rows and i < m.

By linear independence, the set of xi+1 ∈ R
n such that

[
g1(x

i+1) · · · gm(xi+1)
]
vi+1 6= 0

has non-zero measure. Thus, we can take xi+1 ∈ C that

satisfies this inequality. Then Mi+1Vi+1 is again lower

triangular and invertible.

By induction, there are vectors x1, . . . , xm ∈ C and a

matrix, V ∈ C
m×m, such that M(x)V is invertible. Since

M(x) is square, M(x) must be invertible.

C. Linear Independence of Neural Network Activations

This section presents the main result of the paper. It

implies that for all of the activation functions described in

Subsection II-A, the functions formed by randomly gener-

ating weights and biases will be linearly independent with

probability 1 whenever the support of the distributions have

positive Lebesgue measure.

Theorem 1: Let σ : R → C be a regular function with

polynomial growth which is continuous almost everywhere.

Assume there is a regular function h which is continuous

almost everywhere and non-zero almost everywhere, and

there is a number n ≥ 1 such that for all f ∈ S with

f(0) = f (1)(0) = · · · = f (n−1)(0), we have that

〈σ̂, f〉 =

∫ ∞

−∞

h(x)f(x)dx.

Then, for almost all w1, . . . , wm ∈ R
n and almost all

b1, . . . , bm ∈ R, the functions defined by σ(w⊤
1 x +

b1), . . . , σ(w
⊤
mx+ bm) are linearly independent.

Proof: Denote the coordinates of wi by wij . Assume

that wi1 6= 0, which holds almost everywhere. Let ℓi(x1) be
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the functions of x1 defined by ℓi(x1) = σ(w⊤
i x + b1). For

almost all ζ ∈ R, ℓ̂i(ζ) behaves like:

ℓ̂i(ζ) =
1

|wi1|
exp

(
j2π

ζ (bi +
∑n

k=2 wikxk)

wi1

)
h

(
ζ

wi1

)

=: fi(y), where y =
[
ζ x2 · · · xm

]⊤
.

Note that if f1, . . . , fm are linearly independent, then the

original functions σ(w⊤
1 x+ b1), . . . , σ(w

⊤
mx+ bm) must be

linearly independent. Indeed, taking Fourier transforms of∑m
i=1 viσ(w

⊤
i x + bi) = 0 with respect to x1 shows that

if the original functions are linearly dependent, then so are

f1, . . . , fm.

So, to prove the theorem, we will show that f1, . . . , fm
are linearly independent by application of Lemma 2.

Note that each fi is continuous and non-zero at almost all

y. Indeed, the exponential function is continuous and non-

zero at all y, and the h is continuous and non-zero at almost

all ζ by assumption.

Let y1, . . . , ym ∈ R
n, with entries yk =[

ζk xk2 · · · xkm
]⊤

. We will give conditions on

yk that ensure that the associated matrix with entries

Mki = fi(yk) is invertible.

Set cki = j2π ζk
wi

and

zki =
1

|wi1|
exp


j2π

ζk

(
bi +

∑n
p=2 wipxkp

)

wi1


h

(
ζk
wi1

)

We set the terms xkp arbitrarily, and we choose ζk such

that h
(

ζk
wi1

)
6= 0 for all i, k = 1, . . . ,m and all cki are

unique and non-zero. To see that almost all ζk satisfy these

assumptions, note that h
(

ζ
wi1

)
6= 0 for almost all ζ ∈ R.

Any ζ̄ =
[
ζ1 · · · ζm

]⊤
such that ζi 6= 0 and ζk

wi1
6= ζp

wq1

for all i, k, p, q. Each of these inequalities hold for almost all

ζ̄. Thus, almost any choice of y1, . . . , ym leads to non-zero

zki, non-zero cki, distinct cki, and continuity of all fi at yk.

For the rest of the proof, assume that such y1, . . . , ym have

been chosen.

In the notation above, we can write M from Lemma 2 as

M(b, c, z) =



z11e

c11b1 · · · z1me
c1mbm

...
...

zm1e
cm1b1 · · · zmme

cmmbm


 .

We will prove that M(b, c, z) is invertible for almost all b ∈
R

m via induction on m.

For m = 1, M(b, c, z) = z11e
c11b1 6= 0 for all b1.

Assume inductively that M(b, c, z) is invertible for almost

all b ∈ R
m−1, provided that the entries of c ∈ C

(m−1)×(m−1)

and z ∈ C
(m−1)×(m−1) are all non-zero and distinct.

Now consider M(b, c, z) ∈ C
m×m. The Laplace expan-

sion formula implies that:

detM(b, c, z) =
m∑

i=1

(−1)i+1eci1b1zi1 detM(b̃, c̃i, z̃i).

Here, b̃ =
[
b2 · · · bm

]⊤
, c̃i corresponds to the matrix c

with column 1 and row i removed, and z̃i corresponds to the

matrix z with column 1 and row i removed. By the inductive

assumption, detM(b̃, c̃i, z̃i) 6= 0 for almost all b̃. So, fix b̃
such that all of these numbers are non-zero.

Let vi = (−1)i+1zi1 detM(b̃, c̃i, z̃i) 6= 0, ri = ci1, and

t = b1. In this notation, we have that

g(t) =

m∑

i=1

eritvi = detM(b, c, z).

The proof will be completed by showing that g(t) 6= 0 for

almost all t ∈ R.

Let Y = {t ∈ R|g(t) = 0}. Assume for the sake of

contradiction that µ(Y) > 0. There must be a compact subset

K ⊂ Y such that µ(K) > 0. See Theorem 2.17 of [15].

The set K, and thus Y , must have an accumulation point.

Otherwise, there is an open cover of K consisting of disjoint

open sets around each of its elements. But then compactness

implies that this cover has a finite subcover, and so K must

be a finite set, contradicting that µ(K) > 0.

Note that g can be extended to analytic function g : C →
C. Since g(t) = 0 for all t ∈ Y and Y has an accumulation

point, g must be identically zero. See Section 3.2 of [16].

So, if g is identically zero and vi 6= 0, it must be

that the functions erit are linearly dependent. However, this

contradicts a classical result that exponential functions with

distinct ri are linearly independent.

A case of Theorem 1 with n = 1 and wi = 1 for all i is

sketched in [8].

Remark 1: A similar linear independence claim for σ =
1

1+e−t is made in [17] based on an incomplete argument from

[9]. It is claimed in [9] that differentiability would imply that

if functions were linearly dependent, then

m∑

i=1

viw
k
i σ

(k)(wit+ bi) = 0

for all t ≥ 0 and all k ≥ 0. They claim that no non-zero

solution for vi can exist, since there are an infinite number

of equations and only m unknowns. However, they did not

prove that these equations cannot share a common null-space.

Remark 2: The proof of Theorem 1 indicates that the

points chosen to make M(x) invertible can be chosen as

xi =
[
xi1 z2 · · · zm

]⊤
. Thus, if i 6= j, then xi and xj

only differ in their first coordinate. By first applying a change

of basis to x, then applying the manipulations in the proof of

Theorem 1, we see that x1, . . . , xm can be chosen along an

arbitrary line in R
n. This fact will be utilized when deriving

sufficient conditions for persistence of excitation below.

Remark 3: Theorem 1 does not readily extend to multi-

layer networks, and linear independence will fail with posi-

tive probability for multi-layer ReLU networks with weights

and biases chosen via Gaussians.

III. APPLICATION TO PERSISTENCE OF EXCITATION IN

CONTROL

A. General Result

Adaptive control is often applied to systems of the form:

dxt
dt

= f(xt) + h(xt)ut +ΘΦ(xt),
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where f and h are known functions, xt is the state, ut is the

input, Φ(x) =
[
g1(x) · · · gm(x)

]⊤
, gi : R

n → R, and Θ
is a matrix of unknown parameters.

Adaptive control gives methods for simultaneously esti-

mating Θ and choosing inputs in control the system. In order

to estimate Θ, the state needs to satisfy a condition known

as persistence of excitation [18].

A trajectory x : [0,∞) → R
n is called persistently

exciting if there is a time horizon T and constants 0 < α ≤ β
such that for any t ≥ 0:

αI �

∫ T+t

t

Φ(xτ )Φ(xτ )
⊤dτ � βI.

Here � denotes the semidefinite partial ordering.

In many cases, Φ(xt) is bounded and so an upper bound

must exist. The lower bound is more of a challenge and

few explicit sufficient conditions for persistence of excitation

exist in the literature. The most famous condition, related to

the notion of sufficient richness, arises when Φ(xt) is the

output of a collection of m linear time-invariant filters driven

by an input with non-zero energy on at least m/2 distinct

frequencies. See [19]–[23] for details and extensions.

The sufficient conditions for persistence of excitation

described above do not cover the common case that xt is the

state of a dynamic system and gi(x) = σ(x⊤wi + bi) come

from a neural network. The proposition below implies that

in this case, persistence of excitation will hold, provided that

gi are linearly independent and xt traverses through specific

regions of the state space.

Proposition 1: Assume that g1, . . . , gm with gi : Rn →
R are continuous almost everywhere, linearly independent

functions. Let Φ(x) =
[
g1(x) · · · gm(x)

]⊤
. Fix any c >

0. There are vectors x1, . . . , xm ∈ R
n and positive numbers

ǫ and δ such that the following holds. Let xt ∈ R
n be any

trajectory over [τ, τ + T ] such that:

• ‖ẋt‖ ≤ c for all t ∈ [τ, τ + T ]
• There are times, ti ∈ [τ, τ+T ] such that ‖xti −x

i‖ ≤ ǫ
for i = 1, . . . ,m.

Then, ∫ τ+T

τ

Φ(xt)Φ(xt)
⊤dt � δI (9)

Proof: Let x1, . . . , xm ∈ R
n be the vectors from

Lemma 2 and let M be the corresponding matrix. In this

notation, we have that M⊤ =
[
Φ(x1) · · · Φ(xm)

]
and

M⊤M =

m∑

i=1

Φ(xi)Φ(xi)⊤ � σmin(M)2I,

where σmin(M) > 0 is the minimum singular value of M .

Continuity of gj functions at the xi values implies that

there is a radius r > 0 such that if ‖yi − xi‖ ≤ r for

i = 1, . . . ,m, then

m∑

i=1

Φ(yi)Φ(yi)⊤ �
1

2
σmin(M)2I.

For 0 < a < T/2, let Ti ⊂ [τ, τ + T ] be an interval

of length a containing ti. The assumption that 0 < a <

T/2 implies that such intervals must exist. By construction,

|t− ti| ≤ a for all t ∈ Ti.
The speed bound implies that ‖xt−xti‖ ≤ c|t− ti|. Thus,

for all t ∈ Ti, we have that

‖xt − xi‖ ≤ ‖xt − xti‖+ ‖xti − xi‖ ≤ ca+ ǫ. (10)

In particular, if ca+ ǫ ≤ r, we have that ‖xt − xi‖ ≤ r.

We now have that:
∫ τ+T

τ

Φ(xt)Φ(xt)
⊤dt �

m∑

i=1

∫

Ti

Φ(xt)Φ(xt)
⊤dt

�
a

2
σmin(M)2I.

To prove the second inequality, we do Riemann sum

approximations of the integral as follows. For any integer

N > 0, let h = a/N and let τi,0, . . . , τi,N be a uniform

gridding of Ti with τi,j+1 − τi,j = h.

m∑

i=1

∫

Ti

Φ(xt)Φ(xt)
⊤dt ≈

m∑

i=1

N−1∑

j=0

hΦ(xτi,j )Φ(xτi,j )
⊤

� hN
1

2
σmin(M)2I.

The inequality follows because hN = a and the Riemman

sum converges to the integral as N → ∞.

So, we finish the proof by setting δ = a
2σmin(M)2 where

a and ǫ are any positive numbers such that ca+ ǫ ≤ r.

Corollary 1: Let σ satisfy the conditions of Theorem 1.

Let y ∈ R
n and 0 6= z ∈ R

n be arbitrary vectors and

assume that gi(x) = σ(w⊤
i x + bi) for i = 1, . . . ,m. For

almost all choices of w1, . . . , wm and b1, . . . , bm there are

numbers p < q such that xi can be chosen to have the form

xi = y + αiz for αi ∈ [p, q]. Consequently, as long as xt
traverses the line segment {y + αz|p ≤ α ≤ q} on each

interval of the form [τ, τ + T ], it is persistently exciting.

Proof: This follows from a combination of Proposi-

tion 1, Theorem 1, and Remark 2.

Remark 4: For ReLUs and step functions, explicit con-

structions of x1, . . . , xm can be given in terms of polyhedra.

(This is discussed in another paper at this conference [24].)

B. Discussion on Reference Tracking

Ensuring the conditions of Proposition 1 or Corollary 1

may be impossible without precise control of xt. Here we

describe a scenario in which asymptotic estimation of the

parameters can be guaranteed, even if the persistence of

excitation conditions do not hold precisely for the state.

A common goal in adaptive control is make the state of

the system track the state of a known reference system:

dx̂t
dt

= Ax̂t +Brt,

where x̂t is the reference state, rt is the reference input, and

A and B are known matrices.

It is shown in [25] that if limt→∞(xt − x̂t) = 0 and x̂t
is persistently exciting, then xt inherits the persistence of

excitation properties of x̂t. Building upon this insight gives:
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Corollary 2: Let x1, . . . , xm be the vectors from Propo-

sition 1 and let c, ǫ and δ be the corresponding numbers.

Assume that

∥∥∥dx̂(t)
dt

∥∥∥ ≤ c for all t ≥ 0 and for all τ ≥ 0,

there are ti ∈ [τ, τ + T ] such that ‖x̂ti − xi‖ ≤ ǫ/2 for

i = 1, . . . ,m. If limt→∞(xt− x̂t) = 0, then (9) holds for xt
for all sufficiently large τ .

Proof: Let Ti be the intervals constructed in the proof

of Proposition 1, applied to x̂t. Then for t sufficiently large

we have that ‖xt− x̂t‖ ≤ ǫ
2 , so the triangle inequality gives:

‖xt − xi‖ ≤ ‖xt − x̂t‖+ ‖x̂t − x̂ti‖+ ‖x̂ti − xi‖

≤
ǫ

2
+ ca+

ǫ

2
= ca+ ǫ ≤ r.

Note that this bound recovers (10). The steps of rest of the

proof of Proposition 1 can be followed.

IV. CONCLUSION

This paper proves that neural networks with a single

hidden layer give rise to linearly independent functions

for nearly all choices of weights and biases in the hidden

layer. Such properties are tacitly assumed in many works on

adaptive control and function approximation. Future work

will investigate applications to network identifiability and

function approximation, and also aim to get more explicit

conditions for persistence of excitation.
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