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Abstract— Neural networks form a general purpose archi-
tecture for machine learning and parameter identification.
The simplest neural network consists of a single hidden layer
connected to a linear output layer. It is often assumed that
the components of the hidden layer correspond to linearly
independent functions, but proofs of this are only known
for a few specialized classes of network activation functions.
This paper shows that for wide class of activation functions,
including most of the commonly used activation functions in
neural network libraries, almost all choices of hidden layer
parameters lead to linearly independent functions. These linear
independence properties are then used to derive sufficient
conditions for persistence of excitation, a condition commonly
used to ensure parameter convergence in adaptive control.

I. INTRODUCTION

Neural networks are widely employed in machine learning
and adaptive control. Common applications include natural
language processing and image processing from learning[1]
and model reference adaptive control [2].

This simplest neural network architecture consists of a
single hidden layer and an output layer. Such a network is a
function, ¥ (x, @), defined by:

P(x,0) =co + Zcia(w;x + b;), €))

i=1

where 6 = (w, b, ¢) contains the parameters of the network,
z is the input variable, and o is a nonlinear function called
the activation function. Common activation functions include
sigmoids, step functions, and ReLUs.

Classical results in neural network theory [3], [4] establish
than under minimal assumptions on the activation function,
any continuous function can be approximated to arbitrary
accuracy by a single hidden layer neural network from (1).

The main contribution of this paper gives sufficient con-
ditions to ensure that o (w,’ = + b;) are linearly independent
as functions of x. We prove that for large class of activation
functions, which includes most activation functions in the
PyTorch library [5], the functions o(w,; z + b;) are linearly
independent for almost all choices of w; and b;. The result
implies, in particular, that if w; and b; are generated inde-
pendently from a continuous distribution whose support has
positive measure (with respect to Lebesgue measure), the
functions are linearly independent with probability 1.
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We utilize the linear independence to give sufficient con-
ditions for persistency of excitation, which is commonly
assumed without proof in adaptive control.

Beyond persistency of excitation, linear independence of
neural networks is assumed in proofs of consistency of
function approximation schemes [6], [7]. However, these
works do not give conditions for linear independence to hold.

Linear independence properties were showed for classes of
analytic activation functions in [8], but the literature directly
addressing linear independence of neural networks is sparse.
The most closely related topics that have received wide
study are neural network interpolation (see [3], [9], [10])
and network identifiability (see [8], [11], [12]).

Section II presents the main results on linear independence
and Section III shows how they can be used to derive
persistence of excitation conditions for adaptive control.
Conclusions are given in Section IV

Notation: The indicator function is denoted by 1. If x
is a vector, its Euclidean norm is denoted by ||z||. N denotes
the set of non-negative integers, R denotes the set of real
numbers, and C denotes the set of complex numbers. The
Lebesgue measure over R™ is denoted by pu.

II. LINEAR INDEPENDENCE OF NONLINEAR FUNCTIONS
A. Fourier Transforms of Generalized Functions

Our results will be derived via Fourier transforms. The
Fourier transforms of most common activation functions
must be interpreted as generalized functions, also known as
tempered distributions. The required background is reviewed
briefly below. See [13], [14] for more details.

For a differentiable function f and a multi-index m =

(mi,...,;my) € N let [0 (@) = Zotr - B f(9)]y=a

and let [m| = >_"" | m,. The function f is called a Schwartz
function if it is infinitely differentiable, and for every n > 1

max sup(1 + lal|*)" | /") (@) < o0 )
R

[m[<n ze
The space of Schwartz functions from R™ to C is called
the Schwartz space, and is denoted by S,,. For simplicity of
notation, we denote S; = S. The expression on the left of (2)
can be used to define a topology on the space of Schwartz
space. See [14]. A generalized function is a continuous linear
functional on S. Its action on a Schwartz function, f, is
denoted by (g, f). We often use the term regular function to
distinguish from generalized functions.
A function g : R — C has polynomial growth if there is
a constant ¢ and an integer n such that |g(z)| < ¢(1 + |z|)™
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for all . If g is measurable and has polynomial growth, it
can be identified with a generalized function via

<%ﬁ:/mmmﬂwm. 3

— 00
As a minor abuse of notation, we denote the “value” of a
generalized function as g(z), since the generalized functions
in this paper will behave like regular functions, except at a
few singular points.
The Fourier transform of a Schwartz function is given by

oo
fo)= [ s,
— 00
where j is the imaginary unit.
If g is a generalized function, its Fourier transform and
its distributional derivative are defined as the generalized
functions that respectively satisfy for all f € S:

@5 =190
<g/a f> - 7<gvf/>

We will show that the Fourier transforms of many common
neural network activation functions can be expressed in terms
of Dirac delta functions and generalized functions of the form
—L-h(w), where h(w) is a regular function.

The Dirac delta and its distributional derivatives of order
m > 0 are given by

(8™, f) = (=)™ f)(0).

The functions p_,,(z) = - for integers m > 1 can
be viewed as generalized functions with singularities at 0.

As discussed in [13], p_,, can be defined as distributional
( 1)'m+1

derivatives p_,, = =) £0m+2) of the regular function
{(z) = zlog |x| — x, with action given by

m 11 p(d) 0)z?
(P, f) = / fla “”'f O @
So, we can see that p_,,(x) behaves exactly like — I on all
fes with f(0) = fD(0) =--- = fi"=1(0) = 0.

In general, the product of a generalized function with a
regular function may not be a generalized function. If A :
R — C satisfies the following property

hfeS Vfes, (3)
then gh is the generalized function with action defined by:
(gh, f) = (9,hf) VfeS.

A sufficient condition for (5) is if & is infinitely differentiable
and h(*) has polynomial growth for all k > 0.

If h satisfies (5), then p_,(z)h(z) = —h(z) is a
generalized function. Then since ™ and all its derivatives
have polynomial growth, z™p_,,(x)h(z) is a generalized
function, and it can be shown that 2™p_,,(z)h(z) = h(z).

The following lemma is used to give expressions for
Fourier transforms of neural network activation functions.

_ Lemma 1: Say that h is a generalized function such that
h is a regular function that satisfies (5). If g is a generalized

function such that g™ (z) = h(x), then there are constants,

Cly...,Cm_1, Such that
G ! 5 (w 6
6(w) = (@) + Z ¢ (©)
Proof:  Applying the der1vat1ve rule for Fourier trans-
forms gives h(w) = (j2mw)™ g(w). R
The assumptions on h(w) imply that h(w) =
(j27w)™ Wﬁ(w)), where Wﬁ(w) defines a

valid generalized function. It follows that

2™ () = b)) =

Exercise 7.23 of [13] shows that there must be constants
co, - - -,Cm—1 such that 6 holds. ]

Example 1: If o(t) is piecewise polynomial with m > 1
non-smooth points, then there is an integer n, non-negative
integers ki, ..., k, < n, and real numbers a,...,a, and
b1,...,by such that

o™ () =" a; 8" (t - b;).
1=1

Lemma 1 implies that there exist co, ...,

m n—1
Zai(ﬂww)ki_"e_ﬂ”“bi + Zcié(i)(w)
i=1 i=0

This formula gives expressions for the Fourier transforms
the following activation functions from PyTorch [5]: Hard-
Shrink, HardSigmoid, HardTanh, HardSwish, LeakyReLU,
PReLU, Rel.U, R£I<U6, RReL.U, SoftShrink, Threshold.

Also note that o(™) (w) = 31" | a;(j27w)*ie=72™b must
be non-zero for almost all w € R with respect to the
Lebesgue measure. Arguing as in Theorem 1, it can be shown

Cn—1 such that

that if o(") (w) were zero on a set of positive measure, then it
must be identically zero. But then o (¢) must be a polynomial,
contradicting the assumption that o (t) is non-smooth.
Example 2: If o is one of the PyTorch functions LogSig-
moid, Sigmoid, SoftPlus, Tanh, and TanShrink then there
is some n > 1, and non-zero numbers a and b, o™ (t) =
a-seehz(bt). Thus, there are constants cy, . . ., ¢,_1 such that

n—1
1

o(w) = % esch (7w /b) + Z 6 (w)

ey 27
(52mw)™ bl
It can be shown that the function wcsch(w) is infinitely
differentiable and all of its derivatives have polynomial
growth, so the multiplication is well-defined. Also note that
wesch(w) > 0 for all w # 0.

Example 3: The PyTorch functions CELU, ELU, and
SELU all have the form

o) =a(e” —1)1(t <0)+ctl(t > 0),
with b > 0 and a and c are not both zero. It follows that

o@D () = ab®e" 1(t < 0) + (¢ — ab)d(t).

3366

Authorized licensed use limited to: University of Minnesota. Downloaded on August 31,2023 at 20:18:11 UTC from IEEE Xplore. Restrictions apply.



Lemma 1 shows that there are numbers, r¢ and r; such that

. 1
1 (cb — j2m(c - ab)w) + 3100 w).
=0

(j27w)? b— j2mw

g(w) =

Also note that the fraction is non-zero for all w # 0 since
b > 0 and a and c are not both zero.

In each of the activation function examples, we have seen
that the Fourier transform, &(w), behaves like a regular
function at all w # 0, and the corresponding regular function
is continuous at all w # 0 and non-zero for almost all w € R.

B. An Intermediate Result on Linear Independence

This subsection presents a lemma on the linear indepen-
dence of functions which will be used to prove Theorem 1
on independence of neural network activation functions.

A collection of generalized functions g, ..., g, is lin-
early dependent if there are numbers, vy, ...,v,, € C, not
all zero such that for all f € S,,,

<Z Vigis f> =0.
i=1

The generalized functions, g1, ..., g, are linearly indepen-
dent if they are not linearly dependent.

Say now that gy,..., g, are regular functions that have
polynomial growth which are continuous almost everywhere.
If we regard these functions as generalized functions, then
they are linearly dependent if and only if there is a collection
of numbers, vy, ...,v, € C, not all zero such that

Z v;g;(x) = 0 for almost all x € R™. @)
i=1

This definition rules out pathologies that arise from func-
tions for which (7) fails on a set of measure zero.

The following lemma gives a condition that can be used
for checking linear independence of a collection of functions.
It builds on an argument from [3] for continuous functions.

Lemma 2: Let g1,...,9m be a collection of functions
gi : R™ — C with polynomial growth that are continuous
almost everywhere. The collection is linearly independent
(as generalized functions) if and only if there are points

zb ..., 2™ € R™ such that g; are continuous at x’ for
1,7 =1,...,m and the following matrix is invertible:
(=) gm (')
M(z) = : :
g1(z™) gm (™)

Proof: Let x = (x!,...,2™) be a collection of points
such that each g; is continuous at each z7 and M(z) is
invertible. Thus, M(y) must be invertible for all y in a
neighborhood U of z.

Let v be such that (7) holds for almost all z € R™ and let
Y be the set of x € R™ such that (7) holds. Then, we must
have that u(UNY™) = p(U) > 0, so that UNY™ # (). For
any y € UN Y™, we must have that M (y) is invertible and
M (y)v = 0. Thus, we must have that v = 0.

Conversely, say that g1, ..., g, are linearly independent.
We will show how to construct the desired z',...,z™ so
that M is invertible and each g; is continuous at each x7.
Throughout, let C denote the set of x € R™ such that all g;
are continuous at x. We must have that y(R" \ C) = 0.

In the case that m = 1, M (x) = g;(z'). There must be a
set of non-zero measure such that M (x) # 0, and so at least
some points in this set must belong to C. So, any point in
this intersection suffices. So, assume that m > 2.

Fix any 0 # v* € C™. The set of vectors, z!, such that

[91(=1) gm (@) vt #0

My

has non-zero measure. So, we can choose an z! € C such
that Mwl =d; 75 0.

Now assume that for some i < m, z',...,2° and
vl ..., v" have been chosen so that

gl(xl) gm($1) dy 0

: [Ul vi] — ,

) ] —— o
gl(mz) gm(xl) Vi * di
M;
(3)

where the right side is lower triangular and invertible.

Take any v**! = 0 in the nullspace of M;. Such a vector
must exist because M; has ¢ rows and ¢ < m.

By linear independence, the set of xi*1 € R™ such that

[gl(l.iJrl) gm(xi+1)] vt £

has non-zero measure. Thus, we can take z't! € C that
satisfies this inequality. Then M;,;V;4; is again lower
triangular and invertible.

By induction, there are vectors xl,..‘,mm € C and a
matrix, V' € C™*™ such that M (x)V is invertible. Since
M (z) is square, M (z) must be invertible. |

C. Linear Independence of Neural Network Activations

This section presents the main result of the paper. It
implies that for all of the activation functions described in
Subsection II-A, the functions formed by randomly gener-
ating weights and biases will be linearly independent with
probability 1 whenever the support of the distributions have
positive Lebesgue measure.

Theorem 1: Let 0 : R — C be a regular function with
polynomial growth which is continuous almost everywhere.
Assume there is a regular function h which is continuous
almost everywhere and non-zero almost everywhere, and
there is a number n > 1 such that for all f € S with
£(0) = fV(0) = --- = f=1(0), we have that

oo
6.5 = o
— 00

Then, for almost all wy,...,w, € R™ and almost all
bi,...,b,, € R, the functions defined by o(w{z +
bi),...,o(w,}x +by) are linearly independent.

Proof: Denote the coordinates of w; by w;;. Assume
that w;; # 0, which holds almost everywhere. Let ¢;(x1) be
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the functions of z; defined by ¢;(z1) = o(w, @ + b;). For

almost all ¢ € R, /;(¢) behaves like:

B0 = 1 exp (j,%é (bi + >k wz‘kﬂﬂk)) h ( ¢ >
w1 Wi i
=: f;(y), where y = [( 2 xm]—r

Note that if f1,..., f,, are linearly independent, then the
original functions o(w{ = + by),...,o(w, = + b,,) must be
linearly independent. Indeed, taking Fourier transforms of
> vio(w] @ + b;) = 0 with respect to x; shows that
if the original functions are linearly dependent, then so are
fi,-o oy fne

So, to prove the theorem, we will show that f,...
are linearly independent by application of Lemma 2.

Note that each f; is continuous and non-zero at almost all
y. Indeed, the exponential function is continuous and non-
zero at all y, and the h is continuous and non-zero at almost
all ¢ by assumption.

Let y1,...,Ym e R”, with entries vy =
[Ck Tho ka] T We will give conditions on
yr that ensure that the associated matrix with entries
My; = fi(yg) is invertible.

Set c¢i; = j27r1% and

Ck <bi +2 2 wipxkp) 5 < Ck )

W;1

s Jm

exp | j27

Zki =
e |wi1\ Wi

We set the terms xy, arbitrarily, and we choose (j such
that h (5—’“1) % 0 for all i,k = 1,...,m and all c; are
unique and non-zero. To see that almost all (; satisfy these
assumptions, note that h( ) # 0 for almost all ( € R.

Any ¢ =[G Cm] ' such that ¢; # 0 and Lo S
for all ¢, k, p, q. Each of these inequalities hold for almost all
g“. Thus, almost any choice of y1, ...,y leads to non-zero
Zki» NON-ZET0 Cy;, distinct ck;, and continuity of all f; at yy.
For the rest of the proof, assume that such y, ...,y have
been chosen.

In the notation above, we can write M from Lemma 2 as

c11b1 bm

z11€ zlmeclm

M(b,c,z) =
bm

leb1

Zm1€ Zynm €5

We will prove that M (b, ¢, z) is invertible for almost all b €
R™ via induction on m.

For m =1, M(b,c,z) = z11e1% #£ 0 for all b;.

Assume inductively that M (b, ¢, z) is invertible for almost
allb € Rm— 1, provided that the entries of ¢ € C(m=1)x(m=1)
and z € C(=1x(m=1) are all non-zero and distinct.

Now consider M (b,c,z) € C™*™. The Laplace expan-
sion formula implies that:

det M(b,c,z) = > _(—1)"" e 25y det M (b, &, 2).
i=1
Here, b= [bz bm]T, & corresponds to the matrix c

with column 1 and row i removed, and Z* corresponds to the

matrix z with column 1 and row ¢ removed. By the inductive
assumption, det M (b, ¢t, 2') # 0 for almost all b. So, fix b
such that all of these numbers are non-zero.

Let v; = (—1)"*12; det M(E, &, 2" # 0, r; = ¢i1, and
t = by. In this notation, we have that

t) = Z e"ty; = det M (b, ¢, 2).
i=1

The proof will be completed by showing that g(¢) # 0 for
almost all ¢ € R.

Let Y = {t € R|g(t) = 0}. Assume for the sake of
contradiction that ;()’) > 0. There must be a compact subset
K C Y such that u(K) > 0. See Theorem 2.17 of [15].
The set K, and thus ), must have an accumulation point.
Otherwise, there is an open cover of K consisting of disjoint
open sets around each of its elements. But then compactness
implies that this cover has a finite subcover, and so K must
be a finite set, contradicting that p(K) > 0.

Note that g can be extended to analytic function g : C —
C. Since g(t) =0 for all ¢ € Y and ) has an accumulation
point, g must be identically zero. See Section 3.2 of [16].

So, if g is identically zero and wv; #* 0, it must be
that the functions e”i! are linearly dependent. However, this
contradicts a classical result that exponential functions with
distinct r; are linearly independent. [ ]

A case of Theorem 1 with n =1 and w; = 1 for all 7 is
sketched in [8].

Remark 1: A similar linear independence claim for o =
ﬁ is made in [17] based on an incomplete argument from
[9]. It is claimed in [9] that differentiability would imply that
if functions were linearly dependent, then

g vlwa

forall t > 0 and all k > 0. They claim that no non-zero
solution for v; can exist, since there are an infinite number
of equations and only m unknowns. However, they did not
prove that these equations cannot share a common null-space.

Remark 2: The proof of Theorem 1 indicates that the
points chosen to make M ( ) invertible can be chosen as
at =z} oz - } Thus, if i # j, then 2% and 2/
only differ in their ﬁrst coordinate. By first applying a change
of basis to z, then applying the manipulations in the proof of
L ...,2™ can be chosen along an

) (wit + b;) =

Theorem 1, we see that x-,
arbitrary line in R™. This fact will be utilized when deriving
sufficient conditions for persistence of excitation below.

Remark 3: Theorem 1 does not readily extend to multi-
layer networks, and linear independence will fail with posi-
tive probability for multi-layer ReLLU networks with weights
and biases chosen via Gaussians.

ITI. APPLICATION TO PERSISTENCE OF EXCITATION IN

CONTROL

A. General Result

Adaptive control is often applied to systems of the form:

dJUt

= fx) + h(zp)uy + OP(xy),

3368

Authorized licensed use limited to: University of Minnesota. Downloaded on August 31,2023 at 20:18:11 UTC from IEEE Xplore. Restrictions apply.



where f and h are known functions, z; is the state, u; is the
input, ®(z) = [g1(z) gm(a:)]T, gi :R" - R, and ©
is a matrix of unknown parameters.

Adaptive control gives methods for simultaneously esti-
mating © and choosing inputs in control the system. In order
to estimate O, the state needs to satisfy a condition known
as persistence of excitation [18].

A trajectory x : [0,00) — R™ is called persistently
exciting if there is a time horizon 7" and constants 0 < a < 3
such that for any ¢ > O:

T+t
al < / O(z,)®(2,)  dr < BI.
t

Here = denotes the semidefinite partial ordering.

In many cases, ®(z;) is bounded and so an upper bound
must exist. The lower bound is more of a challenge and
few explicit sufficient conditions for persistence of excitation
exist in the literature. The most famous condition, related to
the notion of sufficient richness, arises when ®(x;) is the
output of a collection of m linear time-invariant filters driven
by an input with non-zero energy on at least m/2 distinct
frequencies. See [19]-[23] for details and extensions.

The sufficient conditions for persistence of excitation
described above do not cover the common case that x; is the
state of a dynamic system and g;(x) = o (2 w; + b;) come
from a neural network. The proposition below implies that
in this case, persistence of excitation will hold, provided that
g; are linearly independent and x, traverses through specific
regions of the state space.

Proposition 1: Assume that g1,...,Gm with g; : R" —
R are continuous almost everywhere, linearle independent
functions. Let ®(z) = [g1(x) gm(z)] . Fix any ¢ >
0. There are vectors x*,...,x™ € R™ and positive numbers
€ and 0 such that the following holds. Let x; € R™ be any
trajectory over [T, + T such that:

o &l < cforallte|r,7+T)

o There are times, t; € [1,7+T) such that ||z, —z*|| < €

fori=1,...,m.
Then,
T+T
O(2)® () Tdt = 61 )
Proof: Let Txl, ...,2™ € R" be the vectors from

Lemma 2 and let M be the corresponding matrix. In this
notation, we have that M " = [®(z!) ®(z™)] and

m
MM =Y ")) = ommn(M)1,
i=1
where o (M) > 0 is the minimum singular value of M.
Continuity of g; functions at the z° values implies that
there is a radius » > 0 such that if ||y* — 2% < r for
i=1,...,m, then

Omin(M)?1.

DO | =

Z‘P(yi)@(yi)T =

For 0 < a < T/2,let T, C [r,7 + T] be an interval
of length a containing ¢;. The assumption that 0 < a <

T/2 implies that such intervals must exist. By construction,
|t — ;| <aforallteT.

The speed bound implies that ||z; —x¢,|| < c|t —t;|. Thus,
for all ¢ € 7;, we have that

+ |Jay, — 2| < ca+e.

oy — 2| < |lay — @, (10)

In particular, if ca + € < r, we have that ||z; — 2| < r.
We now have that:

T+T m
/ D (24)® () " dt = Z/ B ()P () " dt
4 i=1 7T

> = Omin(M)*1.
2
To prove the second inequality, we do Riemann sum
approximations of the integral as follows. For any integer
N > 0, let h = a/N and let 7;,...,7;n be a uniform
gridding of 7; with 7 ;11 — 75 ; = h.

m m N-—1
Z/ D)0 Tdt~ 3 S hd(ar,)B(er, )T
i=177Ti i=1 j=0

1
> hNiamin(M)QI.

The inequality follows because h/N = a and the Riemman
sum converges to the integral as N — oc.
So, we finish the proof by setting § = %0 (M)?* where
a and € are any positive numbers such that ca +e <r. H
Corollary 1: Let o satisfy the conditions of Theorem 1.
Let y € R™ and 0 # z € R" be arbitrary vectors and
assume that g;(z) = o(w;z +b;) for i = 1,...,m. For
almost all choices of w1, ..., wy, and by,..., b, there are
numbers p < q such that x* can be chosen to have the form
2t = y + iz for a; € [p,q]. Consequently, as long as x;
traverses the line segment {y + az|p < a < q} on each
interval of the form [T, + T), it is persistently exciting.
Proof: This follows from a combination of Proposi-
tion 1, Theorem 1, and Remark 2. |
Remark 4: For ReLLUs and step functions, explicit con-
structions of z, ..., 2™ can be given in terms of polyhedra.
(This is discussed in another paper at this conference [24].)

B. Discussion on Reference Tracking

Ensuring the conditions of Proposition 1 or Corollary 1
may be impossible without precise control of x;. Here we
describe a scenario in which asymptotic estimation of the
parameters can be guaranteed, even if the persistence of
excitation conditions do not hold precisely for the state.

A common goal in adaptive control is make the state of
the system track the state of a known reference system:

% = A"%t + Br ts

where Z, is the reference state, r; is the reference input, and
A and B are known matrices.

It is shown in [25] that if lim; o (2; — &¢) = 0 and &
is persistently exciting, then z; inherits the persistence of
excitation properties of Z;. Building upon this insight gives:
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Corollary 2: Let x',...,x™ be the vectors from Propo- [10]
sition 1 and let ¢, € and § be the corresponding numbers.
Assume that ‘ dﬁit) H < cforallt >0 and for all T > 0,
there are t; € 1,7 + T)| such that ||&,, — z*|| < €¢/2 for
t=1,...,m. Iflimy o (z; — Z¢) = O, then (9) holds for x, [11]
for all sufficiently large T.

Proof: Let T; be the intervals constructed in the proof
of Proposition 1, applied to ;. Then for ¢ sufficiently large [12]

we have that |z, — 2| < §, so the triangle inequality gives:
[z — @] < lwe — Tull + (|2 — 2o, + (|2, — 2°| [13]

€ €

§2—|—ca+2—ca+e§r. [14]

Note that this bound recovers (10). The steps of rest of the
proof of Proposition 1 can be followed. m [15]
IV. CONCLUSION [16]

This paper proves that neural networks with a single
hidden layer give rise to linearly independent functions
for nearly all choices of weights and biases in the hidden [17]
layer. Such properties are tacitly assumed in many works on
adaptive control and function approximation. Future work
will investigate applications to network identifiability and
function approximation, and also aim to get more explicit [18]
conditions for persistence of excitation.
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